WorldWideScience

Sample records for integrated solar powered

  1. Integration of Small Solar tower Systems into Distributed Power Islands

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S. [Ciemat, Madrid (Spain)

    2000-07-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-paks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leadings to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begum. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostat configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs.

  2. Integration of Small Solar Tower Systems Into Distributed Power Islands

    International Nuclear Information System (INIS)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S.

    1999-01-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-parks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leading to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begun. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostats configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs

  3. 76 FR 69284 - Certain Integrated Solar Power Systems and Components Thereof: Notice of Institution of...

    Science.gov (United States)

    2011-11-08

    ... the United States after importation of certain integrated solar power systems and components thereof... certain integrated solar power systems and components thereof that infringe one or more of claims 6 and 10... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-811] Certain Integrated Solar Power...

  4. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  5. Application of Power Systems Economics to Wind and Solar Power Integration

    OpenAIRE

    Mills, Andrew David

    2015-01-01

    The focus of this dissertation is the economic implications of the technical challenges of integrating variable generation, namely wind and solar, into the electric power system. The research is organized around three topics: short-term variability of wind and solar generation, changes in the economic value of wind and solar with increasing penetration, and the effectiveness of different measures at mitigating changes in economic value with increasing penetration levels. Early studies of PV g...

  6. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  7. 77 FR 39736 - Certain Integrated Solar Power Systems and Components Thereof; Notice of Termination of the...

    Science.gov (United States)

    2012-07-05

    ... certain integrated solar power systems and components thereof by reason of infringement of certain claims... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-811] Certain Integrated Solar Power Systems and Components Thereof; Notice of Termination of the Investigation Based on Settlement AGENCY: U.S...

  8. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  9. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  10. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  11. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  12. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  13. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  14. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    Science.gov (United States)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  15. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stiebitz, Paul [Rochester Institute of Technology, NY (United States)

    2014-05-27

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliable power sources for microsystems.

  16. Simulation of solar-powered ammonia-water integrated hybrid cooling system

    International Nuclear Information System (INIS)

    Chinnappa, J.C.V.; Wijeysundera, N.E.

    1992-01-01

    A number of solar-operated air-conditioning systems based on the H 2 O-LiBr absorption chiller were built, installed, and monitored. A systematic study at the University of Colorado has been published. This paper presents a simple cost-benefit analysis of the conventional vapor compression system (VCS), the vapor absorption system (VAS), and the integrated hybrid system (IHS). The cost of energy input to the VAS and the IHS were compared with the energy cost of the VCS that these solar-powered systems replace. It was found that cost savings can be realized with solar-powered systems, only after a critical overall solar fraction is exceeded. Typically, this value was about 0.7 for a VAS and about 0.12 for a IHS. These cost-benefit results provided the motivation for a more detailed study of the IHS. There has also been other efforts in this direction

  17. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  18. Integration of Antennas and Solar cells for Low Power Wireless Systems

    OpenAIRE

    O’Conchubhair, Oisin

    2015-01-01

    This thesis reports on design methods for enhanced integration of low-profile antennas for short-range wireless communications with solar voltaic systems. The need to transform to more sustainable energy sources arises from the excessive production of harmful carbon emissions from fossil fuels. The Internet of Things and the proliferation of battery powered devices makes energy harvesting from the environment more desirable in order to reduce dependency on the power grid and running costs. Wh...

  19. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  20. Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage

    International Nuclear Information System (INIS)

    Nithyanandam, K.; Pitchumani, R.

    2014-01-01

    Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO 2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MW e capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWh t and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant. - Highlights: • Presents technoeconomic analysis of thermal energy storage integrated concentrating solar power plants. • Presents a comparison of different storage options. • Presents optimum design of thermal energy storage system for steam Rankine and supercritical carbon dioxide cycles. • Presents designs for maximizing exergetic efficiency while minimizing storage cost and levelized cost of energy

  1. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    Science.gov (United States)

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  2. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  3. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  4. Powering Autonomous Sensors An Integral Approach with Focus on Solar and RF Energy Harvesting

    CERN Document Server

    Penella-López, María Teresa

    2011-01-01

    Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly...

  5. Market to facilitate wind and solar energy integration in the bulk power supply

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Soeder, Lennart [Royal Inst. of Tech., Stockholm (Sweden); Holttinen, Hannele [VTT Energy, Espoo (Finland); Clark, Charlton [U.S. Department of Energy Washington, DC (United States); Pineda, Ivan [European Wind Energy Association, Brussels (Belgium); Collaboration: IEA Task 25 collaboration

    2012-07-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital-cost/high-marginal-cost power, the average price may remain in the same range. However, the experiences so far from Denmark, Germany, Spain, and Ireland are that the average market prices decreased because of wind power. This reduction in price may result in additional revenue insufficiency, which may be corrected with a capacity market; however, capacity markets are difficult to design. Further, the flexibility attributes of the capacity need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging. (orig.)

  6. Thermo-economic analysis of an integrated solar power generation system using nanofluids

    International Nuclear Information System (INIS)

    Alashkar, Adnan; Gadalla, Mohamed

    2017-01-01

    Highlights: • Develop a thermo-economic analysis of an integrated solar-power generation system. • A thermodynamic optimization is proposed to maximize system performance. • Select the optimum nanofluid to replace conventional heating fluids inside a PTSC. • Study the effect of thermal energy storage on performance and cost of the system. • Perform monthly and daily analyses to analyze system behavior using nanofluids. - Abstract: In this paper, a thermo-economic analysis of an Integrated Solar Regenerative Rankine Cycle (ISRRC) is performed. The ISRRC consists of a nanofluid-based Parabolic Trough Solar Collector (PTSC), and a Thermal Energy Storage System (TES) integrated with a Regenerative Rankine Cycle. The effect of dispersing metallic and non-metallic nanoparticles into conventional heating fluids on the output performance and cost of the ISRRC is studied for different volume fractions and for three modes of operation. The first mode assumes no storage, while the second and the third assume a storage system with a storage period of 7.5 h and 10 h respectively. For the modes of operation with the TES, the charging and discharging cycles are explained. The results show that the presence of the nanoparticles leads to an increase in the overall energy produced by the ISRRC for all modes of operation, causing a decrease in the Levelized Cost of Electricity (LEC), and an increase in the net savings of the ISRRC. After comparing the three modes of operation, it is established that the existence of a storage system leads to a higher power generation, and a lower LEC; however, the efficiency of the cycle drops. It is seen that the maximum increase in the annual energy output of the ISRRC caused by the addition of Cu nanoparticles to Syltherm 800 is approximately 3.1%, while the maximum increase in the net savings is about 2.4%.

  7. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  8. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  9. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  10. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  11. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  12. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  13. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-05

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology. CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.

  14. Solar Power Sources

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  15. The integration of solar power plants for domestic water services in buildings; Integracion de calderas y calentadores individuales en las instalaciones de ACS con energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. V.; Garcia, R.; Lopez de Subijana, R.; Casado, J. M.

    2004-07-01

    The integration of solar power plants for domestic water services in buildings with individual heating and domestic water facilities has some problems which must be solved by the manufacturers of boilers and individual heaters; the most important is the water temperature in the entrance to the individual equipment because of solar heating. Therefore, we must care about materials in boilers and heaters, and temperature control systems of domestic water production. We analyse the technical conditions which appear in these equipment in the usual schemes: Centralized accumulation, distributed accumulation, serial heating, etc., and propose some elements which can be integrated in these facilities to obtain a better operation. (Author)

  16. Solar power in Finland

    International Nuclear Information System (INIS)

    Vesa, A.M.

    2004-01-01

    Solar cells, or photovoltaic units, have provided a useful supply of energy for low-power, non-gridconnected applications in Finland for some years. Applications have included navigational buoys, base stations for mobile phone networks, and appliances in holiday homes. Solar-powered systems have also been used in connection with grid power for over a decade, in Finland and elsewhere, and have proved generally successful - and solar energy is emerging as an increasingly interesting alternative for distributed electricity generation

  17. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Thermodynamic, economic and environmental analyses of concentrating solar power plants assist in identifying an effective and viable configuration. In this paper, a 4E (energy-exergy-environmental-economic) comparative study of 8 different configurations of parabolic trough solar thermal power plants with two different working fluids (Therminol VP-1 -oil and molten solar salt), with and without integrated thermal energy storage or/and backup fuel system is presented. The results of the comparative study indicate relevant differences among the 8 configurations. The molten solar salt configuration with integrated thermal energy storage and fossil fuel backup system exhibits the highest overall energy efficiency (18.48%) compared to other configurations. Whereas, the highest overall exergy efficiency (21.77%), capacity factor (38.20%) and annual energy generation (114 GWh) are found for the oil based configuration with integrated thermal energy storage and fossil fuel backup system. The results indicate that the configurations based on molten salt are better in terms of environmental and economical parameters. The configurations with integrated thermal energy storage and fossil fuel backup system are found to be techno-economical, but on the other hand are less environment friendly. A detailed comparison of these plants after optimization must be performed before drawing a final conclusion about the best configuration to be adopted in parabolic trough solar thermal power plant. - Highlights: • 4E comparative study of 8 configurations of PTSTPP with two different fluids. • Comparison of the configurations with and without integrated TES (thermal energy storage) and FBS (fuel backup system). • The overall energy efficiency of the salt plant with TES and FBS is the highest. • The overall exergy efficiency of the oil plant with TES and FBS is the highest. • The salt plants are the best configurations in terms of environ–eco parameters

  18. Integrating wind and solar power into the energy systems of the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Although they have been pursued by scientists and entrepreneurs for two decades, solar and wind energy have not yet claimed the large share of the world energy market that proponents hoped they would. Yet the past two years brought a series of developments that suggest the time has come for solar and wind energy to compete directly with fossil fuels. Wind and solar power generators are likely to contribute significant power to the electricity systems of scores of countries within the next decade, with generating costs as low as 4-5 cents per kilowatt-hour. This will require adjustment in the operation of power transmission and distribution systems to accommodate intermittent resources, as well as new time-specific pricing of electricity. The transition to more open, competitive power systems, with liberal access by independent producers, is likely to speed introduction of the new technologies. Altogether, the energy that strikes the earth`s atmosphere in the form of sunlight each year, and the winds that flow from it, represent the equivalent of nearly 1,000 trillion barrels of oil-sufficient to fuel the global economy thousands of times over. By relying on a new generation of efficient, high-tech, and mass produced energy conversion devices such as advanced wind turbines and photovoltaics, the world can rapidly reduce its dependence on oil and coal in the twenty-first century. In the more distant future, solar and wind energy have the potential not only to supply much of the world`s electricity but to displace the direct use of oil and natural gas. Solar and wind energy can be used to split water via electrolysis, producing hydrogen gas that can be substituted for liquid and gaseous fuels. (46 refs.)

  19. Integrating wind and solar power into the energy systems of the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1995-12-31

    Although they have been pursued by scientists and entrepreneurs for two decades, solar and wind energy have not yet claimed the large share of the world energy market that proponents hoped they would. Yet the past two years brought a series of developments that suggest the time has come for solar and wind energy to compete directly with fossil fuels. Wind and solar power generators are likely to contribute significant power to the electricity systems of scores of countries within the next decade, with generating costs as low as 4-5 cents per kilowatt-hour. This will require adjustment in the operation of power transmission and distribution systems to accommodate intermittent resources, as well as new time-specific pricing of electricity. The transition to more open, competitive power systems, with liberal access by independent producers, is likely to speed introduction of the new technologies. Altogether, the energy that strikes the earth`s atmosphere in the form of sunlight each year, and the winds that flow from it, represent the equivalent of nearly 1,000 trillion barrels of oil-sufficient to fuel the global economy thousands of times over. By relying on a new generation of efficient, high-tech, and mass produced energy conversion devices such as advanced wind turbines and photovoltaics, the world can rapidly reduce its dependence on oil and coal in the twenty-first century. In the more distant future, solar and wind energy have the potential not only to supply much of the world`s electricity but to displace the direct use of oil and natural gas. Solar and wind energy can be used to split water via electrolysis, producing hydrogen gas that can be substituted for liquid and gaseous fuels. (46 refs.)

  20. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Daye, Tony [Green Power Labs (GPL), San Diego, CA (United States)

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  1. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  2. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  3. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  4. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  5. Techno-economic analysis of large-scale integration of solar power plants in the European grid

    Energy Technology Data Exchange (ETDEWEB)

    Tielens, Pieter; Ergun, Hakan; Hertem, Dirk van [Katholieke Universiteit Leuven (Belgium). Electrical Engineering Dept.

    2012-07-01

    In this paper different options to connect large solar power plants in North Africa to the European power system are compared from a transmission system investment point of view. Three different possible DC connections from Tunisia to Italy are investigated from a cost-based perspective. In the second part of the paper, the impact of the power fluctuations from CSP and PV power plants on the frequency control is examined in a qualitative manner. It is shown that the frequency response mainly depends on the amount of PV installed and the inertia present in the grid. The results of the simulations give a first estimation of the maximum amount of PV integration in the Tunisian grid without reaching certain frequency limits after a sudden power fluctuation. (orig.)

  6. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation

    Institute of Scientific and Technical Information of China (English)

    Wenjia Li; Hongsheng Wang; Yong Hao

    2017-01-01

    A new photovoltaic-thermochemical (PVTC) conceptual system integrating photon-enhanced thermionic emission (PETE) and methane steam reforming is proposed.Major novelty of the system lies in its potential adaptivity to primary fuels (e.g.methane) and high efficiencies of photovoltaic and thermochemical power generation,both of which result from its operation at much elevated temperatures (700-1000 ℃)compared with conventional photovoltaic-thermal (PVT) systems.Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 ℃,after considering major losses during solar energy capture and conversion processes.The system is also featured by high solar share (37%) in the total power output,as well as high energy storage capability and very low CO2 emissions,both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.

  7. Solar Panel Integration as an Alternate Power Source on Centaur 2 (SPIAPS)

    Science.gov (United States)

    Gebara, Christine A.; Schuetze, Nich A.; Knochel, Aviana M.; Magruder, Darby F.

    2011-01-01

    The dream of exploration has inspired thousands throughout time. Space exploration, in particular, has taken the past century by storm and caused a great advance in technology. In this project, a retractable solar panel array will be developed for use on the Centaur 2 Rover. Energy generated by the solar panels will go to power the Centaur 2 Robot (C2) or Regolith & Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE) payload, an in-situ resource utilization project. Such payload is designed to drill into lunar and Martian terrain as well as be able to conduct other geological testing; RESOLVE is slated for testing in 2012. Ultimately, this project will fit into NASA s larger goal of deep space exploration as well as long term presence outside Earth s orbit.

  8. Solar Integration National Dataset Toolkit | Grid Modernization | NREL

    Science.gov (United States)

    Solar Integration National Dataset Toolkit Solar Integration National Dataset Toolkit NREL is working on a Solar Integration National Dataset (SIND) Toolkit to enable researchers to perform U.S . regional solar generation integration studies. It will provide modeled, coherent subhourly solar power data

  9. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  10. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur

    2017-01-01

    In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.

  11. Integrating geothermal into coal-fired power plant with carbon capture: A comparative study with solar energy

    International Nuclear Information System (INIS)

    Wang, Fu; Deng, Shuai; Zhao, Jun; Zhao, Jiapei; Yang, Guohua; Yan, Jinyue

    2017-01-01

    Highlights: • Post-combustion carbon capture integrating geothermal energy was proposed. • A 300 MWe subcritical coal-fired plant was selected as the baseline. • The geothermal assisted carbon capture system was compared with solar assisted carbon capture plant. • Two different locations were chosen for the technical and economical comparison. • Using medium temperature geothermal thermal energy to replace steam extraction performs better performance. - Abstract: A new system integrating geothermal energy into post-combustion carbon capture is proposed in this paper. Geothermal energy at medium temperatures is used to provide the required thermal heat for solvent regeneration. The performance of this system is compared with solar assisted carbon capture plant via technical and economic evaluation. A 300 MWe coal-fired power plant is selected as the reference case, and two different locations based on the local climatic conditions and geothermal resources are chosen for the comparison. The results show that the geothermal assisted post-combustion carbon capture plant has better performances than the solar assisted one in term of the net power output and annual electricity generation. The net plant average efficiency based on lower heating value can be increased by 2.75% with a thermal load fraction of about 41%. Results of economic assessment show that the proposed geothermal assisted post-combustion carbon capture system has lower levelized costs of electricity and cost of carbon dioxide avoidance compared to the solar assisted post-combustion carbon capture plant. In order to achieve comparative advantages over the reference post-combustion carbon capture plant in both locations, the price of solar collector has to be lower than 70 USD/m 2 , and the drilling depth of the geothermal well shall be less than 2.1 km.

  12. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-02-11

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  13. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  14. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  15. NMOS-Based Integrated Modular Bypass for Use in Solar Systems (NIMBUS: Intelligent Bypass for Reducing Partial Shading Power Loss in Solar Panel Applications

    Directory of Open Access Journals (Sweden)

    Pieter Bauwens

    2016-06-01

    Full Text Available NMOS-based Integrated Modular Bypass for Use in Solar systems (NIMBUS is designed as a replacement for the traditional bypass diode, used in common solar panels. Because of the series connection between the individual solar cells, the power output of a photovoltaic (PV panel will drop disproportionally under partial shading. Currently, this is solved by dividing the PV panel into substrings, each with a diode bypass placed in parallel. This allows an alternative current path. However, the diodes still have a significant voltage drop (about 350 mV, and due to the fairly large currents in a panel, the diodes are dissipating power that we would rather see at the output of the panel. The NIMBUS chip, being a low-voltage-drop switch, aims to replace these diodes and, thus, reduce that power loss. NIMBUS is a smart bypass: a completely stand-alone system that detects the failing of one or more cells and activates when necessary. It is designed for a 100-mV voltage drop under a 5-A load current. When two or more NIMBUS chips are placed in parallel, an internal synchronization circuit ensures proper operation to provide for larger load currents. This paper will elaborate on the operation, design and implementation of the NIMBUS chip, as well as on the first measurements.

  16. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  17. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  18. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  19. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  20. Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location

  1. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  2. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Lion

    2014-11-14

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  3. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    International Nuclear Information System (INIS)

    Hirth, Lion

    2014-01-01

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  4. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  5. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  6. Solar dynamic power module design

    Science.gov (United States)

    Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.

    1989-01-01

    Studies have shown that the use of solar dynamic (SD) power for the growth areas of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A Power Conversion Unit (PCU) based on the closed Brayton cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on, orbit.

  7. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  8. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  9. Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process

    International Nuclear Information System (INIS)

    Qadir, Abdul; Sharma, Manish; Parvareh, Forough; Khalilpour, Rajab; Abbas, Ali

    2015-01-01

    Highlights: • Flexible operation of power and PCC plant may significantly increase operational revenue. • Higher optimal carbon capture rates observed with solar thermal energy input. • Solar thermal repowering of the power plant provides highest net revenue. • Constant optimal capture rate observed for one of the flexible operation cases. • Up to 42% higher revenue generation observed between two cases with solar input. - Abstract: This paper examines flexible operation of solvent-based post-combustion carbon capture (PCC) for the reduction of power plant carbon emissions while minimizing revenue loss due to the reduced power plant electricity output. The study is conducted using a model superstructure enveloping three plants; a power plant, a PCC plant and a solar thermal field where the power plant and PCC plant are operated flexibly under the influence of hourly electricity market and weather conditions. Reduced (surrogate) models for the reboiler duty and auxiliary power requirement for the carbon capture plant are generated and applied to simulate and compare four cases, (A) power plant with PCC, (B) power plant with solar assisted PCC, (C) power plant with PCC and solar repowering – variable net electricity output and (D) power plant with PCC and solar repowering – fixed net electricity output. Such analyses are conducted under dynamic conditions including power plant part-load operation while varying the capture rate to optimize the revenue of the power plant. Each case was simulated with a lower carbon price of $25/tonne-CO 2 and a higher price of $50/tonne-CO 2 . The comparison of cases B–D found that optimal revenue generation for case C can be up to 42% higher than that of solar-assisted PCC (case B). Case C is found to be the most profitable with the lowest carbon emissions intensity and is found to exhibit a constant capture rate for both carbon prices. The optimal revenue for case D is slightly lower than case C for the lower carbon

  10. Designing Wind and Solar Power Purchase Agreements to Support Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Barbara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Power purchase agreements (PPAs) represent one of many institutional tools that power systems can use to improve grid services from variable renewable energy (VRE) generators. This fact sheet introduces the concept of PPAs for VRE generators and provides a brief summary of key PPA components that can facilitate VRE generators to enhance grid stability and serve as a source of power system flexibility.

  11. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  12. Reserve Requirement Impacts of Microgrid Integration of Wind, Solar, and Ocean Wave Power Generation

    OpenAIRE

    Ortego Trujillo, Patxi

    2016-01-01

    The ocean wave energy is a free and abundant resource which has led to exploring new methods to take advantage of the energy in an efficient and profitable way. The wave energy harnessing techniques are not as mature as other renewable energy resources ones such as wind or solar. Nevertheless, in recent years wave energy converters (WECs) have been gaining attention and restoring confidence worldwide in their role to meet the increasing demands and strict environmental standards Ocean wave po...

  13. Studying the Impact of Distributed Solar PV on Power Systems using Integrated Transmission and Distribution Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Himanshu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krad, Ibrahim [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-24

    This paper presents the results of a distributed solar PV impact assessment study that was performed using a synthetic integrated transmission (T) and distribution (D) model. The primary objective of the study was to present a new approach for distributed solar PV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and distributed solar PV was geographically dispersed and connected to the secondary distribution networks. The highlights of the study results were (i) increase in the Area Control Error (ACE) at high penetration levels of distributed solar PV; and (ii) differences in distribution voltages profiles and voltage regulator operations between integrated T&D and distribution only simulations.

  14. Simulation of Photovoltaic Power Output for Solar Integration Studies in the Southeast US

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.; Martin, Curtis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.; Tuohy, Aidan P. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2016-06-01

    We describe the method used to simulate one year of AC power at one-minute intervals for a large collection of hypothetical utility-scale photovoltaic plants of varying size, employing either fixed-tilt PV modules or single-axis tracking, and for distribution-connected photovoltaic (DPV) power systems assumed for a number of metropolitan areas. We also describe the simulation of an accompanying day-ahead forecast of hourly AC power for utility-scale plants and DPV systems such that forecast errors are consistent with errors reported for current forecasting methods. The results of these simulations are intended for use in a study that examines the possible effects of increased levels of photovoltaic (PV) generation bulk on power variability within the Tennessee Valley Authority (TVA) and Southern Company service territories.

  15. Concentrating Solar Power Systems

    Science.gov (United States)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  16. Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration

    International Nuclear Information System (INIS)

    Xu, Da; Liu, Qibin; Lei, Jing; Jin, Hongguang

    2015-01-01

    Highlights: • A new middle-and-low temperature solar thermochemical CCHP system is proposed. • The thermodynamic performances of the new system are numerically evaluated. • The superiorities of the new system are demonstrated. - Abstract: In this paper, a new distributed energy system that integrates the mid-and-low temperature solar energy thermochemical process and the methanol decomposition is proposed. Through the solar energy receiver/reactor, the energy collected by a parabolic trough concentrator, at 200–300 °C, is used to drive the decomposition reaction of the methanol into the synthesis gas, and thus the solar thermal energy is converted to the chemical energy. The chemical energy of the synthesis gas released in the combustion chamber of a micro gas turbine is used to drive the combined cooling heating and power systems. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under the considerations of the changes of the solar irradiation intensity, the off-design performances of the micro turbine and the variations of the load, the design and off-design thermodynamic performances of the system and the characteristics of the chemical energy storage are numerically studied. Numerical results indicate that the primary energy ratio of the system is 76.40%, and the net solar-electricity conversion rate reaches 22.56%, which is higher than exiting large-scale solar thermal power plants. Owing to the introduction of a the solar thermochemical energy storage in the proposed system, the power generation efficiency is insensitive to the variations of the solar radiation, and thus an efficient and stable utilization approach of the solar thermal energy is achieved at all work condition

  17. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  18. Decentralised Solar Power at Homes

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Decentralised Solar Power at Homes. Solar PV gives DC Power. But load is AC; Needs a DC-AC convertor. Now if we add a battery. Battery stores only DC. Require a AC-DC convertor for charging; Require a DC-AC convertor during discharging. For low power, each ...

  19. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  20. Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  1. Optimization and development of solar power system under diffused sunlight condition in rural areas with supercapacitor integration

    Science.gov (United States)

    Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.

    2018-04-01

    The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.

  2. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  3. Concentration solar thermal power

    International Nuclear Information System (INIS)

    Livet, F.

    2011-01-01

    As the production of electricity by concentration solar power (CSP) installations is said to be a source of energy for the future, the author discusses past experiments (notably the French Thermis project), and the different techniques which are currently being used. He indicates the regions which appear to be the most appropriate for this technique. He presents the three main techniques: parabolic cylinder, tower, and Stirling cycle installations. He discusses the issue of intermittency. He proposes an assessment of prices and of their evolution, and indicates the investments made in different installations (in Italy, Spain, Germany and Portugal). He comments the case of hybrid installations (sun and gas), evokes the Desertec project proposed by the German industry which comprises a set of hybrid installations. He notices that there is no significant technological evolution for this process

  4. Low-cost solar electric power

    CERN Document Server

    Fraas, Lewis M

    2014-01-01

    ?This book describes recent breakthroughs that promise major cost reductions in solar energy production in a clear and highly accessible manner. The author addresses the three key areas that have commonly resulted in criticism of solar energy in the past: cost, availability, and variability. Coverage includes cutting-edge information on recently developed 40? efficient solar cells, which can produce double the power of currently available commercial cells. The discussion also highlights the potentially transformative emergence of opportunities for integration of solar energy storage and natura

  5. Final Technical Report for Contract No. DE-EE0006332, "Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation"

    Energy Technology Data Exchange (ETDEWEB)

    Cormier, Dallas [San Diego Gas & Electric, CA (United States); Edra, Sherwin [San Diego Gas & Electric, CA (United States); Espinoza, Michael [San Diego Gas & Electric, CA (United States); Daye, Tony [Green Power Labs, San Diego, CA (United States); Kostylev, Vladimir [Green Power Labs, San Diego, CA (United States); Pavlovski, Alexandre [Green Power Labs, San Diego, CA (United States); Jelen, Deborah [Electricore, Inc., Valencia, CA (United States)

    2014-12-29

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  6. Financing Solar Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  7. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  8. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  9. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  10. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  11. Solar data inputs for integration and transmission planning studies

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D.; Hummon, Marissa; Hodge, Bri-Mathias; Lew, Debra [National Renewable Energy Laboratory, Golden, CO (United States)

    2011-07-01

    Renewable energy integration studies are frequently conducted to evaluate the impacts wind and solar power have on grid operations and planning. In the United States, these studies have historically been focused on wind energy integration. However, with the rapid deployment of large-scale and distributed solar power across the United States, and Hawaii, the interest in solar power variability and its impacts on the grid is increasing. To complete detailed integration studies, modeled power production of existing and future solar power deployments is necessary. This paper discusses some of the methods used to generate photovoltaic (PV) and concentrating solar power (CSP) production profiles for studies undertaken in the United States, evaluates the results, and compares the profiles with measured solar power production characteristics. (orig.)

  12. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  13. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  14. Solar Power Augmented Electrolysis Module for Energy Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrating solar photovoltaic power with regenerative fuel cell systems for energy storage can often be very complex and costly. It usually requires complex power...

  15. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  16. Solar power role in the future power engineering

    International Nuclear Information System (INIS)

    Strebkov, D.S.

    2006-01-01

    One studied the most essential factors, materials and processes governing the role of the solar power in the future power generation. Paper describes new principles to convert solar energy, to produce solar silicon and solar elements, to encapsulate solar modules, to make use of stationary solar concentrators [ru

  17. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  18. Solar Integration Data Sets | Grid Modernization | NREL

    Science.gov (United States)

    Solar Integration Data Sets Solar Integration Data Sets NREL provides the energy community with for Integration Studies Modeled solar data for energy professionals-such as transmission planners , utility planners, project developers, and university researchers-who perform solar integration studies and

  19. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  20. Concentrating solar power

    International Nuclear Information System (INIS)

    Metelli, Enzo; Vignolini, Mauro

    2005-01-01

    Solar energy can be used instead of fossil fuels to produce high-temperature heat for use in many industrial processes and in electricity generation. If carried out on a large scale, the replacement would make it possible to reduce harmful emissions and stabilise the global climate over the long term. ENEA has an innovative project in this sector [it

  1. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  2. Hybrid solar and hydro-power for Austria

    Energy Technology Data Exchange (ETDEWEB)

    Weyss, N

    1978-02-01

    It is proposed that integrating solar powerplants into the Austrian electricity networks could cost less than conventional thermal plants, and provide a high degree of independence to the country. The following aspects are discussed; the seasonal distribution of sunshine, solar power plants, land requirements, economic feasibility, solar/fossil hybrid operation, integration strategy, Malta-B as a calculating unit, solar-hydraulic baseload throughout the year, concrete requirements, solar-hydraulic possibilities within the next 50 years, cement for solar plants, and energy accounting. (MHR)

  3. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    Science.gov (United States)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  4. Solar thermal power meeting - Proceedings

    International Nuclear Information System (INIS)

    2011-07-01

    This document summarizes the presentations and debates of the first edition of the Solar thermal power meeting. Content: 1 - Opening talk (Jean-Louis BAL, SER); 2 - Solar thermal power, European and global road-maps (Cedric Philibert, IEA; Mariangels Perez Latorre, Estela); 3 - first round-table on the international development of solar energy (Philippe Lorec, DGEC France; Said Mouline, Aderee Morocco; Obaid Amrane, Masen Morocco; Kawther Lihidheb, ANME Tunisia; Abdelaziz Boumahra, Rouiba Eclairage, Algeria; Badis Derradji, NEAL Algeria; Yao Azoumah, Lesee, 2IE Foundation Burkina Faso; Mamadou Amadou Kane, MPEM Mauritania; Jean-Charles Mulet, Bertin Technologies); 4 - Second round-table on the French solar thermal offer for export (Georgina Grenon, DGEC; Stephanie Bouzigueseschmann, DG Tresor; Armand Pineda, Alstom; Florent Brunet, Mena-Areva; Roger Pujol, CNIM; Gilles David, Enertime; Michel Wohrer, Saed; Mathieu Vrinat, Sogreah; Marc Benmarraze, Solar Euromed; 5 - Presentation of Amisole - Moroccan association of solar and wind industries (Ahmed Squalli, Amisole); 6 - Third round-table on French research at the solar industry service (Gilles Flamant, Promes Lab. CNRS; Francois Moisan, Ademe; Tahar Melliti, CGI; Andre Joffre, Derbi; Michel Wohrer, Capenergies; 7 - Fourth round table on projects financing (Vincent Girard, Loan Officer BEI; Bertrand Marchais, Miga World Bank; Philippe Meunier, CDC Climat Groupe Caisse des Depots; Christian de Gromard, AFD; Laurent Belouze, Natixis; Piotr Michalowski, Loan Officer BEI); 8 - Closing of the meeting (Roger Pujol, SER)

  5. Hexagon solar power panel

    Science.gov (United States)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  6. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  7. Solar Power Use Claims

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA evaluates partnership metrics annually to determine progress toward programmatic goals.

  8. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  9. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  10. Peak Power Markets for Satellite Solar Power

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  11. Solar shading how to integrate solar shading in sustainable buildings

    CERN Document Server

    Dolmans, Dick; Dutoo, Gonzague; Hall, Anders; Seppänen, Olli

    2010-01-01

    Solar Shading Guidebook gives a solid background on the physics of solar radiation and its behaviour in window with solar shading systems. Major focus of the Guidebook is on the effect of solar shading in the use of energy for cooling, heating and lighting. The book gives also practical guidance for selection, installation and operation of solar shading as well as future trends in integration of HVAC-systems with solar control.

  12. Assessment of potential for small hydro/solar power integration in a mountainous, data sparse region: the role of hydrological prediction accuracy

    Science.gov (United States)

    Borga, Marco; Francois, Baptiste; Creutin, Jean-Dominique; Hingray, Benoit; Zoccatelli, Davide; Tardivo, Gianmarco

    2015-04-01

    In many parts of the world, integration of small hydropower and solar/wind energy sources along river systems is examined as a way to meet pressing renewable energy targets. Depending on the space and time scales considered, hydrometeorological variability may synchronize or desynchronize solar/wind, runoff and the demand opening the possibility to use their complementarity to smooth the intermittency of each individual energy source. Rivers also provide important ecosystem services, including the provision of high quality downstream water supply and the maintenance of in-stream habitats. With future supply and demand of water resources both impacted by environmental change, a good understanding of the potential for the integration among hydropower and solar/wind energy sources in often sparsely gauged catchments is important. In such cases, where complex data-demanding models may be inappropriate, there is a need for simple conceptual modelling approaches that can still capture the main features of runoff generation and artificial regulation processes. In this work we focus on run-of-the-river and solar-power interaction assessment. In order to catch the three key cycles of the load fluctuation - daily, weekly and seasonal, the time step used in the study is the hourly resolution. We examine the performance of a conceptual hydrological model which includes facilities to model dam regulation and diversions and hydrological modules to account for the effect of glaciarised catchments. The model is applied to catchments of the heavily regulated Upper Adige river system (6900 km2), Eastern Italian Alps, which has a long history of hydropower generation. The model is used to characterize and predict the natural flow regime, assess the regulation impacts, and simulate co-fluctuations between run-of- the-river and solar power. The results demonstrates that the simple, conceptual modelling approach developed here can capture the main hydrological and regulation processes

  13. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  14. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  15. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  16. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  17. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  18. Solar receiver with integrated optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  19. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  20. Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location

  1. Development of nonmetallic solar collector and solar-powered pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  2. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  3. Technology Roadmaps: Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The emerging technology known as concentrating solar power, or CSP, holds much promise for countries with plenty of sunshine and clear skies. Its electrical output matches well the shifting daily demand for electricity in places where airconditioning systems are spreading. When backed up by thermal storage facilities and combustible fuel, it offers utilities electricity that can be dispatched when required, enabling it to be used for base, shoulder and peak loads. Within about one to two decades, it will be able to compete with coal plants that emit high levels of CO2. The sunniest regions, such as North Africa, may be able to export surplus solar electricity to neighbouring regions, such as Europe, where demand for electricity from renewable sources is strong. In the medium-to-longer term, concentrating solar facilities can also produce hydrogen, which can be blended with natural gas, and provide low-carbon liquid fuels for transport and other end-use sectors. For CSP to claim its share of the coming energy revolution, concerted action is required over the next ten years by scientists, industry, governments, financing institutions and the public. This roadmap is intended to help drive these indispensable developments.

  4. Grid Integration | Water Power | NREL

    Science.gov (United States)

    Grid Integration Grid Integration For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power resources like water power is a critical part of the

  5. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  6. The Future of Solar Power in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Gerard Reid

    2015-07-01

    Full Text Available We used detailed industry data to analyse the impacts of expected further cost reductions on the competitiveness of solar power in Britain, and assess whether the solar market can survive without support in the near future. We investigated three solar power markets: large-scale, ground-mounted “solar farms” (defined in our analysis as larger than a 5000 kilowatt system; commercial roof-top (250 kW; and residential rooftop (3 kW. We found that all three would be economic without support in the next decade. Such an outcome assumes progressively falling support under a stable policy regime. We found that unsubsidised residential solar power may be cheaper with battery storage within the next five to 10 years. Unsupported domestic solar battery packs achieve payback periods of less than 10 years by 2025. That could create an inflexion point driving adoption of domestic solar systems. The variability of solar power will involve some grid integration costs at higher penetration levels, such as more frequent power market scheduling; more interconnector capacity; storage; and backup power. These costs and responses could be weighed against non-market benefits including the potential for grid balancing; lower carbon and particulate emissions; and energy security.

  7. How to Integrate Variable Power Source into a Power Grid

    Science.gov (United States)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  8. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  9. Concentrating Solar Power. Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Concentrating solar power can contribute significantly to the world's energy supply. As shown in this roadmap, this decade is a critical window of opportunity during which CSP could become a competitive source of electrical power to meet peak and intermediate loads in the sunniest parts of the world. This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid technological progress, cost reductions and expanded industrial manufacturing of CSP equipment to enable mass deployment. Importantly, this roadmap also establishes a foundation for greater international collaboration. The overall aim of this roadmap is to identify actions required - on the part of all stakeholders - to accelerate CSP deployment globally. Many countries, particularly in emerging regions, are only just beginning to develop CSP. Accordingly, milestone dates should be considered as indicative of urgency, rather than as absolutes. This roadmap is a work in progress. As global CSP efforts advance and an increasing number of CSP applications are developed, new data will provide the basis for updated analysis. The IEA will continue to track the evolution of CSP technology and its impacts on markets, the power sector and regulatory environments, and will update its analysis and set additional tasks and milestones as new learning comes to light.

  10. Integrated solar thermal Brayton cycles with either one or two regenerative heat exchangers for maximum power output

    International Nuclear Information System (INIS)

    Jansen, E.; Bello-Ochende, T.; Meyer, J.P.

    2015-01-01

    The main objective of this paper is to optimise the open-air solar-thermal Brayton cycle by considering the implementation of the second law of thermodynamics and how it relates to the design of the heat exchanging components within it. These components included one or more regenerators (in the form of cross-flow heat exchangers) and the receiver of a parabolic dish concentrator where the system heat was absorbed. The generation of entropy was considered as it was associated with the destruction of exergy or available work. The dimensions of some components were used to optimise the cycles under investigation. EGM (Entropy Generation Minimisation) was employed to optimise the system parameters by considering their influence on the total generation of entropy (destruction of exergy). Various assumptions and constraints were considered and discussed. The total entropy generation rate and irreversibilities were determined by considering the individual components and ducts of the system, as well as their respective inlet and outlet conditions. The major system parameters were evaluated as functions of the mass flow rate to allow for a proper discussion of the system performance. The performances of both systems were investigated, and characteristics were listed for both. Finally, a comparison is made to shed light on the differences in performance. - Highlights: • Implementation of the second law of thermodynamics. • Design of heat exchanging and collecting equipment. • Utilisation of Entropy Generation Minimization. • Presentation of a multi-objective optimization. • Raise efficiency with more regeneration

  11. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  12. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  13. Designing High Efficient Solar Powered OLED Lighting Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    2016-01-01

    for the 10 Wp version. Furthermore, we present measurements of state-of-the-art commercial available OLED with regards to the luminous flux, luminous efficacy, luminance homogeneity, temperature dependency and IV characteristic of the OLED panels. In addition, solar powered OLED product concepts are proposed.......OLEDs used in solar powered lighting applications is a market of the future. This paper reports the development of electronic Three-Port-Converters for PV OLED product integration in the low-power area respectively for 1-10 Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power...

  14. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  15. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  16. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  17. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  18. Solar power water distillation unit

    International Nuclear Information System (INIS)

    Hameed, Kamran; Khan, Muhammad Muzammil; Ateeq, Ijlal Shahrukh; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-01-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  19. Concentrating Solar Power Gen3 Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vidal, Judith [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wagner, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andraka, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-01-01

    Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE has supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.

  20. Leasing solar power instead of buying it; Solarpaechter statt Stromkaeufer

    Energy Technology Data Exchange (ETDEWEB)

    Oppen, Margarete von [Rechtsanwaltssozietaet Geiser und von Oppen, Berlin (Germany)

    2012-11-01

    Owners of PV systems wo let their tenants or neighbours use their solar power may make bigger profits than from reimbursement for power supply to the public grid. The contribution relates solar power price components to solar module types.

  1. Solar and nuclear power are partners

    International Nuclear Information System (INIS)

    Rossin, A.D.

    1985-01-01

    This chapter attempts to refute the claim made by solar energy proponents that the continued reliance on electric grids with coal-fired and nuclear plants hinders the development of solar energy sources. It is proposed that solar and nuclear power do not compete with one another, no energy source can do the job alone, and the future of solar energy is brightest only if nuclear power succeeds. Since electric utilities have to generate almost twice as much energy during the day than at night, solar energy could be used to decrease the amount of electric power the nuclear power plants must supply at peak periods. It is argued that the key to solving future energy demands is diversity in the forms of energy supply

  2. Design consideration of solar powered cars

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment, it is important to develop new technologies that reduce both energy consumption and pollution at the same time. Using solar energy is a good solution which could meet the world's energy needs. The aim of this study is to present the design process in the production of a solar powered car. Designing a solar powered car is a difficult task as there are strict requirements in term of efficiency: the car must have low drag resistance, be light-weight, and have low rolling resistance. In addition this paper presents the use of the solar powered Stirling engine technology rather than a photovoltaic conversion system for vehicle propulsion. This study presented a design process in the construction of a solar powered car and is expected to provide a new topic of research in the transportation field.

  3. Feature Selection and ANN Solar Power Prediction

    OpenAIRE

    O’Leary, Daniel; Kubby, Joel

    2017-01-01

    A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers). These new participants in the energy market, prosumers, require new artificial neural...

  4. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibanez, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Florita, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hodge, B. -M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); King, J. [RePPAE; Lefton, S. A. [Intertek-APTECH, Houston, TX (United States); Kumar, N. [Intertek-APTECH, Houston, TX (United States); Agan, D. [Intertek-APTECH, Houston, TX (United States); Jordan, G. [GE Energy, Fairfield, CT (United States); Venkataraman, S. [GE Energy, Fairfield, CT (United States)

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  5. The Western Wind and Solar Integration Study Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  6. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  7. Online short-term solar power forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2009-01-01

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 hours. The data used is fifteen......-minute observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques....... Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to two hours...

  8. Recipe for success in solar power marketing

    International Nuclear Information System (INIS)

    Frauenfelder, S.

    2000-01-01

    This article presents the results of a campaign run jointly by the Swiss Federal Office of Energy and the Association of Swiss Electricity Utilities called 'Solar Power from your Utility'. An analysis of solar power marketing efforts made by ten utilities is presented. The results of assessments of these market measures made by solar power customers and non-customers are presented and questions of pricing, product-image and product-confidence are discussed. Finally, suggestions for the optimisation of the marketing measures are made

  9. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  10. Cermet Coatings for Solar Stirling Space Power

    Science.gov (United States)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.

  11. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  12. OUT Success Stories: Solar Trough Power Plants

    Science.gov (United States)

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  13. Deployed Base Solar Power (BRIEFING SLIDES)

    Science.gov (United States)

    2009-09-01

    various time intervals. Data Acquisitions and Components:  FieldPoint  Current, Voltage, and Power Transducers  POA Pyranometers  Solar...Tracking Pyranometer  Weather Station  kWh Meter Parameters being monitored:  Solar Module Temperatures  Ambient Temperature  Wind Speed  Wind

  14. Students To Race Solar-Powered Vehicles

    Science.gov (United States)

    4 1999 — Middle school students from across the state next week will race model solar cars designed Race Solar-Powered Vehicles For more information contact: e:mail: Public Affairs Golden, Colo., May 12 inches high. The 20-meter race is a double elimination competition with awards going to the five

  15. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  16. CMOS integrated switching power converters

    CERN Document Server

    Villar-Pique, Gerard

    2011-01-01

    This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and effi

  17. Consumer attitudes towards domestic solar power systems

    International Nuclear Information System (INIS)

    Faiers, Adam; Neame, Charles

    2006-01-01

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified

  18. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  19. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  20. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  1. Online Short-term Solar Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2011-01-01

    This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours.......This poster presents two approaches to online forecasting of power production from PV systems. The methods are suited for online forecasting in many applications and here they are used to predict hourly values of solar power for horizons up to 32 hours....

  2. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  3. Solar Powered Heat Storage for Injera Baking

    OpenAIRE

    Tesfay, Asfafaw H; Kahsay, Mulu Bayray; Nydal, Ole Jørgen

    2014-01-01

    Ethiopia with a population of about 85 million meets 96% of its energy needs with bio-mass, charcoal, wood, animal dung and plant residues. More than 50% of this energy goes entirely on baking Injera. Injera the national food of the country demands 180-220 °C to be well cooked. In this article; Injera baking with solar energy on off-focus system, status of electric powered stove and the potential for solar powered stoves is discussed. The research and development of solar thermal for househol...

  4. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  5. Solar power's rise and promise

    OpenAIRE

    Pernia, Ernesto M.; Generoso, Maria Janela M.

    2015-01-01

    Time was when solar energy was facilely dismissed as impractical, inefficient, and pricey. In recent years, however, innovations in technology, regulation, and financing have resulted in remarkable efficiency improvements and price reductions, thereby reversing the skepticism about this renewable energy (RE) source. In this paper, we explore how this has happened, to what extent photovoltaic solar technology has been accepted around the world, and what might be its potential for inclusive gre...

  6. Solar powered vehicles: From dream to reality

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The initiatives of the 'Schweizer Vereinigung fuer Sonnenenergie' (Swiss Association for Solar Energy) has added new impetus worldwide for the utilisation of solar energy. The Association organised the 'Tour de Sol', a race for vehicles propelled with the aid of solar energy. Solar vehicles with and without supplementary power, both standard production models and prototypes were eligible for the race. Before the start of the race, the solar-powered vehicles were 'filled up' with solar energy at a 'solar filling station'. The winner in the 'standard' section (a 2-seater small car for short distances) weighed in at 240 kg and attained a top speed of 100 km/h and a range of 150 km. The rear-wheel drive of this battery-powered vehicle was provided by 2 permanent magnet motors. A newly-developed nickel-zinc battery from the USA was available to power the twin engines. The energy requirement was the equivalent of less than 1 liter of petrol per 100 km.

  7. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  8. Swiss solar power statistics 2007 - Significant expansion

    International Nuclear Information System (INIS)

    Hostettler, T.

    2008-01-01

    This article presents and discusses the 2007 statistics for solar power in Switzerland. A significant number of new installations is noted as is the high production figures from newer installations. The basics behind the compilation of the Swiss solar power statistics are briefly reviewed and an overview for the period 1989 to 2007 is presented which includes figures on the number of photovoltaic plant in service and installed peak power. Typical production figures in kilowatt-hours (kWh) per installed kilowatt-peak power (kWp) are presented and discussed for installations of various sizes. Increased production after inverter replacement in older installations is noted. Finally, the general political situation in Switzerland as far as solar power is concerned are briefly discussed as are international developments.

  9. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  10. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  11. Predictive Solar-Integrated Commercial Building Load Control

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  12. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  13. Solar powered aviation beacon/landing light

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The objective of the work was to design, develop and test Solar Powered Aviation Landing Lights/Obstruction Beacons. The entire lighting units were to be stand alone devices capable of producing their own individual power supply. The whole process was to be documented to provide insight into the processes and decisions involved. (author)

  14. An automated tool for solar power systems

    International Nuclear Information System (INIS)

    Natsheh, E.M.; Natsheh, A.R.; Albarbar, AH

    2014-01-01

    In this paper a novel model of smart grid-connected solar power system is developed. The model is implemented using MatLab/SIMULINK software package. Artificial neural network (ANN) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The dynamic behavior of the proposed model is examined under different operating conditions. Solar irradiance, and temperature data are gathered from a grid connected, 28.8 kW solar power system located in central Manchester. The developed system and its control strategy exhibit excellent performance with tracking efficiency exceed 94.5%. The proposed model and its control strategy offer a proper tool for smart grid performance optimization. (author)

  15. Materials in harnessing solar power

    Indian Academy of Sciences (India)

    2018-04-06

    Apr 6, 2018 ... design should be in such a way that it can provide a balance among specific .... In India, manufacturing of solar PV modules has been on swift rise but primarily it is ... Si wafers. Therefore, the need to promote Si production and ...... ing mirrors and receiving tubes can be manufactured in India. This will not ...

  16. Passive solar offices: integrated design

    Energy Technology Data Exchange (ETDEWEB)

    Evans, B

    1992-05-06

    Passive solar design in out-of-town offices can remove the need for air-conditioning by making greater use of daylight and natural ventilation. To promote the use of passive solar energy a series of design studies are being run by the Energy Technology Support Unit on behalf of the Department of Energy. The three reported here are designs for out-of-town business buildings. Each is a hypothetical building designed to a realistic brief for an organisation taking the role of real client. (author).

  17. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  18. Solar Power. Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walters, Terri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Booth, Sarah [Booth Clean Energy LLC, Denver, CO (United States)

    2015-05-01

    As global electricity demand increases, governments are designing and implementing policies to scale up and catalyze renewable energy, which now meets 22% of global electricity demand (REN21 2014). Solar technologies are a critical component of this expanded deployment, and they have experienced unprecedented growth in recent years. As presented in Figure 1, solar prices have decreased significantly over the last decade (REN21 2014) and in 2013, new capacity installation of solar electricity from photovoltaics (PV) 1 surpassed all other renewable energy technologies worldwide—excluding hydropower—with 39 gigawatts installed that year. Concentrating solar thermal power,2 although it still represents a fairly nascent market, also continues to expand as installed capacity increased by 36% in 2013 compared to 2012. In addition to meeting energy demand in an increasingly cost-effective manner, solar deployment can also support critical economic, social, and environmental development goals (Flavin and Hull Aeck, n.d.).

  19. Center for Autonomous Solar Power

    Science.gov (United States)

    2013-06-26

    manufactured by Corning . Corning has recently produced rolls of the glass and tested it on the Binghamton roll-to-roll line. Glass offers several...future. An example of the Willow Glass product from Corning Test fixture of bending and stretching using for coated flexible substrates for up...films Synthesized by Chemical Spray Pyrolysis for Application in Solar Cells", Ratheesh R. Thankalekshmi and A.C. Rastogi, Journal of Applied Physics

  20. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  1. Commercialization of solar space power

    Science.gov (United States)

    Pant, Alok; Sera, Gary

    1995-01-01

    The objective of this research is to help U.S. companies commercialize renewable energy in India, with a special focus on solar energy. The National Aeronautics and Space Administration (NASA) Mid-Continent Technology Transfer Center (MCTTC) is working with ENTECH, Inc., a solar photovoltaic (SPV) systems manufacturer to form partnerships with Indian companies. MCTTC has conducted both secondary and primary market research and obtained travel funding to meet potential Indian partners face to face. MCTTC and ENTECH traveled to India during June 2-20, 1994, and visited New Delhi, Bombay, Pune and Calcutta. Meetings were held with several key government officials and premier Indian business houses and entrepreneurs in the area of solar energy. A firsthand knowledge of India's renewable energy industry was gained, and companies were qualified in terms of capabilities and commitment to the SPV business. The World Bank has awarded India with 280 million to commercialize renewable energies, including 55 million for SPV. There is a market in India for both small-scale (kW) and large SPV (MW) applications. Each U.S. company needs to form a joint venture with an Indian firm and let the latter identify the states and projects with the greatest business potential. Several big Indian companies and entrepreneurs are planning to enter the SPV business, and they currently are seeking foreign technology partners. Since the lager companies have adopted a more conservative approach, however, partnerships with entrepreneurs might offer the quickest route to market entry in India.

  2. Consumer attitudes towards domestic solar power systems

    Energy Technology Data Exchange (ETDEWEB)

    Faiers, Adam [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: a.j.faiers.so2@cranfield.ac.uk; Neame, Charles [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: c.neame@cranfield.ac.uk

    2006-09-15

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified.

  3. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  4. Solar PV-based rooftop power plant

    International Nuclear Information System (INIS)

    Ashok Kumar, B.; Kumar, Chaitanya; Patel, C.B.; Pattanaik, B.R.; Panda, P.K.; Kaul, S.K.; Mishra, H.

    2017-01-01

    Technical Services Division (TSD) is responsible for providing reliable power supply to various operating reactors, laboratories and facilities of BARC. The power supply to BARC is derived from TATA Power at 110 KV and 22 KV at an average HT tariff of Rs.8.49 per unit at present. Peak power demand of BARC in summer season goes up to 23 MW. TSD has implemented several energy conservation measures to reduce the energy consumption and as well taken initiatives to install solar PV based rooftop power plants to reduce the cost of energy consumption in BARC

  5. New directions for space solar power

    Science.gov (United States)

    Mankins, John C.

    2009-07-01

    Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.

  6. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  7. Optimal nonimaging integrated evacuated solar collector

    Science.gov (United States)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  8. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  9. Concentrating Solar Power. Report April 2009

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, Erik (Chalmers Univ. of Technology, Enery and Environment, Goeteborg (Sweden))

    2009-04-15

    Concentrating solar power (CSP) technologies offer ways to utilise solar radiation by concentrating the light. In a concentrated form, the light can be utilised more cost efficiently. It is focused with mirrors or lenses and used either as a heat source in thermal power cycles (thermal CSP) or as a light source for high efficiency photovoltaic cells (concentrating photovoltaics, CPV). All concentrating systems use tracking to follow the movement of the sun, in two or three dimensions, and require direct sunlight (no diffusing clouds). CSP plants are often more complex, component wise than those based on flat PV. The extra cost of complexity is generally more than offset by the larger scales, the less need for expensive materials such as purified silicon and a better fit with the current energy infrastructure. Some thermal CSP plants offer great possibilities to deal with the intermittency of solar energy, as the heat generated can be stored in the form of a heated liquid in large tanks for many hours with little additional cost, and drive the thermal power generation also during cloudy periods or at night. CSP is growing rapidly and can be an important portion of future low-carbon energy systems. A prerequisite is that expected cost reductions are, at least largely, realised. In regions with good solar conditions (Mediterranean countries, US Southwest, Middle East, Australia etc), CSP systems already in the short-term future can satisfy significant shares of the power demand, to decrease CO{sub 2} emissions. Less solar-intensive regions (Northern Europe, much of North America etc) can be supplied with CSP power from solar-rich regions by using long distance power grids, for instance the high voltage DC cables being deployed and developed today

  10. Solar power generating device. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, E

    1990-02-06

    Concerning the existing solar power generating device using the analogue sequential partial shunt system, the number of interface line between the solar cell panel and the shunt dissipater is enormous and complicated in addition to the increased temperature rise of the shunt transistor in its working condition. Furthermore, concerning the digital sequential full shunt system, the above temperature rise becomes less, but the above number of interface line is likewise enormous. In order to remove the above defects, the solar power generating device which this invention concerns has the features that, in each row of solar cells connected to shunt transistors which are controlled respectively in a manner of on (saturation)/off independently in accordance with the amount of surplus electric power, the number of parallel connection of the unit cell circuits composing the each row above is made to be the different number respectively. Besides, it is proposed to have the feature in particular that such a number is made to be the number of 2 {sup n} (n is from zero to any integer, m) where n is increased by one progressively. 5 figs.

  11. Wireless Power Transfer Roadway Integration

    OpenAIRE

    Gardner, Trevor

    2017-01-01

    Electric vehicles represent a major accomplishment in the energy and transportation industry. Unfortunately, they are restricted to a small travel range because of limited battery life. Successful integration of wireless power transfer (WPT) systems into the infrastructure would remove the range restrictions of EVs. To successfully integrate this technology, several requirements must be met. First, the embedment process cannot interfere with the electrical performance of the inductive power t...

  12. Uncertainties in predicting solar panel power output

    Science.gov (United States)

    Anspaugh, B.

    1974-01-01

    The problem of calculating solar panel power output at launch and during a space mission is considered. The major sources of uncertainty and error in predicting the post launch electrical performance of the panel are considered. A general discussion of error analysis is given. Examples of uncertainty calculations are included. A general method of calculating the effect on the panel of various degrading environments is presented, with references supplied for specific methods. A technique for sizing a solar panel for a required mission power profile is developed.

  13. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Panse, S.V.; Jadhav, A.S.; Gudekar, A.S.; Joshi, J.B.

    2011-01-01

    Highlights: → Solar energy harnessing using inclined face of high mountains as solar chimney. → Solar chimneys with structural stability, ease of construction and lower cost. → Mathematical model developed, using complete (mechanical and thermal) energy balance. → Can harness wind power also, as wind velocities at mountain top add to power output. → Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  14. The solar two power tower project

    International Nuclear Information System (INIS)

    Chavez, J.M.; Klimas, P.C.; Laquil, P. de III; Skowronski, M.

    1993-01-01

    A consortium of United States utility concerns led by Southern California Edison Company (SCE) has begun a cooperative project with the U.S. Department of Energy (DOE) and industry to convert the 10-MWe Solar One Tower Pilot Plant to molten nitrate salt technology. Successful operation of the convert plant to be called Solar Two, will reduce the economic risks in building the initial commercial power tower projects and accelerate the commercial acceptance of this promising renewable energy technology. In a molten salt power tower plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver, atop a tower. Molten salt is heated in the receiver and stored until it is needed to generate steam to power a conventional turbine generator. Joining the SCE and DOE in sponsoring in sponsoring this project are the following organizations: Los Alamos department of Water Power, Idaho Power Company, PacifiCorp, Pacific Gas and Electric Company, Sacramento Municipal Utility District, Arizona Public Service Company, Salt River Project, City of Pasadena, California Energy Commission, Electric Power Research Institute, South Coast Air Quality Commission, Electric Power research Institute, South Coast Air Quality Management District, and Bechtel Corporation. The Solar Two project will convert the Solar One heat transfer system from a water/steam type to molten nitrate salt by replacing the water/steam receiver and oil/rock thermal storage system with a nitrate salt receiver, salt thermal storage, and steam generator. The estimate cost of Solar Two, including 3-year test period, is 48.5 millions. The plant will be on line in early 1995. (authors)

  15. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  16. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  17. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Giebel, Gregor; Nielsen, T. S.

    2012-01-01

    model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting......This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely...

  18. Utilization of space technology for terrestrial solar power applications

    Science.gov (United States)

    Yasui, R. K.; Patterson, R. E.

    1974-01-01

    A description is given of the evolution of photovoltaic power systems designed and built for terrestrial applications, giving attention to problem areas which are currently impeding the further development of such systems. The rooftop testing of surplus solar panels is considered along with solar powered seismic observatories, solar powered portable radio sets, and design considerations identified from past experience. Present activities discussed are related to a solar powered on-shore beacon flasher system, a solar powered buoy, and a solar powered beacon flasher buoy.

  19. Solar Power Beaming: From Space to Earth

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  20. Space-Based Solar Power System Architecture

    Science.gov (United States)

    2012-12-01

    to this thesis, “the Boeing 702 offers a range of power up to 18 kW. Dual and triple -junction gallium arsenide solar cells enable such high power...CONCLUSIONS ........................................................................................................85 A. KEY POINTS AND...USAF. Without the proper starting point and frame of reference, this thesis would not have been possible. Thank you to everyone who had an influence on

  1. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  2. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  3. Microcontroller Based Solar Charge Controller for Power Application

    OpenAIRE

    Mr. Vikas Khare

    2012-01-01

    Photovoltaic cell converts solar energy directly into electricity. This paper describes a design of microcontroller based solar charge controller for power application.[2] The work of the Paper is to charge a 12 volt battery by using a 50 watt solar panel with maximum power. This circuit regulates the charging of battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reached a preset value.[1] The microprocessor based charge ...

  4. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor

    International Nuclear Information System (INIS)

    Narayanan, Remya; Kumar, P. Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-01-01

    Graphical abstract: - Highlights: • A plasmonic TiO_2/CdS/Au fibers photoanode is fabricated for the first time. • The efficiency of the plasmonic cell is greater by 1.35 times than the non-plasmonic one. • A solar powered supercapacitor is developed with plasmonic photoanode and multiwalled carbon nanotubes. • The solar cell current charges the supercapacitor. • A specific capacitance of 150 F g"−"1 is achieved under sunlight without any external bias. - Abstract: A solar powered supercapacitor wherein a plasmonic quantum dot solar cell (QDSC) sources the photocurrent for charging/discharging a conjoined supercapacitor based on multiwalled carbon nanotubes (MWCNTs) is demonstrated. Gold or Au fibers are integrated into a titanium dioxide/cadmium sulfide (TiO_2/CdS) electrode to yield a TiO_2/CdS/Au photoanode. The plasmonic effect of Au fibers is reflected in the higher incident photon to current conversion efficiency (IPCE = 55%) and an improved overall power conversion efficiency (3.45%) produced by the TiO_2/CdS/Au photoanode relative to the non-plasmonic TiO_2/CdS photoanode. A Janus type bi-functional electrode composed of MWCNTs on either face separated by glass is prepared and it is coupled with the TiO_2/CdS/Au electrode and another MWCNT electrode to yield the tandem solar powered supercapacitor. By channelling the photocurrent produced by the QDSC part, under 0.1 sun illumination, the capacitance of the symmetric supercapacitor, without the application of any external bias is 150 F g"−"1 which compares well with reported values of electrically powered MWCNT supercapacitors. Our innovative design for a photo-supercapacitor offers a new paradigm for combining low cost photovoltaics with energy storage to yield a technologically useful device that needs nothing else other than solar energy to run.

  5. Integration of solar energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Mennola, T.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.; Rasinkoski, A.; Spiers, D.; Eenilae, P. [Neste Advanced Power Systems (Finland)

    1998-12-31

    New photovoltaic building elements were developed and the uses of various solar technologies in buildings were optimised with computational design tools. The novel amorphous silicon photovoltaic elements allow for economic integration of photovoltaics in large facades. The cost of grid-connected systems may be reduced by approximately 20 % through the advanced design approaches developed. (orig.)

  6. Integrated colors in the solar neighborhood

    International Nuclear Information System (INIS)

    Malagnini, M.L.

    1979-01-01

    The bivariate spectral type-luminosity class distribution combined with the z-distribution and broad-band photometric data have been used in order to derive integrated colors in Johnson's UBVRIJKL system for the solar neighborhood. The frequency distribution of white dwarfs is also taken into account for the U-B,B-V colors. (Auth.)

  7. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  8. Lightweight Solar Power for Small Satellites

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  9. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Development of solar beam power generation and utilization systems and ancillary technologies (Research and development of new building material integrated solar cell modules - investigation and research on analysis of practical application); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (shinkenzai ittaigata taiyo denchi module no kenkyu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to promote the research to put new building material integrated solar cell modules into practical use, the following items were investigated: (1) functions and specifications for harmonizing with buildings, (2) new module materials that can respond to building materials, (3) marketability, (4) standardization of the assessment methods, (5) consistency with relevant legislation and related institutions, (6) effects on environment as building materials, and (7) investigation on technological trends inside and outside the country. In Item (1), the significance of developing the new building material integrated solar cell modules was made clear. In Item (2), the performance requirements on the currently used module materials were put into order. In Item (3), the market size was investigated, and assignments to establishing the market were put into order, such as the distribution and construction institutions, and assistance to the system introduction. In Item (4), standardization and unification of the assessment methods were discussed, and the items to be standardized were extracted. In Item (6), LCA on the currently used modules was performed. In Item (7), participation was made to the second solar beam power generation conference and EUROSUN '98; investigations were made on trends of developing the new building material integrated solar cell modules and how the recycling related legislation is being progressed; and the achievements in the development activities were confirmed, and the assignments were investigated at the new building material integrated solar cell module subcommittee. (NEDO)

  10. Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Lu, Yanchao; Yang, Ying; Mao, Tianzhi

    2016-01-01

    This study aims to present a thermodynamic performance analysis and to optimize the configurations of a hybrid combined cooling, heating and power (CCHP) system incorporating solar energy and natural gas. A basic natural gas CCHP system containing a power generation unit, a heat recovery system, an absorption cooling system and a storage tank is integrated with solar photovoltaic (PV) panels and/or a heat collector. Based on thermodynamic modeling, the thermodynamic performance, including energy and exergy efficiencies, under variable work conditions, such as electric load factor, solar irradiance and installation ratio, of the solar PV panels and heat collector is investigated and analyzed. The results of the energy supply side analysis indicate that the integration of solar PV into the CCHP system more efficiently improves the exergy efficiency, whereas the integration of a solar heat collector improves the energy efficiency. To match the building loads, the optimization method combined with the operation strategy is employed to optimize the system configurations to maximize the integrated benefits of energy and economic costs. The optimization results of demand–supply matching demonstrate that the integration of a solar heat collector achieves a better integrated performance than the solar PV integration in the specific case study. - Highlights: • Design a CCHP system integrated with solar PV and heat collector. • Present the energy and exergy analyses under variable work conditions. • Propose an optimization method of CCHP system for demand-supply matching.

  11. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  12. Developing solar power programs : San Francisco's experience

    International Nuclear Information System (INIS)

    Schwartz, F.

    2006-01-01

    This keynote address discussed an array of solar programs initiated in government-owned buildings in San Francisco. The programs were strongly supported by the city's mayor,and the voting public. Known for its fog and varying microclimates, 11 monitoring stations were set up throughout the city to determine viable locations for the successful application of solar technologies. It was observed that 90 per cent of the available sunshine occurred in the central valley, whereas fog along the Pacific shore was problematic. Seven of the monitoring sites showed excellent results. Relationships with various city departments were described, as well as details of study loads, load profiles, electrical systems, roofs and the structural capabilities of the selected government buildings. There was a focus on developing good relations with the local utility. The Moscone Convention Center was selected for the program's flagship installation, a 675 kW solar project which eventually won the US EPA Green Power Award for 2004 and received high press coverage. Cost of the project was $4.2 million. 825,000 kWh solar electricity was generated, along with 4,500,000 kWh electricity saved annually from efficiency measures, resulting in a net reduction of 5,325,000 kWh. Savings on utilities bills for the center were an estimated $1,078,000. A pipeline of solar projects followed, with installations at a sewage treatment plant and a large recycling depot. A program of smaller sites included libraries, schools and health facilities. Details of plans to apply solar technology to a 500 acre redevelopment site in southeast San Francisco with an aging and inadequate electrical infrastructure were described. A model of efficient solar housing for the development was presented, with details of insulation, windows, heating ventilation and air-conditioning (HVAC), water heating, lighting, appliances and a 1.2 kilowatt solar system. Peak demand reductions were also presented. tabs., figs

  13. Integrated Wind Power Planning Tool

    DEFF Research Database (Denmark)

    Rosgaard, M. H.; Hahmann, Andrea N.; Nielsen, T. S.

    This poster describes the status as of April 2012 of the Public Service Obligation (PSO) funded project PSO 10464 \\Integrated Wind Power Planning Tool". The project goal is to integrate a meso scale numerical weather prediction (NWP) model with a statistical tool in order to better predict short...... term power variation from off shore wind farms, as well as to conduct forecast error assessment studies in preparation for later implementation of such a feature in an existing simulation model. The addition of a forecast error estimation feature will further increase the value of this tool, as it...

  14. Energy and exergy analysis of solar power tower plants

    International Nuclear Information System (INIS)

    Xu Chao; Wang Zhifeng; Li Xin; Sun Feihu

    2011-01-01

    Establishing the renewable electricity contribution from solar thermal power systems based on energy analysis alone cannot legitimately be complete unless the exergy concept becomes a part of that analysis. This paper presents a theoretical framework for the energy analysis and exergy analysis of the solar power tower system using molten salt as the heat transfer fluid. Both the energy losses and exergy losses in each component and in the overall system are evaluated to identify the causes and locations of the thermodynamic imperfection. Several design parameters including the direct normal irradiation (DNI), the concentration ratio, and the type of power cycle are also tested to evaluate their effects on the energy and exergy performance. The results show that the maximum exergy loss occurs in the receiver system, followed by the heliostat field system, although main energy loss occurs in the power cycle system. The energy and exergy efficiencies of the receiver and the overall system can be increased by increasing the DNI and the concentration ratio, but that increment in the efficiencies varies with the values of DNI and the concentration ratio. It is also found that the overall energy and exergy efficiencies of the solar tower system can be increased to some extent by integrating advanced power cycles including reheat Rankine cycles and supercritical Rankine cycles. - Highlights: →We presented a theoretical framework for the energy and exergy analysis of the solar tower system. →We tested the effects of several design parameters on the energy and exergy performance. →The maximum exergy loss occurs in the receiver system, followed by the heliostat field system. →Integrating advanced power cycles leads to increases in the overall energy and exergy efficiencies.

  15. Solar Powered Remediation and pH Control

    Science.gov (United States)

    2017-04-13

    zone. The PRT system was completely powered via an off-the-grid solar power system . The system consisted of four 85 watt photovoltaic solar panels...polarity of the proton reduction system can be periodically alternated (i.e., the anode becomes a cathode) to increase the size of the treatment area, to...PRT System The PRT system was completely powered via an off-the-grid solar power system . The system consisted of four 85 watt photovoltaic solar

  16. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  17. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  18. Solids-based concentrated solar power receiver

    Science.gov (United States)

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  19. Optical study of solar tower power plants

    International Nuclear Information System (INIS)

    Eddhibi, F; Amara, M Ben; Balghouthi, M; Guizani, A

    2015-01-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature

  20. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  1. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  2. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  3. Market: why is thermal solar power down?

    International Nuclear Information System (INIS)

    Le Jannic, N.

    2010-01-01

    After a 10 year period of steady growth the French market of the thermal solar power dropped by 15% in 2009. Only 265.000 m 2 were installed instead of 313.000 m 2 in 2008. The main reason of this decrease is the economic crisis: the European market for thermal solar energy dropped by 10%. The second reason is the unfair competition of the photovoltaic power that benefits from very favourable electricity purchase prices, from higher subsidies and from a better image in the public's eye. Another competitor on the market is the new equipment called 'thermodynamic water heater' that involves a heat pump, this equipment is cheaper but only on a short term basis. (A.C.)

  4. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  5. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  6. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  7. High-Fidelity Solar Power Income Modeling for Solar-Electric UAVs: Development and Flight Test Based Verification

    OpenAIRE

    Oettershagen, Philipp

    2017-01-01

    Solar power models are a crucial element of solar-powered UAV design and performance analysis. During the conceptual design phase, their accuracy directly relates to the accuracy of the predicted performance metrics and thus the final design characteristics of the solar-powered UAV. Likewise, during the operations phase of a solar-powered UAV accurate solar power income models are required to predict and assess the solar power system performance. However, the existing literature on solar-powe...

  8. Wireless Power Transmission Options for Space Solar Power

    Science.gov (United States)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  9. Feature Selection and ANN Solar Power Prediction

    Directory of Open Access Journals (Sweden)

    Daniel O’Leary

    2017-01-01

    Full Text Available A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers. These new participants in the energy market, prosumers, require new artificial neural network (ANN performance tuning techniques to create accurate ANN forecasts. Input masking, an ANN tuning technique developed for acoustic signal classification and image edge detection, is applied to prosumer solar data to improve prosumer forecast accuracy over traditional macrogrid ANN performance tuning techniques. ANN inputs tailor time-of-day masking based on error clustering in the time domain. Results show an improvement in prediction to target correlation, the R2 value, lowering inaccuracy of sample predictions by 14.4%, with corresponding drops in mean average error of 5.37% and root mean squared error of 6.83%.

  10. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  11. Short-Term Solar Collector Power Forecasting

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2011-01-01

    This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector...... enabling tracking of changes in the system and in the surrounding conditions, such as decreasing performance due to wear and dirt, and seasonal changes such as leaves on trees. This furthermore facilitates remote monitoring and check of the system....

  12. Multistep Methods for Integrating the Solar System

    Science.gov (United States)

    1988-07-01

    Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

  13. Sizing and preliminary hardware testing of solar powered UAV

    Directory of Open Access Journals (Sweden)

    S. Jashnani

    2013-12-01

    Full Text Available Integrating solar energy into modern aircraft technology has been a topic of interest and has received a lot of attention from researchers over the last two decades. A few among the many potential applications of this technology are the possibility of continuous self sustained flight for purposes such as information relay, surveillance and monitoring. This paper discusses the altitude and payload mass, as independent parameters, and their influence on the size and design of the aircraft. To estimate available solar power, two different models have been presented; one for low altitudes and the other for high altitudes. An engineering ground model was built to simulate the power and propulsion system over 24 h of continuous operation. The paper presents data from tests performed till date and lessons learnt while dealing with the construction of the engineering ground model as well as changes that can be made to improve the design.

  14. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  15. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  16. Integrated Solar-Energy-Harvesting and -Storage Device

    Science.gov (United States)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  17. Space solar power for powering a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.); Kellum, M. J. (Mervyn J.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe a Space Solar Power (SSP) system capable of powering the climbers of an SE. The initial SE will use laser power beaming from floating platforms near the SE platform. This study outlines an SSP system, based near the SE at geosynchronous altitude (GEO), which powers the climbers traversing the elevator. Such a system would reduce the SE system's dependence on fuel supply from land for its power beaming facilities. Moreover, since deploying SSP systems is anticipated to be a major use for SE's, SSP's could represent an elegant solution to the problem of SE energy consumption. SSP systems for sending usable power to Earth have been designed for well over 30 years. Technologies pertinent to SSP systems are continually evolving. This slightly different application carries the added requirements of aiming the beamed power at a moving target and sending the power in a form the climbers can use. Systems considered include beaming power to the climbers directly from a traditional SSP and reflecting sunlight onto the climbers. One of our designs includes a very new technology, optical rectennas. Mars SEs are conceived as having space-based power systems. Therefore, it is important to consider the problems that will be encountered in these types of applications.

  18. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  19. A fresh look at space solar power

    International Nuclear Information System (INIS)

    Mankins, J.C.

    1996-01-01

    Studies of systems to provide solar power from space for terrestrial use defined very large, geostationary Earth orbit (GEO) satellite concepts that--given massive initial government investments and extremely low cost space launch--might have led to power production at costs only somewhat higher than expected commercial prices. These studies of space solar power (SSP) succeeded in establishing technical feasibility. Shortly after the completion of the 1970s study, however, US funding came to an abrupt and seemingly permanent halt--in part because projected costs for the reference system were staggering: well in excess of $100B to achieve the first commercial kilowatt-hour of power. SSP has seen sporadic study and limited experimentation during the past decade (e.g., in Japan). Still, no existing SSP concept has engendered private development. New technologies now make possible concepts and approaches that suggest that SSP economic feasibility may be achievable early in the next century. In 1995, NASA's Advanced Concepts Office initiated a study taking a fresh look at innovative concepts for SSP that differ markedly from previously examined concepts, addressing innovative system architectures, markets and technologies that could radically reduce initial and operational costs. This paper will explore the issues associated with SSP and will summarize the results to date of NASA's recent fresh look at this important and increasingly timely field of space applications

  20. 9.0% power conversion efficiency from ternary all-polymer solar cells

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    Integration of a third component into a single-junction polymer solar cell (PSC) is regarded as an attractive strategy to enhance the performance of PSCs. Although binary all-polymer solar cells (all-PSCs) have recently emerged with compelling power conversion efficiencies (PCEs), the PCEs of

  1. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    Science.gov (United States)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  2. Solar power in South Africa; Anpfiff in Suedafrika

    Energy Technology Data Exchange (ETDEWEB)

    Ristau, Oliver

    2010-07-01

    Excellent reimbursement regulations for solar power should be enough to promote photovoltaic energy conversion in South Africa. However, public utilities are not obliged to buy solar power, and the connection of private solar systems to the public grid is a matter for negotiation. Many private investors therefore decide to instal autonomous systems. (orig.)

  3. Solar power satellite - A geostationary channel tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, C

    1981-12-01

    The concept-development status of solar power satellite (SPS) systems is considered, with attention to Heavy-Lift Launch Vehicles (HLLVs), the construction methods to be used in either geostationary or low earth orbit, and the configuration of the solar array. By comparison with the 30-ton payload of the Space Shuttle, HLLV designs under consideration have payloads of 114 to 425 tons. The unit cost for 5-GW satellites, in 1977 dollars, is estimated at five billion dollars. Consideration is given to the possible deleterious environmental effects of both the 400 or more launches required for each SPS and such results of radio frequency energy transfer beam operation as the suppression of blood platelet production in human beings and ionospheric heating. The uncertainty that still surrounds the relative advantages of competing designs and the need for long-range, billion-dollar funding appear to be insuperable obstacles to the construction of SPSs.

  4. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  5. Integrated Photovoltaic System Used as an Alternative Power Source

    Directory of Open Access Journals (Sweden)

    Ionel Laurentiu Alboteanu

    2014-09-01

    Full Text Available This paper presents a solution to use solar energy as an alternative source of electricity to conventional sources. The solution is to use a compact photovoltaic system integrated into a micro smart grid. The studied photovoltaic system is used into concrete application for the power supply lighting in a didactic laboratory.

  6. Integration of photovoltaic solar panels in residential buildings and its contribution in a power feeder of a mixed urban region; Integracao de paineis solares fotovoltaicos em edificacoes residenciais e sua contribuicao em um alimentador de energia de zona urbana mista

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isis Portolan dos

    2009-02-15

    Energy generation is one of the main pollution sources in the world. Photovoltaic solar energy is a way to guarantee the electric energy generation using a clean and renewable source, the sun. With the photovoltaic modules integration in buildings, it is possible to generate energy in urban areas, using areas already constructed and also minimizing the energy loss with transmission and distribution. Direct connection of a photovoltaic system to the electric grid avoids the necessity of a storage system, and allows the generated energy to be used by any consumer connected to the grid. This thesis proposes the creation and propagation of predefined kits including photovoltaic modules and other equipment, in order to complete installation and connection of photovoltaic generator, resulting in solar roofs in urban houses. The kits could be installed on roofs of existent residences or in new ones, making the installation easier and minimizing the necessity and the costs of a specific project for each case. With the definition of standard components, like the modules, inverters, and others equipment, there would be an industrial production scale, minimizing costs. In addition, the kits also make the training of the installers easier. The simulation of this concept in a residential area in Florianopolis, demonstrates that there is enough area in the roofs to locate one kit in all residences, and that this generation is able to contribute to the energy demand of the area. So all energy generated by the kits will be immediately consumed inside the area, relieving the concessionaire load. His argue that kits can be an interesting way of bringing this energy generation technology to mainstream. (author)

  7. Western Wind and Solar Integration Study: Hydropower Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  8. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  9. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-07

    Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  10. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...

  11. BKW-FMB: Focus on solar power

    International Nuclear Information System (INIS)

    2005-01-01

    This collection of three short articles present four examples of installations using renewable forms of energy that are operated by the Bernese power utility BKW-FMB in Switzerland. Brief details are given on the company, one of the largest electricity utilities in Switzerland. The first article deals with the photovoltaics (PV) installations on the roof of the new national soccer stadium in Berne and one of the oldest Swiss PV-installations on Mont-Soleil in the Jura mountains. Also covered are the efforts made by the utility and its partners in the area of marketing the power under the trade name '1 to 1 energy'. Information for the general public is provided in visitor centres and also by the solar-powered boat on the Lake of Bienne. A further article deals with wind power from the Mont-Crosin Site in the Jura mountains. The third article describes a hydro-electric power station on the river Aare, which, thanks to measures taken in the ecological area, carries the 'Naturemade Star' label for the power it produces

  12. Solar Irradiance & On Grid Solar Power Systems with Net Metering in Pakistan

    Directory of Open Access Journals (Sweden)

    Haleema Qamar

    2016-06-01

    Full Text Available This paper presents a case study of solar irradiance and scope of on-grid solar power systems with net-metering in Pakistan. Detailed analysis of solar irradiance in Pakistan is being carried out by developing the dedicated solar excel sheets. The need of on grid solar power systems for the present energy crisis in developing countries like Pakistan is also discussed. It also presents the inclination of many countries especially USA and Europe towards it. Identification of barriers for implementing on grid net metered solar power systems in Pakistan along with solutions of these barriers is carried out.

  13. Modern prospects of development of branch of solar power

    Science.gov (United States)

    Luchkina, Veronika

    2017-10-01

    Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.

  14. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  15. Comprehensive Solutions for Integration of Solar Resources into Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, Kenneth [AWS Truepower, LLC, Albany, NY (United States); Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rajagopal, Sankaran [Siemens Energy, Erlangen (Germany); Loutan, Clyde [California Independent System Operator; Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Laurie E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lu, Bo [Siemens Energy, Erlangen (Germany); Mansingh, Ashmin [Siemens Energy, Erlangen (Germany); Zack, John [MESO, Inc., Raleigh, NC (United States); Sherick, Robert [Southern California Edison, Rosemead, CA (United States); Romo, Abraham [Southern California Edison; Habibi-Ashrafi, Farrokh [Southern California Edison; Johnson, Raymond [Southern California Edison

    2016-01-14

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of such a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included

  16. Solar fed DC-DC single ended primary inductance converter for low power applications

    Science.gov (United States)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  17. Integration of biogas into the rural energy supply of solar home system powered households in South Africa: A case study of Tsware, Mailula and Muropo vilages in Limpopo.

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2011-10-01

    Full Text Available This study indicates that it is technically feasible to combine solar home systems and biogas to meet the community's thermal needs, however more work needs to be done to arrive at the best possible financial implementation model. All participants...

  18. A solar reserve methodology for renewable energy integration studies based on sub-hourly variability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Eduardo; Brinkman, Gregory; Hummon, Marissa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lew, Debra

    2012-07-01

    Increasing penetration of wind and solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with the power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic power and compares it to the wind-based methodology. The solar reserve methodology was applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included. (orig.)

  19. Solar Powered Reverse Trash Vendo Machine

    Directory of Open Access Journals (Sweden)

    Alexis John M. Rubio

    2016-05-01

    Full Text Available –The study was conducted with the purpose of developing a Solar Powered Reverse Trash Vendo Machine that aims to encourage people to engage in recycling and to diminish the practice of improper waste disposal in thePhilippines. The device used a Gizduino X ATMega 1281 as its main processing module along with a Gizduino 644 microcontroller board, anda GSM Shield module for communication. Arduino1.6 IDE is used to program the Gizduinoboards. The device is powered by a 15V rechargeable battery, which is charged by a solar panel retrofitted at the roof of the device, this is to promote energy conservation, and green engineering principles in the development of the study.The device can process empty plastic bottles (500ml. max with a base diameter of 3.5 inches, and aluminium cans. These recyclable materials are placed inside the machine and is scanned, then crushed and placed in a bin. An inductive sensor is used to detect either the material is a plastic bottle or an aluminium can. To compensate the user for recycling, an equivalent monetary value will be dispensed. The owner of the device can check the status of the coin dispenser and bins through an Android messaging application developed using the Eclipse IDE and the Java programming language, and when a certain limit is reached by the coin dispenser or the trash bins, an automatic text message notification will be sent to the owner.

  20. Integrated Access to Solar Observations With EGSO

    Science.gov (United States)

    Csillaghy, A.

    2003-12-01

    {\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests

  1. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  2. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  3. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  4. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Henaut, J

    2014-01-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved

  5. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    Science.gov (United States)

    Zhu, D.; Henaut, J.; Beeby, S. P.

    2014-11-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.

  6. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  7. Certification report for the CALMAC solar powered pump

    Science.gov (United States)

    1978-01-01

    The certification of the CALMAC solar powered thermopump is presented. Each element of the specification is delineated, together with the verification, based on analysis, similarity, inspection, or testing.

  8. 76 FR 48159 - Integrated System Power Rates

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Integrated System Power Rates AGENCY... American Electric Reliability Corporation and to cover increased investments and replacements in..., prepared a Current Power Repayment Study using existing system rates. The Study indicates that Southwestern...

  9. The place of solar power: an economic analysis of concentrated and distributed solar power

    Directory of Open Access Journals (Sweden)

    Banoni Vanessa

    2012-04-01

    Full Text Available Abstract Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated

  10. The place of solar power: an economic analysis of concentrated and distributed solar power.

    Science.gov (United States)

    Banoni, Vanessa Arellano; Arnone, Aldo; Fondeur, Maria; Hodge, Annabel; Offner, J Patrick; Phillips, Jordan K

    2012-04-23

    This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models' benefits and costs. The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm, outweigh any minor concerns or potential

  11. The place of solar power: an economic analysis of concentrated and distributed solar power

    Science.gov (United States)

    2012-01-01

    Background This paper examines the cost and benefits, both financial and environmental, of two leading forms of solar power generation, grid-tied photovoltaic cells and Dish Stirling Systems, using conventional carbon-based fuel as a benchmark. Methods First we define how these solar technologies will be implemented and why. Then we delineate a model city and its characteristics, which will be used to test the two methods of solar-powered electric distribution. Then we set the constraining assumptions for each technology, which serve as parameters for our calculations. Finally, we calculate the present value of the total cost of conventional energy needed to power our model city and use this as a benchmark when analyzing both solar models’ benefits and costs. Results The preeminent form of distributed electricity generation, grid-tied photovoltaic cells under net-metering, allow individual homeowners a degree of electric self-sufficiency while often turning a profit. However, substantial subsidies are required to make the investment sensible. Meanwhile, large dish Stirling engine installations have a significantly higher potential rate of return, but face a number of pragmatic limitations. Conclusions This paper concludes that both technologies are a sensible investment for consumers, but given that the dish Stirling consumer receives 6.37 dollars per watt while the home photovoltaic system consumer receives between 0.9 and 1.70 dollars per watt, the former appears to be a superior option. Despite the large investment, this paper deduces that it is far more feasible to get few strong investors to develop a solar farm of this magnitude, than to get 150,000 households to install photovoltaic arrays in their roofs. Potential implications of the solar farm construction include an environmental impact given the size of land require for this endeavour. However, the positive aspects, which include a large CO2 emission reduction aggregated over the lifespan of the farm

  12. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  13. Concentrating Solar Power Projects - ISCC Duba 1 | Concentrating Solar

    Science.gov (United States)

    Solar Break Ground: 2016 Start Production: 2017 Participants Developer(s): Saudi Electricity Co. Owner(s ) (%): Saudi Electricity Co. EPC Contractor: Initec Energia Generation Offtaker(s): Saudi Electricity Co. Plant Configuration Solar Field SCA Manufacturer (Model): Flabeg (Ultimate Trough) HCE Manufacturer: Archimede Solar

  14. Refractive integrated nonimaging solar collectors design and analysis of a novel solar-daylighting-technology

    OpenAIRE

    Pelegrini, Alexandre Vieira

    2009-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. A novel and original category of low-cost static solar-daylighting-collectors named Keywo solar energy, solar collectors, daylighting systems, nonimaging optics, Refractive Integrated Nonimaging Solar Collectors (RINSC) has been designed and thoroughly tested. The RINSC category is based on nonimaging optics and integrates several optical elements, such as prismatic arrays and light guides, i...

  15. The Contribution of Solar Power Funding for Online Content ...

    African Journals Online (AJOL)

    The Contribution of Solar Power Funding for Online Content Accessibility and Sustainability of Blended Learning in Rural Africa: The Tanzania Perspective. ... Despite these appealing features, penetration of solar electricity in remote and rural areas in Tanzania is limited by high initial cost of building a stand-alone solar ...

  16. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  17. Economics of satellite solar power system operation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.Q.; Tomkins, R.

    1981-01-01

    The potential value of the Satellite Power System (SPS) concept depends partly on the effects of integrating SPS power into a national supply grid. Some of these effects are evaluated. The factors that would affect utilities appraisal of the system are briefly reviewed. The cost implications of these factors are considered under the headings Load factors, Reliability, System Planning and Integration, and Rectenna Siting and Transmission, with particular reference to the UK and W Europe. A method is proposed for studying the ground segment of the system; a utility could calculate the value it would place on microwave 'fuel' supplied by the space segment, thereby providing firm cost targets for this part of the system. 21 refs.

  18. Solar Power Station Output Inverter Control Design

    Directory of Open Access Journals (Sweden)

    J. Bauer

    2011-04-01

    Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.

  19. Analysis of a solar powered absorption system

    International Nuclear Information System (INIS)

    Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U.

    2015-01-01

    Highlights: • Conventional absorption system modified to increase COP. • Results indicated increase of 10% in COP due to dephlegmator heat recovery. • Results indicated increase of 8% in COP due to refrigerant storage unit. • Results indicated increase of 18% in COP due to combined effect of modifications. • Simulation results indicated a very good agreement with the measured results. - Abstract: Today, fossil fuel is the primary extensively used source of energy. However, its negative impact on the environment have forced the energy research continuity to seriously consider renewable sources of energy. Solar energy, in particular, has been the main focus in this regard because it is a source of clean energy and naturally available. This study presents the design and analysis of a solar powered absorption refrigeration system modified to increase its coefficient of performance (COP). The modifications include recovering of waste heat from a dephlegmator and utilization of a refrigerant storage unit. The simulation results indicate an increase of 10% in the COP of the conventional design using dephlegmator heat recovery and an increase of 8% in the COP of the conventional design due to the use of a refrigerant storage. The analysis for the combined effect of modifications indicates an increase of 18% in the COP compared to conventional design. Calculated values of coefficient of performance indicate a very good agreement with the ones obtained based on measurement

  20. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  1. Comparison of solar panel models for grid integration studies

    NARCIS (Netherlands)

    Brito, E.M.S.; Cupertino, A.F.; Carlette, L.P; Filho, D.O.; Oliveira, D.; Pereira, H.A; Ribeiro, P.F.

    2012-01-01

    Photovoltaic systems are highly dependent on climatic conditions in which they are submitted. The incident solar irradiance and temperature are the main factors impacting on the power generated by a solar panel. This paper presents three different models of a solar panel and compare, through

  2. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  3. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  4. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  5. Solar Powering Your Community: A Guide for Local Governments (Book)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    DOE designed this guide—Solar Powering Your Community: A Guide for Local Governments—to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

  6. Combined heat and power solar system

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    An Australian-designed photovoltaic (PV) power system that also supplies hot water is close to commercial release. PVs have been around for decades and solar concentrators have been efficiently heating water for nearly a century. The Australian National University, Department of Engineering - Centre for Sustainable Energy systems (CSES), has designed a domestic scale modular system that not only generates electricity but also provides concentrated thermal energy to heat water for a Solahart hot water system and is designed to be deployed into small to medium scale applications such as hospitals, schools and dwellings with an easily assembled galvanised steel frame. A market research was carried out and is envisaged that at least 7,500 units will be installed annually by the year 2005 and up to 25,000 units by 2008

  7. A Charge Controller Design For Solar Power System

    OpenAIRE

    Nandar Oo; Kyaw Soe Lwin; Hla Myo Tun

    2015-01-01

    This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart...

  8. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    Maqsood, M; Nasir, M Nauman

    2013-01-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  9. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  10. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  11. Road Nail: Experimental Solar Powered Intelligent Road Marking System

    Science.gov (United States)

    Samardžija, Dragan; Teslić, Nikola; Todorović, Branislav M.; Kovač, Erne; Isailović, Đorđe; Miladinović, Bojan

    2012-03-01

    Driving in low visibility conditions (night time, fog or heavy precipitation) is particularly challenging task with an increased probability of traffic accidents and possible injuries. Road Nail is a solar powered intelligent road marking system of wirelessly networked signaling devices that improve driver safety in low visibility conditions along hazardous roadways. Nails or signaling devices are autonomous nodes with capability to accumulate energy, exchange wireless messages, detect approaching vehicles and emit signalization light. We have built an experimental test-bed that consists of 20 nodes and a cellular gateway. Implementation details of the above system, including extensive measurements and performance evaluations in realistic field deployments are presented. A novel distributed network topology discovery scheme is proposed which integrates both sensor and wireless communication aspects, where nodes act autonomously. Finally, integration of the Road Nail system with the cellular network and the Internet is described.

  12. Integrated power electronic converters and digital control

    CERN Document Server

    Emadi, Ali; Nie, Zhong

    2009-01-01

    Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T

  13. The research and development of the automatic solar power tracker

    Directory of Open Access Journals (Sweden)

    Li Yan Ping

    2016-01-01

    Full Text Available The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  14. The research and development of the automatic solar power tracker

    OpenAIRE

    Li Yan Ping; Yuan Zhong Ying

    2016-01-01

    The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  15. Investigations on forecast-based operating strategies for solar thermal power plants with integrated storage capacity; Untersuchungen zu vorhersagebasierten Betriebsstrategien fuer solarthermische Kraftwerke mit integrierter Speicherkapazitaet

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Michael Karl

    2012-07-01

    This publication describes a method for scheduling the operation of a power plant storage. The purpose of operation scheduling is to determine the economically optimum yield achievable in the course of daily power plant operation. The optimum operation schedule for the storage is determined based on Dynamic Programming Algorithms. Besides its focus on operation scheduling the publication investigates the effects of imperfect weather and price forecasts on electricity production and thus on the operator's economic results. It assesses the current Spanish legislation as well as other incentive scenarios in terms of their impact on operators' feed-in behaviour.

  16. Marketing of green electrons. Solar-power stock exchanges

    International Nuclear Information System (INIS)

    Nussbaumer-Waelti, E.

    1999-01-01

    An independent power producer evaluates the current solar-power stock exchanges in Switzerland. Most stock exchanges have been created by electric utilities which want to deliver 'green' power to those of their clients asking for. A first group of solar-power stock exchanges offer to take over the produced solar power at a marginal price. Among them, some organise a competition between the potential solar-power producers, in order to press down the investment cost for the new photovoltaic plants to build. Other stock exchanges propose a periodical adaptation of the prices, especially an adaptation to the capital interest rate. For sure, the total length of the time period for which the contract is established is one of the decisive factors. Because no bank is ready to grant a credit for such an investment without having seen a long-running take-over contract for the produced power [de

  17. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  18. A learning curve for solar thermal power

    Science.gov (United States)

    Platzer, Werner J.; Dinter, Frank

    2016-05-01

    Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.

  19. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  20. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  1. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  2. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  3. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  4. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  5. Lateral power transistors in integrated circuits

    CERN Document Server

    Erlbacher, Tobias

    2014-01-01

    This book details and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. It includes the state-of-the-art concept of double-acting RESURF topologies.

  6. Gallium Phosphide Integrated with Silicon Heterojunction Solar Cells

    Science.gov (United States)

    Zhang, Chaomin

    It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch ( 0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si. In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM). The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation

  7. Location optimization of solar plants by an integrated hierarchical DEA PCA approach

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Maghsoudi, A.

    2008-01-01

    Unique features of renewable energies such as solar energy has caused increasing demands for such resources. In order to use solar energy as a natural resource, environmental circumstances and geographical location related to solar intensity must be considered. Different factors may affect on the selection of a suitable location for solar plants. These factors must be considered concurrently for optimum location identification of solar plants. This article presents an integrated hierarchical approach for location of solar plants by data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT). Furthermore, an integrated hierarchical DEA approach incorporating the most relevant parameters of solar plants is introduced. Moreover, 2 multivariable methods namely, PCA and NT are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 6 different regions within each city. This is the first study that considers an integrated hierarchical DEA approach for geographical location optimization of solar plants. Implementation of the proposed approach would enable the energy policy makers to select the best-possible location for construction of a solar power plant with lowest possible costs

  8. Concentrating solar power: a sustainable and renewable way to get energy from solar light

    International Nuclear Information System (INIS)

    Montecchi, Marco

    2015-01-01

    Solar light irradiating the Earth is a great sustainable and renewable power source. In concentrating solar power plants, mirrors are used to redirect the solar light toward a small area where a receiver captures and converts it into thermal-energy which can be stored. ENEA has been developing the parabolic-trough Italian technology, as well as several facilities for the component characterization. The paper reports on some of those which are purely optical instruments [it

  9. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  10. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  11. Solar-pumped lasers for space power transmission

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  12. Solar power satellites: Commercialization and socio-economic impacts

    International Nuclear Information System (INIS)

    Storelli, V.

    1993-01-01

    Commercialization prospects for solar power satellites are assessed with reference to their possible impacts on the viability of the fossil fuel market and on international energy and environmental policies. The technical aspects which are examined include: solar panel sizing in relation to solar cell efficiency; the development of point-contact solar cell technology; the feasibility of the use of lunar materials; microwave transmission from the moon; optimum satellite positioning; the use of robots for in-space satellite assembly; satellite transmitted power for hydrogen production and storage; marketable product estimated development time

  13. Is solar power too expensive? In the long term, no

    International Nuclear Information System (INIS)

    Hawkins, A. C.

    2007-01-01

    This short article reports on a workshop held by the International Energy Agency (IEA) in Zurich, Switzerland, which addressed the question if solar power is too expensive. The article summarises the presentations of energy and financial experts from around the world who attended the workshop. Developments in solar technology, traditional energy supply and the various applications of solar energy are discussed. Marketing aspects and price developments are examined and the risks and chances offered by the solar business are discussed. The lack of purchasing power in developing countries is also addressed.

  14. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  15. MCU-Based Solar Powered Chicken Feeder

    Directory of Open Access Journals (Sweden)

    Elenor M. Reyes

    2015-12-01

    Full Text Available Poultry is a great potential industry particularly in Batangas Province. The method of feeding chicken needs to be considered as chicken must be fed regularly to be more productive. The conventional method of feeding chicken is the need to continuously provide the food, be alert and conscious on the food remaining in cages and to feed the chickens in a correct period of time to avoid the decline of the production. Growers also find it difficult to manage their businesses effectively because they need to be around the cages every now and then to monitor the poultry. Timing and exactness are the key to provide a uniform time in feeding the chickens. This will benefit the owner of the business in terms of time and effort. Another advantage of this project is in terms of savings to the owner of the poultry business. This technology was designed to automatically feed chickens at a given period of time and to give alarm when the feeds are running out of supply. The power to be supplied to this prototype will be drawn from the sun by means of solar panels and will be stored in typical car battery. The feeds will be stored in a container and evenly distributed by using a conveyor to the feeding basin of the poultry. It will be more efficient than manual conventional way of feeding because less effort will be needed in feeding the chickens and less feeds will be wasted. In addition to that, the stored power can also be used for lighting purposes for the growers to save energy and energy bills.

  16. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  17. Integration Costs Revisited – An economic framework for wind and solar variability

    OpenAIRE

    Hirth, Lion (Prof. Dr.); Ueckerdt, Falko (Dr.); Edenhofer, Ottmar (Prof. Dr.)

    2015-01-01

    The integration of wind and solar generators into power systems causes “integration costs” – for grids, balancing services, more flexible operation of thermal plants, and reduced utilization of the capital stock embodied in infrastructure, among other things. This paper proposes a framework to analyze and quantify these costs. We propose a definition of integration costs based on the marginal economic value of electricity, or market value – as such a definition can be more easily used in econ...

  18. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Science.gov (United States)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  19. Sustainable Buildings. Using Active Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, M. Keith [Univ. of Louisville, KY (United States); Barnett, Russell [Univ. of Louisville, KY (United States)

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  20. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  1. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  2. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  3. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  4. Space Solar Power Technical Interchange Meeting 2: SSP TIM 2

    Science.gov (United States)

    Sanders, Jim; Hawk, Clark W.

    1998-01-01

    The 2nd Space Solar Power Technical Interchange Meeting (SSP TIM 2) was conducted September 21st through 24th with the first part consisting of a Plenary session. The summary results of this Plenary session are contained in part one of this report. The attendees were then organized into Working Breakout Sessions and Integrated Product Team (IPT) Sessions for the purpose of conducting in-depth discussions in specific topic areas and developing a consensus as to appropriate study plans and actions to be taken. The Second part covers the Plenary Summary Session, which contains the summary results of the Working Breakout Sessions and IPT Sessions. The appendix contains the list of attendees. The ob'jective was to provide an update for the study teams and develop plans for subsequent study activities. This SSP TIM 2 was initiated and the results reported electronically over the Internet. The International Space Station (ISS) could provide the following opportunities for conducting research and technology (R&T) which are applicable to SSP: (1) Automation and Robotics, (2) Advanced Power Generation, (3) Advanced Power Management & Distribution (PMAD), (4) Communications Systems and Networks, (5) Energy Storage, (6) In Space Propulsion (ISP), (7) Structural Dynamics and Control, and Assembly and (8) Wireless Power Transmission.

  5. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. W. [GE Energy Management, Schenectady, NY (United States); Shao, M. [GE Energy Management, Schenectady, NY (United States); Pajic, S. [GE Energy Management, Schenectady, NY (United States); D' Aquila, R. [GE Energy Management, Schenectady, NY (United States)

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  6. Cleaning Robot for Solar Panels in Solar Power Station

    Science.gov (United States)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  7. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  8. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  9. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  10. Solar Power and Solar Fuels Synthesis Report. Technology, market and research activities 2006-2011

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt; Nilsson, Ronny; Rehnlund, Bjoern [Grontmij, Stockholm (Sweden); Kasemo, Bengt [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2012-11-01

    The objectives of the synthesis is to survey the situation and give an accumulated and concentrated knowledge about status, needs and opportunities for Swedish research and Swedish industry within the area of solar power and solar fuels, to be used for prioritisation of further efforts. The synthesis shall identify strengths and weaknesses in areas fundamental for development of solar power and solar fuels, focused on the development in Sweden, but in an international context. The synthesis shall also cover proposals for future Swedish research efforts and organisation of future Swedish research programs.

  11. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  12. Progress commercializing solar-electric power systems

    International Nuclear Information System (INIS)

    Dracker, R.; De Laquil, P. III

    1996-01-01

    The commercial status of the principal solar electric technologies -- photovoltaic and solar thermal -- is reviewed. Current and near-term market niches are identified, and projected longer-term markets are explored along with the key strategies for achieving them, including technological breakthroughs, manufacturing developments, economies of scale and mass production, and market creation. Market barriers and public policy impacts on commercialization are discussed

  13. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  14. New design algorithm and reliability testing of solar powered near ...

    African Journals Online (AJOL)

    New design algorithm and reliability testing of solar powered near-space flight vehicle for defense and security. ... To overcome this problem, we propose a pseudo-satellite system where telecommunication devices are carried on a perpetually flying solar aircraft cruising at stratospheric altitude. Our aircraft will combine ...

  15. Solar Power Plants: Dark Horse in the Energy Stable

    Science.gov (United States)

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  16. The power of product integrity.

    Science.gov (United States)

    Clark, K B; Fujimoto, T

    1990-01-01

    In the dictionary, integrity means wholeness, completeness, soundness. In products, integrity is the source of sustainable competitive advantage. Products with integrity perform superbly, provide good value, and satisfy customers' expectations in every respect, including such intangibles as their look and feel. Consider this example from the auto industry. In 1987, Mazda put a racy four-wheel steering system in a five-door family hatchback. Honda introduced a comparable system in the Prelude, a sporty, two-door coupe. Most of Honda's customers installed the new technology; Mazda's system sold poorly. Potential customers felt the fit--or misfit--between the car and the new component, and they responded accordingly. Companies that consistently develop products with integrity are coherent, integrated organizations. This internal integrity is visible at the level of strategy and structure, in management and organization, and in the skills, attitudes, and behavior of individual designers, engineers, and operators. Moreover, these companies are integrated externally: customers become part of the development organization. Integrity starts with a product concept that describes the new product from the potential customer's perspective--"pocket rocket" for a sporty, subcompact car, for example. Whether the final product has integrity will depend on two things: how well the concept satisfies potential customers' wants and needs and how completely the concept has been embodied in the product's details. In the most successful development organizations, "heavyweight" product managers are responsible for leading both tasks, as well as for guiding the creation of a strong product concept.

  17. Western Wind and Solar Integration Study Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  18. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    Science.gov (United States)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  19. Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae

    International Nuclear Information System (INIS)

    Pearce, Matthew; Shemfe, Mobolaji; Sansom, Christopher

    2016-01-01

    Highlights: • Hydrothermal liquefaction and concentrated solar power provide integrated biofuel technology. • Heat kinetics and energy efficiency Aspen plus modelling of CSP and HTL. • Microalgae biofuel minimum fuel sales price of $1.23/kg. - Abstract: Integration of Hydrothermal Liquefaction (HTL) of microalgae biomass with concentrated solar power thermal processing (CSP) for bio-oil production is a potential processing pathway for energy efficient generation of renewable biofuels. Solar HTL infrastructure avoids additional bolt-on components of conventional solar parabolic trough systems used for electricity production including heat transfer fluids, counter current heat exchangers, fluid transfer interconnectivity and electrical power control systems. The absence of such capital intensive additional equipment considerably reduces the production costs of solar HTL biofuels compared to electricity generation from conventional CSP power systems. An economic and market appraisal of variance and system economic resilience is presented. It is hypothesised that the combination of nutrient recycling with HTL/CSP unification has the potential for economically sustainable microalgae bio-oil production. A microalgae biofuel minimum fuel sales price of $1.23/kg has been modelled. Further experimental work would be able to validate this integrated model.

  20. Design and installation package for a solar powered pump

    Science.gov (United States)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  1. Small Footprint Solar/Wind-powered CASTNET System Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — In this Research Effort “Small Footprint Solar/Wind-Powered CASTNET System” there are two data sets. One data set contains atmospheric concentration measurements, at...

  2. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  3. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  4. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  5. Innovative use of power integrated modules for DC power supplies

    DEFF Research Database (Denmark)

    Ørndrup Nielsen, Rasmus; Elkiær, Alexander; Munk-Nielsen, Stig

    2013-01-01

    In this article several innovative ways of utilizing Power Integrated Modules (PIM) as switching device in a DC power supply are presented. PIM have advantages in compactness of design, cost and fast prototype due to easier PCB layout. A PIM converter topology is chosen and designed resulting...... in an experimental setup. Results from the setup are presented showing the feasibility of using a PIM module as almost all power semiconductors in a DC power supply....

  6. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Calogeras, J.E.

    1992-01-01

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  7. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  8. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  9. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  10. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  11. Threshold pump power of a solar-pumped dye laser

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  12. Thermodynamic limit for coherence-limited solar power conversion

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  13. A Charge Controller Design For Solar Power System

    Directory of Open Access Journals (Sweden)

    Nandar Oo

    2015-08-01

    Full Text Available This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart is also provided.

  14. Start-up performance of parabolic trough concentrating solar power plants

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim

    2017-01-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential...

  15. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    Science.gov (United States)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  16. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  17. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  18. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  19. A solar powered wireless computer mouse. Industrial design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; Van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Veefkind, M.; Silvester, S. [Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft (Netherlands)

    2009-02-15

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared the following: appropriate selection of integrated PV type, battery capacity and type, possible electronic circuitries for PV-battery coupling, and material properties concerning mechanical incorporation of PV into the encasing. Besides technical requirements, ergonomic aspects and design aesthetics with respect to good 'sun-harvesting' properties influenced the design process. This is particularly important as simulations show users can positively influence energy balances by 'sun-bathing' the PV mouse. A total of 15 SPM prototypes were manufactured and tested by actual users. Although user satisfaction proved the SPM concept to be feasible, future research still needs to address user acceptance related to product dimensions and user willingness to pro-actively 'sun-bath' PV powered products in greater detail. (author)

  20. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  1. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    -STC). Following completion of these steps, the solar PV system was installed and fully integrated by late October 2013. The interconnection with PG&E utility grid was completed and the system began generating power on November 21, 2013. The projected annual energy generation for the system is estimated at 127,120 kWh/year.

  2. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  3. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  4. Parabolic Trough Solar Power for Competitive U.S. Markets

    International Nuclear Information System (INIS)

    Price, Henry W.

    1998-01-01

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market

  5. Control strategies for power distribution networks with electric vehicles integration

    DEFF Research Database (Denmark)

    Hu, Junjie

    of electrical energy. A smart grid can also be dened as an electricity network that can intelligently integrate the actions of all users connected to it - generators, consumers and those that do both - in order to eciently deliver sustainable, economic and secure electricity supplies. This thesis focuses...... of the ii market. To build a complete solution for integration of EVs into the distribution network, a price coordinated hierarchical scheduling system is proposed which can well characterize the involved actors in the smart grid. With this system, we demonstrate that it is possible to schedule the charging......Demand side resources, like electric vehicles (EVs), can become integral parts of a smart grids because instead of just consuming power they are capable of providing valuable services to power systems. EVs can be used to balance the intermittent renewable energy resources such as wind and solar...

  6. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  7. Study of solar array switching power management technology for space power system

    Science.gov (United States)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.

  8. Shuttle Topography Data Inform Solar Power Analysis

    Science.gov (United States)

    2013-01-01

    The next time you flip on a light switch, there s a chance that you could be benefitting from data originally acquired during the Space Shuttle Program. An effort spearheaded by Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence Agency (NGA) in 2000 put together the first near-global elevation map of the Earth ever assembled, which has found use in everything from 3D terrain maps to models that inform solar power production. For the project, called the Shuttle Radar Topography Mission (SRTM), engineers at JPL designed a 60-meter mast that was fitted onto Shuttle Endeavour. Once deployed in space, an antenna attached to the end of the mast worked in combination with another antenna on the shuttle to simultaneously collect data from two perspectives. Just as having two eyes makes depth perception possible, the SRTM data sets could be combined to form an accurate picture of the Earth s surface elevations, the first hight-detail, near-global elevation map ever assembled. What made SRTM unique was not just its surface mapping capabilities but the completeness of the data it acquired. Over the course of 11 days, the shuttle orbited the Earth nearly 180 times, covering everything between the 60deg north and 54deg south latitudes, or roughly 80 percent of the world s total landmass. Of that targeted land area, 95 percent was mapped at least twice, and 24 percent was mapped at least four times. Following several years of processing, NASA released the data to the public in partnership with NGA. Robert Crippen, a member of the SRTM science team, says that the data have proven useful in a variety of fields. "Satellites have produced vast amounts of remote sensing data, which over the years have been mostly two-dimensional. But the Earth s surface is three-dimensional. Detailed topographic data give us the means to visualize and analyze remote sensing data in their natural three-dimensional structure, facilitating a greater understanding of the features

  9. Integrated Power, Avionics, and Software (IPAS) Flexible Systems Integration

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Power, Avionics, and Software (IPAS) facility is a flexible, multi-mission hardware and software design environment. This project will develop a...

  10. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  11. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  12. Brownfields City of Houston Solar Project: Solar Power Analysis and Design Specifications

    Science.gov (United States)

    This document details the scope of work elements completed in support of this project, as well as recommendations for next steps towards solar project development and power purchase agreement negotiation and finalization.

  13. The performance of a Solar Aided Power Generation plant with diverse “configuration-operation” combinations

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • Four configurations of solar preheaters have been proposed. • Three typical operation strategies of solar preheaters have been identified. • 12 “configuration-operation” combinations has been proposed. • There are superior combinations to achieve the highest solar thermal performance. - Abstract: Solar Aided Power Generation is an efficient way to integrate solar thermal energy into a fossil fuel fired power plant for solar power generation purposes. In this particular power plant, the solar heat is used to displace the extraction steam to preheat the feedwater to the boiler. The heat exchanger, which facilitates the heat exchange between the solar heat carried by the heat transfer fluid and the feedwater, is termed a solar preheater. Four possible configurations of the solar preheater, namely Parallel 1, Parallel 2, Series 1 and Series 2, are proposed in this paper. In this type of plant, the extraction steam flow rates must be adjusted according to the solar input. The ways to control the extraction steam flow rates are termed solar preheater operation strategies. Three typical strategies: the Constant Temperature control, Variable Temperature control with high to low temperature feedwater heater displacement and Variable Temperature control with low to high temperature feedwater heater displacement have been identified. Each configuration can be operated with one of the three strategies, resulting in twelve “configuration-operation” combinations/scenarios (shown in Table 1). Previous assessments and modelling of such a plant have only been based on a single combination. In this paper, a Solar Aided Power Generation plant, modified from a typical 300 MW power plant, is used to understand the plant’s performance for all twelve of the available combinations. The results show that the instantaneous and annual technical performances of such a plant are dependent on the combinations used. The scenario 10 (Table 1) is superior to the

  14. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  15. Advanced Solar Cells for Satellite Power Systems

    Science.gov (United States)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  16. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also......This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...

  17. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  18. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  19. Power management techniques for integrated circuit design

    CERN Document Server

    Chen, Ke-Horng

    2016-01-01

    This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. * A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management * Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes * Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience * Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors manuals, and program downloads.

  20. A Remote Power Management Strategy for the Solar Energy Powered Bicycle

    Directory of Open Access Journals (Sweden)

    Chung-Hsing Chao

    2011-12-01

    Full Text Available In this paper, a solar energy powered bicycle by a wireless sensor network (WSN far-end network monitoring solar energy to transfer the electrical energy storage and the effectiveness analysis is proposed. In order to achieve this goal, an embarked ZigBee by a solar-powered bicycle the far-end wireless network supervisory system is setup. Experimental results prove that our prototype, the solar energy powered bicycle, can manage the solar energy for charging two Lead-Acid batteries pack. As a result, the user by the wireless network in parking period knows the data on the amount of immediate solar radiation, the degree of illumination, the ambient temperature, and electrical energy storage capacity information by the internet interface.

  1. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  2. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  3. The Potential for Low-Cost Concentrating Solar Power Systems

    International Nuclear Information System (INIS)

    Price, Henry W.; Carpenter, Stephen

    1999-01-01

    Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study

  4. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  5. A solar powered wireless computer mouse: industrial design concepts

    NARCIS (Netherlands)

    Reich, N.H.; Veefkind, M.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C.; Silvester, S.

    2009-01-01

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared

  6. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  7. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  8. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  9. Solar power from space: the worldwide grid of the future

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Recent interest in the feasibility and prospects for generating large amounts of electricity from space-based solar power systems is reviewed. The interest is generated by reports which suggest that sun-surfacing solar arrays in stationary earth orbit at an altitude 22,300 miles would not only be unaffected by the Earth's day-night cycle, cloud cover and atmospheric dust, but would also receive some eight times as much sunlight as solar collectors at the Earth's surface. The prediction is that relevant technology will be perfected to the point where by the middle of the 21. century a large share of the world's demand for electricity will be met by a series of very large space-based solar photovoltaic arrays. Several billion watts of power could be beamed to the Earth at microwave radio frequencies for collection by wide area rectifying ground antennas for conversion to electricity via transmitters connected to the photovoltaic arrays. A chronological account of development of this concept of beaming solar power from space shows that the idea has been around since the 1880s, gaining more and more credibility with each advance in space science . The moon, too, has been suggested as an ideal site for developing large-scale solar power systems that beam microwave energy to Earth. The lunar soil could supply silicon to build solar arrays, and metals such as iron and aluminum, for support structures and electric wiring. NASA is actively pursuing this line of inquiry, especially since all the problems involved with solar energy generation on earth, are absent on the moon.While a breakthrough is not imminent, the significant progress achieved to date in demonstrating the feasibility of wireless power transmission from space provides good reason for continuing to pursue this line of investigation

  10. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    Science.gov (United States)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  11. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  12. Experimental Investigation of Solar Powered Reverse Osmosis ...

    African Journals Online (AJOL)

    fire7-

    due to its low energy consumption is one of the best desalination alternatives. ... numerous villages and farmers, it is very difficult to extend an electric grid to every ... osmosis coupling with solar PV systems holds great promise for increasing ...

  13. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Wu, Jing; Xu, Zilong; Li, Meng

    2017-01-01

    Highlights: • Propose a fuel cell trigeneration system integrated with solar-assisted methanol reforming. • Optimize the reaction parameters of methanol steam reforming. • Present the energy and exergy analysis under design and off-design work conditions. • Analyze the contributions of solar energy to the trigeneration system. - Abstract: A solar-assisted trigeneration system for producing electricity, cooling, and heating simultaneously is an alternative scheme to improve energy efficiency and boost renewable energy. This paper proposes a phosphoric acid fuel cell trigeneration system integrated with methanol and steam reforming assisted by solar thermal energy. The trigeneration system consists of a solar heat collection subsystem, methanol steam reforming subsystem, fuel cell power generation subsystem, and recovered heat utilization subsystem. Their respective thermodynamic models are constructed to simulate the system input/output characteristics, and energy and exergy efficiencies are employed to evaluate the system thermodynamic performances. The contribution of solar energy to the system is analyzed using solar energy/exergy share. Through the simulation and analysis of methanol and steam reforming reactions, the optimal reaction pressure, temperature, and methanol to water ratio are obtained to improve the flow rate and content of produced hydrogen. The thermodynamic simulations of the trigeneration system show that the system energy efficiencies at the summer and winter design work conditions are 73.7% and 51.7%, while its exergy efficiencies are 18.8% and 26.1%, respectively. When the solar radiation intensity is different from the design work condition, the total energy and exergy efficiencies in winter decrease approximately by 4.7% and 2.2%, respectively, due to the decrease in solar heat collection efficiency. This proposed novel trigeneration system complemented by solar heat energy and methanol chemical energy is favorable for improving the

  14. Integrated low power ultrasound sensor interfaces

    OpenAIRE

    Gustafsson, Martin

    2005-01-01

    Imagine that the technical development can take the ultrasound measurement systems from the large piece of machinery today, to a coin size system tomorrow. The factor that has reduced the size of electronic systems over time is integration and integrated circuits. In this thesis circuit simulator models of complete ultrasound systems are used to design custom integrated circuits. These circuits are optimized for low power consumption and small size. The models that are used predict the acoust...

  15. The CMOS Integration of a Power Inverter

    OpenAIRE

    Mannarino, Eric Francis

    2016-01-01

    Due to their falling costs, the use of renewable energy systems is expanding around the world. These systems require the conversion of DC power into grid-synchronous AC power. Currently, the inverters that carry out this task are built using discrete transistors. TowerJazz Semiconductor Corp. has created a commercial CMOS process that allows for blocking voltages of up to 700 V, effectively removing the barrier to integrating power inverters onto a single chip. This thesis explores this proce...

  16. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  17. A new concept of space solar power satellite

    Science.gov (United States)

    Li, Xun; Duan, Baoyan; Song, Liwei; Yang, Yang; Zhang, Yiqun; Wang, Dongxu

    2017-07-01

    Space solar power satellite (SSPS) is a tremendous energy system that collects and converts solar power to electric power in space, and then transmits the electric power to earth wirelessly. In this paper, a novel SSPS concept based on ε-near-zero (ENZ) metamaterial is proposed. A spherical condenser made of ENZ metamaterial is developed, by using the refractive property of the ENZ metamaterial sunlight can be captured and redirected to its center. To make the geometric concentration ratio of the PV array reasonable, a hemispherical one located at the center is used to collect and convert the normal-incidence sunlight to DC power, then through a phased array transmitting antenna the DC power is beamed down to the rectenna on the ground. Detailed design of the proposed concept is presented.

  18. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  19. Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

    Directory of Open Access Journals (Sweden)

    Maher Kayal

    2013-02-01

    Full Text Available This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS process and occupies a core area of only 0.25 mm2. This circuit features a low power consumption of 2.1 µW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

  20. An analog ensemble for short-term probabilistic solar power forecast

    International Nuclear Information System (INIS)

    Alessandrini, S.; Delle Monache, L.; Sperati, S.; Cervone, G.

    2015-01-01

    Highlights: • A novel method for solar power probabilistic forecasting is proposed. • The forecast accuracy does not depend on the nominal power. • The impact of climatology on forecast accuracy is evaluated. - Abstract: The energy produced by photovoltaic farms has a variable nature depending on astronomical and meteorological factors. The former are the solar elevation and the solar azimuth, which are easily predictable without any uncertainty. The amount of liquid water met by the solar radiation within the troposphere is the main meteorological factor influencing the solar power production, as a fraction of short wave solar radiation is reflected by the water particles and cannot reach the earth surface. The total cloud cover is a meteorological variable often used to indicate the presence of liquid water in the troposphere and has a limited predictability, which is also reflected on the global horizontal irradiance and, as a consequence, on solar photovoltaic power prediction. This lack of predictability makes the solar energy integration into the grid challenging. A cost-effective utilization of solar energy over a grid strongly depends on the accuracy and reliability of the power forecasts available to the Transmission System Operators (TSOs). Furthermore, several countries have in place legislation requiring solar power producers to pay penalties proportional to the errors of day-ahead energy forecasts, which makes the accuracy of such predictions a determining factor for producers to reduce their economic losses. Probabilistic predictions can provide accurate deterministic forecasts along with a quantification of their uncertainty, as well as a reliable estimate of the probability to overcome a certain production threshold. In this paper we propose the application of an analog ensemble (AnEn) method to generate probabilistic solar power forecasts (SPF). The AnEn is based on an historical set of deterministic numerical weather prediction (NWP) model

  1. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  2. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  3. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  4. General review of solar-powered closed sorption refrigeration systems

    International Nuclear Information System (INIS)

    Sarbu, Ioan; Sebarchievici, Calin

    2015-01-01

    Highlights: • Provide review of development in solar sorption refrigeration technologies. • Theoretical basis and applications of absorption and adsorption cycles are discussed. • Thermodynamic properties of most common working pairs have been reviewed. • Development of hybrid or thermal energy storage adsorption systems was explored. • A comparison between solar-powered absorption and adsorption systems was performed. - Abstract: The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. Thermally powered refrigeration technologies are classified into two categories: thermo-mechanical technology and sorption technology (open systems or closed systems). This paper provides a detailed review of the solar closed sorption (absorption and adsorption) refrigeration systems, which utilise working pairs (fluids). After an introduction of the basic principles of these systems, the history of development and recent advances in solar sorption refrigeration technologies are reported. The adsorption cooling typically has a lower heat source temperature requirement than the absorption cooling. Based on the coefficient of performance (COP), the absorption systems are preferred over the adsorption systems, and the higher temperature issues can be easily handled with solar adsorption systems. The thermodynamic properties of most common working fluids, as well as the use of ternary mixtures in solar-powered absorption systems, have been reviewed in this study. The paper also refers to new approaches to increase the efficiency and sustainability of the basic adsorption cycles, such as the development of hybrid or thermal energy storage adsorption systems. This research shows that solar-powered closed sorption refrigeration technologies can be attractive alternatives not only to serve the needs for air-conditioning, refrigeration, ice making, thermal

  5. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  6. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  7. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  8. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  9. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  10. Concentrated solar power in the built environment

    Science.gov (United States)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  11. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  12. GPP Webinar: Market Outlook and Innovations in Wind and Solar Power

    Science.gov (United States)

    Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.

  13. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  14. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models......Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  15. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  16. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    Science.gov (United States)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  17. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  18. Solar-Electrochemical Power System for a Mars Mission

    Science.gov (United States)

    Withrow, Colleen A.; Morales, Nelson

    1994-01-01

    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  19. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  20. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  1. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  2. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  3. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  4. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  5. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable

  6. Solar Array Power Conditioning for a Spinning Satellite

    Science.gov (United States)

    De Luca, Antonio; Chirulli, Giovanni

    2008-09-01

    The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.

  7. Energy Decisions: Is Solar Power the Solution?

    Science.gov (United States)

    Childress, Vincent W.

    2011-01-01

    People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.…

  8. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  9. Integration of distributed generation in the power system

    CERN Document Server

    Bollen, Math H J

    2011-01-01

    "The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high. The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration...

  10. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both

  11. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  12. Solar chimney power generation project - The case for Botswana

    International Nuclear Information System (INIS)

    Ketlogetswe, Clever; Seabe, Omphemetse O.; Fiszdon, Jerzy K.

    2008-01-01

    Import of a huge proportion of electrical energy from the Southern African Power Pool, and the geographical location and population distribution of Botswana stimulated the need to consider renewable energy as an alternative to imported power. The paper describes a systematic experimental study on a mini-solar chimney system. Particular attention is given to measurements of air velocity, temperature and solar radiation. The results for the selected 5 and 6 clear days of October and November, respectively, are presented. These results enable the relationship between average insolation, temperature difference and velocity for selected clear days to be discussed. (author)

  13. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  14. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  15. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  16. Integrating Autonomous Load Controllers in Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James

    , but they are characterized by variable generation that is only partly predictable. Managing loads is already used in limited circumstances to improve security and efficiency of the power system. In power systems with a large penetration of variable generation, load management has large role to play in adapting consumption......Electric energy systems stand on the brink of radical change as the urgent need to reduce greenhouse gas emissions pushes more efficient utilization of energy resources and the adoption of renewable energy sources. New renewable sources such as wind and solar have a large potential......-sensitive load controller has been designed, implemented, and tested in real-life settings. Its performance demonstrated a large potential resource, in some cases greater than the average power consumption. The accuracy of load models was validated by comparison with field data. A voltage-sensitive controller...

  17. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)], E-mail: zhxpmark@hotmail.com; Yang Jiakuan; Wang Jinbo; Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries.

  18. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Yang, Jiakuan; Wang, Jinbo; Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries. (author)

  19. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    Zhou Xinping; Yang Jiakuan; Wang Jinbo; Xiao Bo

    2009-01-01

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  20. Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage

    Institute of Scientific and Technical Information of China (English)

    WANG Haiying; BAI Xiaomin; XU Jing

    2012-01-01

    Large-scale integration of wind power and solar photovoltaic (PV) power in an electric grid can result in a high operating risk due to their randomness and intermi- ttency. Energy storage (ES) can be used to coordinate with them to reduce this risk by improving supply continuity. It is therefore important to evaluate the reliability benefits of systems consist of wind power, solar photovoltaic power and energy storage. The objective of this paper is to evaluate how the parameters such as the capacity and characteristics of ES and the configuration of a hybrid generation system (HGS) affect the system adequacy based on the sequential Monte Carlo approach.

  1. A Solar Atlas for Building-Integrated Photovoltaic Electricity Resource Assessment

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    While photovoltaic energy gathers momentum as power costs increase and panel costs decrease, the total technical and economic potentials for building integrated solar energy in Denmark remain largely unidentified. The current net metering feed-in scheme is restricted to 6kW plant size, limiting...... large scale application. This paper presents a solar atlas based on a high-resolution digital elevation model (DEM) of all 2.9 million buildings in the country, combined with a building register. The 1.6 m resolution DEM has been processed into global radiation input, solar energy output and production....... The continuous assessment of solar electricity generation potentials by marginal costs, ownership and plant type presented in the paper may be used for defining long term policies for the development of photovoltaic energy, as well as political instruments such as a multi-tier feed-in tariff....

  2. Life cycle assessment of roof integrated solar cell systems

    International Nuclear Information System (INIS)

    Van Brummelen, M.; Nieuwlaar, E.

    1994-01-01

    The research protocol, applied in this report, is designed for use within the energy R and D-context: it provides a framework for finding bottlenecks and opportunities for (new) energy technologies in the context of (energy) resource scarcity and environmental issues. Finding and analyzing these bottlenecks and opportunities is a major objective of this study. A derived objective of this study is to gain experience in using the LCA-framework and the research protocol described earlier, and to evaluate the usefulness of these instruments in helping to find and analyze bottlenecks and opportunities in energy technologies. Photovoltaic solar cell systems (PV systems) are comprised of solar cell modules and a Balance-of-System (BOS): a support structure and power conditioning equipment. In this LCA amorphous silicon cells (a-Si) are considered. For the Netherlands roof-integrated, grid-connected systems are assumed to be the major application of PV in the future. Two cases will be studied. In case 1 a system of 30 m 2 of modules which are connected to the grid via a single inverter are studied. The modules are comprised of a-Si cells and have a conversion efficiency of 10%. Integration into the roof is done with aluminium profiles. In case 2 a system of 30 m 2 a-Si cell modules integrated in the roof with plastic 'tiles' is studied. The modules have an efficiency of 15% and connection to the grid is more or less centralized: 25 systems share an inverter which is connected to the grid. The goal and scope of the LCA and the functional unit are described in chapter 2. In chapter 3 the process tree and descriptions of the distinguished processes are given and the inventory table is drawn up. In chapter 4 the impact assessment is dealt with, followed by a discussion of improvement options in chapter 5. Conclusions and recommendations are given in the chapters 6 and 7 only regarding the environmental aspects. 9 figs., 13 tabs., 4 appendices, 13 refs

  3. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  4. Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.

    Science.gov (United States)

    Dieffenderfer, James P; Beppler, Eric; Novak, Tristan; Whitmire, Eric; Jayakumar, Rochana; Randall, Clive; Qu, Weiguo; Rajagopalan, Ramakrishnan; Bozkurt, Alper

    2014-01-01

    We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574 nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20 mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.

  5. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  6. Integrated marketing communications at solar energy equipment market

    OpenAIRE

    I.L. Litovchenko; I.A. Shkurupskaya

    2013-01-01

    The aim of the article. The article is devoted to the development of the concept of «integrated marketing communications», as well as its adaptation to a specific market of solar energy equipment. The theoretical development of foreign and domestic scholars in the field of IMC is considered. The aim of the article is to define the concept of «integrated marketing communications» and use them in the market of solar еnergy equipment in an information economy. The author's definition of the c...

  7. Data and Tools | Concentrating Solar Power | NREL

    Science.gov (United States)

    -energy estimates for grid-connected power projects based on installation and operating costs and system ) is an economic cash flow model designed to assess projects, design cost-based incentives (e.g., feed

  8. Solar power generation in a rural region

    International Nuclear Information System (INIS)

    1991-01-01

    The book contains the papers discussions and results of a German/Senegalese seminar on photovoltaic power generation in rural regions of Senegal which was held in Dakar on 19-23 November 1990. (HP) [de

  9. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  10. Low-cost distributed solar-thermal-electric power generation

    Science.gov (United States)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  11. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  12. Integration of torrefaction with steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zakri, B.; Saari, J.; Sermyagina, E.; Vakkilainen, E.

    2013-09-01

    Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared. (orig.)

  13. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  14. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  15. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  16. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  17. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  18. Coherence-limited solar power conversion: the fundamental thermodynamic bounds and the consequences for solar rectennas

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-10-01

    Solar rectifying antennas constitute a distinct solar power conversion paradigm where sunlight's spatial coherence is a basic constraining factor. In this presentation, we derive the fundamental thermodynamic limit for coherence-limited blackbody (principally solar) power conversion. Our results represent a natural extension of the eponymous Landsberg limit, originally derived for converters that are not constrained by the radiation's coherence, and are irradiated at maximum concentration (i.e., with a view factor of unity to the solar disk). We proceed by first expanding Landsberg's results to arbitrary solar view factor (i.e., arbitrary concentration and/or angular confinement), and then demonstrate how the results are modified when the converter can only process coherent radiation. The results are independent of the specific power conversion mechanism, and hence are valid for diffraction-limited as well as quantum converters (and not just classical heat engines or in the geometric optics regime). The derived upper bounds bode favorably for the potential of rectifying antennas as potentially high-efficiency solar converters.

  19. Mobile solar mini power station filled with infrared heliochambers

    International Nuclear Information System (INIS)

    Abdukadirov, M.A.; Akhmedova, N.A.

    2000-01-01

    The work dedicated to development of perspective types of solar energetic devices of in-land application in accordance with conception about advantage of decentralized production of electrical and heat energy for supply of atom customers. It is given constructive particulars and characteristics of developed by authors mobile energy complex, which contents from block photoelectrical of convertor on the base of semiconductor solar elements, transparent in longwaved area out of edge of absorption base band, with power from 100 till 1000 Wt and heliochamber for accumulation of infrared part of solar radiation with wave length λ> 1 mcm. It is shown that, introduction into the system of energy complex the infrared heliochamber, increase the efficiency of equipment generally on the account of increasing the useful application of solar spectrum and extend her functional abilities. It is discussed the advantages of similar energy complex at decision of separate production tasks, including agriculture processing. (Author)

  20. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    Science.gov (United States)

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID

  1. Multi-objective PSO based optimal placement of solar power DG in radial distribution system

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar

    2017-06-01

    Full Text Available Ever increasing trend of electricity demand, fossil fuel depletion and environmental issues request the integration of renewable energy into the distribution system. The optimal planning of renewable distributed generation (DG is much essential for ensuring maximum benefits. Hence, this paper proposes the optimal placement of probabilistic based solar power DG into the distribution system. The two objective functions such as power loss reduction and voltage stability index improvement are optimized. The power balance and voltage limits are kept as constraints of the problem. The non-sorting pare to-front based multi-objective particle swarm optimization (MOPSO technique is proposed on standard IEEE 33 radial distribution test system.

  2. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    Science.gov (United States)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  3. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    Science.gov (United States)

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  4. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Felix N. [Bowling Green State University

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 μs in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a μs lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  5. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  6. Composition Modeling and Equivalence of an Integrated Power Generation System of Wind, Photovoltaic and Energy Storage Unit

    Institute of Scientific and Technical Information of China (English)

    WANG Haohuai; TANG Yong; HOU Junxian; ZOU Jiangfeng; LIANGShuang; SU Feng

    2011-01-01

    The characteristic of wind and solar generation is random and fluctuant. In order to improve their generation performance, the integrated power generation of wind, photovoltaic (PV) and energy storage is a focus in the study. In this paper,

  7. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  8. A framework for investigating the interactions between climate, dust, solar power generation and water desalination processes in Desert Climate

    Science.gov (United States)

    Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.

    2016-12-01

    Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.

  9. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  10. Control of Power and Voltage of Solar Grid Connected

    OpenAIRE

    Allah, Boucetta Abd; Djamel, Labed

    2016-01-01

    Renewable energy is high on International agendas. Currently, grid-connected photovoltaic systems are a popular technology to convert solar energy into electricity. Control of power injected into the grid, maximum power point, high efficiency, and low total harmonic distortion of the currents injected into the grid are the requirements for inverter connection into the grid. Consequently, the performance of the inverters connected to the grid depends largely on the control strategy applied. In...

  11. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  12. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  13. Connective power: Solar electrification and social change in Kenya

    Science.gov (United States)

    Jacobson, Arne Edward

    Household solar photovoltaic systems have emerged as a key alternative to grid-based rural electrification in many developing countries. This may seem a victory for appropriate technology advocates, but my research indicates that the social significance of solar electrification in Kenya, which is among the largest developing country solar markets per capita, is far removed from the classic "small is beautiful" neo-populist vision of building small-scale alternatives to global capitalism. Instead, solar electrification is more closely connected to neo-liberal goals of market-based service provision and economic integration. In this study I combine quantitative and qualitative methods, including surveys, intra-household energy allocation studies, and historical analysis, to analyze the social significance of solar electrification in Kenya. I find that "connective" applications, including television, radio, and cellphones, are centrally important. Television is especially notable; the expansion of TV broadcasting to rural areas was a key condition for solar market development. Solar electricity is also used for lighting. In Kenya, income and work related uses of solar lighting are modest, while education uses are more significant. However, in many households, especially those with small systems, intra-household dynamics constrain key social uses (e.g. children's studying), as the energy is allocated to other uses. Social use patterns combine with access dynamics in Kenya's unsubsidized market to shape the social significance of solar electrification. Solar ownership is dominated by the rural upper and middle classes. Thus, productivity and education uses make small contributions to differentiation and middle class formation. Additionally, solar electrification's role in supporting rural television and radio use improves business advertisers' ability to expand consumer goods markets. These findings link solar electrification to important processes of rural development

  14. Implicit Particle Filter for Power System State Estimation with Large Scale Renewable Power Integration.

    Science.gov (United States)

    Uzunoglu, B.; Hussaini, Y.

    2017-12-01

    Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.

  15. Research notes : solar powered navigational lighting system demonstration project.

    Science.gov (United States)

    2011-04-01

    ODOT will be installing a solar powered navigational lighting system on the AstoriaMegler Bridge as part of a pilot project approved by the Federal Highways Administration (FHWA). The coastal bridge is the connection across the Columbia River on U.S....

  16. Electrostatic protection of the Solar Power Satellite and rectenna

    Science.gov (United States)

    Freeman, J. W.; Few, A. A., Jr.; Reiff, P. H.; Cooke, D.; Bohannon, J.; Haymes, B.

    1979-01-01

    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure.

  17. Concentrating Solar Power Projects - Dish/Engine Projects | Concentrating

    Science.gov (United States)

    Solar Power | NREL Dish/Engine Projects Photo of several flat, octagonal panels arranged together to form a dish-shaped structure. The receiver is supported above the panels by an arm-like of the panels. These dish/Stirling units are being tested at Sandia National Laboratories in

  18. Solar Power Tower Design Basis Document, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  19. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  20. The solar power plants in the world

    International Nuclear Information System (INIS)

    Rigaud, Ch.

    2007-01-01

    The helio-thermodynamics which produces electric power with high temperatures obtained by the concentration of sun rays, is increasing. This document presents maps of the different installations, installed or in project, and their capacities in the world. (A.L.B.)

  1. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  2. Smart Power: New power integrated circuit technologies and their applications

    Science.gov (United States)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  3. Grid Code Requirements for Wind Power Integration

    DEFF Research Database (Denmark)

    Wu, Qiuwei

    2018-01-01

    This chapter reviews the grid code requirements for integration of wind power plants (WPPs). The grid codes reviewed are from the UK, Ireland, Germany, Denmark, Spain, Sweden, the USA, and Canada. Transmission system operators (TSOs) around the world have specified requirements for WPPs under...

  4. Nuclear power programme planning: An integrated approach

    International Nuclear Information System (INIS)

    2001-12-01

    The International Atomic Energy Agency (IAEA) has published material on different policy considerations in the introduction of nuclear power, primarily addressed to top level decision makers in government and industry in Member States. Several Member States and experts recommended to the IAEA to address the aspects of an integrated approach to nuclear power programme planning and to serve as guidance to those countries wishing to embark on a nuclear power programme. As a follow-up, the present publication is primarily intended to serve as guidance for executives and managers in Member States in planning for possible introduction of nuclear power plants in their electricity generating systems. Nuclear power programme planning, as dealt with in this publication, includes all activities that need to be carried out up to a well-founded decision to proceed with a project feasibility study. Project implementation beyond this decision is not in the scope of this publication. Although it is possible to use nuclear energy as a heat source for industrial processes, desalination and other heat applications, it is assumed in this publication that the planning is aimed towards nuclear power for electricity generation. Much of the information given would, however, also be relevant for planning of nuclear reactors for heat production. The publication was prepared within the framework of the IAEA programme on nuclear power planning, implementation and performance as a joint activity of the Nuclear Power Engineering Section and the Planning and Economic Studies Section (Division of Nuclear Power)

  5. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  6. Optimized dispatch in a first-principles concentrating solar power production model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.; Braun, Robert J.

    2017-10-01

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum and maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.

  7. Generator Rescheduling under Congested Power System with Wind Integrated Competitive Power Market

    Directory of Open Access Journals (Sweden)

    Sadhan Gope

    2017-02-01

    Full Text Available Integration of renewable energy like wind or solar energy creates a huge pressure to the system operator (SO to ensure the congestion free transmission network under deregulated power market. Congestion Management (CM with integration of wind farm in double auction electricity market are described in this work to minimize fuel cost, system losses and locational marginal price (LMP of the system. Location of Wind Farm (WF is identified based by using Bus sensitivity factor (BSF, which is also used for selection of load bus for double auction bidding (DAB. The impacts of wind farm in congested power system under deregulated environment have been investigated in this work. Modified 39-bus New England test system is used for demonstrate the effectiveness of the presented approach by using Sequential Quadratic Programming (SQP.

  8. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  9. Implications of longitude and latitude on the size of solar-powered UAV

    International Nuclear Information System (INIS)

    Rajendran, Parvathy; Smith, Howard

    2015-01-01

    Highlights: • We studied solar irradiance and daylight implication on solar-powered UAV design. • We explored for perpetual UAV flight for 12 cities around the world. • All year round solar-powered UAV operation possible for cities near equatorial line. • Cities in latitudes of ±35° are the optimal for solar-powered UAV. • Longitudinal coordinates and elevation have a minor effect on UAV design. - Abstract: The implication of solar irradiance and daylight duration on the design of a small solar-powered unmanned aerial vehicle (UAV) that is capable of operating perpetually in various cities around the world was investigated. Solar data in 2013 on 12 cities distributed around the world was collected. The effects of the available solar irradiance and daylight of the city on the maximum take-off weight and wing span of a small solar-powered UAV were studied. The analysis indicates that daylight duration is as important as the available solar irradiance to the performance of the solar-powered UAV. Longitudinal coordinates and elevation have a minor effect on the estimation of daylight duration. Areas considerably high in solar irradiance and daylight duration are more conducive to the effective performance of solar-powered UAVs than other areas. Therefore, cities closer to the equator have an advantage in utilizing solar-powered UAVs; where smaller and lighter solar-powered UAV can be designed

  10. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  11. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  12. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  13. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A wireless soil moisture sensor powered by solar energy.

    Directory of Open Access Journals (Sweden)

    Mingliang Jiang

    Full Text Available In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  15. The THESEUS project -- 50 MWe solar thermal power for Crete

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, F.; Geyer, M.; Kistner, R.; Aringhoff, R.; Nava, P.; Brakmann, G.

    1998-07-01

    A consortium of European industry, utilities and research institutions from Greece, Germany, Spain and Italy attempts to implement a 52 MWe solar thermal power plant with parabolic trough technology on the Greek island of Crete sponsored by the EU' s THERMIE program. The increased demand for electricity on the island, a consequence of the growing allurement of the island as a tourist resort, makes it necessary to expand the installed capacity on Crete during the next years. According to the capacity expansion plans of Greek' s utility PPC a 160 MWe heavy fuel-fired power plant complex--two 30 MWe diesel units and two 50 MWe steam turbine units--is foreseen to be built by the year 2002. In this paper a description of the technical, economical and environmental aspects of the THESEUS project is provided. Moreover a market entry strategy for solar thermal power generation is discussed.

  16. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  17. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  18. A Distributed Routing Scheme for Energy Management in Solar Powered Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.; Shamma, Jeff S.; Claudel, Christian G.

    2017-01-01

    Energy management is critical for solar-powered sensor networks. In this article, we consider data routing policies to optimize the energy in solar powered networks. Motivated by multipurpose sensor networks, the objective is to find the best

  19. Dual-Axis Solar Tracking System for Maximum Power Production in ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: The power developed in a solar energy system depends fundamentally upon the ... for power generation. ... determined because they are functions of the solar angles that ..... able to withstand the weight and the blowing wind.

  20. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large PHased Array

    Data.gov (United States)

    National Aeronautics and Space Administration — SPS-ALPHA (Solar Power Satellite via Arbitrarily Large Phased Array) is a novel, bio-mimetic approach to the challenge of space solar power. If successful, this...