WorldWideScience

Sample records for integrated science inquiry

  1. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  2. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  3. INQUIRY-BASED SCIENCE COMIC PHYSICS SERIES INTEGRATED WITH CHARACTER EDUCATION

    Directory of Open Access Journals (Sweden)

    D Yulianti

    2016-04-01

    Full Text Available This study aimed to test the level of readability and feasibility of science comic, to knowcharacter development through a small test in some schools. The research design was Research & Development, trials were using quasi-experimental pre-test-post-test experimental design. The instruments to measure attitudes were: a questionnaire and observation sheet, a test used to measure comprehension of the material. The results showed that learning science by inquiry-based science comic can improvecharacters and cognitive achievement of primary school students. Results in the form of inquiry-based science comic can be utilized in learning science as a companion teaching materials.

  4. The perceptions of inquiry held by greater Houston area science supervisors

    Science.gov (United States)

    Aoki, Jon Michael

    The purpose of this study was to describe the perceptions of inquiry held by responding greater Houston area science supervisors. Leading science organizations proposed that students might be better served if students are mentally and physically engaged in the process of finding out about natural phenomena rather than by didactic modes of teaching and learning. During the past fifty years, inquiry-based instruction has become a significant theme of new science programs. Students are more likely to make connections between classroom exercises and their personal lives through the use of inquiry-based instruction. Learning becomes relevant to students. Conversely, traditional science instruction often has little or no connection to students' everyday lives (Papert, 1980). In short, inquiry-based instruction empowers students to become independent thinkers. The utilization of inquiry-based instruction is essential to a successful reform in science education. However, a reform's success is partly determined by the extent to which science supervisors know and understand inquiry and consequently promote its integration in the district's science curricula. Science supervisors have the role of providing curriculum and instructional support to science teachers and for implementing science programs. There is a fundamental need to assess the perceptions of inquiry held by greater Houston area science supervisors. Science supervisor refers to a class of job titles that include department chairperson, science specialist, science consultant, and science coordinator. The target population was greater Houston area science supervisors in Texas. This study suggests that there are three major implications for educational practice. First, there is the implication that responding greater Houston area science supervisors need an inclusive perception of inquiry. Second, responding greater Houston area science supervisors' perception of inquiry may affect the perceptions and understandings

  5. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  6. Teaching Science through Inquiry

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  7. Representational Inquiry competences in Science Games

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2009-01-01

    to support work with genuine scientific inquiry and to meet the seventh- to tenth grade curriculum objectives for science and Danish education in Danish schools. This paper comprises a presentation of the results of a long-term empirical study done of four school classes who have played the game. The chapter......This chapter concerns the enactment of competences in a particular science learning game Homicide, which is played in lower secondary schools. Homicide is a forensic investigation game in which pupils play police experts solving criminal cases in the space of one week. The game is designed......, transform and criticize visual representations as an integrated part of conducting an inquiry in the science game...

  8. The Implementation of Pedagogical Content Knowledge (PCK based Guided Inquiry on Science Teacher Students

    Directory of Open Access Journals (Sweden)

    Lulu Tunjung Biru

    2018-05-01

    Full Text Available The aim of this study is examining the learning of Integrated Sciences through PCK based guided inquiry on prospective science teacher students. This research method was descriptive qualitative involving 33 science teacher students who taking Integrated Science 1 Subject in academic year 2016/2017. The research instrument used was the observation sheet to know the implementation PCK based guided inquiry. The results showed that the implementation of the activities of lecturer and science teacher students during the learning process using PCK based guided inquiry was very good conducted.

  9. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    Science.gov (United States)

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-10-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.

  10. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-01-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…

  11. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  12. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    teachers NOS conceptions. Developing desired understanding of nature of science conceptions and having an adequate experience with inquiry learning is especially important for science teachers because science education literature suggests that the development of teachers' nature of science conceptions is influenced by their experiences with inquiry science (Akerson et. al. 2000) and implementation of science lessons reflect teachers' NOS conceptions (Abd-EL-Khalick & Boujaoude, 1997; Matson & Parsons, 1998; Rosenthal, 1993; Trowbridge, Bybee & Powell, 2000; Turner & Sullenger, 1999). Furthermore, the impediments to successful integration of inquiry based science instruction from teachers' perspective are particularly important, as they are the implementers of inquiry based science education reform. The purpose of this study is to understand the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices in their classrooms and how this relationship impedes or contributes to the implementation of inquiry based science education reform efforts. The participants of this study were in-service teachers who were accepted into the online Masters Program in science education program at a southern university. Three online courses offered in the summer semester of 2005 constituted the research setting of this study: (1) Special Problems in the Teaching of Secondary School Science: Nature of Science & Science Teaching, (2) Curriculum in Science Education, and (3) Colloquium. Multiple data sources were used for data triangulation (Miles & Huberman, 1984; Yin, 1994) in order to understand the relationship between participants' NOS views and their conceptions and beliefs about inquiry-based science teaching. The study revealed that the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices is far from being simple and linear. Data suggests that the teachers' sophistication of NOS conceptions influence their perception of

  13. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  14. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  15. Dealing with the Ambiguities of Science Inquiry

    Science.gov (United States)

    Tan, Yuen Sze Michelle; Caleon, Imelda Santos

    2016-01-01

    The current vision of science education in myriad educational contexts encourages students to learn through the process of science inquiry. Science inquiry has been used to promote conceptual learning and engage learners in an active process of meaning-making and investigation to understand the world around them. The science inquiry process…

  16. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  17. College science teachers' views of classroom inquiry

    Science.gov (United States)

    Brown, Patrick L.; Abell, Sandra K.; Demir, Abdulkadir; Schmidt, Francis J.

    2006-09-01

    The purposes of this study were to (a) gain an understanding of the views of inquiry held by faculty members involved in undergraduate science teaching and (b) describe the challenges, constraints, and opportunities that they perceived in designing and teaching inquiry-based laboratories. Participants included 19 college professors, representing both life and physical science disciplines, from (a) 2-year community college, (b) small, private nonprofit liberal arts college, (c) public master's granting university, and (d) public doctoral/research extensive university. We collected data through semistructured interviews and applied an iterative data analysis process. College science faculty members held a full and open inquiry view, seeing classroom inquiry as time consuming, unstructured, and student directed. They believed that inquiry was more appropriate for upper level science majors than for introductory or nonscience majors. Although faculty members valued inquiry, they perceived limitations of time, class size, student motivation, and student ability. These limitations, coupled with their view of inquiry, constrained them from implementing inquiry-based laboratories. Our proposed inquiry continuum represents a broader view of inquiry that recognizes the interaction between two dimensions of inquiry: (a) the degree of inquiry and (b) the level of student directedness, and provides for a range of inquiry-based classroom activities.

  18. 4-H Science Inquiry Video Series

    Science.gov (United States)

    Green, Jeremy W.; Black, Lynette; Willis, Patrick

    2013-01-01

    Studies support science inquiry as a positive method and approach for 4-H professionals and volunteers to use for teaching science-based practices to youth. The development of a science inquiry video series has yielded positive results as it relates to youth development education and science. The video series highlights how to conduct science-rich…

  19. Comparing Two Inquiry Professional Development Interventions in Science on Primary Students' Questioning and Other Inquiry Behaviours

    Science.gov (United States)

    Nichols, Kim; Burgh, Gilbert; Kennedy, Callie

    2017-02-01

    Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.

  20. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  1. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    International Nuclear Information System (INIS)

    Tran, Trinh-Ba; Ed van den Berg, Ed; Beishuizen, Jos; Ellermeijer, Ton

    2015-01-01

    Integration of technology (e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers’ learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2–3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  2. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    Science.gov (United States)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos

    2016-05-01

    Integration of technology ( e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers' learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2-3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  3. An Investigation of Teacher Impact on Student Inquiry Science Performance Using a Hierarchical Linear Model

    Science.gov (United States)

    Liu, Ou Lydia; Lee, Hee-Sun; Linn, Marcia C.

    2010-01-01

    Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous…

  4. Science from the Pond up: Using Measurement to Introduce Inquiry

    Science.gov (United States)

    Demir, Abdulkadir; Schmidt, Frank; Abell, Sandra K.

    2010-01-01

    The authors engaged nonscience majors enrolled in an integrated science course with a prototype activity designed to change their mindset from cookbook to inquiry science. This article describes the activity, the Warm Little Pond, which helped students develop essential understanding of basic statistics, significant figures, and the idea that…

  5. Talking Science: Developing a Discourse of Inquiry

    Science.gov (United States)

    Hackling, Mark; Smith, Pru; Murcia, Karen

    2010-01-01

    A key principle of inquiry-based science education is that the process of inquiry must include opportunities for the exploration of questions and ideas, as well as reasoning with ideas and evidence. Teaching and learning Science therefore involves teachers managing a discourse that supports inquiry and students engaging in talk that facilitates…

  6. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  7. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  8. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  9. Bringing Inquiry Science to K-5 Classrooms

    Science.gov (United States)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  10. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    Science.gov (United States)

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  11. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  12. The (non)making/becoming of inquiry practicing science teachers

    Science.gov (United States)

    Sharma, Ajay; Muzaffar, Irfan

    2012-03-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science teaching, this conceptual paper seeks to direct attention toward discursive practices surrounding inquiry science teaching in teacher education programs for understanding why most science teachers do not teach science through inquiry. The paper offers a theoretical framework centered on critical notions of subjection and performativity as a much needed perspective on making/becoming of science teachers through participation in discursive practices of science teacher education programs. It argues that research based on such perspectives have much potential to offer a deeper understanding of the difficult challenges teacher education programs face in preparing inquiry practicing science teachers.

  13. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  14. Dilemmas of Teaching Inquiry in Elementary Science Methods

    Science.gov (United States)

    Newman, William J., Jr.; Abell, Sandra K.; Hubbard, Paula D.; McDonald, James; Otaala, Justine; Martini, Mariana

    2004-01-01

    Because various definitions of inquiry exist in the science education literature and in classroom practice, elementary science methods students and instructors face dilemmas during the study of inquiry. Using field notes, instructor anecdotal notes, student products, and course artifacts, science methods course instructors created fictional…

  15. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  16. Connecting Mathematics in Primary Science Inquiry Projects

    Science.gov (United States)

    So, Winnie Wing-mui

    2013-01-01

    Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…

  17. Preservice science teachers' experiences with repeated, guided inquiry

    Science.gov (United States)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  18. Science Inquiry into Local Animals: Structure and Function Explored through Model Making

    Science.gov (United States)

    Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria

    2015-01-01

    This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…

  19. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    Science.gov (United States)

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  20. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  1. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  2. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-01-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning,…

  3. Mapping Science in Discourse-based Inquiry Classrooms

    Science.gov (United States)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  4. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  5. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    Science.gov (United States)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  6. Primary teachers conducting inquiry projects : effects on attitudes towards teaching science and conducting inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte; van Hest, Erna G.W.C.M.; Poortman, Cindy Louise

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers’ attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of

  7. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  8. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  9. An investigation of children's levels of inquiry in an informal science setting

    Science.gov (United States)

    Clark-Thomas, Beth Anne

    Elementary school students' understanding of both science content and processes are enhanced by the higher level thinking associated with inquiry-based science investigations. Informal science setting personnel, elementary school teachers, and curriculum specialists charged with designing inquiry-based investigations would be well served by an understanding of the varying influence of certain present factors upon the students' willingness and ability to delve into such higher level inquiries. This study examined young children's use of inquiry-based materials and factors which may influence the level of inquiry they engaged in during informal science activities. An informal science setting was selected as the context for the examination of student inquiry behaviors because of the rich inquiry-based environment present at the site and the benefits previously noted in the research regarding the impact of informal science settings upon the construction of knowledge in science. The study revealed several patterns of behavior among children when they are engaged in inquiry-based activities at informal science exhibits. These repeated behaviors varied in the children's apparent purposeful use of the materials at the exhibits. These levels of inquiry behavior were taxonomically defined as high/medium/low within this study utilizing a researcher-developed tool. Furthermore, in this study adult interventions, questions, or prompting were found to impact the level of inquiry engaged in by the children. This study revealed that higher levels of inquiry were preceded by task directed and physical feature prompts. Moreover, the levels of inquiry behaviors were haltered, even lowered, when preceded by a prompt that focused on a science content or concept question. Results of this study have implications for the enhancement of inquiry-based science activities in elementary schools as well as in informal science settings. These findings have significance for all science educators

  10. How to Support Primary Teachers' Implementation of Inquiry: Teachers' Reflections on Teaching Cooperative Inquiry-Based Science

    Science.gov (United States)

    Gillies, Robyn M.; Nichols, Kim

    2015-01-01

    Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…

  11. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    Science.gov (United States)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  12. KEEFEKTIFAN METODE SCHOOLYARD INQUIRY TERHADAP PENINGKATAN PEMAHAMAN SCIENCE VOCABULARY

    Directory of Open Access Journals (Sweden)

    S.D. Pamelasari

    2014-10-01

    Full Text Available Tantangan yang harus dihadapi dalam mengajar Bahasa Inggris di pada mahasiswa selain jurusan Bahasa Inggris adalah tingkat pemahaman kosakata yang rendah. Hal tersebut berpengaruh pada pemahaman materi mereka, berdasarkan permasalahan tersebut metode schoolyard inquiry digagas untuk membantu meningkatkan pemahaman mereka dalam memahami science vocabulary sebagai metode alternative untuk membantu mereka belajar. Schoolyard inquiry adalah metode belajar kosakata secara mandiri di luar kelas. Hasil analisis menunjukkan bahwa pemahaman science vocabulary mahasiswa Pendidikan IPA FMIPA Unnes mengingkat secara signifikan dan mencapai tingkat tinggi pada level pemahamannya. Melalui metode ini mahasiswa juga dapat mengintegrasikan pembelajaran Bahasa Inggris dengan metode saintifik. Mahasiswa juga memberikan respon positif terhadap metode schoolyard inquiry  ini. The challenge that should be faced of teaching English for non English department students is the low level of students’ vocabulary mastery. It affects their comprehension of material, therefore to help students to master the science vocabulary schoolyard inquiry method was proposed to be used as alternative method to improve students’ vocabulary mastery. Schoolyard inquiry is a method of independent learning that is conducted outside the class. The result showed that the students’ science vocabulary mastery improved significantly most of students reached high level of science vocabulary mastery. Through Schoolyard Inquiry method Students were be able to learn English by applying the scientific skill. The students also gave positive responses of learning vocabulary by using alternatif method of schoolyard inquiry.

  13. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    Science.gov (United States)

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  14. Teacher and student reflections on ICT-rich science inquiry

    DEFF Research Database (Denmark)

    Williams, John; Otrel-Cass, Kathrin

    2017-01-01

    and different ways for students to engage with, explore and communicate science ideas within inquiry. Sample: This project developed case studies with 6 science teachers of year 9 and 10 students, with an average age of 13 and 14 years in three New Zealand high schools. Teacher participants in the project had...... varying levels of understanding and experience with inquiry learning in science. Teacher knowledge and experience with ICT were equally diverse. Design and Methods: Teachers and researchers developed initially in a joint workshop a shared understanding of inquiry, and how this could be enacted. During......Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today’s world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds...

  15. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  16. Content analysis of science material in junior school-based inquiry and science process skills

    Science.gov (United States)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  17. Measuring Science Inquiry Skills in Youth Development Programs: The Science Process Skills Inventory

    Directory of Open Access Journals (Sweden)

    Mary E. Arnold

    2013-03-01

    Full Text Available In recent years there has been an increased emphasis on science learning in 4-H and other youth development programs. In an effort to increase science capacity in youth, it is easy to focus only on developing the concrete skills and knowledge that a trained scientist must possess. However, when science learning is presented in a youth-development setting, the context of the program also matters. This paper reports the development and testing of the Science Process Skills Inventory (SPSI and its usefulness for measuring science inquiry skill development in youth development science programs. The results of the psychometric testing of the SPSI indicated the instrument is reliable and measures a cohesive construct called science process skills, as reflected in the 11 items that make up this group of skills. The 11 items themselves are based on the cycle of science inquiry, and represent the important steps of the complete inquiry process.

  18. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    Science.gov (United States)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  19. Implementing e-network-supported inquiry learning in science

    DEFF Research Database (Denmark)

    Williams, John; Cowie, Bronwen; Khoo, Elaine

    2013-01-01

    The successful implementation of electronically networked (e-networked) tools to support an inquiry-learning approach in secondary science classrooms is dependent on a range of factors spread between teachers, schools, and students. The teacher must have a clear understanding of the nature......-construct knowledge using a wide range of resources for meaning making and expression of ideas. These outcomes were, however, contingent on the interplay of teacher understanding of the nature of science inquiry and school provision of an effective technological infrastructure and support for flexible curriculum...... of inquiry, the school must provide effective technological infrastructure and sympathetic curriculum parameters, and the students need to be carefully scaffolded to the point of engaging with the inquiry process. Within this study, e-networks supported students to exercise agency, collaborate, and co...

  20. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  1. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  2. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    Science.gov (United States)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  3. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    This paper aims at finding out Rwandan lower secondary school science teachers' ... enterprise, which in the context of the present study has a focus on inquiry. .... methods was adopted and both quantitative and qualitative data collected.

  4. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    Science.gov (United States)

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  5. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  6. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  7. Transforming student's discourse as a method of teaching science inquiry

    Science.gov (United States)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  8. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    Science.gov (United States)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry

  9. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    Science.gov (United States)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was

  10. Kindergarten Teachers' Understanding of the Elements of Implementing Inquiry-Based Science Instruction

    Science.gov (United States)

    Blevins, Kathryn

    The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By

  11. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  12. Primary teachers conducting inquiry projects : the effect on attitude towards science and inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2015-01-01

    This paper presents the results of a theoretically informed professionalisation project that was set up to improve primary teachers’ attitudes towards science and attitude towards inquiry. A positive attitude towards science is of fundamental importance for teachers when stimulating interest in

  13. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  14. Can virtual science foster real skills? A study of inquiry skills in a virtual world

    Science.gov (United States)

    Dodds, Heather E.

    Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life are being used as new frontiers in science education. There have been few studies looking specifically at science education in virtual worlds that foster inquiry skills. This quantitative quasi-experimental nonrandomized control group pretest and posttest study explored what affect a virtual world experience had on inquiry skills as measured by the TIPS (Test of Integrated Process Skills) and TIPS II (Integrated Process Skills Test II) instruments. Participants between the ages of 18 and 65 were recruited from educator mailing lists and Second Life discussion boards and then sorted into the experimental group, which received instructions to utilize several displays in Mendelian genetics at the Genome Island location within Second Life, or the control group, which received text-based PDF documents of the same genetics course content. All participants, in the form of avatars, were experienced Second Life residents to reduce any novelty effect. This study found a greater increase in inquiry skills in the experimental group interacting using a virtual world to learn science content (0.90 points) than a control group that is presented only with online text-based content (0.87 points). Using a mixed between-within ANOVA (analysis of variance), with an alpha level of 0.05, there was no significant interaction between the control or experimental groups and inquiry skills, F (1, 58) = .783, p = .380, partial eta squared = .013, at the specified .05 alpha level suggesting no significant difference as a result of the virtual world exercise. However, there is not enough evidence to state that there was no effect because there was a

  15. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    Science.gov (United States)

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  16. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  17. Appreciative Inquiry and Implementation Science in Leadership Development.

    Science.gov (United States)

    Bleich, Michael R; Hessler, Christine

    2016-05-01

    Appreciative inquiry was developed to initiate and animate change. As implementation science gains a foothold in practice settings to bridge theory, evidence, and practice, appreciative inquiry takes on new meaning as a leadership intervention and training tool. J Contin Educ Nurs. 2016;47(5):207-209. Copyright 2016, SLACK Incorporated.

  18. Science Teachers' Perceptions of the Relationship Between Game Play and Inquiry Learning

    Science.gov (United States)

    Mezei, Jessica M.

    The implementation of inquiry learning in American science classrooms remains a challenge. Teachers' perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers' instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers' game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers' game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences?. Results showed weak quantitative links between science teachers' game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers

  19. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    Science.gov (United States)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  20. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    Science.gov (United States)

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  1. Sustaining inquiry-based teaching methods in the middle school science classroom

    Science.gov (United States)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  2. Mentoring a new science teacher in reform-based ways: A focus on inquiry

    Science.gov (United States)

    Schomer, Scott D.

    The processes, understandings, and uses of inquiry are identified by the National Science Education Standards (National Research Council, 1996) as a key component of science instruction. Currently, there are few examples in the literature demonstrating how teachers go about co-constructing inquiry-based activities and how mentors can promote the use of reform-based practices by novices. The purpose of this interpretive case study was to investigate how a mentor and her protege collaboratively developed, implemented and assessed three inquiry-based experiences. The questions that guided this research were: (1) How does the mentor assist protege growth in the development, implementation and assessment of inquiry-based experiences for secondary science students? (2) How are the protege's perceptions of inquiry influenced by her participation in developing, implementing and assessing inquiry-based experiences for secondary science students? The co-construction of the inquiry activities and the facilitation provided by the mentor represented Lev Vygotsky's (1978) social construction of information as the mentor guided the protege beyond her cognitive zone of proximal development. The participants in this study were a veteran science teacher who was obtaining her mentor certification, or Teacher Support Specialist, and her protege who was a science teacher in the induction phase of her career. Data were collected through in-depth, semi-structured interviews, tape recordings of planning sessions, researcher field notes, and email reflections during the co-construction process. Inductive analysis of the data led to the identification of common categories and subsequent findings, which reflected what the mentor and protege discussed about inquiry and the process of collaboration. The six themes that emerged from this study led to several implications that are significant for science teacher preparation and the mentoring community. The teachers indicated tools, such as the

  3. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    Science.gov (United States)

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-03-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.

  4. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  5. The influence of an inquiry professional development program on secondary science teachers' conceptions and use of inquiry teaching

    Science.gov (United States)

    Lotter, Christine

    2005-11-01

    This research investigated nine secondary science teachers' conceptions and use of inquiry teaching throughout a year-long professional development program. The professional development program consisted of a two-week summer inquiry institute and research experience in university scientists' laboratories, as well as three academic year workshops. Teachers' conceptions of inquiry teaching were established through both qualitative interviews and a quantitative instrument given before and after the summer institute and again at the end of the academic year. Videotapes of all nine teachers presenting inquiry lessons in their own classrooms were evaluated using an observation protocol that measured the teachers' degree of reform teaching. Three of the teachers were chosen for an in-depth case study of their classroom teaching practices. Data collected from each of the case study teachers included videotapes from classroom observations, responses to an inquiry survey, and transcripts from two additional qualitative interviews. Students' responses to their teachers' use of inquiry teaching were also investigated in the case study classrooms. Through their participation in the professional development experience, the teachers gained a deeper understanding of how to implement inquiry practices in their classrooms. The teachers gained confidence and practice with inquiry methods through developing and presenting their institute-developed inquiry lessons, through observing other teachers' lessons, and participating as students in the workshop inquiry activities. Data analysis revealed that the teachers' knowledge of inquiry was necessary but not sufficient for their implementation of inquiry teaching practices. The teachers' conceptions of science, their students, effective teaching practices, and the purpose of education were found to have a direct effect on the type and amount of inquiry instruction performed in the high school classrooms. The research findings suggest that

  6. NGSS-Aligned, K-12 Climate Science Curricula, taught with citizen science and teacher-led inquiry methods

    Science.gov (United States)

    Zainfeld, S.

    2017-12-01

    Teacher-led inquiry into student learning is a promising method of formative assessment to gain insight into student achievement. NGSS-aligned K-12 Climate Science curricula taught with citizen science and teacher-led inquiry methods are described, along with results from a scientist-teacher collaboration survey.

  7. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    Science.gov (United States)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  8. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  9. Experiencing the Implementation of New Inquiry Science Curricula

    Science.gov (United States)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science

  10. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  11. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    Science.gov (United States)

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  12. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    Science.gov (United States)

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  13. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    Science.gov (United States)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-12-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. (Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  14. New science teachers' descriptions of inquiry enactment

    Science.gov (United States)

    Dreon, Oliver, Jr.

    This phenomenological study demonstrates the influence that affective factors have on beginning teachers' ability to enact instructional practices. Through narratives shared in interviews and web log postings, two beginning science teachers' emotional engagement with their instructional practices, especially that of implementing inquiry-based instruction, and the resulting impact these emotions had on professional decision-making were evidenced. Anxiety emerged as the most significant impacting emotion on instructional decision-making with the participants. Through their stories, the two participants describe how their emotions and views of self influence whether they continue using inquiry pedagogy or alter their lesson to adopt more didactic means of instruction. These emotions arise from their feelings of being comfortable teaching the content (self-efficacy), from the unpredictability of inquiry lessons (control beliefs), from how they perceive their students as viewing them (teacher identity) and from various school constraints (agency). This research also demonstrates how intertwined these aspects are, informing each other in a complex, dialectical fashion. The participants' self-efficacy and professional identity emerge from their interactions with the community (their students and colleagues) and the perceived agency afforded by their schools' curricula and administration. By providing descriptions of teachers' experiences enacting inquiry pedagogy, this study expands our understanding of factors that influence teachers' instructional practices and provides a basis for reforming science teacher preparation.

  15. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  16. Analyzing students' attitudes towards science during inquiry-based lessons

    Science.gov (United States)

    Kostenbader, Tracy C.

    Due to the logistics of guided-inquiry lesson, students learn to problem solve and develop critical thinking skills. This mixed-methods study analyzed the students' attitudes towards science during inquiry lessons. My quantitative results from a repeated measures survey showed no significant difference between student attitudes when taught with either structured-inquiry or guided-inquiry lessons. The qualitative results analyzed through a constant-comparative method did show that students generate positive interest, critical thinking and low level stress during guided-inquiry lessons. The qualitative research also gave insight into a teacher's transition to guided-inquiry. This study showed that with my students, their attitudes did not change during this transition according to the qualitative data however, the qualitative data did how high levels of excitement. The results imply that students like guided-inquiry laboratories, even though they require more work, just as much as they like traditional laboratories with less work and less opportunity for creativity.

  17. The impact of technology on the enactment of inquiry in a technology enthusiast's sixth grade science classroom

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2007-01-01

    This study investigated the impact of the use of computer technology on the enactment of inquiry in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several inquiry activities were completed, some of which were supported with the use of technology. Non-participant observation, classroom videotaping, and semi-structured and critical-incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote inquiry in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning-making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching.

  18. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  19. A Template for Open Inquiry: Using Questions to Encourage and Support Inquiry in Earth and Space Science

    Science.gov (United States)

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    This article provides an instructional approach to helping students generate open-inquiry research questions, which the authors call the "open-inquiry question template." This template was created based on their experience teaching high school science and preservice university methods courses. To help teachers implement this template, they…

  20. Inquiry-based science: Preparing human capital for the 21 st century and beyond

    Science.gov (United States)

    Boyd, Yolanda F.

    High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of

  1. Examining Science Teachers' Development of Interdisciplinary Science Inquiry Pedagogical Knowledge and Practices

    Science.gov (United States)

    Chowdhary, Bhawna; Liu, Xiufeng; Yerrick, Randy; Smith, Erica; Grant, Brooke

    2014-12-01

    The current literature relates to how teachers develop knowledge and practice of science inquiry, but little has been reported on how teachers develop interdisciplinary science inquiry (ISI) knowledge and practice. This study examines the effect of university research experiences, ongoing professional development, and in-school support on teachers' development of ISI pedagogical knowledge and practices. It centers on documenting diverse teachers' journeys of experiencing ISI as well as developing knowledge of ISI. It was found that there was variation in ISI understanding and practice among the teachers as a result of the combination of teachers' experiences, beliefs, and participation. Thus, in order to help teachers develop ISI knowledge and pedagogy, barriers to ISI knowledge development and implementation must also be addressed. Professional developers must articulate clear program goals to all stakeholders including an explicit definition of ISI and the ability to recognize ISI attributes during research experiences as well as during classroom implementation. Teachers must also be held accountable for participation and reflection in all aspects of professional development. Program developers must also take into consideration teachers' needs, attitudes, and beliefs toward their students when expecting changes in teachers' cognition and behavior to teach inquiry-rich challenging science.

  2. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  3. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  4. The Effects of Inquiry-Based Integrated Information Literacy Instruction: Four-Year Trends

    Directory of Open Access Journals (Sweden)

    Lin Ching Chen

    2014-07-01

    Full Text Available The purpose of this study was to examine the effects of four-year integrated information literacy instruction via a framework of inquiry-based learning on elementary students’ memory and comprehension. Moderating factors of students’ academic achievement was another focus of this study. The subjects were 72 students who have participated in this study since they entered an elementary school in Chiayi district. This elementary school adopted the integrated information literacy instruction, designed by the researchers and elementary school teachers, and integrated it into various subject matters via a framework of inquiry-based learning, such as Super 3 and Big6 models. A series of inquiry-based integrated information literacy instruction has been implemented since the second semester of the subjects’ first grade. A total of seven inquiry learning projects has been implemented from grade one through grade four. Fourteen instruments were used as pretests and posttests to assess students’ factual recall and conceptual understanding of subject contents in different projects. The results showed that inquiry-based integrated information literacy instruction couldhelp students memorize facts and comprehend concepts of subject contents. Regardless ofacademic achievements, if students would like to devote their efforts to inquiry processes, their memory and comprehension of subject contents improvedeffectively. However, students of low-academic achievement might need more time to be familiar with the inquiry-based learning strategy.

  5. What Is Heat? Inquiry regarding the Science of Heat

    Science.gov (United States)

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  6. A Statewide Partnership for Implementing Inquiry Science

    Science.gov (United States)

    Lytle, Charles

    The North Carolina Infrastructure for Science Education (NC-ISE) is a statewide partnership for implementing standards-based inquiry science using exemplary curriculum materials in the public schools of North Carolina. North Carolina is the 11th most populous state in the USA with 8,000,000 residents, 117 school districts and a geographic area of 48,718 miles. NC-ISE partners include the state education agency, local school systems, three branches of the University of North Carolina, the state mathematics and science education network, businesses, and business groups. The partnership, based upon the Science for All Children model developed by the National Science Resources Centre, was initiated in 1997 for improvement in teaching and learning of science and mathematics. This research-based model has been successfully implemented in several American states during the past decade. Where effectively implemented, the model has led to significant improvements in student interest and student learning. It has also helped reduce the achievement gap between minority and non-minority students and among students from different economic levels. A key program element of the program is an annual Leadership Institute that helps teams of administrators and teachers develop a five-year strategic plan for their local systems. Currently 33 of the117 local school systems have joined the NC-ISE Program and are in various stages of implementation of inquiry science in grades K-8.

  7. Effects of Inquiry-Based Science Instruction on Science Achievement and Interest in Science: Evidence from Qatar

    Science.gov (United States)

    Areepattamannil, Shaljan

    2012-01-01

    The author sought to investigate the effects of inquiry-based science instruction on science achievement and interest in science of 5,120 adolescents from 85 schools in Qatar. Results of hierarchical linear modeling analyses revealed the substantial positive effects of science teaching and learning with a focus on model or applications and…

  8. Observing, recording, and reviewing: Using mobile phones in support of science inquiry

    DEFF Research Database (Denmark)

    Khoo, Elaine; Williams, John; Otrel-Cass, Kathrin

    2012-01-01

    Teaching science can be challenging, particularly if it involves the incorporation of inquiry approaches. Collaboration and co-construction of ideas and understandings requires changing teaching and learning practices to allow students to learn how to collaborate ‘inquiry style’. There is increas......Teaching science can be challenging, particularly if it involves the incorporation of inquiry approaches. Collaboration and co-construction of ideas and understandings requires changing teaching and learning practices to allow students to learn how to collaborate ‘inquiry style...... will be presented. The findings illustrate how student use of mobile phones to video record practical group investigations was valuable in providing multimodal opportunities to expand their critical observational skills to reflect on and talk about science. Student reviewed recordings prompted the pursuit of new......’. There is increasing evidence that the use of mobile learning devices can support inquiry learning by increasing the opportunities for student participation and collaboration in the learning process. This paper reports on the preliminary findings from a New Zealand Teaching and Learning Initiative funded project...

  9. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    Science.gov (United States)

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  10. The Ways to Promote Pre-service Science Teachers’ Pedagogical Content Knowledge for Inquiry in Learning Management in Science Course

    Directory of Open Access Journals (Sweden)

    Siriphan Satthaphon

    2017-09-01

    Full Text Available This classroom action research aimed to study the ways to promote pre-service science teachers’ pedagogical content knowledge for inquiry (PCK for inquiry. The participants were 37 students who enrolled in Learning Management in Science course in academic year 2014. Multiple data sources including students’ lesson plans, reflective journals, teacher’s logs, and worksheets were collected. The inductive approach was used to analyze data. The findings revealed the ways to promote pre-service science teachers’ PCK for inquiry consisted of being teacher’s explicit role model ; providing students to reflect their practices that link between their knowledge and understandings ; reflection from video case ; collaboration between students and teacher in learning activities planning, and allowing students to practice in actual situation could be better influence students not only reflect their understandings but also design, and teach science through inquiry.

  11. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  12. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  13. An Exploration of Elementary Teachers' Beliefs and Perceptions About Science Inquiry: A Mixed Methods Study

    Science.gov (United States)

    Hamadeh, Linda

    In order for science-based inquiry instruction to happen on a large scale in elementary classrooms across the country, evidence must be provided that implementing this reform can be realistic and practical, despite the challenges and obstacles teachers may face. This study sought to examine elementary teachers' knowledge and understanding of, attitudes toward, and overall perceptions of inquiry-based science instruction, and how these beliefs influenced their inquiry practice in the classroom. It offered a description and analysis of the approaches elementary science teachers in Islamic schools reported using to promote inquiry within the context of their science classrooms, and addressed the challenges the participating teachers faced when implementing scientific inquiry strategies in their instruction. The research followed a mixed method approach, best described as a sequential two-strand design (Teddlie & Tashakkori, 2006). Sequential mixed designs develop two methodological strands that occur chronologically, and in the case of this research, QUAN→QUAL. Findings from the study supported the notion that the school and/or classroom environment could be a contextual factor that influenced some teachers' classroom beliefs about the feasibility of implementing science inquiry. Moreover, although teacher beliefs are influential, they are malleable and adaptable and influenced primarily by their own personal direct experiences with inquiry instruction or lack of.

  14. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    Science.gov (United States)

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  15. Career-Oriented Performance Tasks in Chemistry: Effects on Students Integrated Science Process Skills

    OpenAIRE

    Allen A. Espinosa; Sheryl Lyn C. Monterola; Amelia E. Punzalan

    2013-01-01

    The study was conducted to assess the effectiveness of Career-Oriented Performance Task (COPT) approach against the traditional teaching approach (TTA) in enhancing students’ integrated science process skills. Specifically, it sought to find out if students exposed to COPT have higher integrated science process skills than those students exposed to the traditional teaching approach (TTA). Career-Oriented Performance Task (COPT) approach aims to integrate career-oriented examples and inquiry-b...

  16. Student Leadership in Small Group Science Inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-01-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of…

  17. Student leadership in small group science inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  18. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  19. Relationship Between Teacher Inquiry Science Instruction Self-Efficacy and Student Achievement

    Science.gov (United States)

    Hanners, Grace D.

    Standardized test data indicate that student achievement in science is a problem both nationally and locally. At the study site, only a small percentage of fifth-grade students score at the advanced level on the Maryland state science assessment (MSA). In addition, the performance of African American, economically disadvantaged, and special education students is well below that of the general student population. Some studies have shown that teacher self-efficacy affects student achievement. Therefore, the purpose of this study was to explore the relationship between fifth-grade teacher inquiry science instruction self-efficacy scores and the scores of their students on the MSA. Bandura's work on the effect of self-efficacy on human behavior provided the theoretical basis for this study. The research questions examined the relationship between teacher inquiry science instructional self-efficacy scores and students' science MSA scores as well as the relationship by student subgroups. A correlational research design was used. The Teaching Science as Inquiry survey instrument was used to quantify teacher self-efficacy, and archival MSA data were the source for student scores. The study included data from 22 teachers and 1,625 of their students. A 2-tailed Pearson coefficient analysis revealed significant, positive relationships with regard to overall student achievement ( r20 = .724, p < .01) and the achievement of each of the subgroups (African American: r20 = .549, p < .01; economically disadvantaged: r20 = .655, p < .01; and special education: r18 = .532, p < .05). The results of this study present an opportunity for positive social change because the local school system can provide professional development that may increase teacher inquiry science instruction self-efficacy as a possible means to improve overall science achievement and to reduce achievement gaps.

  20. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    Science.gov (United States)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  1. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    Science.gov (United States)

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  2. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    Science.gov (United States)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  3. Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries

    Science.gov (United States)

    Cairns, Dean; Areepattamannil, Shaljan

    2017-06-01

    This study, drawing on data from the third cycle of the Program for International Student Assessment (PISA) and employing three-level hierarchical linear modeling (HLM) as an analytic strategy, examined the relations of inquiry-based science teaching to science achievement and dispositions toward science among 170,474 15-year-old students from 4780 schools in 54 countries across the globe. The results of the HLM analyses, after accounting for student-, school-, and country-level demographic characteristics and students' dispositions toward science, revealed that inquiry-based science teaching was significantly negatively related to science achievement. In contrast, inquiry-based science teaching was significantly positively associated with dispositions toward science, such as interest in and enjoyment of science learning, instrumental and future-oriented science motivation, and science self-concept and self-efficacy. Implications of the findings for policy and practice are discussed.

  4. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  5. Short-Term Research Experiences with Teachers in Earth and Planetary Sciences and a Model for Integrating Research into Classroom Inquiry

    Science.gov (United States)

    Morgan, P.; Bloom, J. W.

    2006-12-01

    For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their

  6. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  7. Inquiry-based science teasching competence of pre-service primary teachers

    NARCIS (Netherlands)

    Alake-Tuenter, E.

    2014-01-01

    In recent years, improving primary science education has received considerable attention. In particular, researchers and policymakers advocate the use of inquiry-based science teaching and learning, believing that pupils learn best through direct personal experience and by incorporating new

  8. A rights-based approach to science literacy using local languages: Contextualising inquiry-based learning in Africa

    Science.gov (United States)

    Babaci-Wilhite, Zehlia

    2017-06-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on perspectives of both dominant and non-dominant cultures with a focus on science literacy as a human right. She first examines key assumptions about knowledge which inform mainstream educational research and practice. She then argues for an emphasis on contextualised learning as a right in education. This means accounting for contextualised knowledge and resisting the current trend towards de-contextualisation of curricula. This trend is reflected in Zanzibar's recent curriculum reform, in which English replaced Kiswahili as the language of instruction (LOI) in the last two years of primary school. The author's own research during the initial stage of the change (2010-2015) revealed that the effect has in fact proven to be counterproductive, with educational quality deteriorating further rather than improving. Arguing that language is essential to inquiry-based learning, she introduces a new didactic model which integrates alternative assumptions about the value of local knowledge and local languages in the teaching and learning of science subjects. In practical terms, the model is designed to address key science concepts through multiple modalities - "do it, say it, read it, write it" - a "hands-on" experiential combination which, she posits, may form a new platform for innovation based on a unique mix of local and global knowledge, and facilitate genuine science literacy. She provides examples from cutting-edge educational research and practice that illustrate this new model of teaching and learning science. This model has the potential to improve learning while supporting local languages and culture, giving local languages their

  9. Community and inquiry: journey of a science teacher

    Science.gov (United States)

    Goldberg, Jennifer; Welsh, Kate Muir

    2009-09-01

    In this case study, we examine a teacher's journey, including reflections on teaching science, everyday classroom interaction, and their intertwined relationship. The teacher's reflections include an awareness of being "a White middle-class born and raised teacher teaching other peoples' children." This awareness was enacted in the science classroom and emerges through approaches to inquiry . Our interest in Ms. Cook's journey grew out of discussions, including both informal and semi-structured interviews, in two research projects over a three-year period. Our interest was further piqued as we analyzed videotaped classroom interaction during science lessons and discovered connections between Ms. Cook's reflections and classroom interaction. In this article, we illustrate ways that her journey emerges as a conscientization. This, at least in part, shapes classroom interaction, which then again shapes her conscientization in a recursive, dynamic relationship. We examine her reflections on her "hegemonic (cultural and socio-economic) practices" and consider how these reflections help her reconsider such practices through analysis of classroom interaction. Analyses lead us to considering the importance of inquiry within this classroom community.

  10. Guided Science Inquiry Instruction with Students with Special Education Needs. R2Ed Working Paper 2015-1

    Science.gov (United States)

    White, Andrew S.; Kunz, Gina M.; Whitham, Rebekah; Houston, Jim; Nugent, Gwen

    2015-01-01

    National and state educational mandates require students achieve proficiency in not only science content, but also "science inquiry", or those process skills associated with science (National Research Council, 2011; Next Generation Science Standards, 2013). Science inquiry instruction has been shown to improve student achievement and…

  11. Science Faculty Belief Systems in a Professional Development Program: Inquiry in College Laboratories

    Science.gov (United States)

    Hutchins, Kristen L.; Friedrichsen, Patricia J.

    2012-12-01

    The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching laboratories. Data sources for this qualitative study included three semi-structured interviews, observations during the program and during faculty members' implementation in their courses, and a researcher's journal. In the first phase of data analysis, we created profiles for each of the four participants. Next, we developed assertions, and tested for confirming and disconfirming evidence across the profiles. The assertions indicated that, through the professional development program, participants' knowledge and beliefs about inquiry-based teaching shifted, placing more value on student-directed learning and classroom inquiry. Participants who were internally motivated to participate and held incoming positive attitudes toward the mini-journal inquiry-based approach were more likely to incorporate the approach in their future practice. Students' responses played a critical role in participants' belief systems and their decision to continue using the inquiry-based format. The findings from this study have implications for professional development design.

  12. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    Science.gov (United States)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  13. THE EFFECT MODEL INQUIRY TRAINING MEDIA AND LOGICAL THINKING ABILITY TO STUDENT’S SCIENCE PROCESS SKILL

    Directory of Open Access Journals (Sweden)

    Dahrim Pohan

    2017-06-01

    Full Text Available The aim of the research is to analyz : student’s science process skill using inquiry training learning model is better than konvesional learning.Student’s science process skill who have logical thinking ability above average are better than under average,and the interaction between inquiry training media and logical thinking ability to increase student’s science process skill.The experiment was conducted in SMP 6 Medan as population and class VII-K and VII-J were chosen as sample through cluster random sampling.Science prosess skill used essay test and logical thinking used multiple choice as instrument.Result of the data was analyzed by using two ways ANAVA.Result show that : student’s science process skill using inquiry training learning model is better than konvesional learning,student’s science process skill who logical thinking ability above average are better than under average and the interaction between inquiry training learning model media and logical thinking ability to increase student’s science process skill.

  14. Supporting students' knowledge integration with technology-enhanced inquiry curricula

    Science.gov (United States)

    Chiu, Jennifer Lopseen

    Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry instruction can help students develop robust and durable chemistry knowledge. Using the knowledge integration perspective, I designed Chemical Reactions, a technology-enhanced curriculum unit, with a partnership of teachers, educational researchers, and chemists. This unit guides students in an exploration of how energy and chemical reactions relate to climate change. It uses powerful dynamic visualizations to connect atomic level interactions to the accumulation of greenhouse gases. The series of studies were conducted in typical classrooms in eleven high schools across the country. This dissertation describes four studies that contribute to understanding of how visualizations can be used to transform chemistry learning. The efficacy study investigated the impact of the Chemical Reactions unit compared to traditional instruction using pre-, post- and delayed posttest assessments. The self-monitoring study used self-ratings in combination with embedded assessments to explore how explanation prompts help students learn from dynamic visualizations. The self-regulation study used log files of students' interactions with the learning environment to investigate how external feedback and explanation prompts influence students' exploration of dynamic visualizations. The explanation study compared specific and general explanation prompts to explore the processes by which explanations benefit learning with dynamic visualizations. These studies delineate the conditions under which dynamic visualizations embedded in inquiry instruction can enhance student outcomes. The studies reveal that visualizations can be deceptively clear

  15. Impact of problem finding on the quality of authentic open inquiry science research projects

    Science.gov (United States)

    Labanca, Frank

    2008-11-01

    Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.

  16. Science Teacher Educators’ Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Directory of Open Access Journals (Sweden)

    William J. FRASER

    2017-10-01

    Full Text Available This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS, and by the Nature of Scientific Inquiry (NOSI. Furthermore, science educators’ own PCK, and the limitations of a predominantly paper-based distance education (DE model of delivery are challenges that they have to face when introducing PCK and authentic inquiry-based learning experiences. It deprives them and their students from optimal engagement in a science-oriented community of practice, and leaves little opportunity to establish flourishing communities of inquiry. This study carried out a contextual analysis of the tutorial material to assess the PCK that the student teachers had been exposed to. This comprised the ideas of a community of inquiry, a community of science, the conceptualization of PCK, scientific inquiry, and the 5E Instructional Model of the Biological Sciences Curriculum Study. The analysis confirmed that the lecturers had a good understanding of NOS, NOSI and science process skills, but found it difficult to design interventions to optimize the PCK development of students through communities of inquiry. Paper-based tutorials are ideal to share theory, policies and practices, but fail to monitor the engagement of learners in communities of inquiry. The article concludes with a number of suggestions to address the apparent lack of impact power of the paper-based mode of delivery, specifically in relation to inquiry-based teaching and learning (IBTL.

  17. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey Through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-04-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.

  18. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related

  19. Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy

    Science.gov (United States)

    Lee, Eun Ah; Brown, Matthew J.

    2018-03-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  20. Connecting Inquiry and Values in Science Education - An Approach Based on John Dewey's Philosophy

    Science.gov (United States)

    Lee, Eun Ah; Brown, Matthew J.

    2018-01-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  1. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    Science.gov (United States)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  2. A Comparative Analysis of Earth Science Curriculum Using Inquiry Methodology between Korean and the U.S. Textbooks

    Science.gov (United States)

    Park, Mira; Park, Do-Yong; Lee, Robert E.

    2009-01-01

    The purpose of this study is to investigate in what ways the inquiry task of teaching and learning in earth science textbooks reflect the unique characteristics of earth science inquiry methodology, and how it provides students with opportunities to develop their scientific reasoning skills. This study analyzes a number of inquiry activities in…

  3. Effects of gender and role selection in cooperative learning groups on science inquiry achievement

    Science.gov (United States)

    Affhalter, Maria Geralyn

    An action research project using science inquiry labs and cooperative learning groups examined the effects of same-gender and co-educational classrooms on science achievement and teacher-assigned or self-selected group roles on students' role preferences. Fifty-nine seventh grade students from a small rural school district participated in two inquiry labs in co-educational classrooms or in an all-female classroom, as determined by parents at the beginning of the academic year. Students were assigned to the same cooperative groups for the duration of the study. Pretests and posttests were administered for each inquiry-based science lab. Posttest assessments included questions for student reflection on role assignment and role preference. Instruction did not vary and a female science teacher taught all class sections. The same-gender classroom and co-ed classrooms produced similar science achievement scores on posttests. Students' cooperative group roles, whether teacher-assigned or self-selected, produced similar science achievement scores on posttests. Male and female students shared equally in favorable and unfavorable reactions to their group roles during the science inquiry labs. Reflections on the selection of the leader role revealed a need for females in co-ed groups to be "in charge". When reflecting on her favorite role of leader, one female student in a co-ed group stated, "I like to have people actually listen to me".

  4. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    Science.gov (United States)

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  5. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  6. Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities

    Science.gov (United States)

    Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn

    2012-01-01

    The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…

  7. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    Science.gov (United States)

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.

  8. Designing an Earthquake-Proof Art Museum: An Arts- and Engineering-Integrated Science Lesson

    Science.gov (United States)

    Carignan, Anastasia; Hussain, Mahjabeen

    2016-01-01

    In this practical arts-integrated science and engineering lesson, an inquiry-based approach was adopted to teach a class of fourth graders in a Midwest elementary school about the scientific concepts of plate tectonics and earthquakes. Lessons were prepared following the 5 E instructional model. Next Generation Science Standards (4-ESS3-2) and the…

  9. What Kills Science in School?: Lessons from Pre-Service Teachers' Responses to Urban children's Science Inquiries.

    Science.gov (United States)

    Matusov, Eugene

    2018-06-01

    This opportunistic case-study highlights striking differences in 6 urban children's and 12 preservice suburban middle-class teachers' perception of science and discuss consequences of science education and beyond. I found that all of the interviewed urban children demonstrated scientific inquiries and interests outside of the school science education that can be characterized by diverse simultaneous discourses from diverse practices, i.e., "heterodiscoursia" (Matusov in Culture & Psychology, 17(1), 99-119, 2011b), despite their diverse, positive and negative, attitudes toward school science. In contrast to the urban children's mixed attitudes to science, the preservice teachers view science negatively. They could not see science inquiries in the videotaped interviews of the urban children. There seemed to be many reasons for that. One of the possible reasons for that was that the preservice teachers tried to purify the science practice. Another reason was that they did not see a necessity to be interested and engaged in the curriculum that they are going to teach in future. The pedagogical consequences and remedies are discussed.

  10. The Failure of Inquiry: Preparing Science Teachers with an Authentic Investigation

    Science.gov (United States)

    Lustick, David

    2009-12-01

    This mixed methodology action research study examined the impact of a curricular innovation designed to provide an authentic science inquiry learning experience for 15 secondary science teacher candidates enrolled in a master’s level initial certification program. The class investigated the question “How can peak autumn color in New England be determined?” The project goals were to help teacher candidates acquire the skills, knowledge, and dispositions necessary to foster learning through inquiry in their respective content areas as defined by teacher preparation professional standards. Though the teacher candidates were successful at identifying a likely answer to the question, the project failed to achieve its learning goals. Reasons for the project’s failure and implications for the science education community are discussed.

  11. The Spectrum of Pedagogical Orientations of Malawian and South African Physical Science Teachers towards Inquiry

    Science.gov (United States)

    Ramnarain, Umesh; Nampota, Dorothy; Schuster, David

    2016-01-01

    This study investigated and compared the pedagogical orientations of physical sciences teachers in Malawi and South Africa towards inquiry or direct methods of science teaching. Pedagogical orientation has been theorized as a component of pedagogical content knowledge. Orientations were characterized along a spectrum of two variants of inquiry and…

  12. Characteristics of Abductive Inquiry in Earth Science: An Undergraduate Case Study

    Science.gov (United States)

    Oh, Phil Seok

    2011-01-01

    The goal of this case study was to describe characteristic features of abductive inquiry learning activities in the domain of earth science. Participants were undergraduate junior and senior students who were enrolled in an earth science education course offered for preservice secondary science teachers at a university in Korea. The undergraduate…

  13. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    OpenAIRE

    Hilman .

    2015-01-01

    Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on...

  14. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    Science.gov (United States)

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  15. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    Science.gov (United States)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  16. Teachers' Language on Scientific Inquiry: Methods of teaching or methods of inquiry?

    Science.gov (United States)

    Gyllenpalm, Jakob; Wickman, Per-Olof; Holmgren, Sven-Olof

    2010-06-01

    With a focus on the use of language related to scientific inquiry, this paper explores how 12 secondary school science teachers describe instances of students' practical work in their science classes. The purpose of the study was to shed light on the culture and traditions of secondary school science teaching related to inquiry as expressed in the use of language. Data consisted of semi-structured interviews about actual inquiry units used by the teachers. These were used to situate the discussion of their teaching in a real context. The theoretical background is socio-cultural and pragmatist views on the role of language in science learning. The analysis focuses on two concepts of scientific inquiry: hypothesis and experiment. It is shown that the teachers tend to use these terms with a pedagogical function thus conflating methods of teaching with methods of inquiry as part of an emphasis on teaching the children the correct explanation. The teachers did not prioritise an understanding of scientific inquiry as a knowledge goal. It discusses how learners' possibilities to learn about the characteristics of scientific inquiry and the nature of science are affected by an unreflective use of everyday discourse.

  17. The influence inquiry-based science has on elementary teachers' perception of instruction and self-efficacy

    Science.gov (United States)

    Lewis, Felecia J.

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.

  18. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  19. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  20. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  1. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  2. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  3. An inquiry approach to science and language teaching

    Science.gov (United States)

    Rodriguez, Imelda; Bethel, Lowell J.

    The purpose of this study was to determine the effectiveness of an inquiry approach to science and language teaching to further develop classification and oral communication skills of bilingual Mexican American third graders. A random sample consisting of 64 subjects was selected for experimental and control groups from a population of 120 bilingual Mexican American third graders. The Solomon Four-Group experimental design was employed. Pre- and posttesting was performed by use of the Goldstein-Sheerer Object Sorting Test, (GSOST) and the Test of Oral Communication Skills, (TOCS). The experimental group participated in a sequential series of science lessons which required manipulation of objects, exploration, peer interaction, and teacher-pupil interaction. The children made observations and comparisons of familiar objects and then grouped them on the basis of perceived and inferred attributes. Children worked individually and in small groups. Analysis of variance procedures was used on the posttest scores to determine if there was a significant improvement in classification and oral communication skills in the experimental group. The results on the posttest scores indicated a significant improvement at the 0.01 level for the experimental group in both classification and oral communication skills. It was concluded that participation in the science inquiry lessons facilitated the development of classification and oral communication skills of bilingual children.

  4. The Impact of Instructor Grouping Strategies on Student Efficacy in Inquiry Science Labs: A Phenomenological Case Study of Grouping Perceptions and Strategies

    Science.gov (United States)

    Miller, Nathaniel J.

    2015-01-01

    Abundant educational research has integrated Albert Bandura's concepts of self-efficacy and collective efficacy within educational settings. In this phenomenological case study, the investigation sought to capture the manifestation of self-efficacy and collective efficacy within inquiry-based science laboratory courses. Qualitative data was…

  5. Preservice Teachers' Reconciliation of an Epistemological Issue in an Integrated Mathematics/Science Methods Course

    Science.gov (United States)

    Cormas, Peter C.

    2017-01-01

    Preservice teachers in six sections (n = 87) of a sequenced, methodological and process-integrated elementary mathematics/science methods course were able to reconcile an issue centered on a similar area of epistemology. Preservice teachers participated in a science inquiry lesson on biological classification and a mathematics problem-solving…

  6. Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction

    Science.gov (United States)

    Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter

    2016-01-01

    To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…

  7. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    Science.gov (United States)

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  8. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    Science.gov (United States)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  9. From Log Files to Assessment Metrics: Measuring Students' Science Inquiry Skills Using Educational Data Mining

    Science.gov (United States)

    Gobert, Janice D.; Sao Pedro, Michael; Raziuddin, Juelaila; Baker, Ryan S.

    2013-01-01

    We present a method for assessing science inquiry performance, specifically for the inquiry skill of designing and conducting experiments, using educational data mining on students' log data from online microworlds in the Inq-ITS system (Inquiry Intelligent Tutoring System; www.inq-its.org). In our approach, we use a 2-step process: First we use…

  10. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    Science.gov (United States)

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  11. Being in the Hot Spot: A Phenomenological Study of Two Beginning Teachers' Experiences Enacting Inquiry Science Pedagogy

    Science.gov (United States)

    Dreon, Oliver; McDonald, Scott

    2012-01-01

    This phenomenological study demonstrates the influence that affective factors have on beginning teachers' ability to enact inquiry science pedagogy. Through narratives shared in interviews and weblog postings, two beginning science teachers' emotional engagement with their teaching practices, especially that of implementing inquiry-based…

  12. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  13. Inquiry-based Science Education Competence of Primary School Teachers: A Delphi Study

    NARCIS (Netherlands)

    Alake-Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Mulder, M.

    2013-01-01

    Earlier, extracted inquiry-based science teaching competency elements and domains from the international literature were compared to the United States' National Science Teaching Standards. The present Delphi study aimed to validate the findings for the Netherlands, where such standards are lacking.

  14. Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation

    Science.gov (United States)

    Scanlon, Eileen

    2012-01-01

    This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…

  15. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    Science.gov (United States)

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  16. THE EFFECTS OF INQUIRY TRAINING ASSIST MEDIA OF HANDOUT AND ATTITUDE SCIENTIFIC TOWARDS SCIENCE PROCESS SKILLS IN PHYSICS STUDENTS

    Directory of Open Access Journals (Sweden)

    Halimatus Sakdiah

    2014-12-01

    Full Text Available The purpose of this research has described difference: (1 skill of student science process between inquiry training assist media of handout and direct instruction, (2 skill of student science process between student possess attitude scientific upon and under of mean, and (3 interaction of inquiry training assist media handout and direct instruction with attitude scientific increase skill of student science process. Type of this research is experiment quasi, use student of senior high school Private sector of  Prayatna as population and chosen sample by cluster sampling random. The instrument used essay test base on skill of science process which have valid and reliable. Data be analysed by using ANAVA two ways. Result of research show that any difference of skill of student science process (1 between inquiry training assist media of handout and direct instruction, where inquiry training assist media of handout better then direct instruction, (2 between student possess attitude scientific upon and under of mean, where possess attitude scientific upon of mean better then student possess attitude scientific under of mean and (3 any interaction between inquiry training assist media of handout and direct instruction with attitude scientific increase skill of student science process, where interaction in class direct instruction better then inquiry training assist media of handout.

  17. Differential Performance by English Language Learners on an Inquiry-Based Science Assessment

    Science.gov (United States)

    Turkan, Sultan; Liu, Ou Lydia

    2012-10-01

    The performance of English language learners (ELLs) has been a concern given the rapidly changing demographics in US K-12 education. This study aimed to examine whether students' English language status has an impact on their inquiry science performance. Differential item functioning (DIF) analysis was conducted with regard to ELL status on an inquiry-based science assessment, using a multifaceted Rasch DIF model. A total of 1,396 seventh- and eighth-grade students took the science test, including 313 ELL students. The results showed that, overall, non-ELLs significantly outperformed ELLs. Of the four items that showed DIF, three favored non-ELLs while one favored ELLs. The item that favored ELLs provided a graphic representation of a science concept within a family context. There is some evidence that constructed-response items may help ELLs articulate scientific reasoning using their own words. Assessment developers and teachers should pay attention to the possible interaction between linguistic challenges and science content when designing assessment for and providing instruction to ELLs.

  18. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  19. Authentic school science knowing and learning in open-inquiry science laboratories

    CERN Document Server

    Roth, Wolff-Michael

    1995-01-01

    According to John Dewey, Seymour Papert, Donald Schon, and Allan Collins, school activities, to be authentic, need to share key features with those worlds about which they teach. This book documents learning and teaching in open-inquiry learning environments, designed with the precepts of these educational thinkers in mind. The book is thus a first-hand report of knowing and learning by individuals and groups in complex open-inquiry learning environments in science. As such, it contributes to the emerging literature in this field. Secondly, it exemplifies research methods for studying such complex learning environments. The reader is thus encouraged not only to take the research findings as such, but to reflect on the process of arriving at these findings. Finally, the book is also an example of knowledge constructed by a teacher-researcher, and thus a model for teacher-researcher activity.

  20. The Effect of Serious Video Game Play on Science Inquiry Scores

    Science.gov (United States)

    Hilosky, Alexandra Borzillo

    American students are not developing the science inquiry skills needed to solve complex 21st century problems, thus impacting the workforce. In 2009, American high school students ranked 21 out of 26 in the category of problem-solving according to the Program for International Student Assessment. Serious video games have powerful epistemic value and are beneficial with respect to enhancing inquiry, effective problem-solving. The purpose of this correlational, quantitative study was to test Gee's assumption regarding the cycle of thinking (routinization, automatization, and deroutinization) by determining whether players status was a significant predictor of science inquiry scores, controlling for age, gender, and major. The 156 non-random volunteers who participated in this study were enrolled in a 2-year college in the northeastern U.S. Multiple regression analyses revealed that major was the strongest overall (significant) predictor, b = -.84, t(149) = -3.70, p video game play. Recommendations include using serious games as instructional tools and to assess student learning (formative and summative), especially among non-traditional learners.

  1. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    Directory of Open Access Journals (Sweden)

    Hilman .

    2015-04-01

    Full Text Available Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on science process skills and cognitive learning outcomes. This experimental quasi studey used pretest-posttest control group design and consisted eighth grade students of SMP Negeri 1 Papalang Mamuju of West Sulawesi. The results showed there where significant positive effect of guided inquiry learning with mind map on process science skills and cognitive learning outcomes. Key Words: guided inquiry, mind map, science process skills, cognitive learning outcomes   Abstrak: Pembelajaran Ilmu Pengetahuan Alam (IPA di SMP bertujuan agar siswa dapat melakukan inkuiri ilmiah, meningkatkan pengetahuan, konsep, dan keterampilan IPA. Dalam pembelajaran, organisasi materi berperan penting dalam memudahkan anak belajar sehingga perlu ditelaah teknik yang memudahkan siswa membuat organisasi materi. Penelitian ini bertujuan mengetahui pengaruh pembelajaran inkuiri terbimbing dengan mind map terhadap keterampilan proses sains dan hasil belajar kognitif. Penelitian kuasi eksperimen ini menggunakan rancangan pre test-post test control group design dengan subjek penelitian siswa kelas VIII SMP Negeri 1 Papalang. Hasil penelitian menunjukkan ada pengaruh positif yang signifikan pembelajaran inkuiri terbimbing dengan mind map terhadap kemampuan keterampilan proses sains dan hasil belajar kognitif siswa. Kata kunci:  inkuiri terbimbing, mind map, keterampilan proses sains,  hasil belajar kognitif

  2. Relationship between teacher preparedness and inquiry-based instructional practices to students' science achievement: Evidence from TIMSS 2007

    Science.gov (United States)

    Martin, Lynn A.

    The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.

  3. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  4. Deepening Inquiry: What Processes of Making Music Can Teach Us about Creativity and Ontology for Inquiry Based Science Education

    Science.gov (United States)

    Gershon, Walter S.; Oded, Ben-Horin

    2014-01-01

    Drawing from their respective work at the intersection of music and science, the coauthors argue that engaging in processes of making music can help students more deeply engage in the kinds of creativity associated with inquiry based science education (IBSE) and scientists better convey their ideas to others. Of equal importance, the processes of…

  5. The Integration of the Big6 Information Literacy and Reading Strategies Instruction in a Fourth Grade Inquiry-Based Learning Course, “Our Aquarium”

    Directory of Open Access Journals (Sweden)

    Lin Ching Chen

    2013-06-01

    Full Text Available This study investigated the student performance in an inquiry learning course which integrated information literacy and reading strategies in a fourth-grade science class. The curriculum design was based on the Big6 model, which includes the stages of task definition, information seeking strategies, location & access, use of information, synthesis, and evaluation. The study duration was one semester. The data was gathered through participant observations, interviews, surveys, tests, and from documents generated in the course implementation. The results showed that the integration of information literacy and reading strategies instruction was feasible. The students performed well in information seeking strategies, locating & accessing information, using and synthesizing information. In contrast, their abilities in task definition and evaluation needed further improvement. Also, while the students did acquire various reading strategies during the inquiry process, they needed more exercises to internalize the skills. The performance on the acquisition of subject knowledge was also improved through the inquiry learning. The participating instructors considered that the collaboration between teachers of different subject matters was the key to a successful integrated instruction [Article content in Chinese

  6. Science Teacher Attitudes toward Inquiry-Based Teaching and Learning

    Science.gov (United States)

    DiBiase, Warren; McDonald, Judith R.

    2015-01-01

    The purpose of this study was to determine teachers' attitudes, values, and beliefs about inquiry. The participants of this study were 275 middle grade and secondary science teachers from four districts in North Carolina. Issues such as class size, accountability, curricular demands, and administrative support are perceived as constraints,…

  7. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  8. Knowing Inquiry as Practice and Theory: Developing a Pedagogical Framework with Elementary School Teachers

    Science.gov (United States)

    Poon, Chew-Leng; Lee, Yew-Jin; Tan, Aik-Ling; Lim, Shirley S. L.

    2012-04-01

    In this paper, we characterize the inquiry practices of four elementary school teachers by means of a pedagogical framework. Our study revealed core components of inquiry found in theoretically-driven models as well as practices that were regarded as integral to the success of day-to-day science teaching in Singapore. This approach towards describing actual science inquiry practices—a surprisingly neglected area—uncovered nuances in teacher instructions that can impact inquiry-based lessons as well as contribute to a practice-oriented perspective of science teaching. In particular, we found that these teachers attached importance to (a) preparing students for investigations, both cognitively and procedurally; (b) iterating pedagogical components where helping students understand and construct concepts did not follow a planned linear path but involved continuous monitoring of learning; and (c) synthesizing concepts in a consolidation phase. Our findings underscore the dialectical relationship between practice-oriented knowledge and theoretical conceptions of teaching/learning thereby helping educators better appreciate how teachers adapt inquiry science for different contexts.

  9. An Investigation of Turkish Middle School Science Teachers' Pedagogical Orientations Towards Direct and Inquiry Instructional Approaches

    Science.gov (United States)

    Sahingoz, Selcuk

    One of the most important goals of science education is preparing effective science teachers which includes the development of a science pedagogical orientation. Helping in-service science teachers improve their orientations toward science teaching begins with identifying their current orientations. While there are many aspects of an effective science teaching orientation, this study specifically focuses on effective pedagogy. The interest of this study is to clarify pedagogical orientations of middle school science teachers in Turkey toward the teaching of science conceptual knowledge. It focuses on what instructional preferences Turkish middle school science teachers have in theory and practice. The purpose of this study is twofold: 1) to elucidate teacher pedagogical profiles toward direct and inquiry instructional approaches. For this purpose, quantitative profile data, using a Turkish version of the Pedagogy of Science Teaching Test (POSTT-TR) assessment instrument, was collected from 533 Turkish middle school science teachers; 2) to identify teaching orientations of middle school science teachers and to identify their reasons for preferring specific instructional practices. For this purpose, descriptive qualitative, interview data was collected from 23 teachers attending a middle school science teacher workshop in addition to quantitative data using the POSTT-TR. These teachers sat for interviews structured by items from the POSTT-TR. Thus, the research design is mixed-method. The design provides a background profile on teacher orientations along with insights on reasons for pedagogical choices. The findings indicate that instructional preference distributions for the large group and smaller group are similar; however, the smaller workshop group is more in favor of inquiry instructional approaches. The findings also indicate that Turkish middle school science teachers appear to have variety of teaching orientations and they have varied reasons. Moreover, the

  10. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    OpenAIRE

    C. Sousa

    2016-01-01

    [EN] The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science.The hands-on and minds-on activities p...

  11. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    Science.gov (United States)

    Avraamidou, Lucy

    2017-06-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia's beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia's beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.

  12. THE EFFECT OF INQUIRY TRAINING MODEL USE THE MEDIA PHET AGAINST SCIENCE PROCESS SKILLS AND LOGICAL THINKING SKILLS STUDENTS

    Directory of Open Access Journals (Sweden)

    Fajrul Wahdi Ginting

    2015-12-01

    Full Text Available The Purpose of The study: science process skills and logical thinking ability of students who use inquiry learning model training using PhET media; science process skills and logical thinking ability of students who use conventional learning model; and the difference science process skills and logical thinking ability of students to use learning model Inquiry Training using PhET media and conventional learning models. This research is a quasi experimental. Sample selection is done by cluster random sampling are two classes of classes VIII-E and class VIII-B, where the class VIII-E is taught by inquiry training model using media PhET and VIII-B with conventional learning model. The instrument used consisted of tests science process skills such as essay tests and tests of the ability to think logically in the form of multiple-choice tests. The data were analyzed using t test. The results showed that physics science process skills use Inquiry Training models using PhET media is different and showed better results compared with conventional learning model, and logical thinking skills students use Inquiry Training model using PhET media is different and show better results compared with conventional learning, and there is a difference between the ability to think logically and science process skills of students who use Inquiry Training model using PhET media and conventional learning models.

  13. Fostering Science Club: Creating a Welcoming Extra-Curricular Science Inquiry Space for ALL Learners that Seeks to Close the Science Experience Gap in a Predominantly Minority Urban Community

    Science.gov (United States)

    Mayfield, K. K.

    2017-12-01

    BackgroundTo minority adolescents in urban centers science inquiry seems like an engagement completed by others with specialized skills (Alkon & Agyeman, 2012). When scientists teach science classes those spaces and pedagogy are underwritten by the science teachers' beliefs about how science happens (Southerland, Gess-Newsome & Johnston, 2002). Further, scientific inquiry is often presented as the realm of upperclass whiteness (Alkon & Agyeman, 2012; Mayfield, 2014). When science educators talk about the achievement gaps between raced and classed learners, accompanying that gap is also a gap in science experience. My high school students in a postindustrial school district: attend a school under state takeover (the lowest 5/5 rating (MA Executive Office of Education, 2017)); have a student body that is 70% Latinx; and 96% of whom receive Free and Reduced Lunch (a Federal marker of a family below the poverty line). Annual Yearly Progress is a goal set by state and federal governments for school populations by race, ability, and language. In 2016, the site has failed to make its goals for special education, black, hispanic, white, and English as a Second Language populations. As a high poverty district there is a paucity of extracurricular science experiences. This lack of science extensions make closing standardized test gaps difficult. Geoscience Skills & FindingsThis after school program does not replicate deficit narratives that keep certain bodies of students away from science inquiry (Mayfield, 2015; Ogbu, 1987). Instead, Science Club uses an array of student-centered science (physics, math, arts, chemistry, biology) projects to help students see themselves as citizen scientists who lead explorations of their world. We meet 1.5 hours a week in a 30 week school year. Science club helps students feel like powerful and capable science inquirers with 80% girls in attendance, and uses science experiments to cultivate essential inquiry skills like: Observation

  14. Epistemology, development, and integrity in a science education professional development program

    Science.gov (United States)

    Hancock, Elizabeth St. Petery

    This research involved interpretive inquiry to understand changes in the notion of "self" as expressed by teachers recently enrolled as graduate students in an advanced degree program in science education at Florida State University. Teachers work in a context that integrates behavior, social structure, culture, and intention. Within this context, this study focused on the intentional realm that involves interior understandings, including self-epistemology, professional self-identity, and integrity. Scholarship in adult and teacher development, especially ways of knowing theory, guided my efforts to understand change in these notions of self. The five participants in this study were interviewed in depth to explore their "self"-related understandings in detail. The other primary data sources were portfolios and work the participants submitted as part of the program. Guided by a constructivist methodology, I used narrative inquiry and grounded theory to conduct data analysis. As learners and teachers, these individuals drew upon epistemological orientations emphasizing a procedural orientation to knowledge. They experienced varying degrees of interior and exterior development in self and epistemology. They created integrity in their efforts to align their intentions with their actions with a dynamic relationship to context. This study suggests that professional development experiences in science education include consideration of the personal and the professional, recognize and honor differing perspectives, facilitate development, and assist individuals to recognize and articulate their integrity.

  15. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    Science.gov (United States)

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  16. The opportunities and challenges of guided inquiry science for students with special needs

    Science.gov (United States)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  17. Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed from Philosophy of Science

    Science.gov (United States)

    Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie

    2008-01-01

    Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…

  18. Foundations for Science of Information: Reflection on the Method of Inquiry

    Directory of Open Access Journals (Sweden)

    Marcin J. Schroeder

    2011-10-01

    Full Text Available The paper considers necessary conditions for establishing information science as a scientific autonomous disci- pline. The lack of a commonly accepted definition of information is not as threatening as it may seem, as each study within the discipline may choose an own definition, as well as an own philosophical framework, when there are some alternatives to choose between. More important is the development of a common methodology of inquiry and some range of standard questions regarding the concept of information. Also, it is important to develop some standards of inquiry, which would make information scientific studies accessible to philosophical analysis and reflection. In turn, contributions of information science to the resolution of problems identified within philosophy will give the best measure of maturity for information sci- ence as a discipline.

  19. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    Science.gov (United States)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  20. A mixed-age science collaborative between elementary and high school physics students: A study of attitude toward school science and inquiry skill

    Science.gov (United States)

    Blain, Mary Perron

    Grade three students had significant improvements in inquiry ability and attitude toward school science as a function of their participation in mixed-age dyads completing inquiry-based science experiments with a high school physics partner. The social interaction between the 'more capable other' (Vygotsky, 1978) with the grade three student in the mixed-age problem solving team indicates a contributing factor in this improvement. This study employed a quasi-experimental design with intact groups of non-random assignment. The non-parametric Wilcoxon test (p = 0.025) was used to analyze scores for each academic achievement group for significant differences pre- and post-collaborative in "Inquiry" skill and "Attitude" toward school science scores. Three grade three classrooms from one elementary school and one high school physics class from the same school district were involved in the study. The high school physics class teamed with one intact grade three class as the mixed-age dyad performing the "hands-on" experiments (treatment). The two grade three classes teamed as same-age peer dyads (comparison group) to perform the same experiments on the same day. Using methods patterned after the way scientists investigate their world, the dyads performed experiments considered for future grade three national assessments (NAEP, 1994), i.e. "Which paper towel holds the most water?"; "Which magnet is stronger?"; "Which type of sugar, cubed or loose, dissolves best in warm water?" Trained raters scored the written lab reports using standardized scoring guides and characteristic benchmark responses to determine the "Inquiry" skill score for each subject. The "Attitude" toward school science score for each subject was determined from the Likert scale survey, Individual and Group Attitudes Toward Science and the open-ended Sentence Completion Test (SCT) (Piburn & Sidlick, 1992). Three raters scored the SCT survey for each subject. This study showed that for a grade three student

  1. The Impact of a Professional Development Model on Middle School Science Teachers' Efficacy and Implementation of Inquiry

    Science.gov (United States)

    Lotter, Christine; Smiley, Whitney; Thompson, Stephen; Dickenson, Tammiee

    2016-01-01

    This study investigated a professional development model designed to improve teachers' inquiry teaching efficacy as well as the quality of their inquiry instruction through engaging teachers in practice-teaching and reflection sessions. The programme began with a two-week summer Institute focused on both inquiry pedagogy and science content and…

  2. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  3. Effects of explicit instruction on the acquisition of students' science inquiry skills in grades 5 and 6 of primary education

    Science.gov (United States)

    Kruit, P. M.; Oostdam, R. J.; van den Berg, E.; Schuitema, J. A.

    2018-03-01

    In most primary science classes, students are taught science inquiry skills by way of learning by doing. Research shows that explicit instruction may be more effective. The aim of this study was to investigate the effects of explicit instruction on the acquisition of inquiry skills. Participants included 705 Dutch fifth and sixth graders. Students in an explicit instruction condition received an eight-week intervention of explicit instruction on inquiry skills. In the lessons of the implicit condition, all aspects of explicit instruction were absent. Students in the baseline condition followed their regular science curriculum. In a quasi-experimental pre-test-post-test design, two paper-and-pencil tests and three performance assessments were used to examine the acquisition and transfer of inquiry skills. Additionally, questionnaires were used to measure metacognitive skills. The results of a multilevel analysis controlling for pre-tests, general cognitive ability, age, gender and grade level indicated that explicit instruction facilitates the acquisition of science inquiry skills. Specifically on the performance assessment with an unfamiliar topic, students in the explicit condition outperformed students of both the implicit and baseline condition. Therefore, this study provides a strong argument for including an explicit teaching method for developing inquiry skills in primary science education.

  4. Student's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

    Science.gov (United States)

    Ellwood, Robin; Abrams, Eleanor

    2017-02-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a

  5. Kidspiration[R] for Inquiry-Centered Activities

    Science.gov (United States)

    Shaw, Edward L., Jr.; Baggett, Paige V.; Salyer, Barbara

    2004-01-01

    Computer technology can be integrated into science inquiry activities to increase student motivation and enhance and expand scientific thinking. Fifth-grade students used the visual thinking tools in the Kidspiration[R] software program to generate and represent a web of hypotheses around the question, "What affects the distance a marble rolls?"…

  6. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    Science.gov (United States)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  7. Appreciative Inquiry as an intervention to change nursing practice in in-patient settings: An integrative review.

    Science.gov (United States)

    Watkins, Sarah; Dewar, Belinda; Kennedy, Catriona

    2016-08-01

    High profile accounts of failures in patient care reflect an urgent need for transformational development in healthcare. Appreciative Inquiry is promoted as an approach to exploring and bringing about change in social systems. Appreciative Inquiry has been used extensively in North American business since the late 1980s. The application of Appreciative Inquiry may have merit in the complex world of human health experiences. To identify, evaluate and synthesise the evidence about the impact of Appreciative Inquiry on changing clinical nursing practice in in-patient settings. An integrative review and narrative synthesis. In-patient settings including paediatrics, maternity and mental health. Nurses of all grades, patients, carers, relatives, other healthcare professionals including allied healthcare staff, management and students. An electronic search of the following electronic databases was performed in January 2015 and updated in July 2015: MEDLINE, EMBASE, Cochrane Library (Cochrane database of systematic reviews), Cumulative Index of Nursing and Allied Health Literature, PsychINFO, PsychARTICLES, Amed, Assia, Scopus and Web of Science. Hand searching of reference lists of included studies was undertaken. Limits were set to include literature published in English only and publications from 1990 to July 2015. Three reviewers independently assessed eligibility for inclusion and extracted data. Full text articles were systematically appraised using a standardised data extraction instrument in conjunction with criteria to assess whether change using Appreciative Inquiry is transformational. Eight studies (reported in 11 papers) met the inclusion criteria. Overall, these studies demonstrate poor application of Appreciative Inquiry criteria in a nursing context. This makes judgement of the impact difficult. One study achieved transformation against agreed criteria for Appreciative Inquiry. Other included studies demonstrated that Appreciative Inquiry is being

  8. Making learning whole: an instructional approach for mediating the practices of authentic science inquiries

    Science.gov (United States)

    Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka

    2013-03-01

    This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.

  9. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    Science.gov (United States)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  10. Elementary teachers' perceptions of science inquiry and professional development challenges and opportunities

    Science.gov (United States)

    Jones, Kathleen M.

    Inquiry science, including a focus on evidence-based discourse, is essential to spark interest in science education in the early grades and maintain that interest throughout children's schooling. The researcher was interested in two broad areas: inquiry science in the elementary classroom and the need/desire for professional development opportunities for elementary teachers related to science education, and specifically professional development focused on inquiry science. A cross sectional survey design was prepared and distributed in May 2005 and usable responses were received from 228 elementary teachers from the south-central area of Pennsylvania which was a representative sample of socio-economical and geographical factors. Areas of particular interest in the results section include: (1) The use of Science Kits which is popular, but may not have the desired impact since they are "adjusted" by teachers often removing the opportunity for evidence-based discourse by the students. This may be partly based on the lack of time dedicated to science instruction and, secondly, the teachers' lack of comfort with the science topics. Another issue arising from science kits is the amount of preparation time required to utilize them. (2) Teachers demonstrated understanding of the high qualities of professional development but, when it came to science content professional development, they were more inclined to opt for short-term opportunities as opposed to long-term learning opportunities. Since elementary teachers are generalists and most schools are not focusing on science, the lack of attention to a subject where they are least comfortable is understandable, but disappointing. (3) There is a great need for more training in evidence--based discourse so teachers can implement this needed skill and increase students' understanding of science content so they are more able to compete in the international science and math measurements. (4) Professional development, especially

  11. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-11-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a profile of professional competence, required for effective inquiry-based science teaching in primary schools in the Netherlands. This article reviews literature and compares the outcomes to the American National Science Education Standards (NSES). In so doing, it seeks to answer the following research questions: What elements of competencies required by primary school teachers who teach inquiry-based science are mentioned, discussed and researched in recent literature? To what extent are the American NSES (introduced 15 years ago) consistent with elements of competencies found in recent literature? A comprehensive literature review was conducted using Educational Resources Information Centre and Google Scholar databases. Fifty-seven peer-reviewed scientific journal articles from 2004 to 2011 were found using keyword combinations. Analysis of these articles resulted in the identification and classification of 22 elements of competencies. This outcome was compared to the American NSES, revealing gaps in the standards with respect to a lack of focus on how teachers view science teaching and themselves as teachers. We also found that elements of competencies are connected and poor mastery of one may affect a teacher's mastery of another. Therefore, we propose that standards for the Netherlands should be presented in a non-linear, holistic, competence-based model.

  12. The Effect of Three Levels of Inquiry on the Improvement of Science Concept Understanding of Elementary School Teacher Candidates

    Science.gov (United States)

    Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah

    2018-01-01

    This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…

  13. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  14. Analysis of the project synthesis goal cluster orientation and inquiry emphasis of elementary science textbooks

    Science.gov (United States)

    Staver, John R.; Bay, Mary

    The purpose of this descriptive study was to examine selected units of commonly used elementary science texts, using the Project Synthesis goal clusters as a framework for part of the examination. An inquiry classification scheme was used for the remaining segment. Four questions were answered: (1) To what extent do elementary science textbooks focus on each Project Synthesis goal cluster? (2) In which part of the text is such information found? (3) To what extent are the activities and experiments merely verifications of information already introduced in the text? (4) If inquiry is present in an activity, then what is the level of such inquiry?Eleven science textbook series, which comprise approximately 90 percent of the national market, were selected for analysis. Two units, one primary (K-3) and one intermediate (4-6), were selected for analysis by first identifying units common to most series, then randomly selecting one primary and one intermediate unit for analysis.Each randomly selected unit was carefully read, using the sentence as the unit of analysis. Each declarative and interrogative sentence in the body of the text was classified as: (1) academic; (2) personal; (3) career; or (4) societal in its focus. Each illustration, except those used in evaluation items, was similarly classified. Each activity/experiment and each miscellaneous sentence in end-of-chapter segments labelled review, summary, evaluation, etc., were similarly classified. Finally, each activity/experiment, as a whole, was categorized according to a four-category inquiry scheme (confirmation, structured inquiry, guided inquiry, open inquiry).In general, results of the analysis are: (1) most text prose focuses on academic science; (2) most remaining text prose focuses on the personal goal cluster; (3) the career and societal goal clusters receive only minor attention; (4) text illustrations exhibit a pattern similar to text prose; (5) text activities/experiments are academic in orientation

  15. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    Science.gov (United States)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  16. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  17. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  18. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    Science.gov (United States)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  19. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    Science.gov (United States)

    Walan, Susanne; Mc Ewen, Birgitta

    2017-04-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  20. I Want to Be the Inquiry Guy! How Research Experiences for Teachers Change Beliefs, Attitudes, and Values about Teaching Science as Inquiry

    Science.gov (United States)

    Herrington, Deborah G.; Bancroft, Senetta F.; Edwards, Molly M.; Schairer, Caroline J.

    2016-01-01

    This qualitative study examined how and why research experiences for teachers (RETs) influenced middle and high school science teachers' beliefs, attitudes, and values about teaching science as inquiry. Changes teachers reported after participating in the RET ranged from modifying a few lessons (belief change) to a comprehensive revision of what…

  1. Approaches to Inquiry Teaching: Elementary teacher's perspectives

    Science.gov (United States)

    Ireland, Joseph; Watters, James J.; Lunn Brownlee, J.; Lupton, Mandy

    2014-07-01

    Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers' self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiries as part of an Experience-centered category, Solution and Method Inquiries as part of a Problem-centered category, and Topic and Chaperoned Inquiries as part of a Question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching and suggests fertile areas of future research into this valued and influential phenomenon broadly known as 'Inquiry Teaching'.

  2. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  3. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems

    Science.gov (United States)

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia

    2016-01-01

    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  4. Inquiry-based laboratory and History of Science: a report about an activity using Oersted’s experiment

    Directory of Open Access Journals (Sweden)

    José Antonio Ferreira Pinto

    2017-05-01

    Full Text Available This work presents an example of how to explore an historical experiment as a problem to be investigated in an inquiry-based laboratory model. The elaborated and executed purpose is one of the possibilities to insert History of Science in Science classroom. The inquiry-based experimental activity, the texts with historical approach based on modern historiography of science and teacher’s pedagogical knowledge allowed the development of argumentative skills and the comprehension of electromagnetism concepts. This study was developed with 3rd grade high school students from a public school of State of Paraiba.

  5. Mapping Trade-Offs in Teachers' Integration of Technology-Supported Inquiry in High School Science Classes

    Science.gov (United States)

    Sandoval, William A.; Daniszewski, Kenneth

    2004-01-01

    This paper explores how two teachers concurrently enacting the same technology-based inquiry unit on evolution structured activity and discourse in their classrooms to connect students' computer-based investigations to formal domain theories. Our analyses show that the teachers' interactions with their students during inquiry were quite similar,…

  6. Impact of Initiatives to Implement Science Inquiry: A Comparative Study of the Turkish, Israeli, Swedish and Czech Science Education Systems

    Science.gov (United States)

    Heinz, Jana; Enghag, Margareta; Stuchlikova, Iva; Cakmakci, Gultekin; Peleg, Ran; Baram-Tsabari, Ayelet

    2017-01-01

    This empirical study investigates factors that influence the implementation of science inquiry in the education systems of Turkey, Israel, Sweden and the Czech Republic. Data was collected by means of recordings of science experts' discussions as part of an EU-funded project called Science-Teacher Education Advanced Methods (2009-2012). Results of…

  7. Student's Need Analysis for the Development of Chemistry Modules Based Guided Inquiry to Improve Science Process Skill

    Directory of Open Access Journals (Sweden)

    Jane Arantika

    2018-04-01

    Full Text Available Science process skills (SPS are an important aspect of learning science. SPS help students to develop creativity in learning. Process skills such as observing, formulating questions, interpreting, experimenting, hypothesizing, applying concepts, and communicating. This study aims to analyze the need for development resources needs of science filled with science process skills. Requirement analysis of the development of teaching materials with the skill of the process of science needs to be done because the textbook is the reference a teacher in the class. The subjects matter of chemistry the study was three senior high schools in Sambas, West Borneo. Needs analysis conducted using a qualitative approach, in terms of needs in classroom learning and content of process skills on teaching materials. Data were collected by interviews and questionnaires were analyzed descriptively. The results showed that as many as 27 percents of students perceive the book used in learning has not yet trained the science process skills. As many as 73 percents of students perceive that they need instructional materials in the form of inquiry-based chemistry modules to improve science process skills. Modules are developed based guided inquiry for having guided inquiry learning stages that can practice students' science process skills.

  8. The Comparison of the Inquiry Behavior of ISCS and Non-ISCS Science Students as Measured by the Tab Science Test

    Science.gov (United States)

    Stallings, Everett S.; Snyder, William R.

    1977-01-01

    Studies of a group of seventh-grade students who were tested for inquiry skills using the TAB Science Test showed no significant differences between those students who had studied the Intermediate Science Curriculum Study (ISCS) and those who studied another curriculum. (MLH)

  9. Personal Inquiry: Orchestrating Science Investigations within and beyond the Classroom

    Science.gov (United States)

    Sharples, Mike; Scanlon, Eileen; Ainsworth, Shaaron; Anastopoulou, Stamatina; Collins, Trevor; Crook, Charles; Jones, Ann; Kerawalla, Lucinda; Littleton, Karen; Mulholland, Paul; O'Malley, Claire

    2015-01-01

    A central challenge for science educators is to enable young people to act as scientists by gathering and assessing evidence, conducting experiments, and engaging in informed debate. We report the design of the nQuire toolkit, a system to support scripted personal inquiry learning, and a study of its use with school students ages 11-14. This…

  10. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  11. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  12. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  13. The Utilization of Inquiry-Based Science Instruction in Connecticut

    Science.gov (United States)

    Bozzuto, David M.

    The purpose of this study was to explore the perspectives of practitioners of inquiry-based instruction from 35 Connecticut school districts. The source of the participants, Connecticut State Science Assessment Advisory Committee members, and their involvement in science education acted to bound the research. Using a multiple case study design, data were gathered from 28 participants: teachers n = 21, curriculum leaders n = 4, professional development experts n = 2, and state education advisor/ teacher preparation expert n = 1 involved with Connecticut schools. Each participant was asked to complete an online demographic and inquiry utilization questionnaire. From the results of the questionnaires, a cadre of 11 participants was selected to participate in semi-structured interviews. A round of follow-up interviews of five key participants was conducted to further clarify the phenomenon. Two of the follow up interviewees were observed using the EQUIP rubric to assess inquiry implementation. Artifacts such as minutes, PowerPoint presentations, and a reflexive journal were collected throughout the study. An inductive approach to content analysis of data from the survey and interviews was used to explore constructs, themes, and patterns. After segmentation took place, the data were categorized to allow patterns and constructs to emerge. The data were reduced based on the emergent design and those reductions, or themes, were informed by ongoing data collection using constant comparison as different levels of codes emerge. Data collection further informed data analysis and future data collection. Initial coding of patterns was reduced until theoretical saturation occurred and the data allowed five thematic findings to emerge from the data. The five themes were: teach, process, impasse, develop, and support. The significance of each theme and its implication for practitioners and researchers were discussed and offered, respectively.

  14. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  15. Measuring Knowledge Integration Learning of Energy Topics: A Two-Year Longitudinal Study

    Science.gov (United States)

    Liu, Ou Lydia; Ryoo, Kihyun; Linn, Marcia C.; Sato, Elissa; Svihla, Vanessa

    2015-01-01

    Although researchers call for inquiry learning in science, science assessments rarely capture the impact of inquiry instruction. This paper reports on the development and validation of assessments designed to measure middle-school students' progress in gaining integrated understanding of energy while studying an inquiry-oriented curriculum. The…

  16. The effect of guided inquiry-based instruction in secondary science for students with learning disabilities

    Science.gov (United States)

    Eliot, Michael H.

    Students with learning disabilities (SWLDs) need to attain academic rigor to graduate from high school and college, as well as achieve success in life. Constructivist theories suggest that guided inquiry may provide the impetus for their success, yet little research has been done to support this premise. This study was designed to fill that gap. This quasi-experimental study compared didactic and guided inquiry-based teaching of science concepts to secondary SWLDs in SDC science classes. The study examined 38 students in four classes at two diverse, urban high schools. Participants were taught two science concepts using both teaching methods and posttested after each using paper-and-pencil tests and performance tasks. Data were compared to determine increases in conceptual understanding by teaching method, order of teaching method, and exposure one or both teaching methods. A survey examined participants' perceived self-efficacy under each method. Also, qualitative comparison of the two test formats examined appropriate use with SWLDs. Results showed significantly higher scores after the guided inquiry method on concept of volume, suggesting that guided inquiry does improve conceptual understanding over didactic instruction in some cases. Didactic teaching followed by guided inquiry resulted in higher scores than the reverse order, indicating that SWLDs may require direct instruction in basic facts and procedures related to a topic prior to engaging in guided inquiry. Also application of both teaching methods resulted in significantly higher scores than a single method on the concept of density, suggesting that SWLDs may require more in depth instruction found using both methods. No differences in perceived self-efficacy were shown. Qualitative analysis both assessments and participants' behaviors during testing support the use of performance tasks over paper-and-pencil tests with SWLDs. Implications for education include the use of guided inquiry to increase SWLDs

  17. Personal Inquiry Manager

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Specht, Marcus

    2014-01-01

    The Personal Inquiry Manager (PIM) is an integration approach based on a mobile application, based on Android, to support the IBL process and gives users mobile access to their inquiries. Moreover it facilitates a more self-directed approach as it enables to set up their own personal inquiries. The

  18. Phases of inquiry-based learning: Definitions and the inquiry cycle

    NARCIS (Netherlands)

    Pedaste, Margus; Mäeots, Mario; Siiman, Leo A.; de Jong, Anthonius J.M.; van Riesen, Siswa; Kamp, E.T.; Kamp, E.T.; Manoli, Constantinos C.; Zacharia, Zacharias C.; Tsourlidaki, Eleftheria

    2015-01-01

    Inquiry-based learning is gaining popularity in science curricula, international research and development projects as well as teaching. One of the underlying reasons is that its success can be significantly improved due to the recent technical developments that allow the inquiry process to be

  19. The Development and Evaluation of a Computer-Simulated Science Inquiry Environment Using Gamified Elements

    Science.gov (United States)

    Tsai, Fu-Hsing

    2018-01-01

    This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…

  20. Strategies for assessment of inquiry learning in science in a Danish context

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Albrechtsen, Thomas R. S.; Michelsen, Claus

    it would be more appropriate to use a more formative assessment (Black, 2002). In several European science curricula there is room for this latter approach but it seems that it is not carried out in practice. In a review of national curricula among partners of the SAILS (Strategies for Assessment...... in all countries, it is not reflected in the assessment used in most of the participating countries. We feel that this highlights a need for assessment instruments and tools that measure the inquiry skills of students. If these skills are not being assessed, it is difficult for teachers and students...... to realise the value of inquiry based methodologies.” (McLoughlin et al., 2013, p. 108) It is the aim of the SAILS project to develop materials for teachers to use in assessing student skills and competencies obtained by IBSE. It is done by finding exemplary lesson plans with inquiry approaches...

  1. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  2. A cognitive framework to inform the design of professional development supporting teachers' classroom assessment of inquiry-based science

    Science.gov (United States)

    Matese, Gabrielle

    Inquiry-based science places new demands on teachers for assessing students' growth, both of deep conceptual understanding as well as developing inquiry skills. In addition, new ideas about classroom assessment, such as the importance of formative assessment, are gaining currency. While we have ideas about what classroom assessment consistent with inquiry-based pedagogy might look like, and why it is necessary, we have little understanding of what it takes to implement it. That teachers face a challenge in doing so is well-documented. Researchers have noted that teachers attempting changes in classroom assessment often bring with them incompatible beliefs, knowledge, and practices. However, noting general incompatibility is insufficient to support addressing these issues through professional development. In response to this need, I initiated a research project to identify and describe in more detail the categories of beliefs, knowledge and skills that play an important role in inquiry-based science assessment practices. I created an assessment framework outlining specific categories of beliefs, knowledge, and skills affecting particular classroom assessment practices. I then used the framework to examine teachers' classroom assessment practices and to create comparative cases between three middle-school science teachers, highlighting how the different cognitive factors affect four particular assessment practices. The comparative cases demonstrate the framework's utility for analyzing and explicating teacher assessment practices. As a tool for analyzing and understanding teacher practice, the framework supports the design of professional development. To demonstrate the value of the framework, I draw on the comparative cases to identify implications for the design of professional development to support teachers' classroom assessment of inquiry-based science. In this dissertation I provide a brief overview of the framework and its rationale, present an example of the

  3. Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation

    Science.gov (United States)

    Levy, S. T.; Lahav, O.

    2012-01-01

    This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…

  4. Using technology to support science inquiry learning

    Directory of Open Access Journals (Sweden)

    P John Williams

    2017-03-01

    Full Text Available This paper presents a case study of a teacher’s experience in implementing an inquiry approach to his teaching over a period of two years with two different classes. His focus was on using a range of information technologies to support student inquiry learning. The study demonstrates the need to consider the characteristics of students when implementing an inquiry approach, and also the influence of the teachers level of understanding and related confidence in such an approach. The case also indicated that a range of technologies can be effective in supporting student inquiry learning.

  5. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  6. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  7. The Influence of Repeated Teaching and Reflection on Preservice Teachers' Views of Inquiry and Nature of Science

    Science.gov (United States)

    Lotter, Christine; Singer, Jonathan; Godley, Jenice

    2009-12-01

    This study describes the influence of a secondary science methods program on secondary science preservice teachers’ views and enactment of nature of science and inquiry-based instructional practices. Built into the structure of this program were three cycles of practice teaching and reflection in which the preservice teachers focused on key pedagogical ideas in classroom settings with middle and high school students. The nine secondary preservice teachers improved both their understanding and enactment of inquiry and nature of science throughout the program period. This study provides evidence of the importance of incorporating multiple low-stakes practicum experiences that are closely tied to methods course goals that are highly scaffolded through both methods instructor and cooperating teacher support and tied to analytic self-reflection.

  8. Scientific Inquiry in Health Sciences Education

    DEFF Research Database (Denmark)

    Musaeus, Peter

    inquiry or critical thinking. Discussion: The value of this study is that it might enable educational developers to give junior faculty better guidance on teaching and specific feedback on their teaching portfolio in particular in regards to the design of learning activities that might use scientific...... in terms of a more systematic approach to higher-level thinking. Thus although participants cited one or more constructivist educational theorists, they did not express a well-articulated notion of inquiry and they provided limited concrete examples on how to design a conducive learning environment around...... inquiry as means and end in higher education....

  9. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  10. Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit

    Science.gov (United States)

    Chiu, Jennifer L.; Linn, Marcia C.

    2014-01-01

    This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent…

  11. Inquiry-Based Instruction and High Stakes Testing

    Science.gov (United States)

    Cothern, Rebecca L.

    Science education is a key to economic success for a country in terms of promoting advances in national industry and technology and maximizing competitive advantage in a global marketplace. The December 2010 Program for International Student Assessment (PISA) ranked the United States 23rd of 65 countries in science. That dismal standing in science proficiency impedes the ability of American school graduates to compete in the global market place. Furthermore, the implementation of high stakes testing in science mandated by the 2007 No Child Left Behind (NCLB) Act has created an additional need for educators to find effective science pedagogy. Research has shown that inquiry-based science instruction is one of the predominant science instructional methods. Inquiry-based instruction is a multifaceted teaching method with its theoretical foundation in constructivism. A correlational survey research design was used to determine the relationship between levels of inquiry-based science instruction and student performance on a standardized state science test. A self-report survey, using a Likert-type scale, was completed by 26 fifth grade teachers. Participants' responses were analyzed and grouped as high, medium, or low level inquiry instruction. The unit of analysis for the achievement variable was the student scale score average from the state science test. Spearman's Rho correlation data showed a positive relationship between the level of inquiry-based instruction and student achievement on the state assessment. The findings can assist teachers and administrators by providing additional research on the benefits of the inquiry-based instructional method. Implications for positive social change include increases in student proficiency and decision-making skills related to science policy issues which can help make them more competitive in the global marketplace.

  12. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    Science.gov (United States)

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  13. A path less traveled: A self-guided action science inquiry among a small group of adult learners

    Science.gov (United States)

    Folkman, Daniel Vance

    This dissertation provides an analysis of the dialogue that occurred among a small group of adult learners who engaged in a self-guided action science inquiry into their own practice. The following pages describe how this group of five practitioners ventured into a critical, self-reflective inquiry into their own values, feelings, and intentions in search of personal and professional growth. It is a deeply revealing story that shows how, through group dialogue, the members gradually unravel the interconnections between their values, feelings, and intention. They uncover surprising and unanticipated patterns in their reasoning-in-action that reflect lessons from present day experiences as well as childhood axioms about what constitutes appropriate behavior. They push their learning further to recognize emotional triggers that are useful in confronting old habits of mind that must be overcome if new Model II strategies are to be learned and internalized. They conclude that becoming Model II requires a centering on basic values, a personal commitment to change, a willingness to persist in the face of resistance, and the wisdom to act with deliberate caution. The transformative power of this insight lies in the realization of what it takes personally and collectively to make the world a truly respectful, productive, democratic, and socially just place in which to live and work. The action science literature holds the assumption that a trained facilitator is needed to guide such an inquiry and the learning of Model II skills. Unfortunately, there are few educator-trainers available to facilitate the learning of Model II proficiencies over the months and years that may be required. The data presented here show that it is possible for a group of highly motivated individuals to initiate and sustain their own action science inquiry without the aid of a highly skilled facilitator. A model of the group dialogue is presented that highlights the salient characteristics of an

  14. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  15. It takes a village: supporting inquiry- and equity-oriented computer science pedagogy through a professional learning community

    Science.gov (United States)

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-10-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.

  16. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Directory of Open Access Journals (Sweden)

    Thomas D. GRIFFIN

    2012-10-01

    Full Text Available The main goal for the current study was to investigate whether individual differences in domaingeneral thinking dispositions might affect learning from multiple-document inquiry tasks in science.Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be different from what has been observed in the past from those documents. Understanding was assessed with two measures: an essay task and an inference verification task. Domain-general thinking dispositions were assessed with a Commitment to Logic, Evidence, and Reasoning (CLEAR thinking scale. The measures of understanding wereuniquely predicted by both reading skills and CLEAR thinking scores, and these effects were not attributable to prior knowledge or interest. The results suggest independent roles for thinkingdispositions and reading ability when students read to learn from multiple-document inquiry tasks in science.

  17. The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers

    Science.gov (United States)

    Arsal, Zeki

    2017-07-01

    In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.

  18. A design-based study of Citizen Inquiry for geology

    OpenAIRE

    Aristeidou, Maria; Scanlon, Eileen; Sharples, Mike

    2013-01-01

    Citizen Inquiry forms a new method of informal science learning and aims to enable the engagement of citizens in online scientific investigations. Citizen Inquiry combines aspects from Citizen Science and Inquiry-based learning and is implemented through a community of practice where people having a shared interest interact and exchange knowledge and methods supported and guided by online systems and tools within a web-based inquiry environment. To explore the potential of Citizen Inquiry, a ...

  19. How an inquiry-based classroom lesson intervenes in science efficacy, career-orientation and self-determination

    Science.gov (United States)

    Schmid, S.; Bogner, F. X.

    2017-11-01

    Three subscales of the 'Science Motivation Questionnaire II' (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6 and 12 weeks after) were applied. The modified SMQII was factor-analyzed at each testing cycle and the structure confirmed. Only self-determination was shown to be influenced by an inquiry course, while self-efficacy and career motivation did not. Only self-efficacy and career motivation were intercorrelated and also correlated with science subject grades and subsequent achievement. Implications for using the modified SMQII subscales for research and teaching in secondary school are discussed.

  20. Closing the science achievement gap for ninth grade English learners through standards- and inquiry-based science instruction

    Science.gov (United States)

    Estrada, Myrna Hipol

    In light of the need to close the achievement gap among our culturally and linguistically diverse students, more specifically the Hispanics and the Hispanic English Learners (ELs), the effects of teacher professional development (2 year PD vs. 1 Year PD vs. no PD) on the implementation of a standards-aligned and inquiry-based science curriculum program---the Integrated Coordinated Science for the 21st Century published by It's About Time, Inc. (ICS-IAT)---on the LAUSD ninth graders science scores were examined. Participants included 8,937 9th grade students (7,356 Hispanics). The primary outcome measurement was scaled scores from the California Standard Test (CST) in Integrated Coordinated Science (CST_ICS1). Correlations between California English Language Development Test (CELDT) component subscores (reading, listening and speaking) and CST scores were also examined. Results indicated that the science scores of the students of teachers who participated in two year PD were significantly higher compared to the scores of students of the one year PD group and the control group. The results show that all ethnic groups benefited from two years of teacher PD, except the African American group. Among Hispanics, students classified as IFEP, RFEP and EO gained from the teachers having two years of professional development. But the target population, ELs did not benefit from two years of teacher PD. The correlations between the CELDT and CST_ELA were much higher than the CELDT and CST_ICS1 correlations. This finding validates Abedi's claim (2004) that EL students are disadvantaged because of their language handicap on tests that have a greater language load. Two year PD participation significantly enhanced the accessibility of science to the ninth graders. The essential features in the PD were classroom simulation of all the activities identified in the storyboard with the actual and correct use of needed equipment and materials; creation and presentation of sample or model

  1. The impact of science teachers' epistemological beliefs on authentic inquiry: A multiple-case study

    Science.gov (United States)

    Jackson, Dionne Bennett

    The purpose of this study was to examine how science teachers' epistemological beliefs impacted their use of authentic inquiry in science instruction. Participants in this multiple-case study included a total of four teachers who represented the middle, secondary and post-secondary levels. Based on the results of the pilot study conducted with a secondary science teacher, adjustments were made to the interview questions and observation protocol. Data collection for the study included semi-structured interviews, direct observations of instructional techniques, and the collection of artifacts. The cross case analysis revealed that the cases epistemological beliefs were mostly Transitional and the method of instruction used most was Discussion. Two of the cases exhibited consistent beliefs and instructional practices, whereas the other two exhibited beliefs beyond their instruction. The findings of this study support the literature on the influence of contextual factors and professional development on teacher beliefs and practice. The findings support and contradict literature relevant to the consistency of teacher beliefs with instruction. This study's findings revealed that the use of reform-based instruction, or Authentic Inquiry, does not occur when science teachers do not have the beliefs and experiences necessary to implement this form of instruction.

  2. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  3. The effects of inquiry-based science on the social and communicative skills of students with low-incidence disabilities

    Science.gov (United States)

    D'Angelo, Heather Hopkins

    This research utilized inquiry based science as a vehicle to implement and maintain social skills training for secondary students, ages 14 to 20, with low-incidence disabilities in a self-contained classroom. This three year action research study examined the effects of an inquiry based science curriculum on the level and quantity of social skills used by students with one or more of the following challenges: significant learning disability (functioning more than two grade levels below grade level), emotional/social disability, mental retardation, Autism, and/or varying degrees of brain damage. Through the use of video recording, the students in the study were analyzed based on the level of social interaction and the amount of socialization that took place during inquiry based science. The skills sought were based on the social and communication skills earmarked in the students' weekly social skills training class and their Individualized Education Plans (IEP). Based on previous research in social skills training it has been determined that where social skills training is lacking are in the areas of transfer and maintenance of skills. Due to the natural social behavior that must take place in inquiry based science this group of students were found to exhibit gains in (1) quantity of social interactions on topic; (2) developing higher levels of social interactions (sharing, taking other's suggestions, listening and responding appropriately, etc.); and (3) maintenance of social skills taught outside of formal social skills training. These gains were seen overall in the amount of student involvement during inquiry based science verses teacher involvement. Such increases are depicted through students' verbal exchanges, excerpts from field notes, and student reflections. The findings of this research is expected to guide special educators, administrators and directors of curriculum as to how to better create curriculum for this specific population where social skills

  4. The Utility of Inquiry-Based Exercises in Mexican Science Classrooms: Reports from a Professional Development Workshop for Science Teachers in Quintana Roo, Mexico

    Science.gov (United States)

    Racelis, A. E.; Brovold, A. A.

    2010-12-01

    The quality of science teaching is of growing importance in Mexico. Mexican students score well below the world mean in math and science. Although the government has recognized these deficiencies and has implemented new policies aimed to improve student achievement in the sciences, teachers are still encountering in-class barriers to effective teaching, especially in public colleges. This paper reports on the utility of inquiry based exercises in Mexican classrooms. In particular, it describes a two-day professional development workshop with science teachers at the Instituto Tecnologico Superior in Felipe Carrillo Puerto in the Mexican state of Quintana Roo. Felipe Carrillo Puerto is an indigenous municipality where a significant majority of the population speak Maya as their first language. This alone presents a unique barrier to teaching science in the municipality, but accompanied with other factors such as student apathy, insufficient prior training of both students and teachers, and pressure to deliver specific science curriculum, science teachers have formidable challenges for effective science teaching. The goals of the workshop were to (1) have a directed discussion regarding science as both content and process, (2) introduce inquiry based learning as one tool of teaching science, and (3) get teachers to think about how they can apply these techniques in their classes.

  5. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    Science.gov (United States)

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  6. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    Science.gov (United States)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  7. "Kindergarten, can I have your eyes and ears?" politeness and teacher directive choices in inquiry-based science classrooms

    Science.gov (United States)

    Oliveira, Alandeom Wanderlei

    2009-12-01

    This study explores elementary teachers' social understandings and employment of directives and politeness while facilitating inquiry science lessons prior and subsequent to their participation in a summer institute in which they were introduced to the scholarly literature on regulative discourse (directives used by teachers to regulate student behavior). A grounded theory analysis of the institute professional development activities revealed that teachers developed an increased awareness of the authoritative functions served by impolite or direct directives (i.e., pragmatic awareness). Furthermore, a comparative microethnographic analysis of participants' inquiry-based classroom practices revealed that after the institute teachers demonstrated an increased ability to share authority with students by strategically making directive choices that were more polite, indirect, inclusive, involvement-focused and creative. Such ability led to a reduced emphasis on teacher regulation of student compliance with classroom behavioral norms and an increased focus on the discursive organization of the inquiry-based science learning/teaching process. Despite teachers' increased pragmatic awareness, teacher-student linguistic relationships did not become entirely symmetrical subsequent to their participation in the summer institute (i.e., teacher authority was not completely relinquished or lost). Based on such findings, it is argued that teachers need to develop higher levels of pragmatic awareness to become effectively prepared to engage in language-mediated teacher-student interaction in the context of inquiry-based science classroom discourse.

  8. Negotiating the Inquiry Question: A Comparison of Whole Class and Small Group Strategies in Grade Five Science Classrooms

    Science.gov (United States)

    Cavagnetto, Andy R.; Hand, Brian; Norton-Meier, Lori

    2011-03-01

    The purpose of this study is to examine the effect of two strategies for negotiating the question for exploration during science inquiry on student achievement and teachers' perceptions. The study is set in the context of the Science Writing Heuristic. The first strategy (small group) consisted of each group of four students negotiating a question for inquiry with the teacher while the second strategy (whole class) consisted of the entire class negotiating a single question for inquiry with the teacher. The study utilized a mixed-method approach. A quasi-experimental repeated measures design was used to determine the effect of strategy on student achievement and semi-structured teacher interviews were used to probe the question of teacher perceptions of the two strategies. Teacher observations were conducted using the Reformed Teaching Observation Protocol (RTOP) to check for variation in implementation of the two strategies. Iowa Test of Basic Skills Science (ITBSS) (2005 and 2006) and teacher/researcher developed unit exams (pre and post) were used as student achievement measures. No statistically significant differences were found among students in the two treatment groups on the ITBSS or unit exams. RTOP observations suggest that teacher implementation was consistent across the two treatment strategies. Teachers disclosed personal preferences for the two strategies, indicating the whole class treatment was easier to manage (at least at the beginning of the school year) as students gained experience with science inquiry and the associated increased responsibility. Possible mechanisms linking the two strategies, negotiated questions, and student outcomes are discussed.

  9. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    Science.gov (United States)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  10. PENGEMBANGAN DIKTAT PRAKTIKUM BERBASIS GUIDED DISCOVERY-INQUIRY BERVISI SCIENCE, ENVIRONMENT, TECHNOLOGY AND SOCIETY

    Directory of Open Access Journals (Sweden)

    Risqiatun Nikmah

    2016-01-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui validitas diktat praktikum berbasis Guided Discovery–Inquiry bervisi Science, Environment, Technology and Society (SETS, mengetahui pengaruh terhadap peningkatan keterampilan proses sains dan tanggapan siswa terhadap diktat pada materi penyangga dan hidrolisis. Penelitian ini menggunakan tipe research and development yang diadopsi dari Sugiyono. One-Group Pretest and Posttest Design digunakan pada saat uji coba skala luas dan pengambilan sampelnya menggunakan teknik Purposive Sampling. Berdasarkan hasil penelitian, validitas diktat praktikum mencapai skor 202 (sangat layak. Penggunaan diktat praktikum berbasis Guided Discovery–Inquiry bervisi SETS dapat meningkatkan keterampilan proses sains siswa. Adanya peningkatan tersebut dibuktikan dengan hasil thitung (10,34 lebih dari ttabel (2,04. Hasil tanggapan siswa menunjukkan 7 dari 30 siswa memberi tanggapan dengan kriteria sangat layak dan sisanya memberikan tanggapan dengan kriteria layak. Selain itu, rata-rata hasil belajar pada ranah psikomotorik maupun afektif mencapai kategori baik dan 21 dari 30 siswa mampu mencapai KKM berdasarkan hasil belajar pada ranah kognitif. Jadi hasil penelitian ini menunjukkan diktat praktikum berbasis Guided Discovery–Inquiry bervisi SETS sangat valid, dapat meningkatkan keterampilan proses sains dan mendapat tanggapan positif dari siswa. Study aims to determine the validity of practicum dictates based Guided Discovery- Inquiry with Science, Environment, Technology and Society (SETS vision, investigate the effect on the improvement of scientific process skills and knowing student responses toward the dictates used in buffer and hydrolisis. This study used research and development type which is adopted from Sugiyono. One-group pretest and posttest design is used when this product was tried in large scale and the sample was taken by using purposive sampling technique. Based on the results of research, the validity of

  11. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  12. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Science.gov (United States)

    Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne; Salas, Carlos R.

    2012-01-01

    The main goal for the current study was to investigate whether individual differences in domain-general thinking dispositions might affect learning from multiple-document inquiry tasks in science. Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be…

  13. Making sense of shared sense-making in an inquiry-based science classroom: Toward a sociocultural theory of mind

    Science.gov (United States)

    Ladewski, Barbara G.

    Despite considerable exploration of inquiry and reflection in the literatures of science education and teacher education/teacher professional development over the past century, few theoretical or analytical tools exist to characterize these processes within a naturalistic classroom context. In addition, little is known regarding possible developmental trajectories for inquiry or reflection---for teachers or students---as these processes develop within a classroom context over time. In the dissertation, I use a sociocultural lens to explore these issues with an eye to the ways in which teachers and students develop shared sense-making, rather than from the more traditional perspective of individual teacher activity or student learning. The study includes both theoretical and empirical components. Theoretically, I explore the elaborations of sociocultural theory needed to characterize teacher-student shared sense-making as it develops within a classroom context, and, in particular, the role of inquiry and reflection in that sense-making. I develop a sociocultural model of shared sense-making that attempts to represent the dialectic between the individual and the social, through an elaboration of existing sociocultural and psychological constructs, including Vygotsky's zone of proximal development and theory of mind. Using this model as an interpretive framework, I develop a case study that explores teacher-student shared sense-making within a middle-school science classroom across a year of scaffolded introduction to inquiry-based science instruction. The empirical study serves not only as a test case for the theoretical model, but also informs our understanding regarding possible developmental trajectories and important mechanisms supporting and constraining shared sense-making within inquiry-based science classrooms. Theoretical and empirical findings provide support for the idea that perspectival shifts---that is, shifts of point-of-view that alter relationships

  14. Assessment for Learning in Inquiry Based Science Education

    DEFF Research Database (Denmark)

    Fornaguera, Cristina Carulla

    The study looks at assessment for learning and Inquiry Based Science Education —IBSE— as concepts established in a diversity of geographical areas, where the traditional summative assessment shapes what most individuals share as being experienced as assessment. Based on Leontiev and Radford...... the analytical process. The main contribution was the analysis and the results of researcher movement from a view of assessment considering learning as a psychological process in the mind, independent of the everyday life of individuals, towards one considering the inseparability of collective and individual...... as identifying and differentiating forms of researching assessment, changing the researcher’s perspective on research, and imagining a new theoretical approach to assessment for learning....

  15. A Return to Methodological Commitment: Reflections on Narrative Inquiry

    Science.gov (United States)

    Caine, Vera; Estefan, Andrew; Clandinin, D. Jean

    2013-01-01

    In the 25 years since narrative inquiry emerged as a social science research methodology, it has been rapidly taken up in the social sciences. In what is sometimes called a "narrative revolution," researchers with diverse understandings have co-opted the concept of narrative inquiry and used narrative inquiry or narrative research to…

  16. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    Science.gov (United States)

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  17. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    Science.gov (United States)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes

  18. Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Manoli, Constantinos; Xenofontos, Nikoletta; de Jong, Anthonius J.M.; Pedaste, Margus; van Riesen, Siswa; Kamp, E.T.; Kamp, Ellen T.; Mäeots, Mario; Siiman, Leo; Tsourlidaki, Eleftheria

    2015-01-01

    The aim of this review is to identify specific types of guidance for supporting student use of online labs, that is, virtual and remote labs, in an inquiry context. To do so, we reviewed the literature on providing guidance within computer supported inquiry learning (CoSIL) environments in science

  19. Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science

    Science.gov (United States)

    Lui, Michelle Mei Yee

    This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective

  20. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  1. Grand Challenge Problem 3: Empowering Science Teachers Using Technology-Enhanced Scaffolding to Improve Inquiry Learning

    NARCIS (Netherlands)

    Pedaste, Margus; Lazonder, Adrianus W.; Raes, Annelies; Wajeman, Claire; Moore, Emily; Girault, Isabelle; Eberle, Julia; Lund, Kristine; Tchounikine, Pierre; Fischer, Frank

    2016-01-01

    Inquiry learning in technology-enhanced learning (TEL) environments has potential to support science learning. The “symbiosis” between teachers and TEL environments is needed and, therefore, virtual assistants should be “taught” based on pedagogical theories. These assistants should be dynamically

  2. Investigating Human Impact in the Environment with Faded Scaffolded Inquiry Supported by Technologies

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Nagy, Robin

    2012-01-01

    Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students' lives. This article details how we use a sequence of faded scaffolded inquiry supported by…

  3. The Impact of a Practice-Teaching Professional Development Model on Teachers' Inquiry Instruction and Inquiry Efficacy Beliefs

    Science.gov (United States)

    Lotter, Christine R.; Thompson, Stephen; Dickenson, Tammiee S.; Smiley, Whitney F.; Blue, Genine; Rea, Mary

    2018-01-01

    This study examined changes in middle school teachers' beliefs about inquiry, implementation of inquiry practices, and self-efficacy to teach science through inquiry after participating in a year-long professional development program. The professional development model design was based on Bandura's (1986) social cognitive theory of learning and…

  4. HASIL BELAJAR ASPEK KETERAMPILAN IPA PADA PEMBELAJARAN LEVEL OF INQUIRY TINGKAT INQUIRY LESSON DI SMP

    Directory of Open Access Journals (Sweden)

    Yeni Hariningsih

    2016-08-01

    Full Text Available Learning science in junior high school in general is focused on mastery of concepts and basic science has not yet developed abilities, such as the ability berinkuiri. Therefore, it is necessary to find the appropriate steps to improve the process of learning science. The purpose of the study iniuntuk improve learning outcomes by using the skill aspect of inquiry learning model level. The method used in this research is mixed method. The instrument used is the syllabus, lesson plans, and the observation sheet keterampilan.Teknik data collection using observation. Aspects of data analysis skills using data reduction method, coding and interpretation. Results of research conducted on 36 students showed the ability berinkuiri learners increased by using the model level of inquiry. Results of learners aspect of overall skill increases with the good category. The conclusion from this study that the use of models level of inquiry to improve the ability berinkuiri learners and improve learning outcomes aspects of science skills of learners. Pembelajaran IPA di SMP pada umumnya masih menekankan pada penguasaan konsep dan belum mengembangkan kemampuan dasar sains, seperti kemampuan berinkuiri.Oleh karena itu perlu ditemukan langkah yang tepat untuk memperbaiki proses pembelajaran IPA. Tujuan dari penelitian iniuntuk meningkatkan hasil belajar aspek keterampilan dengan menggunakan model pembelajaran level of inquiry. Metode yang digunakan dalam penelitian ini yaitu mixed methode. Instrumen yang digunakan yaitu Silabus, RPP dan lembar observasi keterampilan. Teknik pengumpulan data menggunakan observasi. Analisis data aspek keterampilan dengan menggunakan cara mereduksi data, pengkodean dan interpretasi. Hasil penelitian yang dilakukan pada 36 peserta didik menunjukkan kemampuan berinkuiri peserta didik mengalami peningkatan dengan menggunakan model level of inquiry. Hasil belajar peserta didik aspek keterampilan secara keseluruhan meningkat dengan dengan

  5. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  6. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  7. Big inquiry

    Energy Technology Data Exchange (ETDEWEB)

    Wynne, B [Lancaster Univ. (UK)

    1979-06-28

    The recently published report entitled 'The Big Public Inquiry' from the Council for Science and Society and the Outer Circle Policy Unit is considered, with especial reference to any future enquiry which may take place into the first commercial fast breeder reactor. Proposals embodied in the report include stronger rights for objectors and an attempt is made to tackle the problem that participation in a public inquiry is far too late to be objective. It is felt by the author that the CSS/OCPU report is a constructive contribution to the debate about big technology inquiries but that it fails to understand the deeper currents in the economic and political structure of technology which so influence the consequences of whatever formal procedures are evolved.

  8. Inquiry Based Science Education og den sociokulturelt forankrede dialog i naturfagsundervisningen

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    2012-01-01

    Through study, investigation and discussion of the concept Best Practice in science education (Ellebæk & Østergaard, 2009) it was shown, that the dialogue in the teaching sequences was an important factor for the children’s understanding, engagement and interest for the science subjects......). The method is central in the action research project NatSats, where focus is on chidren’s hypothesizing and the way teacher’s use dialogue in their teaching or guiding of children in kindergarten and primary school. Results from the project indicate that an open and interrogative dialogue based...... and phenomena. In this article we will discuss dialogue in the light of sociocultural learning theories, and relate it to Inquiry Based Science Education (IBSE), as the pedagogical and didactical method, which are promoted most strongly these years (e.g. in the inter-European Pollen and Fibonacci projects...

  9. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    Science.gov (United States)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  10. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  11. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  12. Using Science Inquiry Methods to Promote Self-Determination and Problem-Solving Skills for Students with Moderate Intellectual Disability

    Science.gov (United States)

    Miller, Bridget; Doughty, Teresa; Krockover, Gerald

    2015-01-01

    This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…

  13. Engaging Nursing Students: Integrating Evidence-Based Inquiry, Informatics, and Clinical Practice.

    Science.gov (United States)

    Keiffer, Melanie R

    2017-12-05

    The nursing research class requires faculty to create a spirit of inquiry while integrating technology, flexibility, and responsiveness to student needs. This article discusses new pedagogies to actively engage students in the evidence-based nursing process and the achievement of course learning outcomes. Through course exemplar, the author demonstrates a creative method to engage traditional baccalaureate nursing students in a nursing project that links evidence to improved patient outcomes.

  14. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  15. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    NARCIS (Netherlands)

    Alake - Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Wals, A.E.J.; Oosterheert, I.; Mulder, M.

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils’ application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach

  16. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  17. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    Science.gov (United States)

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  18. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    Science.gov (United States)

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  19. "I am a scientist": How setting conditions that enhance focused concentration positively relate to student motivation and achievement outcomes in inquiry-based science

    Science.gov (United States)

    Ellwood, Robin B.

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged thirteen to fourteen years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on forty-six percent of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. This research also illustrates the positive gains in motivation and achievement outcomes that emerge from student experiences with extended time in isolated areas referred to

  20. Using Video Analysis, Microcomputer-Based Laboratories (MBL’s and Educational Simulations as Pedagogical Tools in Revolutionizing Inquiry Science Teaching and Learning

    Directory of Open Access Journals (Sweden)

    Jay B. Gregorio

    2015-01-01

    Full Text Available La main á la pâte is an inquiry-based science education programme founded in 1996 by Georges Charpak, Pierre Lena, Yves Quere and the French Académie des Sciences with the support of the Ministry of Education. The operation of the program primarily aims to revitalize and expand science teaching and learning in primary education by implementing an inquiry process that combines spontaneous exploration through varied prediction, experimentation, observation and argumentation. As a recognized program of innovation in science, La main á la pâte has gained global visibility and transcended across cultural backgrounds. The strength of the program is founded on continuous educational collaboration and innovative projects among pioneering institutions and educators for more than a decade.

  1. The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali

    2014-01-01

    The purpose of this study was to investigate the effects of inquiry-based learning method on students' academic achievement in sciences lesson. A total of 40 fifth grade students from two different classes were involved in the study. They were selected through purposive sampling method. The group which was assigned as experimental group was…

  2. The Use of Wikis in a Science Inquiry-Based Project in a Primary School

    Science.gov (United States)

    Lau, Wilfred W. F.; Lui, Vicky; Chu, Samuel K. W.

    2017-01-01

    This study explored the use of wikis in a science inquiry-based project conducted with Primary 6 students (aged 11-12). It used an online wiki-based platform called PBworks and addressed the following research questions: (1) What are students' attitudes toward learning with wikis? (2) What are students' interactions in online group collaboration…

  3. Engagerande samtal i det naturvetenskapliga klassrummetInquiry based dialouge in science classroom

    Directory of Open Access Journals (Sweden)

    Ragnhild Löfgren

    2014-10-01

    Full Text Available This study focuses on classroom communication within an inquiry-based science education (IBSE program, called NTA (Naturvetenskap och Teknik för Alla. The overall aim of the study is to highlight the ways in which productive and engaging conversations are conducted in the classroom. We have analysed the work within the unit ”The Chemistry of food” and the theme testing of fat in food in grade five and six in a Swedish and a Danish science classroom. We have used video cameras and mp3-players to follow the classroom interaction. Our findings indicate that the classroom communication was focused on everyday science content and that the introduction and the summary of the theme were very important for the pupils’ possibilities to productive disciplinary engagement.

  4. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    OpenAIRE

    Joel Donna; Brant G Miller

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much t...

  5. Development and use of an instrument to measure scientific inquiry and related factors

    Science.gov (United States)

    Dunbar, Terry Frank

    The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no

  6. Open-Ended Science Inquiry in Lower Secondary School: Are Students' Learning Needs Being Met?

    Science.gov (United States)

    Whannell, Robert; Quinn, Fran; Taylor, Subhashni; Harris, Katherine; Cornish, Scott; Sharma, Manjula

    2018-01-01

    Australian science curricula have promoted the use of investigations that allow secondary students to engage deeply with the methods of scientific inquiry, through student-directed, open-ended investigations over an extended duration. This study presents the analysis of data relating to the frequency of completion and attitudes towards long…

  7. Teaching molecular diffusion using an inquiry approach : diffusion activities in a secondary school inquiry-learning community

    NARCIS (Netherlands)

    van Rens, L.; van der Schee, J.; Pilot, A.

    2009-01-01

    The Dutch chemistry curriculum for upper secondary schools has prescribed inquiry-based student learning since 1997. For some decades inquiry tasks have been a feature of school science in various countries (1). As in other countries, some of our chemistry teachers are used to recipe-geared

  8. We Look More, Listen More, Notice More: Impact of Sustained Professional Development on Head Start Teachers' Inquiry-Based and Culturally-Relevant Science Teaching Practices

    Science.gov (United States)

    Roehrig, Gillian H.; Dubosarsky, Mia; Mason, Annie; Carlson, Stephan; Murphy, Barbara

    2011-10-01

    Despite many scholars' recommendations, science is often avoided during early childhood education. Among the reasons provided by early childhood teachers for the exclusion of science from their daily routines included science anxiety, low self-efficacy with respect to teaching science, lack of experience participating in science activities as students, or the notion that literacy and language are more important during the early years. In minority populations the problem is even greater due to identification of science with the `culture of. This article presents results from Ah Neen Dush, a sustained and transformative professional development program for Head Start teachers on an American Indian Reservation. The goal of the program is to support early childhood teachers in developing inquiry-based and culturally-relevant teaching practices. Through analysis of teachers' classroom practices, surveys and interviews, we explore changes in teachers' attitudes toward science and inquiry-based practices. Classroom observations were conducted using CLASS (Classroom assessment Scoring System), a tool used to evaluate the quality of classroom interactions. After 1 year of professional development teachers' attitudes were found to improve and after 2 years teachers classroom practices were more inquiry-based with statistically significant increases in CLASS observation scores.

  9. Potentials in Udeskole: Inquiry-Based Teaching Outside the Classroom

    Directory of Open Access Journals (Sweden)

    Karen S. Barfod

    2018-05-01

    Full Text Available Most research on outdoor education, including the Scandinavian concept udeskole (regular curriculum-based teaching outside the classroom, has focused on pupils' outcomes, whereas less has focused on teachers' practices. In this article, we described the occurrence of inquiry-based teaching in udeskole. To analyze practice, we extended the notion of inquiry-based education. Within science and mathematics education, a strong stepwise teaching approach formerly was established, called Inquiry Based Science and Mathematics Education (IBSME, emphasizing pupils' hypothesis testing, data validation and systematic experimentation. In this study, we broadened the IBSME-concept of inquiry in order to include a more holistic, non-linear teaching approach, but excluding teacher-instructed inquiry. Using this idea, we observed and documented by field notes how five experienced teachers practiced mathematics and science teaching in udeskole at primary level in Denmark. Twenty-eight outdoor days were observed. Each day was divided into separate teaching incidents with a distinct start and end. The level of teacher interference and possible choices in each teaching incidents formed the analytic background. We analyzed each of the 71 teaching incidents, and categorized each of them into one of five categories numbered 4–0. The categories designated numbers 4–2 contained the inquiry-based teaching incidents, and the categories designated 1 and 0 were categorized as “non-inquiry-based.” They contained teaching incidents where the teacher was instructing the pupils (category 1, and outdoor teaching activities with no sign of inquiry, called training activities (category 0. Our results showed that about half of the analyzed outdoor teaching practice seemed to be inquiry-based, emphasizing pupils' choice and presenting cognitive challenge. This indicates that the analyzed udeskole had the potential to support an explorative and multifaceted inquiry

  10. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    Science.gov (United States)

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  11. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  12. Target Inquiry: Changing Chemistry High School Teachers' Classroom Practices and Knowledge and Beliefs about Inquiry Instruction

    Science.gov (United States)

    Herrington, Deborah G.; Yezierski, Ellen J.; Luxford, Karen M.; Luxford, Cynthia J.

    2011-01-01

    Inquiry-based instruction requires a deep, conceptual understanding of the process of science combined with a sophisticated knowledge of teaching and learning. This study examines the changes in classroom instructional practices and corresponding changes to knowledge and beliefs about inquiry instruction for eight high school chemistry teachers.…

  13. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  14. Dinâmicas de inquiry no estudo de perturbações a um estado de equilíbrio químico

    Directory of Open Access Journals (Sweden)

    Hugo Vieira

    2014-01-01

    Full Text Available Educational institutions are not being effective, because they do not give individuals what they need to integrate into postmodern society, nor produce citizens that postmodern society needs. Shortcomings include the scientific literacy and cognitive domain levels attained, with an aggravating waning interest in science among pre-university students. We present an inquiry module, an inquiry dynamic, as an education resource for the study of perturbations of a chemical equilibrium state by pre-university or university students of basic chemistry, to contribute to the relevance and popularity of science, potentiation of science literacy and development of cognition. Here we describe an investigation with pre-university students.

  15. How to link geography, cross-curricular approach and inquiry in science education at the primary schools

    Science.gov (United States)

    Karvánková, Petra; Popjaková, Dagmar

    2018-05-01

    Pupil research in school lessons in the sense of Inquiry-Based Education (IBE) is one of the constructivist approaches to education. Inquiry strengthens the positive approach of pupils to natural science subjects, encouraging them to study phenomena and processes taking place in the natural environment around them and use the acquired knowledge in their practical life. Geography as a school subject, due to the multidisciplinary nature of geography as a science, is close to natural sciences as well. This is because of the broadness of the subject of geographical studies, the complex (natural and cultural) landscape. The close links of geography to all cross-sectional themes make it a good support for teaching classical science subjects at schools such as mathematics, physics, chemistry or biology, environmental education. Moreover, the field teaching is one of the strong assets of the implementation of IBE in the school geography. Presented case study on the 'effect of noise on the surroundings' explores the facts mentioned above, in geography teaching. It verifies the pupils' knowledge and skills to adopt the basic principles of IBE in the practice. At the same time, it presents the concrete experiences how the children master the individual stages of IBE during the process of education.

  16. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  17. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  18. The development of guided inquiry-based learning devices on photosynthesis and respiration matter to train science literacy skills

    Science.gov (United States)

    Choirunnisak; Ibrahim, M.; Yuliani

    2018-01-01

    The purpose of this research was to develop a guided inquiry-based learning devices on photosynthesis and respiration matter that are feasible (valid, practical, and effective) to train students’ science literacy. This research used 4D development model and tested on 15 students of biology education 2016 the State University of Surabaya with using one group pretest-posttest design. Learning devices developed include (a) Semester Lesson Plan (b) Lecture Schedule, (c) Student Activity Sheet, (d) Student Textbook, and (e) testability of science literacy. Research data obtained through validation method, observation, test, and questionnaire. The results were analyzed descriptively quantitative and qualitative. The ability of science literacy was analyzed by n-gain. The results of this research showed that (a) learning devices that developed was categorically very valid, (b) learning activities performed very well, (c) student’s science literacy skills improved that was a category as moderate, and (d) students responses were very positively to the learning that already held. Based on the results of the analysis and discussion, it is concluded that the development of guided inquiry-based learning devices on photosynthesis and respiration matter was feasible to train students literacy science skills.

  19. Sweet Science for ALL! Supporting Inquiry-Based Learning through M&Ms Investigation for English Language Learners

    Science.gov (United States)

    Song, Youngjin; Higgins, Teresa; Harding-DeKam, Jenni

    2014-01-01

    This article describes a series of inquiry-based lessons that provide English language learners (ELLs) with opportunities to experience science and engineering practices with conceptual understanding as well as to develop their language proficiency in elementary classrooms. The four-lesson sequence models how various types of instructional…

  20. Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students’ perceptions of task relevance and selfefficacy. Given the under-representation of girls in science

  1. Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students’ perceptions of task relevance and self-efficacy. Given the under-representation of girls in science

  2. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  3. What Is a Scientific Experiment? The Impact of a Professional Development Course on Teachers' Ability to Design an Inquiry-Based Science Curriculum

    Science.gov (United States)

    Pérez, María del Carmen B.; Furman, Melina

    2016-01-01

    Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…

  4. Development, validation, and factorial comparison of the McGill Self-Efficacy of Learners For Inquiry Engagement (McSELFIE) survey in natural science disciplines

    Science.gov (United States)

    Ibrahim, Ahmed; Aulls, Mark W.; Shore, Bruce M.

    2016-11-01

    Sociocognitive theory [Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall; Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44, 1175-1184. doi:10.1037/0003-066x.44.9.1175; Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50, 248-287. doi:10.1016/0749-5978(91)90022-L] accords high importance to the mechanisms of human agency and how they are exercised through self-efficacy. In this paper, we developed and validated the McGill Self-Efficacy For Inquiry Engagement (McSELFIE) instrument with undergraduate students in natural science disciplines. We defined inquiry engagement as carrying out the practices of science (POS) that are supported by students' personality characteristics (SPCs) and that result in achieving inquiry-learning outcomes (ILOs). Based on these theoretical perspectives, the McSELFIE is a 60-item, learner-focused survey that addresses three components that are theoretically important for engaging in scientific inquiry: (a) SPCs, (b) ILOs, and (c) POS. Evidence for construct and content validity were obtained by using experts' judgments and confirmatory factor analysis with a sample of 110 undergraduate students enrolled in science disciplines. Internal consistency of the factors and instrument was also examined. The McSELFIE instrument is a reliable and valid instrument for measuring science undergraduate students' self-efficacy for inquiry engagement. Matched pairs analyses were conducted among the instruments' factors. Students reported the highest self-efficacy for openness, applying knowledge, and carrying out investigations. Students reported the lowest self-efficacy for extraversion, understanding metacognitive knowledge, and planning investigations. Theoretical and practical implications are discussed.

  5. Inquiry Science Learning and Teaching: a Comparison Between the Conceptions and Attitudes of Pre-service Elementary Teachers in Hong Kong and the United States

    Science.gov (United States)

    Lee, Yeung Chung; Lee, Carole Kwan-Ping; Lam, Irene Chung-Man; Kwok, Ping Wai; So, Winnie Wing-Mui

    2018-01-01

    International studies of science education, such as the Trends in Mathematics and Science Study (TIMSS), have revealed considerable national disparities in students' achievements in science education. The results have prompted many nations to compare their science education systems and practices to those of others, to gain insights for improvement. Teacher training and professional development are key educational components that have not attracted as much attention as they deserve in international comparative studies. This study compares the conceptions and attitudes of pre-service elementary teachers (PSETs) in Hong Kong and the United States with respect to inquiry science learning and teaching at the beginning of the semester before the start of the science methods course. PSETs' conceptions and attitudes in the two countries were compared by means of a questionnaire with both Likert-type and open-ended questions. Quantitative data were analyzed using exploratory factor analysis and inferential statistics, while qualitative data were analyzed through the systematic categorization of PSETs' responses into broad themes and subthemes to reflect patterns in their conceptions of and attitudes toward inquiry science learning and teaching. The results revealed a complex interplay between PSETs' conceptions of and attitudes toward inquiry science learning and teaching. The results shed light on the effects of sociocultural contexts and have important implications for the design of science methods courses.

  6. Ayahuasca, psychedelic studies and health sciences: the politics of knowledge and inquiry into an Amazonian plant brew.

    Science.gov (United States)

    Tupper, Kenneth W; Labate, Beatriz C

    2014-01-01

    This article offers critical sociological and philosophical reflections on ayahuasca and other psychedelics as objects of research in medicine, health and human sciences. It situates 21st century scientific inquiry on ayahuasca in the broader context of how early modern European social trends and intellectual pursuits translated into new forms of empiricism and experimental philosophy, but later evolved into a form of dogmatism that convenienced the political suppression of academic inquiry into psychedelics. Applying ideas from the field of science and technology studies, we consider how ayahuasca's myriad ontological representations in the 21st century--for example, plant teacher, traditional medicine, religious sacrament, material commodity, cognitive tool, illicit drug--influence our understanding of it as an object of inquiry. We then explore epistemological issues related to ayahuasca studies, including how the indigenous and mestizo concept of "plant teacher" or the more instrumental notion of psychedelics as "cognitive tools" may impact understanding of knowledge. This leads to questions about whether scientists engaged in ayahuasca research should be expected to have personal experiences with the brew, and how these may be perceived to help or hinder the objectivity of their pursuits. We conclude with some brief reflections on the politics of psychedelic research and impediments to academic knowledge production in the field of psychedelic studies.

  7. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    Science.gov (United States)

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  8. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    Science.gov (United States)

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  9. EXAMINING FACTORS AFFECTING IMPLEMENTATION OF INQUIRY-BASED LEARNING IN FINLAND AND SOUTH KOREA

    Directory of Open Access Journals (Sweden)

    Jingoo Kang

    2016-12-01

    Full Text Available Using inquiry has become a universal factor in science education, but teachers often face challenges in implementing inquiry-based learning (IBL because of, for instance, teachers’ low confidence in conducting inquiry or insufficient school resources. Much research has been conducted to identify the barriers that impede inquiry practice. However, most studies have employed small-scale qualitative methods from a single-country sample, and, thus, the effects of each factor on conducting inquiry in different educational systems have yet to be measured in one statistical model. Accordingly, this research was aimed to explore the extent to which various teacher- and school-factors have respectively affected teachers’ implementation of inquiry-based learning at lower secondary schools. To examine this issue, samples of 496 Finnish teachers in 135 lower secondary schools and 184 Korean teachers in 147 lower secondary schools were selected from the TIMSS 2011 science data set. The findings reveal that teachers’ confidence in teaching science and their collaboration to improve science teaching were strongly associated with facilitating inquiry in both countries, and these two factors’ positive effects on the implementation were partially derived from inquiry-related professional development in the Finnish sample. In addition, class size and school resources were also significantly related to inquiry practice in Finland, and the teachers’ education levels were negatively correlated with the frequency of inquiry practice in Korea. However, in both countries, the teachers’ emphasis on exams was indicated as a non-significant factor in predicting inquiry frequency. The results have implications in respect of the roles of professional development and school environment in increasing IBL practice in school science.

  10. Preparing Historically Underserved Students for STEM Careers: The Role of an Inquiry-based High School Science Sequence Beginning with Physics

    Science.gov (United States)

    Bridges, Jon P.

    Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.

  11. Implementation of inquiry-based science education in different countries: some reflections

    Science.gov (United States)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  12. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    Science.gov (United States)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  13. Changing Practice: An Evaluation of the Impact of a Nature of Science Inquiry-Based Professional Development Programme on Primary Teachers

    Science.gov (United States)

    Murphy, Clíona; Smith, Greg; Varley, Janet; Razi, Özge

    2015-01-01

    This study investigates how a two-year continuing professional development (CPD) programme, with an emphasis on teaching about science through inquiry, impacted the experiences of, approaches to and attitudes towards teaching science of 17 primary teachers in Dublin. Data sources included interview, questionnaire and reflective journal strategies.…

  14. The Role of Content in Inquiry-Based Elementary Science Lessons: An Analysis of Teacher Beliefs and Enactment

    Science.gov (United States)

    Furtak, Erin Marie; Alonzo, Alicia C.

    2010-05-01

    The Trends in International Mathematics and Science Study (TIMSS) Video Study explored instructional practices in the United States (US) in comparison with other countries that ranked higher on the 1999 TIMSS assessment, and revealed that 8th grade science teachers in the US emphasize activities over content during lessons (Roth et al. 2006). This study applies the content framework from the TIMSS Video Study to a sample of 28 3rd grade teachers enacting an inquiry-based unit on floating and sinking, and seeks a deeper understanding of teachers’ practices through analysis of interviews with those teachers. Transcripts of observed lessons were coded according to the TIMSS framework for types of content, and transcripts of teacher interviews were coded to capture the ways in which teachers described their role in and purposes for teaching science, particularly with respect to the floating and sinking unit. Results indicate that teachers focused more on canonical, procedural and experimental knowledge during lessons than on real-world connections and the nature of science; however, none of the types of content received major emphasis in a majority of the classrooms in the sample. During interviews, teachers described their practice in ways that prioritized helping students to like science over specific content outcomes. The study suggests that elementary school teachers’ emphasis on doing and feeling during inquiry-based lessons may interfere with teaching of content.

  15. Optimizing the orchestration of resemiotization with teacher "talk moves": A model of guided-inquiry instruction in middle school science

    Science.gov (United States)

    Millstone, Rachel Diana

    The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply about what constitutes knowledge and understanding in science, and what types of instruction are most conducive to preparing students to participate meaningfully in the society of tomorrow. Because argumentation is the prominent form of productive talk leading to the building of new scientific knowledge, one indicator of successful inquiry lies in students' abilities to communicate their scientific understandings in scientific argumentation structures. The overarching goal of this study is to identify factors that promote effective inquiry-based instruction in middle school science classrooms, as evidenced in students' abilities to engage in quality argumentation with their peers. Three specific research questions were investigated: (1) What factors do teachers identify in their practice as significant to the teaching and learning of science? (2) What factors do students identify as significant to their learning of science? and (3) What factors affect students' opportunities and abilities to achieve sophisticated levels of argumentation in the classroom? Two teachers and forty students participated in this study. Four principle sources of data were collected over a three-month period of time. These included individual teacher interviews, student focus group interviews, fieldnotes, and approximately 85 hours of classroom videotape. From this sample, four pathways for guided-inquiry instruction are identified. Opportunities for student talk were influenced by a combination of factors located in the domains of "teacher practice," "classroom systems," and "physical structures." Combinations of elements from these three

  16. Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms

    Science.gov (United States)

    Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…

  17. Animated Pedagogical Agents Effects on Enhancing Student Motivation and Learning in a Science Inquiry Learning Environment

    Science.gov (United States)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students' perceptions of task relevance and self-efficacy. Given the under-representation of girls in science classrooms, special attention was given to…

  18. Conceptualising inquiry based education in mathematics

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Artigue, Michéle

    2013-01-01

    of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical...... frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the Theory of Didactical Situations, the Realistic Mathematics Education programme, the mathematical modelling perspective, the Anthropological Theory of Didactics...

  19. Teacher Learning in a Mathematics and Science Inquiry Professional Development Program: First Steps in Emergent Teacher Leadership

    Science.gov (United States)

    Yow, Jan A.; Lotter, Christine

    2016-01-01

    This study investigates the role of an inquiry professional development institute in empowering middle school mathematics and science teachers to develop as teacher leaders. Teachers and coaches jointly attended content sessions and participated in practice teaching sessions with students. The coaches led reflection sessions following the practice…

  20. Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment

    NARCIS (Netherlands)

    Pedaste, Margus; Kori, Külli; Maeots, Mario; de Jong, Anthonius J.M.; Riopel, Martin; Smyrnaiou, Zacharoula

    2016-01-01

    Inquiry learning is an effective approach in science education. Complex technology-enhanced learning environments are needed to apply inquiry worldwide to support knowledge gain and improvement of inquiry skills. In our study, we applied an ecology mission in the SCY-Lab learning environment and

  1. "We Found the 'Black Spots' on Campus on Our Own": Development of Inquiry Skills in Primary Science Learning with BYOD (Bring Your Own Device)

    Science.gov (United States)

    Song, Yanjie

    2016-01-01

    This paper reports on a study situated in a one-year project "Bring Your Own Device (BYOD) for Mobile Knowledge Building," aiming at investigating how primary school students developed their inquiry skills in science learning in BYOD-supported learning environments. Student perceptions of the BYOD-supported inquiry experience were also…

  2. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    Science.gov (United States)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  3. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  4. Using Inquiry-Based Instructional Strategies to Increase Student Achievement in 3rd Grade Social Studies

    Science.gov (United States)

    McRae-Jones, Wanda Joycelyn

    2017-01-01

    21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…

  5. Preparing K-8 Teachers to Conduct Inquiry Oriented Science Education

    Science.gov (United States)

    Gross, N. A.; Garik, P.; Nolan, M. D.; Winrich, C.; Derosa, D.; Duffy, A.; Jariwala, M.; Konjoian, B.

    2010-12-01

    The need for STEM professional development for K-8 teachers is well documented. Such professional development promises broad impact, but it must have a positive effect on teachers’ knowledge and skills: 1) a focus on content knowledge, 2) opportunities for active learning, and 3) coherence with other activities. However, sustained impact is only achieved through intensive professional development. In response to the need for science education courses for K-8 teachers, for the past three years, the School of Education and the Department of Physics have collaborated to offer K-8 teachers science content courses of extended duration (75 contact hours) that emphasize inquiry based learning and investigation. The School of Education graduate courses have consisted of five three-hour meetings during the months of May and June, and a two week intensive period in July when the participants come for six hours per day. The alignment of these courses with inquiry teaching was confirmed using the Reformed Teaching Observation Protocol (RTOP). Courses offered in this format have been: --Immersion in Green Energy (IGE) -alternative sources of energy and how electricity is generated (75 teachers over the last 3 years), --Immersion in Global Energy Distribution (IGED) -understanding global climate as an outcome of insolation, convection, and radiation (27 teachers over the last 2 years) The Immersion courses cover a spectrum for inquiry learning that begins with introduction to equipment and experiments through guided discovery and culminates with students taking responsibility for defining and completing their own investigative projects. As a specific example, we consider here the IGED course. For IGED, the first five sessions are devoted to content and learning to use experimental equipment such as digital data collection probes to measure temperature, CO2 and salinity. Content addressed during these sessions include the differentiation between conduction, convection, and

  6. It Takes a Village: Supporting Inquiry- and Equity-Oriented Computer Science Pedagogy through a Professional Learning Community

    Science.gov (United States)

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-01-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…

  7. Why Inquiry? Primary Teachers' Objectives in Choosing Inquiry- and Context-Based Instructional Strategies to Stimulate Students' Science Learning

    Science.gov (United States)

    Walan, Susanne; Nilsson, Pernilla; Ewen, Birgitta Mc

    2017-10-01

    Studies have shown that there is a need for pedagogical content knowledge among science teachers. This study investigates two primary teachers and their objectives in choosing inquiry- and context-based instructional strategies as well as the relation between the choice of instructional strategies and the teachers' knowledge about of students' understanding and intended learning outcomes. Content representations created by the teachers and students' experiences of the enacted teaching served as foundations for the teachers' reflections during interviews. Data from the interviews were analyzed in terms of the intended, enacted, and experienced purposes of the teaching and, finally, as the relation between intended, enacted, and experienced purposes. Students' experiences of the teaching were captured through a questionnaire, which was analyzed inductively, using content analysis. The results show that the teachers' intended teaching objectives were that students would learn about water. During the enacted teaching, it seemed as if the inquiry process was in focus and this was also how many of the students experienced the objectives of the activities. There was a gap between the intended and experienced objectives. Hardly any relation was found between the teachers' choice of instructional strategies and their knowledge about students' understanding, with the exception that the teacher who also added drama wanted to support her students' understanding of the states of water.

  8. Pedagogical Practices to Support Classroom Cultures of Scientific Inquiry

    Science.gov (United States)

    Herrenkohl, Leslie Rupert; Tasker, Tammy; White, Barbara

    2011-01-01

    This article examines the pedagogical practices of two science inquiry teachers and their students using a Web-based system called Web of Inquiry (WOI). There is a need to build a collective repertoire of pedagogical practices that can assist elementary and middle school teachers as they support students to develop a complex model of inquiry based…

  9. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  10. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  11. The Teacher's Role in the Establishment of Whole-Class Dialogue in a Fifth Grade Science Classroom Using Argument-Based Inquiry

    Science.gov (United States)

    Benus, Matthew J.

    2011-01-01

    The purpose of this study was to examine the patterns of dialogue that were established and emerged in one experienced fifth-grade science teacher's classroom that used the argument-based inquiry (ABI) and the ways in which these patterns of dialogue and consensus-making were used toward the establishment of a grasp of science practice. Most…

  12. Scientific visualization as an expressive medium for project science inquiry

    Science.gov (United States)

    Gordin, Douglas Norman

    Scientists' external representations can help science education by providing powerful tools for students' inquiry. Scientific visualization is particularly well suited for this as it uses color patterns, rather than algebraic notation. Nonetheless, visualization must be adapted so it better fits with students' interests, goals, and abilities. I describe how visualization was adapted for students' expressive use and provide a case study where students successfully used visualization. The design process began with scientists' tools, data sets, and activities which were then adapted for students' use. I describe the design through scenarios where students create and analyze visualizations and present the software's functionality through visualization's sub-representations of data; color; scale, resolution, and projection; and examining the relationships between visualizations. I evaluate these designs through a "hot-house" study where a small group of students used visualization under near ideal circumstances for two weeks. Using videotapes of group interactions, software logs, and students' work I examine their representational and inquiry strategies. These inquiries were successful in that the group pursued their interest in world hunger by creating a visualization of daily per capita calorie consumption. Through creating the visualization the students engage in a process of meaning making where they interweave their prior experiences and beliefs with the representations they are using. This interweaving and other processes of collaborative visualization are shown when the students (a) computed values, (b) created a new color scheme, (c) cooperated to create the visualization, and (d) presented their work to other students. I also discuss problems that arose when students (a) used units without considering their meaning, (b) chose inappropriate comparisons in case-based reasoning, (c) did not participate equally during group work, (d) were confused about additive

  13. Composing Science

    Science.gov (United States)

    Atkins, Leslie

    2015-03-01

    The course Scientific Inquiry at California State University was developed by faculty in biology, physics and English to meet ``writing proficiency'' requirements for non-science majors. Drawing from previous work in composition studies, the position that we take in this course is that we should be engaging students in writing that replicates the work that writing does in science, rather than replicating the particular structural conventions characteristic of scientific writing. That is, scientists use writing to have, remember, share, vet, challenge, and stabilize ideas, and our course requires students use writing to achieve those aims, rather than produce writing that obeys particular conventions of scientific writing. This talk will describe how we have integrated findings from composition studies with a course on scientific inquiry, and provide examples of how scientific communication has resulted from this dialogue. Funding by NSF #1140860.

  14. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    International Nuclear Information System (INIS)

    Adorno, Dominique Persano; Pizzolato, Nicola; Fazio, Claudio

    2015-01-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)

  15. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  16. Development of inquiry-based learning activities integrated with the local learning resource to promote learning achievement and analytical thinking ability of Mathayomsuksa 3 student

    Science.gov (United States)

    Sukji, Paweena; Wichaidit, Pacharee Rompayom; Wichaidit, Sittichai

    2018-01-01

    The objectives of this study were to: 1) compare learning achievement and analytical thinking ability of Mathayomsuksa 3 students before and after learning through inquiry-based learning activities integrated with the local learning resource, and 2) compare average post-test score of learning achievement and analytical thinking ability to its cutting score. The target of this study was 23 Mathayomsuksa 3 students who were studying in the second semester of 2016 academic year from Banchatfang School, Chainat Province. Research instruments composed of: 1) 6 lesson plans of Environment and Natural Resources, 2) the learning achievement test, and 3) analytical thinking ability test. The results showed that 1) student' learning achievement and analytical thinking ability after learning were higher than that of before at the level of .05 statistical significance, and 2) average posttest score of student' learning achievement and analytical thinking ability were higher than its cutting score at the level of .05 statistical significance. The implication of this research is for science teachers and curriculum developers to design inquiry activities that relate to student's context.

  17. Working with mathematics and science teachers on Inquiry Based Learning (IBL) approaches : teacher belief. [VISIONS 2011: Teacher Education

    NARCIS (Netherlands)

    Sikko, S.A.; Lyngved, R.; Pepin, B.

    2012-01-01

    This paper reports on mathematics and science teachers’ beliefs concerning the use of inquiry-based teaching strategies. Two different surveys were conducted: one with 24 teachers who were to become future instructional leaders; and one with 75 teachers as part of an international baseline study. We

  18. E-Learning and the iNtegrating Technology for InQuiry (NTeQ) Model Lesson Design

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The author reflects on the history of technology in education and e-learning and introduces the iNtegrating Technology for inQuiry (NTeQ) model of lesson design authored by Morrison and Lowther (2005). The NTeQ model lesson design is a new pedagogy for academic instruction in response to the growth of the Internet and technological advancements in…

  19. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  20. The Scientific Method and Scientific Inquiry: Tensions in Teaching and Learning

    Science.gov (United States)

    Tang, Xiaowei; Coffey, Janet E.; Elby, Andy; Levin, Daniel M.

    2010-01-01

    Typically, the scientific method in science classrooms takes the form of discrete, ordered steps meant to guide students' inquiry. In this paper, we examine how focusing on the scientific method as discrete steps affects students' inquiry and teachers' perceptions thereof. To do so, we study a ninth-grade environmental science class in which…

  1. Tracing learning about astronomy during an ICT supported inquiry

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Østergaard, Lars Domino; Johnson, Per

    2012-01-01

    -based learning has to offer. In this presentation we examine the cases of two year 8 classes (14 year old students) who engaged in science inquiry in their science and English lessons and collaborated with a New Zealand class to explore the topic of astronomy. To gain insight into the students’ developing ideas...... in astronomy we adopted a multilevel– multifaceted approach. Evidence of learning was collected at three different levels: immediate, close and proximal. We will highlight the insights we gained into students’ developing science inquiry skills and knowledge and explain how the different proximities...

  2. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    Science.gov (United States)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.

  3. Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development

    Science.gov (United States)

    Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy

    2012-02-01

    This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience-centered conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centered conception where teachers focused on engaging students with challenging problems; and (c) The Question-centered conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.

  4. An inquiry-based approach to the Franck-Hertz experiment

    International Nuclear Information System (INIS)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2015-01-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competencies is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr’s postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception’s change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  5. An inquiry-based approach to the Franck-Hertz experiment

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2016-05-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competences is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr's postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception's change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  6. Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.

    2009-12-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in

  7. Setting the question for inquiry: The effects of whole class vs small group on student achievement in elementary science

    Science.gov (United States)

    Cavagnetto, Andy Roy

    This study was conducted to determine the effects of two different student-centered approaches to setting the question for inquiry. The first approach (whole class) consisted of students setting a single question for inquiry after which students worked in small groups during an investigation phase of the activity with all groups exploring the same question. The second approach (small group) consisted of each group of students setting a question resulting in numerous questions being explored per class. A mixed method quasi-experimental design was utilized. Two grade five teachers from a small rural school district in the Midwestern United States participated, each teaching two sections of science (approximately 25 students per section). Results indicate three major findings. Instructional approach (whole class vs. small group) did not effect student achievement in science or language arts. Observational data indicated the actions and skills teachers utilized to implement the approaches were similar. Specifically, the pedagogical skills of dialogical interaction (which was found to be influenced by teacher level of control of learning and teacher content knowledge) and effective rather than efficient use of time were identified as key factors in teachers' progression toward a student-centered, teacher-managed instructional approach. Unit exams along with qualitative and quantitative teacher observation data indicated that these factors do have an impact on student achievement. Specifically increased dialogical interaction in the forms of greater student voice, and increased cognitive demands placed on students by embedding and emphasizing science argument within the student inquiry corresponded to positive gains in student achievement. Additionally, teacher's perception of student abilities was also found to influence professional growth. Finally, allowing students to set the questions for inquiry and design the experiments impact the classroom environment as teacher

  8. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  9. Implementing inquiry-based kits within a professional development school model

    Science.gov (United States)

    Jones, Mark Thomas

    2005-07-01

    Implementation of guided inquiry teaching for the first time carries inherent problems for science teachers. Reform efforts on inquiry-based science teaching are often unsustainable and are not sensitive to teachers' needs and abilities as professionals. Professional development schools are meant to provide a research-based partnership between a public school and a university. These collaborations can provide support for the professional development of teachers. This dissertation reports a study focused on the implementation of inquiry-based science kits within the support of one of these collaborations. The researcher describes the difficulties and successful adaptations experienced by science teachers and how a coteaching model provided support. These types of data are needed in order to develop a bottom-up, sustainable process that will allow teachers to implement inquiry-based science. A qualitative methodology with "researcher as participant" was used in this study of two science teachers during 2002--2003. These two teachers were supported by a coteaching model, which included preservice teachers for each teacher as well as a supervising professor. Data were collected from the researcher's direct observations of coteachers' practice. Data were also collected from interviews and reflective pieces from the coteachers. Triangulation of the data on each teacher's case supported the validity of the findings. Case reports were prepared from these data for each classroom teacher. These case reports were used and cross-case analysis was conducted to search for major themes and findings in the study. Major findings described the hurdles teachers encounter, examples of adaptations observed in the teachers' cases and the supportive interactions with their coteachers while implementing the inquiry-based kits. In addition, the data were used to make recommendations for future training and use of the kits and the coteaching model. Results from this study showed that the

  10. The effect of integrating cooperative learning into 5E inquiry learning model on interpersonal skills of high school students

    Science.gov (United States)

    Pholphuet, Preedaporn; Kanyaprasith, Kamonwan; Khumwong, Pinit; Praphairaksit, Nalena

    2018-01-01

    The purpose of this research was to investigate the effect of integrating cooperative learning into 5E inquiry learning model on interpersonal skills of high school students. Two 10th grade classrooms consisting of 63 students were obtained by purposive sampling then one was assigned as an experimental and the other as a control group. The cooperative learning was integrated into 5E inquiry model for the experimental group in addition to the normal 5E inquiry model in the control group. A 5-level rating scale questionnaire was used for data collection both before and after the experiment. Furthermore, a descriptive journal from each student was added to the study after the researchers realized a significant difference in the teamwork skill of each group. Data from questionnaires were analyzed using descriptive statistics and inferential statistics. The results showed that the experimental group had a significantly higher score of interpersonal skills when compared to the control group (ptime management, the outcome of the work, the process of the work and the attitude of the students. The students in the experimental group demonstrated more creative ideas and were more likely to listen to other student ideas. The students in experimental group were less competitive and were more open in sharing and helping others. In conclusion, the addition of cooperative learning in to the usual 5E inquiry learning, not only help the students to achieve the knowledge but also help develop good interpersonal skills.

  11. Improving Inquiry Teaching through Reflection on Practice

    Science.gov (United States)

    Lotter, Christine R.; Miller, Cory

    2017-08-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned science content and inquiry pedagogy. The program included a 2-week summer institute in which teachers participated in science content sessions, practice teaching to middle level students, and small group-facilitated reflection sessions on their teaching. For this study, data collection focused on teachers' recorded dialogue during the facilitator - run reflection sessions, the teachers' daily written reflections, a final written reflection, and a written reflection on a videotaped teaching session. We investigated the teachers' reflection levels and the themes teachers focused on during their reflection sessions. Teachers were found to reflect at various reflection levels, from simple description to a more sophisticated focus on how to improve student learning. Recurrent themes point to the importance of providing situated learning environments, such as the practice teaching with immediate reflection for teachers to have time to practice new instructional strategies and gain insight from peers and science educators on how to handle student learning issues.

  12. CAREER Educational Outreach: Inquiry-based Atmospheric Science Lessons for K-12 students

    Science.gov (United States)

    Courville, Z.; Carbaugh, S.; Defrancis, G.; Donegan, R.; Brown, C.; Perovich, D. K.; Richter-Menge, J.

    2011-12-01

    Climate Comics is a collaborative outreach effort between the Montshire Museum of Science, in Norwich, VT, the Cold Regions Research and Engineering Laboratory (CRREL) research staff, and freelance artist and recent graduate of the Center for Cartoon Studies in White River Junction, VT, Sam Carbaugh. The project involves the cartoonist, the education staff from the museum, and researchers from CRREL creating a series of comic books with polar science and research themes, including sea ice monitoring, sea ice albedo, ice cores, extreme microbial activity, and stories and the process of fieldwork. The aim of the comic series is to provide meaningful science information in a comic-format that is both informative and fun, while highlighting current polar research work done at the lab. The education staff at the Montshire Museum develops and provides a series of hands-on, inquiry-based activity descriptions to complement each comic book, and CRREL researchers provide science background information and reiterative feedback about the comic books as they are being developed. Here, we present the motivation for using the comic-book medium to present polar research topics, the process involved in creating the comics, some unique features of the series, and the finished comic books themselves. Cartoon illustrating ways snow pack can be used to determine past climate information.

  13. Sociology and Complexity Science A New Field of Inquiry

    CERN Document Server

    Castellani, Brian

    2009-01-01

    This book is the first to identify and review the new field of study, sociology and complexity science—or SACS for short. SACS is comprised of five cutting-edge areas of research: computational sociology, the British-based School of Complexity (BBC), complex social network analysis (CSNA), sociocybernetics and the Luhmann School of Complexity (LSC). Together, these five areas represent the latest development in complexity science and sociological systems thinking, offering researchers a powerful, new set of tools for addressing the growing complexity of sociological inquiry. This book also showcases a new method for modeling social systems, called the SACS Toolkit. The SACS Toolkit comes with a theoretical framework (social complexity theory), procedural algorithm (assemblage) and recommended toolset for modeling social systems (qualitatively, historically or numerically) from the ground-up. In fact, this book uses the SACS Toolkit to review the new field of SACS. The third feature of this book is its compe...

  14. A cogenerative inquiry using postcolonial theory to envisage culturally inclusive science education

    Science.gov (United States)

    Adams, Jennifer; Luitel, Bal Chandra; Afonso, Emilia; Taylor, Peter Charles

    2008-12-01

    This forum constitutes a cogenerative inquiry using postcolonial theory drawn from the review paper by Zembylas and Avraamidou. Three teacher educators from African, Asian and Caribbean countries reflect on problems confronting their professional practices and consider the prospects of creating culturally inclusive science education. We learn that in Mozambique, Nepal and the Caribbean scientism patrols the borders of science education serving to exclude local epistemological beliefs and discourses and negating culturally contextualized teaching and learning. Despite the diverse cultural hybridities of these countries, science education is disconnected from the daily lives of the majority of their populations, serving inequitably the academic Western-oriented aspirations of an elite group who are "living hybridity but talking scientism." The discussants explore their autobiographies to reveal core cultural values and beliefs grounded in their non-Western traditions and worldviews but which are in conflict with the Western Modern Worldview (WMW) and thus have no legitimate role in the standard school/college science classroom. They reflect on their hybrid cultural identities and reveal the interplay of multiple selves grounded in both the WMW and non-WMWs and existing in a dialectical tension of managed contradiction in a Third Space. They argue for dialectical logic to illuminate a Third Space wherein students of science education may be empowered to challenge hegemonies of cultural reproduction and examine reflexively their own identities, coming to recognize and reconcile their core cultural beliefs with those of Western modern science, thereby dissipating otherwise strongly delineated cultural borders.

  15. Mini-Journals: Incorporating Inquiry, Quantitative Skills and Writing into Homework Assignments for Geochemistry and Planetary Science

    Science.gov (United States)

    Whittington, A. G.; Speck, A.; Witzig, S.

    2011-12-01

    As part of an NSF-funded project, "CUES: Connecting Undergraduates to the Enterprise of Science," new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors, fulfills the computing requirement by having 50% of the grade come from five spreadsheet-based homework assignments), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). Inquiry involves activities where the learner engages in scientifically oriented questions, gives priority to evidence in responding to questions, formulates explanations from evidence, connects explanations to scientific knowledge, and communicates and justifies explanations. We engage students in inquiry-based learning by presenting homework exercises as "mini-journal" articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the mini-journal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. Example assignments from Geochemistry include "Trace Element Partitioning During Mantle Melting and MORB Crystallization" and "Isotopic Investigations of Crustal Evolution in the Midcontinent US". The key differences between the old and new

  16. The Impact of Inquiry Based Instruction on Science Process Skills and Self-Efficacy Perceptions of Pre-Service Science Teachers at a University Level Biology Laboratory

    Science.gov (United States)

    Sen, Ceylan; Sezen Vekli, Gülsah

    2016-01-01

    The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…

  17. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-01-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…

  18. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  19. Teachers and Technology Use in Secondary Science Classrooms: Investigating the Experiences of Middle School Science Teachers Implementing the Web-based Inquiry Science Environment (WISE)

    Science.gov (United States)

    Schulz, Rachel Corinne

    This study investigated the intended teacher use of a technology-enhanced learning tool, Web-based Inquiry Science Environment (WISE), and the first experiences of teachers new to using it and untrained in its use. The purpose of the study was to learn more about the factors embedded into the design of the technology that enabled it or hindered it from being used as intended. The qualitative research design applied grounded theory methods. Using theoretical sampling and a constant comparative analysis, a document review of WISE website led to a model of intended teacher use. The experiences of four middle school science teachers as they enacted WISE for the first time were investigated through ethnographic field observations, surveys and interviews using thematic analysis to construct narratives of each teachers use. These narratives were compared to the model of intended teacher use of WISE. This study found two levels of intended teacher uses for WISE. A basic intended use involved having student running the project to completion while the teacher provides feedback and assesses student learning. A more optimal description of intended use involved the supplementing the core curriculum with WISE as well as enhancing the core scope and sequence of instruction and aligning assessment with the goals of instruction through WISE. Moreover, WISE projects were optimally intended to be facilitated through student-centered teaching practices and inquiry-based instruction in a collaborative learning environment. It is also optimally intended for these projects to be shared with other colleagues for feedback and iterative development towards improving the Knowledge Integration of students. Of the four teachers who participated in this study, only one demonstrated the use of WISE as intended in the most basic way. This teacher also demonstrated the use of WISE in a number of optimal ways. Teacher confusion with certain tools available within WISE suggests that there may be a

  20. Mendelian Genetics as a Platform for Teaching about Nature of Science and Scientific Inquiry: The Value of Textbooks

    Science.gov (United States)

    Campanile, Megan F.; Lederman, Norman G.; Kampourakis, Kostas

    2015-01-01

    The purpose of this study was to analyze seven widely used high school biology textbooks in order to assess the nature of science knowledge (NOS) and scientific inquiry (SI) aspects they, explicitly or implicitly, conveyed in the Mendelian genetics sections. Textbook excerpts that directly and/or fully matched our statements about NOS and SI were…

  1. Pragmatic inquiry and creativity

    DEFF Research Database (Denmark)

    Gimmler, Antje

    ’Don’t block the road of inquiry” was the motto of Peirce and also Dewey situated inquiry in its ideal version in a democratic and cooperative community. Abduction became the key concept for the pragmatic and creative research process where the lonely engineer is substituted with intelligent...... collaborations of the many. Thus, inquiry is from a pragmatic understanding rather a social than a purely cognitive task. The paper will firstly give a sketch of this understanding of inquiry and creativity on the background of the theories of Peirce and Dewey and will draw some parallels to recent...... of Thevenot’s critical pragmatism this understanding might be naïve – not because this is an idealistic rather than a real-life scenario but because the idea of collaborative creativity and self-realization has actually become the driving force in a marked dominated organization of science and production...

  2. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  3. Teachers' Roles, Students' Personalities, Inquiry Learning Outcomes, and Practices of Science and Engineering: The Development and Validation of the McGill Attainment Value for Inquiry Engagement Survey in STEM Disciplines

    Science.gov (United States)

    Ibrahim, Ahmed; Aulls, Mark W.; Shore, Bruce M.

    2017-01-01

    Inquiry engagement is a newly defined construct that represents the participation in carrying out practices of science and engineering to achieve learning outcomes and is influenced by learners' personalities and teachers' roles. Expectancy value theory posits that attainment values are important components of task values that, in turn, directly…

  4. Engaging Non-Science Majors Through Citizen Science Projects In Inquiry-Based Introductory Geoscience Laboratory Courses

    Science.gov (United States)

    Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.

    2010-12-01

    Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two

  5. Augmenting Guided-Inquiry Learning with a Blended Classroom Approach

    Science.gov (United States)

    Baum, Edward J.

    2013-01-01

    Teaching strategies such as guided inquiry have long been reported to produce superior learning outcomes in postsecondary science education. Yet many teachers cite obstacles that prevent them from implementing the method. Students also often report negative attitudes toward guided inquiry, leading to a lack of student engagement and other…

  6. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  7. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    Science.gov (United States)

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  8. Elementary teachers' ideas about, planning for and implementation of learner-directed and teacher-directed inquiry: A mixed methods study

    Science.gov (United States)

    Biggers, Mandy Sue

    Using a framework for variations of classroom inquiry (National Research Council [NRC], 2000, p. 29), this study explored 40 inservice elementary teachers' planning, modification, and enactment of kit-based science curriculum materials. As part of the study, a new observation protocol was modified from an existing protocol (Practices of Science Observation Protocol [P-SOP]) to measure the amount of teacher direction in science inquiry lessons (Practices of Science Observation Protocol + Directedness [P-SOPd]). An embedded mixed methods design was employed to investigate four questions: 1. How valid and reliable is the P-SOPd? 2. In what ways do inservice elementary teachers adapt existing elementary science curriculum materials across the inquiry continuum? 3. What is the relationship between the overall quality of inquiry and variations of inquiry in elementary teachers' enacted science instruction? 4. How do inservice elementary teachers' ideas about the inquiry continuum influence their adaptation of elementary science curriculum materials? Each teacher chose three lessons from a science unit for video-recorded observation, and submitted lesson plans for the three lessons. Lesson plans and videos were scored using the P-SOPd. The scores were also compared between the two protocols to determine if a correlation existed between the level of inquiry (measured on the P-SOP) and the amount of teacher direction (measured on the P-SOPd). Findings indicated no significant differences between planned and enacted lessons for the amount of teacher direction, but a correlation existed between the level of inquiry and the amount of teacher direction. In effect, the elementary teachers taught their science curriculum materials with a high level of fidelity for both the features of inquiry and the amount of teacher direction. A smaller group of three case study teachers were followed for the school year to give a more in-depth explanation of the quantitative findings. Case

  9. Impact of Including Authentic Inquiry Experiences in Methods Courses for Pre-Service Secondary Teachers

    Science.gov (United States)

    Slater, T. F.; Elfring, L.; Novodvorsky, I.; Talanquer, V.; Quintenz, J.

    2007-12-01

    Science education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.

  10. Increasing Bellevue School District's elementary teachers' capacity for teaching inquiry-based science: Using ideas from contemporary learning theory to inform professional development

    Science.gov (United States)

    Maury, Tracy Anne

    This Capstone project examined how leaders in the Bellevue School District can increase elementary teachers' capacity for teaching inquiry-based science through the use of professional learning activities that are grounded in ideas from human learning theory. A framework for professional development was constructed and from that framework, a set of professional learning activities were developed as a means to support teacher learning while project participants piloted new curriculum called the Isopod Habitat Challenge. Teachers in the project increased their understanding of the learning theory principles of preconceptions and metacognition. Teachers did not increase their understanding of the principle of learning with understanding, although they did articulate the significance of engaging children in student-led inquiry cycles. Data from the curriculum revision and professional development project coupled with ideas from learning theory, cognition and policy implementation, and learning community literatures suggest Bellevue's leaders can encourage peer-to-peer interaction, link professional development to teachers' daily practice, and capitalize on technology as ways to increase elementary teachers' capacity for teaching inquiry-based science. These lessons also have significance for supporting teacher learning and efficacy in other subject areas and at other levels in the system.

  11. Inquiry, Argumentation, and the Phases of the Moon: Helping Students Learn Important Concepts and Practices

    Science.gov (United States)

    Hall, Cady B.; Sampson, Victor

    2009-01-01

    An important goal of the current reform movement in science education is to promote scientific literacy in the United States, and scientific inquiry is at its heart. However, the National Science Education Standards clearly indicate that to promote inquiry, more emphasis should be placed on "science as argument and explanation" rather than on…

  12. Students' attitude-related responses to inquiry learning in undergraduate kinesiology laboratory instruction

    Science.gov (United States)

    Henige, Kimberly Ann

    The purpose of this investigation was to determine whether the student attitudes are impacted when teaching methods in an undergraduate Kinesiology lab course shift from a traditional, cookbook-style, low inquiry-level to an investigative, high inquiry-level approach. Students participated in five weeks of Level 0-1 (low) inquiry activities, followed by five weeks of a Level 3 (high) inquiry project. The same Likert-scale survey was administered to students before and after each 5-week period. The attitudes measured by the survey included students' (a) attitude to scientific inquiry, (b) adoption of scientific attitudes, (c) enjoyment of science lessons, and (d) motivation in science. Repeated measures ANOVAs revealed no significant change in any of the attitude measures when the survey results from the different time points were compared. An open-ended qualitative survey was given to the students at the end of the semester and provided more insight. When asked to compare the low and high-level inquiry experiences, most students reported enjoying the higher level of inquiry more. On the other hand, most students felt they learned more during the low inquiry-level activities. The reported level of motivation in lab was about the same for both levels. When asked what they liked most about the high-level inquiry project, students favored aspects such as the independence, responsibility, and personal relevance. When asked what they liked the least, most students said there was nothing they disliked. Of the minority of students who did not like the high-level of inquiry, most claimed to be uncomfortable with the lack of structure and guidance. Other findings were that many students expressed a new or increased respect and appreciation for what scientists do. Some students experienced a decrease in their reliance on science to be true and correct. While some students thought the high-level inquiry was harder, others perceived it as being easier. These findings illustrate

  13. Assimilation or transformation? An analysis of change in ten secondary science teachers following an inquiry-based research experience for teachers

    Science.gov (United States)

    Blanchard, Margaret R.

    2006-12-01

    It is argued that teachers must experience inquiry in order to be able to translate it to their classrooms. The National Science Foundation's (NSF's) Research Experiences for Teachers (RETs) offer promising programs, yet scant empirical support documents the effectiveness of these programs. In this study, ten experienced, secondary science teachers were followed back to the classroom after a five-week, marine ecology RET, addressing the questions: How do teachers' conceptions and enactment of classroom inquiry change after the program?; What are the program's goals?; What accounts for these differences?; and What do these findings imply for future RETs? Data collected includes pre and post program questionnaires, audiotapes and videotapes of pre and post program teaching, post program STIR instrument responses, interviews, and field notes. The study found that an extensive, reflective program model, conducted by scientists who are teacher-centered, successfully conveyed the program model of inquiry. Post program, teachers' conceptions of inquiry were more student centered, focused less on assessment and classroom management and more on authentic content, questions, and presentations, and incorporated program language. Question patterns during enactment shifted to fewer teacher questions, more student questions, and increased higher order questions by students and teachers. More procedural questions indicated role shifts. The STIR instrument fostered understanding of enactment and, with critical incidents analyses, highlighted underlying teacher value structures. Teachers with more theoretical sophistication and who had Rationalistic and Egalitarian value structures applied inquiry throughout their teaching and moved beyond contextual constraints. Implications suggest that those who develop and implement RETs need to be masterful "bridge builders" to help transition teachers and their learning back to the classroom. Reflection holds promise for illuminating teachers

  14. Integrating Bioethics in Sciences’ curricula using values in science and socio-scientific issues

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2017-04-01

    Full Text Available The  The main objective of the present work is selection of ethical issues that should be addressed with first year undergraduate and K-12 students. Since K-12 Sciences’ curriculum, in Portugal, does not include bioethics content in any discipline explicitly, teachers need to make an effort to include it. Some online materials are available to use in high school classes and will be discussed. My proposal combines inquiry learning-teaching methods with the aim of promoting the discussion of bioethics issues in accordance to UNESCO Bioethics Core Curriculum already adopted by twenty universities throughout the world (Darwish 2015. Some of the issues that are addressed are: ecology and environment ethics, infectious diseases and vaccination, water for all, intellectual property, genomes and patents, biotechnological advances (genetic modified organisms and synthesis of genomes, future generations, climate hanges and natural resources, biomedical advances and human rights, authorship and contributions in scientific publications, and biobanks. In conclusion, this study may constitute an example to facilitate the implementation, by K-12 teachers, of active inquiry strategies, using features of science such as values and socio-scientific issues, and focused on the discussion of concrete ethical issues facing humanity. It also constitutes a proposal of integrating Bioethics in undergraduate sciences’ curricula.

  15. Towards an Ecological Inquiry in Child-Computer Interaction

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Iversen, Ole Sejer; Hjermitslev, Thomas

    2013-01-01

    The paper introduces an Ecological Inquiry as a methodological approach for designing technology with children. The inquiry is based on the ‘ecological turn’ in HCI, Ubiquitous Computing and Participatory Design that shift the emphasis of design from technological artifacts to entire use ecologies...... into which technologies are integrated. Our Ecological Inquiry extends Cooperative Inquiry in three directions: from understanding to emergence of social practices and meanings, from design of artifacts to hybrid environments, and from a focus on technology to appropriations through design and use. We...... exemplify our approach in a case study in which we designed social technologies for hybrid learning environments with children in two schools, and discuss how an Ecological Inquiry can inform existing approaches in CCI....

  16. The Teaching and Assessment of Inquiry Competences

    DEFF Research Database (Denmark)

    Rönnebeck, Silke; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    New competence-oriented learning goals can only be sustainably implemented if they are aligned with teaching and assessment goals. Within the fields of science, technology and mathematics education, one approach of compe-tence-oriented teaching is based on the concept of inquiry-based education....... Scien-tific inquiry in science, problem solving in mathematics, design processes in tech-nology and innovation as a cross-curricular approach to teaching and learning that is emphasised as a key element of 21st century skills allow students to engage in the thinking and working processes of scientists....... By applying these approaches, teachers can address subject-specific as well as generic competences (e.g. investi-gation in science as a subject-specific competence vs. argumentation or communi-cation as more generic competences). Since what is assessed strongly influences what is taught, changes in teaching...

  17. ARISE: American renaissance in science education

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-14

    The national standards and state derivatives must be reinforced by models of curricular reform. In this paper, ARISE presents one model based on a set of principles--coherence, integration of the sciences, movement from concrete ideas to abstract ones, inquiry, connection and application, sequencing that is responsive to how people learn.

  18. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    Science.gov (United States)

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  19. Using inquiry-based instruction to meet the standards of No Child Left Behind for middle school earth science

    Science.gov (United States)

    Harris, Michael W.

    This study examined the effectiveness of a specific instructional strategy employed to improve performance on the end-of-the-year Criterion-Referenced Competency Test (CRCT) as mandated by the No Child Left Behind (NCLB) Act of 2001. A growing body of evidence suggests that the perceived pressure to produce adequate aggregated scores on the CRCT causes teachers to neglect other relevant aspects of teaching and attend less to individualized instruction. Rooted in constructivist theory, inquiry-based programs provide a o developmental plan of instruction that affords the opportunity for each student to understand their academic needs and strengths. However, the utility of inquiry-based instruction is largely unknown due to the lack of evaluation studies. To address this problem, this quantitative evaluation measured the impact of the Audet and Jordan inquiry-based instructional model on CRCT test scores of 102 students in a sixth-grade science classroom in one north Georgia school. A series of binomial tests of proportions tested differences between CRCT scores of the program participants and those of a matched control sample selected from other district schools that did not adopt the program. The study found no significant differences on CRCT test scores between the treatment and control groups. The study also found no significant performance differences among genders in the sample using inquiry instruction. This implies that the utility of inquiry education might exist outside the domain of test scores. This study can contribute to social change by informing a reevaluation of the instructional strategies that ideally will serve NCLB high-stakes assessment mandates, while also affording students the individual-level skills needed to become productive members of society.

  20. Teacher learning in technology professional development and its impact on student achievement in science

    Science.gov (United States)

    Lee, Hyunju; Longhurst, Max; Campbell, Todd

    2017-07-01

    This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.

  1. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  2. Chemistry Teachers' Perceived Benefits and Challenges of Inquiry-Based Instruction in Inclusive Chemistry Classrooms

    Science.gov (United States)

    Mumba, F.; Banda, A.; Chabalengula, V. M.

    2015-01-01

    Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…

  3. Leveraging Educational Data Mining for Real-Time Performance Assessment of Scientific Inquiry Skills within Microworlds

    Science.gov (United States)

    Gobert, Janice D.; Sao Pedro, Michael A.; Baker, Ryan S. J. D.; Toto, Ermal; Montalvo, Orlando

    2012-01-01

    We present "Science Assistments," an interactive environment, which assesses students' inquiry skills as they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and methods of analyzing data in terms of "evidence-centered design." Specifically, we focus on the "student model," the…

  4. Understanding Students' Experiments--What Kind of Support Do They Need in Inquiry Tasks?

    Science.gov (United States)

    Arnold, Julia Caroline; Kremer, Kerstin; Mayer, Jürgen

    2014-01-01

    Inquiry learning is a widely recognized method for fostering inquiry competence in science education. Nevertheless, there is discussion about how to best support students while working on inquiry tasks (in this case: experiments on causal relationships). To identify the kind of support students need in order to design experiments in upper grades,…

  5. Characterizing the changes in teaching practice during first semester implementation of an argument-based inquiry approach in a middle school science classroom

    Science.gov (United States)

    Pinney, Brian Robert John

    The purpose of this study was to characterize ways in which teaching practice in classroom undergoing first semester implementation of an argument-based inquiry approach changes in whole-class discussion. Being that argument is explicitly called for in the Next Generation Science Standards and is currently a rare practice in teaching, many teachers will have to transform their teaching practice for inclusion of this feature. Most studies on Argument-Based Inquiry (ABI) agree that development of argument does not come easily and is only acquired through practice. Few studies have examined the ways in which teaching practice changes in relation to the big idea or disciplinary core idea (NGSS), the development of dialogue, and/or the development of argument during first semester implementation of an argument-based inquiry approach. To explore these areas, this study posed three primary research questions: (1) How does a teacher in his first semester of Science Writing Heuristic professional development make use of the "big idea"?, (1a) Is the indicated big idea consistent with NGSS core concepts?, (2) How did the dialogue in whole-class discussion change during the first semester of argument-based inquiry professional development?, (3) How did the argument in whole-class discussion change during the first semester of argument-based inquiry professional development? This semester-long study that took place in a middle school in a rural Midwestern city was grounded in interactive constructivism, and utilized a qualitative design to identify the ways in which the teacher utilized big ideas and how dialogue and argumentative dialogue developed over time. The purposefully selected teacher in this study provided a unique situation where he was in his first semester of professional development using the Science Writing Heuristic Approach to argument-based inquiry with 19 students who had two prior years' experience in ABI. Multiple sources of data were collected, including

  6. The impact of inquiry-based instructional professional development upon instructional practice: An action research study

    Science.gov (United States)

    Broom, Frances A.

    This mixed method case study employs action research, conducted over a three month period with 11 elementary math and science practitioners. Inquiry as an instructional practice is a vital component of math and science instruction and STEM teaching. Teachers examined their beliefs and teaching practices with regard to those instructional factors that influence inquiry instruction. Video-taped lessons were compared to a rubric and pre and post questionnaires along with two interviews which informed the study. The results showed that while most beliefs were maintained, teachers implemented inquiry at a more advanced level after examining their teaching and reflecting on ways to increase inquiry practices. Because instructional practices provide only one component of inquiry-based instruction, other components need to be examined in a future study.

  7. Inquiry-Based Learning in Teacher Education: A Primary Humanities Example

    Science.gov (United States)

    Preston, Lou; Harvie, Kate; Wallace, Heather

    2015-01-01

    Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…

  8. Facts as Theory: Aspects of Goethe's Philosophy of Science.

    Science.gov (United States)

    Zajonc, Arthur G.

    1983-01-01

    After showing that Goethe's declarations and admonishments concerning the scope and methods of science often foreshadowed later developments, the author reconsiders Goethe's own scientific efforts. Goethe continually strove to fully integrate human experience into all levels of scientific inquiry and discovery. (JMK)

  9. Can critical inquiry differ from criticism? A dialogue with current occupational science and occupational therapy schools of inquiry

    Directory of Open Access Journals (Sweden)

    Jessie Wilson

    2016-07-01

    Full Text Available Introduction: Critical inquiry has been adopted by various academic disciplines. However, there is a lack of consistency and transparency in the way this complex theoretical and methodological position is applied in research. For novice researchers that ambiguity can lead to blurring the conceptual distinction between critical research and the act of criticizing. Objective: The purpose of this essay is to reflect on what it means to keep a critical perspective for novice researchers. Method: The concepts are explored through a personal narrative that allows authors to examine the details of their trajectory to embrace a critical perspective, which has the power to lead to change, both personal and social. Results: We explore the methodological foundations of the critical research and observe how the emotion is taken over or suppressed in the investigation process. Conclusion: We contextualize key concepts of critical investigation, examining its recent application both in occupational science and in occupational therapy.

  10. Primary pre-service teachers' skills in planning a guided scientific inquiry

    Science.gov (United States)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-10-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  11. Investigation of Science Inquiry Items for Use on an Alternate Assessment Based on Modified Achievement Standards Using Cognitive Lab Methodology

    Science.gov (United States)

    Dickenson, Tammiee S.; Gilmore, Joanna A.; Price, Karen J.; Bennett, Heather L.

    2013-01-01

    This study evaluated the benefits of item enhancements applied to science-inquiry items for incorporation into an alternate assessment based on modified achievement standards for high school students. Six items were included in the cognitive lab sessions involving both students with and without disabilities. The enhancements (e.g., use of visuals,…

  12. NASA's Astro-Venture Engages Exceptional Students in Earth System Science Using Inquiry

    Science.gov (United States)

    Oguinn, C.

    2003-12-01

    Astro-Venture is an educational, interactive, multimedia Web environment highlighting NASA careers and astrobiology research in the areas of Astronomy, Geology, Biology and Atmospheric Sciences. Students in grades 5-8 role-play NASA careers, as they search for and design a planet with the necessary characteristics for human habitation. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. This model has proven to be effective with exceptional students. Students are presented with the intellectual confrontation of how to design a planet and star system that would be able to meet their biological survival needs. This provides a purpose for the online and off-line explorations used throughout the site. Students first explore "what" conditions are necessary to support human habitability by engaging in multimedia training modules, which allow them to change astronomical, atmospheric, geological and biological aspects of the Earth and our star system and to view the effects of these changes on Earth. By focusing on Earth, students draw on their prior knowledge, which helps them to connect their new knowledge to their existing schema. Cause and effect relationships of Earth provide a concrete model from which students can observe patterns and generalize abstract results to an imagined planet. From these observations, students draw conclusions about what aspects allowed Earth to remain habitable. Once students have generalized needed conditions of "what" we need for a habitable planet, they conduct further research in off-line, standards-based classroom activities that also follow the inquiry model and help students to understand "why" we need these conditions. These lessons focus on standards-based concepts such as states of matter and the structure and movement of the Earth's interior. These lessons follow the inquiry structure commonly referred to as the five E's as

  13. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  14. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  15. Introducing citizen inquiry

    OpenAIRE

    Herodotou, Christothea; Sharples, Mike; Scanlon, Eileen

    2017-01-01

    The term ‘citizen inquiry’ was coined to describe ways that members of the public can learn by initiating or joining shared inquiry-led scientific investigations (Sharples et al., 2013). It merges learning through scientific investigation with mass collaborative participation exemplified in citizen science activities, altering the relationship most people have with research from being passive recipients to becoming actively engaged, and the relationship between scholarship and public understa...

  16. The Windscale Inquiry: the public inquiry system on trial

    International Nuclear Information System (INIS)

    Garry, A.M.

    1992-01-01

    This thesis is concerned with the Windscale Inquiry of 1977 and its effect on the public inquiry system. It focusses both on the major influences of the Windscale Inquiry process, and on the participants, their aims, motivations, expectations and achievements. It provides the most detailed examination of the Inquiry to date and, as a result, uncovers aspects of the process while have not been explored previously. The central questions of the thesis are: Was the outcome of the Windscale Inquiry inevitable or could it have reached different conclusions? and did the Windscale Inquiry demonstrate that the public inquiry system could be used by a government to reach a decision which it favoured? The thesis argues that the outcome of the Windscale Inquiry was almost inevitable. In fact it was found that the Inspector had made up his mind in favour of oxide reprocessing before the Inquiry opened. However, this finding does not express fully the Inquiry's impact, because, as the thesis shows, the Inquiry became a mechanism which forced the nuclear industry and the government to explain, and substantially alter, some parts of their policies. The process of bringing the government and industry to account, did not alter the THORP decision, but it demonstrated that any subsequent inquiries could subject nuclear developments to searching criticism and investigation. Indeed it is suggested that the Windscale Inquiry made it impossible for subsequent Governments to proceed with nuclear expansion without subjecting them to the public inquiry process. Part I of the thesis examines the history and structure of the public Inquiry system and the relevant aspects of planning law. Part II describes the history of reprocessing and the themes which led to the public inquiry being established. Part III forms the most detailed part of the thesis and examines the Windscale Inquiry process focussing on the participants and the issues involved. (author)

  17. The common ground between sensory and consumer science

    DEFF Research Database (Denmark)

    Grunert, Klaus G

    2015-01-01

    Traditionally, sensory science has focused on consumption and consumer science on decision-making when dealing with food. Recent developments in the way consumers perceive quality in food make it imperative; however, that both fields of inquiry integrate better. The product micro lifecycle...... is proposed as a framework that views the process from purchase via preparation to consumption of food as a continuous learning process informed by both sensory and informational stimulation....

  18. Trained Inquiry Skills on Heat and Temperature Concepts

    Science.gov (United States)

    Hasanah, U.; Hamidah, I.; Utari, S.

    2017-09-01

    Inquiry skills are skills that aperson needs in developing concepts, but the results of the study suggest that these skills haven’t yet been trained along with the development of concepts in science feeding, found the difficulties of students in building the concept scientifically. Therefore, this study aims to find ways that are effective in training inquiry skills trough Levels of Inquiry (LoI) learning. Experimental research with one group pretest-postest design, using non-random sampling samples in one of vocational high school in Cimahi obtained purposively 33 students of X class. The research using the inquiry skills test instrument in the form of 15questions multiple choice with reliability in very high category. The result of data processing by using the normalized gain value obtained an illustration that the ways developed in the LoI are considered effective trained inquiry skills in the middle category. Some of the ways LoI learning are considered effective in communicating aspects through discovery learning, predicting trough interactive demonstration, hypotheses through inquiry lesson, and interpreting data through inquiry lab, but the implementation of LoI learning in this study hasn’t found a way that is seen as effective for trespassing aspects of designing an experiment.

  19. The use of theoretical and empirical knowledge in the production of explanations and arguments in an inquiry biology activity

    Directory of Open Access Journals (Sweden)

    Maíra Batistoni e Silva

    2017-08-01

    Full Text Available Agreeing with the scientific literacy as the purpose of science education and with the recent propositions that in order to achieve it we should favor the engagement of students in practices of scientific culture, this study intends to analyze the production of explanations and arguments in an inquiry based teaching activity in order to characterize students' mobilization of theoretical and empirical knowledge by engaging in these practices. Analyzing the scientific reports elaborated by the students (14-15 years old after the inquiry activity on population dynamics, we highlight the importance of empirical knowledge about the experimental context as a repertoire for construction of explanations, especially when students deal with anomalous data. This knowledge was also important for production of valid arguments, since most of the justifications were empirical, regardless of whether or not the data were in accordance with the explanatory model already known. These results reinforce the importance of students' engagement in inquiry activities, as already defended by different authors of this research area, and indicate that the inquiry practice allowed the engagement in epistemic practices, since the knowledge about the experimental conditions and the procedures of data collection provided a repertoire for the production of explanations and arguments. Finally, we discuss the relevance of this research to the field of biology teaching, seeking to defend the promotion of inquiry activities with an experimental approach as an opportunity to integrate conceptual and epistemic objectives and overcome the difficulties generated by the specificities of this area of knowledge in relation to the other disciplines in nature sciences.

  20. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  1. Using Peer Feedback to Improve Students' Scientific Inquiry

    Science.gov (United States)

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-02-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of Inquiry. Videotapes of classroom lessons and artifacts such as student work were collected as part of the corpus of data. In the case examined, Ms. E supports her students to collectively define "meaningful feedback," thereby improving the quality of feedback that was provided in the future. This is especially timely, given the attention in Next Generation Science Standards to cross-cutting concepts and practices that require students discuss and debate ideas with each other in order to improve their understanding and their written inquiry reports (NGSS, 2013).

  2. Undergraduate Student Attitudes and Perceptions toward Low- and High-Level Inquiry Exercise Physiology Teaching Laboratory Experiences

    Science.gov (United States)

    Henige, Kim

    2011-01-01

    The purpose of this investigation was to compare student attitudes toward two different science laboratory learning experiences, specifically, traditional, cookbook-style, low-inquiry level (LL) activities and a high-inquiry level (HL) investigative project. In addition, we sought to measure and compare students' science-related attitudes and…

  3. Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry

    Science.gov (United States)

    Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching

    2016-01-01

    This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…

  4. Using History of Science to Teach Nature of Science to Elementary Students

    Science.gov (United States)

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-01-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and…

  5. Pushing the boundaries of cultural congruence pedagogy in science education towards a third space

    Science.gov (United States)

    Quigley, Cassie

    2011-09-01

    This review explores Meyers and Crawford's "Teaching science as a cultural way of knowing: Merging authentic inquiry, nature of science, and multicultural strategies" by examining how they combine the use of inquiry-based science instruction with multicultural strategies. In this conversation, I point to the need of specific discourse strategies to help teachers and students create hybrid spaces to push the boundaries of cultural congruence as described in this article. These strategies include a reflective component to the explicit instruction that encourages an integration of home and science discourses. My response to this work expands on their use of multicultural strategies to push toward a congruent Third space that asks not only what happens to the students who do not participate in science, but also what happens to science when a diverse group of people does not participate?

  6. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    Science.gov (United States)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  7. Validity And Practicality of Experiment Integrated Guided Inquiry-Based Module on Topic of Colloidal Chemistry for Senior High School Learning

    Science.gov (United States)

    Andromeda, A.; Lufri; Festiyed; Ellizar, E.; Iryani, I.; Guspatni, G.; Fitri, L.

    2018-04-01

    This Research & Development study aims to produce a valid and practical experiment integrated guided inquiry based module on topic of colloidal chemistry. 4D instructional design model was selected in this study. Limited trial of the product was conducted at SMAN 7 Padang. Instruments used were validity and practicality questionnaires. Validity and practicality data were analyzed using Kappa moment. Analysis of the data shows that Kappa moment for validity was 0.88 indicating a very high degree of validity. Kappa moments for the practicality from students and teachers were 0.89 and 0.95 respectively indicating high degree of practicality. Analysis on the module filled in by students shows that 91.37% students could correctly answer critical thinking, exercise, prelab, postlab and worksheet questions asked in the module. These findings indicate that the integrated guided inquiry based module on topic of colloidal chemistry was valid and practical for chemistry learning in senior high school.

  8. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    Science.gov (United States)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  9. A Guided-Inquiry pH Laboratory Exercise for Introductory Biological Science Laboratories

    Science.gov (United States)

    Snodgrass, Meagan A.; Lux, Nicholas; Metz, Anneke M.

    2011-01-01

    There is a continuing need for engaging inquiry-based laboratory experiences for advanced high school and undergraduate biology courses. The authors describe a guided-inquiry exercise investigating the pH-dependence of lactase enzyme that uses an inexpensive, wide-range buffering system, lactase dietary supplement, over-the-counter glucose test…

  10. Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning

    Science.gov (United States)

    Betts, Julia Nykeah

    The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.

  11. Inquiry based learning in science education and mathematics for developing bilinguals

    Directory of Open Access Journals (Sweden)

    Nataliya H. Pavlova

    2015-09-01

    Full Text Available This article studies the problem of teaching bilingual children. A definition of “developing bilingual” is proposed. The article presents an example of the application of inquiry based learning through which students develop not only math skills but also lexical capabilities. This study offers levels of differentiation in different groups of students. The paper determines advantages and disadvantages of the use of Inquiry Based Learning in developing bilingual groups.

  12. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  13. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  14. Social Regulation of Learning During Collaborative Inquiry Learning in Science: How does it emerge and what are its functions?

    Science.gov (United States)

    Ucan, Serkan; Webb, Mary

    2015-10-01

    Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to identify when and how co- and shared regulation of metacognitive, emotional and motivational processes emerge and function during collaborative inquiry learning in science. Two groups of three students (aged 12) from a private primary school in Turkey were videotaped during collaborative inquiry activities in a naturalistic classroom setting over a seven-week period, and the transcripts were analysed in order to identify their use of regulation processes. Moreover, this was combined with the analysis of stimulated-recall interviews with the student groups. Results indicated that co- and shared regulation processes were often initiated by particular events and played a crucial role in the success of students' collaborative inquiry learning. Co-regulation of metacognitive processes had the function of stimulating students to reflect upon and clarify their thinking, as well as facilitating the construction of new scientific understanding. Shared regulation of metacognitive processes helped students to build a shared understanding of the task, clarify and justify their shared perspective, and sustain the ongoing knowledge co-construction. Moreover, the use of shared emotional and motivational regulation was identified as important for sustaining reciprocal interactions and creating a positive socio-emotional atmosphere within the groups. In addition, the findings revealed links between the positive quality of group interactions and the emergence of co- and shared regulation of metacognitive processes. This study highlights the importance of fostering students' acquisition and use of regulation processes during collaborative

  15. The Effect of Mind-Mapping Applications on Upper Primary Students' Success and Inquiry-Learning Skills in Science and Environment Education

    Science.gov (United States)

    Balim, Ali Günay

    2013-01-01

    This study aims at identifying the effects of the mind-mapping technique upon students' perceptions of inquiry-learning skills, academic achievement, and retention of knowledge. The study was carried out in the Science and Technology course. A quasi-experimental research design with a pre-test and post-test control group, which was selected from…

  16. The impact of instructor grouping strategies on student efficacy in inquiry science labs: A phenomenological case study of grouping perceptions and strategies

    Science.gov (United States)

    Miller, Nathaniel J.

    Abundant educational research has integrated Albert Bandura's concepts of self-efficacy and collective efficacy within educational settings. In this phenomenological case study, the investigation sought to capture the manifestation of self-efficacy and collective efficacy within inquiry-based science laboratory courses. Qualitative data was derived from student efficacy surveys, direct classroom observations, and three-tiered interviews with teacher participants. Four high school science instructors and their students from two school districts in Northern Illinois were selected to participate in the study. This study sought to identify instructor strategies or criteria used to formulate student laboratory groups and the impact of such groupings on student self-efficacy and collective efficacy. Open coding of interview transcripts, observation logs, and student surveys led to the development of eight emerging themes. These themes included the purpose of science laboratory activities, instructor grouping strategies, instructor roles, instructor's perceptions, science laboratory assessment, student interactions, learner self-perceptions, and grouping preferences. Results from the study suggest that some students were innately inclined to assume leadership roles, smaller groupings had greater participation from all group members, students had a strong preference for working collaboratively in groups, and students desired to maintain stable laboratory groups in lieu of periodically changing laboratory partners. As with all case study methodologies, the findings of the study were limited to the individual participants at research sites and were not generalizable to all science classrooms. Additional research in the realms of group size, group autonomy, and student interviews would provide even greater insights into the observed phenomena.

  17. Science Teacher Efficacy and Extrinsic Factors Toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    Science.gov (United States)

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-02-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning, Inquiry Teaching and Learning, Synchronous chat/text, and Playing Video Games) related to technology and gaming using a web-based survey). Qualitative data in the form of online blog posts was gathered during the project to assist in the triangulation and assessment of teacher efficacy. Data analyses consisted of an Analysis of Variance and serial coding of teacher reflective responses. Results indicated participants who used computers daily have higher efficacy while using inquiry-based teaching methods and science teaching and learning. Additional emergent findings revealed possible motivating factors for efficacy. This professional development project was focused on inquiry as a pedagogical strategy, standard-based science learning as means to develop content knowledge, and creating video games as technological knowledge. The project was consistent with the Technological Pedagogical Content Knowledge (TPCK) framework where overlapping circles of the three components indicates development of an integrated understanding of the suggested relationships. Findings provide suggestions for development of standards-based science education software, its integration into the curriculum and, strategies for implementing technology into teaching practices.

  18. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    Science.gov (United States)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and

  19. SAS2: A Guide to Collaborative Inquiry and Social Engagement ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2008-01-01

    Jan 1, 2008 ... It also provides detailed instructions on how to integrate and ground collaborative inquiry in the projects, plans, evaluations and activities of multiple stakeholders. Part 2 presents a selection of techniques for collaborative inquiry and examples of real-life applications in South Asia and Latin America.

  20. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    2017-01-01

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that…

  1. Framing Inquiry in High School Chemistry: Helping Students See the Bigger Picture

    Science.gov (United States)

    Criswell, Brett

    2012-01-01

    Inquiry has been advocated as an effective pedagogical strategy for promoting deep conceptual understanding and more sophisticated scientific thinking by numerous bodies associated with chemistry (and science) education. To allow inquiry to achieve these goals, the teacher must manage the amount of cognitive load experienced by students while they…

  2. Comparing the perceptions of scientific inquiry between experts and practitioners

    Science.gov (United States)

    Gooding, Julia Terese Chembars

    The purpose of this study was to determine if there was a difference in the perception of scientific inquiry between experts and practitioners, and, if a difference was shown to exist, to analyze those perceptions in order to better understand the extent of that difference or gap. A disconnect was found between how experts and practitioners perceived scientific inquiry. The practitioners differed from both the experts and the literature in three key areas. First, although the teachers indicated that students would be manipulating materials, there was no direct reference to this manipulation actually being performed for the purpose of investigating. Second, the practitioners implied active physical engagement with materials, but they did not tie this to active mental engagement or direct involvement in their own learning. Third, teachers omitted their role in laying the foundation for inquiry. Though classroom teachers lacked a complete understanding of true inquiry and its place in the K-12 classroom, most of them actually believed they were practicing the art of teaching via inquiry. Additionally, two other points of interest arose. First, an examination of the national standards for a number of curricular areas established that the process skills of scientific inquiry are mirrored in those standards, implying that inquiry is not limited to the sciences. Second, a definition of inquiry was formulated based upon interviews with experts in the field. Although the literature and the experts were in unison in their definition, there was a disparity between the accepted definition and that provided by the teachers. The struggle for a comprehensive understanding of inquiry continues to this day. It might very well be that the concept still remains elusive partly because the teacher behaviors associated with it run counter to more traditional methods of instruction...methods that most teachers have experienced throughout their own educational careers. The most pervasive

  3. Exploring the inquiry experience: A focus on Kentucky teachers

    Science.gov (United States)

    Nolte, Beth

    2007-12-01

    Inquiry-based instruction is driven by active participation by the learner. Through the learning process, critical thinking skills are practiced. While inquiry methods are often discussed in the realm of science education, the methods are not subject specific. In fact, the Kentucky Program of Studies calls for the incorporation of inquiry strategies into all areas of the curriculum. This call for more inquiry-based education occurs in the midst of a national testing debate in which accountability is tied to student test scores. This study takes a narrative approach to explore teachers' experiences with using inquiry methods. Interviews were conducted with teachers who, at least 1 year prior to participating in this study, had attended a weeklong intensive professional development workshop on using inquiry methods for instruction. A method is described for analyzing interview data direct in its digital audio form---without transcription. Eight teachers' experiences are presented here in the narrative form and their narratives are compared for an overall analysis. Themes of conflict previously reported in the literature are explored in participants' stories. This research concludes with a discussion of the results, a reflection on the method, and suggestions for the future based on teachers' experiences with using inquiry-based learning strategies.

  4. Investigating the Effect of Argument-Driven Inquiry in Laboratory Instruction

    Science.gov (United States)

    Demircioglu, Tuba; Ucar, Sedat

    2015-01-01

    The aim of this study is to investigate the effect of argument-driven inquiry (ADI) based laboratory instruction on the academic achievement, argumentativeness, science process skills, and argumentation levels of pre-service science teachers in the General Physics Laboratory III class. The study was conducted with 79 pre-service science teachers.…

  5. When Science Soars.

    Science.gov (United States)

    Baird, Kate A.; And Others

    1997-01-01

    Describes an inquiry-based activity involving paper airplanes that has been used as a preservice training tool for instructors of a Native American summer science camp, and as an activity for demonstrating inquiry-based methods in a secondary science methods course. Focuses on Bernoulli's principle which describes how fluids move over and around…

  6. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-01-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study…

  7. Exploring Pre-Service Science Teacher Methods and Strategies for the Driving Questions in Research Inquiry: From Consulting an Instructor to Group Discussion

    Science.gov (United States)

    Aydin, Miraç

    2016-01-01

    An important stage in any research inquiry is the development of research questions that need to be answered. The strategies to develop research questions should be defined and described, but few studies have considered this process in greater detail. This study explores pre-service science teachers' research questions and the strategies they can…

  8. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  9. Project LITE - Light Inquiry Through Experiments

    Science.gov (United States)

    Brecher, K.

    2004-12-01

    Hands-on, inquiry-based, constructivist activity offers students a powerful way to explore, uncover and ultimately gain a feel for the nature of science. In order to make practicable a more genuine approach to learning astronomy, we have undertaken the development of hands-on (and eyes-on) materials that can be used in introductory undergraduate astronomy courses. These materials focus on light and optics. Over the past several years as part of Project LITE (Light Inquiry Through Experiments), we have developed a kit of optical materials that is integrated with a set of Java applets. The combined kit and software allows students to do actual experiments concerning geometrical optics, fluorescence, phosphorescence, polarization and other topics by making use of the photons that are emitted by their computer screens. We have also developed a suite of over 100 Flash applets that allow students to directly explore many aspects of visual perception. A major effort of the project concerns spectroscopy, since it is arguably the most important tool used by astronomers to disentangle the nature of the universe. It is also one of the most challenging subjects to teach in undergraduate astronomy courses. The spectroscopy component of Project LITE includes take-home laboratory materials and experiments that are integrated with web-based software. We have also developed a novel quantitative handheld binocular spectrometer (patent pending). Our major spectroscopic software is called the Spectrum Explorer (SPEX). It allows students to create, manipulate and explore all types of spectra including blackbody, power law, emission and absorption. We are now extending the SPEX capabilities to help students gain easy access to the astronomical spectra included in the NVO databases. All of the Project LITE software can be found http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  10. Enhancing Teacher Beliefs through an Inquiry-Based Professional Development Program.

    Science.gov (United States)

    McKeown, Tammy R; Abrams, Lisa M; Slattum, Patricia W; Kirk, Suzanne V

    2016-01-01

    Inquiry-based instructional approaches are an effective means to actively engage students with science content and skills. This article examines the effects of an ongoing professional development program on middle and high school teachers' efficacy beliefs, confidence to teach research concepts and skills, and science content knowledge. Professional development activities included participation in a week long summer academy, designing and implementing inquiry-based lessons within the classroom, examining and reflecting upon practices, and documenting ways in which instruction was modified. Teacher beliefs were assessed at three time points, pre- post- and six months following the summer academy. Results indicate significant gains in reported teaching efficacy, confidence, and content knowledge from pre- to post-test. These gains were maintained at the six month follow-up. Findings across the three different time points suggest that participation in the professional development program strongly influenced participants' fundamental beliefs about their capacity to provide effective instruction in ways that are closely connected to the features of inquiry-based instruction.

  11. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  12. Towards a Dialogical Pedagogy: Some Characteristics of a Community of Mathematical Inquiry

    Science.gov (United States)

    Kennedy, Nadia Stoyanova

    2009-01-01

    This paper discusses a teaching model called community of mathematical inquiry (CMI), characterized by dialogical and inquiry-driven communication and a dynamic structure of intertwined cognitive processes including distributed thinking, mathematical argumentation, integrated reasoning, conceptual transformation, internalization of critical…

  13. Inquiry based Teacher Professional development from a multidisciplinary perspective: The NEOGEO Lake Erie Earth Science Field Trip

    Science.gov (United States)

    Ortiz, J. D.; Munro-Stasiuk, M. J.; Hart, B. I.; Mokaren, D. M.; Arnold, B.; Chermansky, J. V.; Vlack, Y. A.

    2006-12-01

    State and national educational standards stress the need to incorporate inquiry-based approaches into the K- 12 science curriculum. However, many teachers either lack training in these pedagogical techniques or science content mastery. Both of these are needed to confidently approach science teaching in the less structured framework associated with a real world exploration of the natural environment. To overcome these barriers to implementation, we have developed an intensive, field-based professional development workshop which explores the connections between the bedrock geology, glacial geomorphology, ecology, and geography of the Lake Erie Islands and the shore of its western basin. This workshop is part of a series of three workshops that form the professional development activities of our NSF funded Graduate Teaching Fellows in K-12 Education (GK-12) project, the Northeast Ohio Geoscience Education Outreach (NEOGEO) Program which seeks to improve the quality of Earth Science education at the middle and high school levels in Northeast Ohio. During the workshop students explored the ecology and geomorphology of a series of coastal wetlands, collecting instrumental data and field observations to evaluate water quality and the forces that created these surface features. Exceptional exposure of glacial scours and striations at Kelleys Island and along the Marblehead Peninsula allowed the participants to reconstruct evolving ice flow paths to see how recent geological history shaped the landscape. Finally, stratigraphic observations in a local quarry enabled the students to understand why the observed glacial features varied as a function of bedrock type. Response to the workshop was overwhelming positive with participants commenting positively on quality and quantity of the material presented and the manner in which inquiry based teaching was modeled. End of term projects which included the conceptualization of a teaching plan to incorporate the approaches learned

  14. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  15. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning With an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-12-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, predict-observe-explain (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning process, as well as the learning progress, a pretest and a posttest were given to 152 grade 5 elementary school students. The students practiced WhyWhy during six sessions over 6 weeks, and data related to interest in learning science (ILS), cognitive anxiety (CA), and extraneous cognitive load (ECL) were collected and analyzed through confirmatory factor analysis with structure equation modeling. The results showed that students with high ILS have low CA and ECL. In addition, the results also indicated that students with a high level of self-confidence enhancement showed significant improvement in the posttest. The implications of this study suggest that by using technology-enhanced science learning, the POE model is a practical approach to motivate students to learn.

  16. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    Science.gov (United States)

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  17. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  18. Teaching of science and language by elementary teachers who emphasize the integrated language approach: A descriptive study

    Science.gov (United States)

    Blouch, Kathleen Kennedy

    This research involved investigating the nature of science and language instruction in 13 elementary classrooms where teachers have restructured their language programs to reflect an integrated or holistic view of language instruction. The teachers were identified by school administrators and other professionals as teachers who have implemented instructional reforms described in the Pennsylvania Framework for Reading, Writing and Speaking Across the Curriculum (PCRPII), (Lytle & Botel, 1900). The instruction utilized by these teachers was described as atypical when compared to that of teachers utilizing the more traditional didactic skills oriented approach to language literacy. The research involved observing, recording and categorizing teaching behaviors during both science and language instruction. Videotaped observations were followed by analyses and descriptions of these behaviors. Interviews were also conducted to ascertain the basis for selection of the various instructional approaches. The instruction was compared on four dimensions: participation patterns, time the behaviors were practiced, type of tasks and levels of questioning. The instruction was then described in light of constructivist teaching practices: student collaboration, student autonomy, integration and higher order thinking. Constructivist practices differed among teachers for science and language instruction. During science instruction teachers spent more time involved in teacher-whole group participation patterns with more direct questioning as compared to language instruction in which children participated alone or in groups and had opportunity to initiate conversations and questions. Student inquiry was evidenced during language instruction more so than during science. The 13 teachers asked a variety of levels and types of questions both in science and language instruction. More hands-on science experiences were observed when science was taught separately compared to when integrated with

  19. Is it design or is it inquiry? Exploring technology research in a Filipino school setting

    Science.gov (United States)

    Yazon, Jessamyn Marie Olivares

    My case study explored Filipino secondary students' and teachers' experiences with technology research, project-based pedagogy. The study was conducted to examine the nature of a Technology Research (TR) Curriculum, and how it mediates non-Western students' learning, and interest in technology-based careers. The context for my study is Philippine Science High School's (PSHS) TR program wherein students outline a proposal, design an experiment or a device, and implement their design to address a real world problem. My data sources included semi-structured interviews of 27 students and 2 teachers; participant observations of classroom and group activities, teacher-student consultations, and Science-Technology Fair presentations; TR curriculum documents; and researcher journal logs. My examination of curriculum documents revealed that since the 1960s, the Philippine government has implemented specialized educational programs, such as the PSHS Science/Technology Streaming and TR programs, to support Filipino youth interested in science and technology courses and careers. Data analyses showed that the TR program provided a rich, practical learning environment where 'doing technology design' blended with 'doing science inquiry'. The TR activities enhanced student understanding of science and technology; helped them integrate and apply knowledge and skills learned from other school subjects; encouraged them to be creative, problem-solvers; and helped develop their lifelong learning skills. Students recognized that TR teachers adopted alternative instructional strategies that prompted students to adopt more active roles in their learning. Research findings revealed that student interest in pursuing technology-related careers was supported by their participation in the streaming and the TR programs. Data also showed that Filipino cultural practices mediated student learning, and career decision-making. My research findings suggest that present notions of scientific inquiry

  20. The Evolution of Inquiry Activities in the Akamai Observatory Short Course, 2004-2009

    Science.gov (United States)

    Rice, E. L.; McElwain, M.; Sonnett, S.; Rafelski, M.

    2010-12-01

    The Akamai Observatory Short Course (AOSC) is a five-day course of activities designed to prepare college students majoring in science, technology, engineering, and mathematics (STEM) fields for internships at observatories on the Big Island of Hawai'i. The design and implementation of inquiry-based activities in the AOSC have evolved considerably over the six years of the course. The content goals have always focused on the basic understanding of light and optics necessary to understand telescopes, but the scientific process goals gradually evolved to reflect the increasingly recognized importance of engineering design skills for successful observatory internships. In 2004 the inquiry-based activities were limited to one well-established Color, Light, and Spectra activity. In subsequent years more activities were customized and expanded upon to reflect the learners' diverse academic backgrounds, the developing goals of the short course, and feedback from internship hosts. The most recent inquiry, the Design and Build a Telescope activity, engaged students in designing and building a simple telescope, emphasizing science and engineering process skills in addition to science content. This activity was influenced by the Mission Design activity, added in 2006, that incorporated the application of inquiry-based learning to the engineering design process and allowed students to draw upon their diverse prior knowledge and experience. In this paper we describe the inquiry-based activities in the AOSC in the context of its year-to-year evolution, including the conceptual and pragmatic changes to the short course that influenced the evolution.

  1. Process oriented guided inquiry learning (POGIL®) marginally effects student achievement measures but substantially increases the odds of passing a course.

    Science.gov (United States)

    Walker, Lindsey; Warfa, Abdi-Rizak M

    2017-01-01

    While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI = 0.15-0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95% CI: 1.45-2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38%. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.

  2. Appreciative Inquiry. Trends and Issues Alert.

    Science.gov (United States)

    Kerka, Sandra

    Appreciative inquiry (AI) is based on the heliotropic principle, which has been variously described as art and science, holistic theory and practice, and practical philosophy and change process. AI engages people and organizations in discovering what gives life to human systems when they are most effective and constructive and using that knowledge…

  3. Do Large-Scale Exams Adequately Assess Inquiry? An Evaluation of the Alignment of the Inquiry Behaviors in New York State's "Living Environment Regents Examination" to the NYS Inquiry Standard

    Science.gov (United States)

    Day, Heather L.; Matthews, Dorothy M.

    2008-01-01

    The "Living Environment Regents Examination" is meant to provide a measure of the quality of New York State students' knowledge and understanding of biological content and science inquiry ability, as it is defined in the "MST Standards" and the "Living Environment Core Curriculum". This article examines the degree to…

  4. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  5. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  6. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    Science.gov (United States)

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  7. Incorporating Inquiry into Upper-Level Undergraduate Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, Alan; Speck, Angela; Witzig, Stephen; Abell, Sandra

    2010-05-01

    The US National Science Education Standards (2000) state that science should be taught through inquiry. The five essential features of classroom inquiry are that the leaner (i) engages in scientifically oriented questions, (ii) gives priority to evidence in responding to questions, (iii) formulates explanations from evidence, (iv) connects explanations to scientific knowledge, and (v) communicates and justifies explanations. One difficulty in achieving this vision at the university level lies in the common perception that inquiry be fully open and unstructured, and that its implementation will be impractical due to time and material constraints. In an NSF-funded project, "CUES: Connecting Undergraduates to the Enterprise of Science," faculty developed new inquiry-based laboratory curriculum materials using a "mini-journal" approach, which is designed as an alternative to the cookbook laboratory and represents the way that scientists do science. Here we adapt this approach to a homework assignment in an upper-level Planetary Science class, and show that inquiry is achievable in this setting. Traditional homeworks in this class consisted of problem sets requiring algebraic manipulation, computation, and in most cases an appraisal of the result Longer questions are broken down into chunks worth 1 to 4 points. In contrast, the mini-journal is a short article that is modeled in the way that scientists do and report science. It includes a title, abstract, introduction (with clear statement of the problem to be tackled), a description of the methods, results (presented as both tables and graphs), a discussion (with suggestions for future work) and a list of cited work. Students devise their research questions and hypothesis from the paper based on a logical next step in the investigation. Guiding questions in the discussion can assist the students ("it would be interesting to evaluate the effect of ..."). Students submit their own minijournal, using the same journal

  8. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  9. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  10. Krakatoa Erupts!: Using a Historic Cataclysm to Teach Modern Science

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    Through integration of geology, biology, chemistry, and the history of science, the historic Krakatoa eruption offers a unique portal for student inquiry in the classroom. Students are inherently fascinated by natural disasters, and modern comparisons to the Krakatoa cataclysm are as close as the day's news. This article uses the historic Krakatoa…

  11. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    Science.gov (United States)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  12. Teacher's Reflection of Inquiry Teaching in Finland before and during an In-Service Program: Examination by a Progress Model of Collaborative Reflection

    Science.gov (United States)

    Kim, Minkee; Lavonen, Jari; Juuti, Kalle; Holbrook, Jack; Rannikmae, Miia

    2013-01-01

    In inquiry-based science education, there have been gradual shifts in research interests: the nature of scientific method, the debates on the effects of inquiry learning, and, recently, inquiry teaching. However, many in-service programs for inquiry teaching have reported inconsistent results due to the static view of classroom inquiries and due…

  13. Applying the Brakes: How Practical Classroom Decisions Affect the Adoption of Inquiry Instruction

    Science.gov (United States)

    Yarnall, Louise; Fusco, Judi

    2014-01-01

    If college science instructors are to use inquiry practices more in the classroom, they need both professional support to foster comfort with the pedagogy and practical ways to engage students in inquiry. Over a semester, we studied 13 community college biology instructors as they adopted bioinformatics problem-based learning (PBL) modules in…

  14. Tapping the Resources of the World Wide Web for Inquiry in Middle Schools.

    Science.gov (United States)

    Windschitl, Mark; Irby, Janet

    1999-01-01

    Argues for the cautiously expanded use of the World Wide Web for inquiry across the middle school curriculum, noting how the Internet can be used in schools. Describes the Internet and appraises its distractions and academic utility, identifying features that support student inquiry in science, mathematics, social studies, and language arts. (JPB)

  15. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  16. Connecting Educators with Inter-Disciplinary Inquiry-Based Science and Students with STEM Careers with Real-World Experiences

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2016-10-01

    Full Text Available Our professional development workshops have provided participating teachers (inservice and pre-service with interdisciplinary experiences in earth and environmental science that have built their content into real-world problem based research initiatives (STEM, Science Technology, Engineering and Mathematics. One of our real-world issues has been the detection of phenol since it has been a concern in the real-world coal mining industry. Coal tars are a complex of variable mixtures of phenols. Phenol and phenol derivative compounds are widely used in the production of polymers, drugs, dyes, explosives, pesticides, stabilizers and antioxidants. These phenolic compounds are discharged into the environment and can represent a serious hazard, mainly by the contamination of superficial and underground waters. The toxic effect of phenol can cause comas, convulsions, cyanosis, liver damage, kidney damage, lung damage and death. The mining industry for coal is an alternative source of energy and used in thermoelectric power plants. However, the pollutant phenol that can be found in coal has high need to be detected and is an important aspect to keep an eye on due to these harmful chemicals such as phenol discharging into the environment. Our inquiry-based labs have engaged our inservice and pre-service students by visiting a mine and learning the positive and negative aspects of mining and the importance of water quality. Thus, this inquiry-based module will illustrate the use of an electrochemistry modified carbon nanotube poly-3-hexylthiophene electrode to detect such harmful chemicals as phenol by unique electrochemistry techniques such as Differential Pulse Voltammetry (DPV.

  17. The nuclear inquiry

    International Nuclear Information System (INIS)

    Clement, K.J.

    1987-01-01

    Opposition to nuclear energy facilities has increased considerably in Scotland and Germany within the past two decades. The statutory institutions which exist in each country to consider formal objections to such developments have important differences, as do the licensing or planning processes of which they form an integral part. In Britain, the initiation of judicial review following public inquiries is very rare, due to the limited grounds within which this would be possible. By contrast, there has been a very high referral of nuclear power station decisions to the administrative courts in Germany, but the number is now declining as cases are invariably found in favour of the developers. The comparative examination of case studies reveals that objectors' interests may best be served, in terms of achieving policy influence, by acting outside the restrictions of the statutory planning and legal systems. The Scottish public inquiry is revealed as the more flexible institution and one which allows a much greater degree of public participation. (author)

  18. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    Science.gov (United States)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  19. Which Type of Inquiry Project Do High School Biology Students Prefer: Open or Guided?

    Science.gov (United States)

    Sadeh, Irit; Zion, Michal

    2012-10-01

    In teaching inquiry to high school students, educators differ on which method of teaching inquiry is more effective: Guided or open inquiry? This paper examines the influence of these two different inquiry learning approaches on the attitudes of Israeli high school biology students toward their inquiry project. The results showed significant differences between the two groups: Open inquiry students were more satisfied and felt they gained benefits from implementing the project to a greater extent than guided inquiry students. On the other hand, regarding documentation throughout the project, guided inquiry students believed that they conducted more documentation, as compared to their open inquiry peers. No significant differences were found regarding `the investment of time', but significant differences were found in the time invested and difficulties which arose concerning the different stages of the inquiry process: Open inquiry students believed they spent more time in the first stages of the project, while guided inquiry students believed they spent more time in writing the final paper. In addition, other differences were found: Open inquiry students felt more involved in their project, and felt a greater sense of cooperation with others, in comparison to guided inquiry students. These findings may help teachers who hesitate to teach open inquiry to implement this method of inquiry; or at least provide their students with the opportunity to be more involved in inquiry projects, and ultimately provide their students with more autonomy, high-order thinking, and a deeper understanding in performing science.

  20. A Comparison of Exemplary Biology, Chemistry, Earth Science, and Physics Teachers' Conceptions and Enactment of Inquiry

    Science.gov (United States)

    Breslyn, Wayne; McGinnis, J. Randy

    2012-01-01

    Teachers' use of inquiry has been studied largely without regard for the disciplines in which teachers practice. As a result, there is no theoretical understanding of the possible role of discipline in shaping teachers' conceptions and enactment of inquiry. In this mixed-methods study, conceptions and enactment of inquiry for 60 National Board…

  1. Predicting Students' Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

    Science.gov (United States)

    Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger

    2015-06-01

    Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.

  2. Making Sense of New Science Assessments

    Science.gov (United States)

    Pellegrino, James W.

    2016-01-01

    What we choose to assess in science is what will end up being the focus of instruction. US science standards once treated content and inquiry as fairly separate strands of science learning, with content standards stating what students should know and inquiry standards stating what they should be able to do. In its content coverage, these standards…

  3. Searching for a Common Ground--A Literature Review of Empirical Research on Scientific Inquiry Activities

    Science.gov (United States)

    Rönnebeck, Silke; Bernholt, Sascha; Ropohl, Mathias

    2016-01-01

    Despite the importance of scientific inquiry in science education, researchers and educators disagree considerably regarding what features define this instructional approach. While a large body of literature addresses theoretical considerations, numerous empirical studies investigate scientific inquiry on quite different levels of detail and also…

  4. Student Inquiry in the Research Process: Part I: Inquiry Research Basics.

    Science.gov (United States)

    Preddy, Leslie B.

    2002-01-01

    Discusses the appropriate use of inquiry among students, teachers, and library media specialists. Topics include planning for an inquiry research project; collaboration between the library media specialist and classroom teacher; national goals, standards, and best practices; teacher roles for inquiry; and evaluating inquiry research. (LRW)

  5. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  6. Aspects of Teaching and Learning Science: What students' diaries reveal about inquiry and traditional modes

    Science.gov (United States)

    Kawalkar, Aisha; Vijapurkar, Jyotsna

    2015-09-01

    We present an analysis of students' reflective writing (diaries) of two cohorts of Grade 8 students, one undergoing inquiry and the other traditional science teaching. Students' writing included a summary of what students had learned in class on that day and their opinions and feelings about the class. The entries were analysed qualitatively and quantitatively. This analysis of students' first-person accounts of their learning experience and their notes taken during class was useful in two ways. First, it brought out a spectrum of differences in outcomes of these two teaching modes-conceptual, affective and epistemic. Second, this analysis brought out the significance and meaning of the learning experience for students in their own words, thus adding another dimension to researchers' characterisation of the two teaching methods.

  7. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    Science.gov (United States)

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  8. A Unique Marine and Environmental Science Program for High School Teachers in Hawai'i: Professional Development, Teacher Confidence, and Lessons Learned

    Science.gov (United States)

    Rivera, Malia Ana J.; Manning, Mackenzie M.; Krupp, David A.

    2013-01-01

    Hawai'i is a unique and special place to conduct environmental science inquiry through place based learning and scientific investigation. Here, we describe and evaluate a unique professional development program for science teachers in Hawai'i that integrates the traditional approach of providing training to improve content knowledge, with the…

  9. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  10. Development of inquiry-based planetary science resources for Canadian schools

    Science.gov (United States)

    Osinski, G. R.; Gilbert, A.; Brown, P.

    2011-12-01

    The Centre for Planetary Science and Exploration (CPSX - http://cpsx.uwo.ca) at The University of Western Ontario has initiated a comprehensive outreach and education program focusing on planetary science and exploration. The goal is to use planetary science to raise general interest in science. Currently, the activities being preformed by the centre can be divided into three broad categories: (1) educational/curriculum based activities, (2) outreach/community based activities, and (3) training. The first is where the push for an increase in interest for science is really critical and is the focus here. In partnership with the Thames Valley District School Board and by using inquiry-based teaching methods, students study various topics under the guidance of a CPSX graduate students and faculty. The educational activities that have taken place are all based on the Ontario curriculum and have been developed with the support of the local school board and teachers. An annual teacher workshop provides a hands-on opportunity for the teachers to interact with CPSX members. The first activity to be developed was on meteorite impact craters. The CPSX web page also contains the lesson plans and activity work sheets for this Cratering Activity, as well as additional activities. As the Cratering Activity is available online, teachers can perform the experiment independently or request the support from a CPSX outreach member. The activity is designed with the following structure: (1) The teacher gives a background presentation (provided by CPSX) which describes crater processes throughout our solar system (specifically comparing Earth to other planets), the consequences of impacts on Earth, the origins of impactors (small bodies) in our solar system, and the mechanical process of an impact. (2) The teacher demonstrates an impact event. Students are to make observations in their lab handout, and sketch what they see. (3) Students (either individually or as a group, based on

  11. GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools

    Science.gov (United States)

    DiBiase, D.; Baker, T.

    2016-12-01

    According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.

  12. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  13. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  14. Integrating STEM education through Project-Based Inquiry Learning (PIL) in topic space among year one pupils

    Science.gov (United States)

    Ng, Chee Hoe; Adnan, M.

    2018-01-01

    This research aims to investigate the effect of integrating STEM education through Project-based Inquiry Learning (PIL) and the users of the STEM modules which consists of five projects on topic Space in Year One Mathematics Syllabus in Kurikulum Standard Sekolah Rendah (KSSR) of Malaysia. STEM education in primary school focuses on the introduces and awareness of students about the importance of STEM education. The projects in STEM modules are covering the different ethnic cultures in Malaysia. The modules are designed using the four phases in PIL. Concepts and the explanation of STEM education on each project are emphasized and provided in the modules so the teachers able to carry out the projects by using the modules. By using the modules in primary Mathematics, the students and teachers will be more understanding on how to integrate the Mathematics’ concepts in STEM education.

  15. At-Risk and Bilingual Fifth-Grade Students' On-Task Behavior and Conceptual Understanding in Earth Science-Related Topics during Inquiry-, Technology-, and Game-Based Activities

    Science.gov (United States)

    McNeal, K.; Vasquez, Y.; Avandano, C.; Moreno, K.; Besinaiz, J.

    2007-12-01

    The Graduate K-12 (GK12) program has been developed by NSF to support the national effort to advance scientific knowledge through educational partnerships. This paper highlights research conducted during the 2006-2007 school year with the Texas A&M University GK12 project. Two elementary schools with very high numbers of at risk students - those who are poor, speak English as their second language, and have a history of failing state-mandated tests were identified to be the field site for the GK12 project. In these two, high-minority (97% and 40% African American and Hispanic) schools, 80% and 56% of the children have been identified by the state as at risk; 94% and 52% are classified as economically disadvantaged; and 46% and 2% are limited English proficient, respectively. In the past year, 30% and 73% of fifth grade students in these schools passed the science portion of the Texas Assessment of Knowledge and Skills (TAKS) test. Data collected during a three- week period where GK12 fellows taught the fifth graders Earth science-related topics is presented. During the implementation, students were engaged in technology-, inquiry-, and game-based activities. Students were divided into low-, medium-, and high-abilities in one school, and regular and bilingual groups in the other. Pre- post open-ended multiple choice tests indicated that all but the low performing students' conceptual understanding (CU) significantly (p significantly improved during the inquiry activity, and the high and bilingual students' CU significantly improved for the game activities. Classroom observation assessments showed that there was a significant (p Significant differences between student groups' CU and on-task behavior indicated that technology-based activities showed greatest differences between the low- ability learners and the other students, whereas, inquiry-based activities tended not to show such extremes. In the case of the bilingual and regular students however, technology

  16. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  17. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    Science.gov (United States)

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…

  18. A theory of planned behaviour-based analysis of TIMSS 2011 to determine factors influencing inquiry teaching practices in high-performing countries

    Science.gov (United States)

    Pongsophon, Pongprapan; Herman, Benjamin C.

    2017-07-01

    Given the abundance of literature describing the strong relationship between inquiry-based teaching and student achievement, more should be known about the factors impacting science teachers' classroom inquiry implementation. This study utilises the theory of planned behaviour to propose and validate a causal model of inquiry-based teaching through analysing data relating to high-performing countries retrieved from the 2011 Trends in International Mathematics and Science Study assessments. Data analysis was completed through structural equation modelling using a polychoric correlation matrix for data input and diagonally weighted least squares estimation. Adequate fit of the full model to the empirical data was realised. The model demonstrates that the extent the teachers participated in academic collaborations was positively related to their occupational satisfaction, confidence in teaching inquiry, and classroom inquiry practices. Furthermore, the teachers' confidence with implementing inquiry was positively related to their classroom inquiry implementation and occupational satisfaction. However, perceived student-generated constraints demonstrated a negative relationship with the teachers' confidence with implementing inquiry and occupational satisfaction. Implications from this study include supporting teachers through promoting collaborative opportunities that facilitate inquiry-based practices and occupational satisfaction.

  19. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  20. A collaborative narrative inquiry: Two teacher educators learning about narrative inquiry

    Directory of Open Access Journals (Sweden)

    Barkhuizen, Gary

    2009-12-01

    Full Text Available With its capacity to unharness the power of narrative to promote meaning-making of lived experience, narrative inquiry is developing as a credible approach to research in several areas in the field of language teaching (Johnson, 2006. This article tells the story of two narrative researchers working in language teacher education who engaged in a collaborative narrative inquiry as both participants and inquirers, in order to learn more about narrative inquiry. The ‘bounded’ nature of their inquiry design provided a feasible way for them to explore their focus of research (i.e. their learning about narrative inquiry, and led them, through an iterative and reflexive process of analysing their narrative data, to formulate what they believe are essential ingredients of principled narrative inquiry work. Four narrative inquiry variables became the scaffolding which enabled them to answer their research questions, and are offered here as a heuristic for teaching practitioners, whether they be teachers, teacher educators or researchers, to guide them in narrative inquiries into their own work.