WorldWideScience

Sample records for integrated science education

  1. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  2. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  3. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  4. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  5. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  6. Integrated Modelling in CRUCIAL Science Education

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and

  7. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  8. Can We Integrate Qualitative and Quantitative Research in Science Education?

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this paper is to emphasize the importance of integrating qualitative and quantitative research methodologies in science education. It is argued that the Kuhnian in commensurability thesis (a major source of inspiration for qualitative researchers) represents an obstacle for this integration. A major thesis of the paper is that qualitative researchers have interpreted the increased popularity of their paradigm (research programme) as a revolutionary break through in the Kuhnian sense. A review of the literature in areas relevant to science education shows that researchers are far from advocating qualitative research as the only methodology. It is concluded that competition between divergent approaches to research in science education (cf. Lakatos, 1970) would provide a better forum for a productive sharing of research experiences.

  9. Beyond Science and Math: Integrating Geography Education

    Science.gov (United States)

    Grubbs, Michael E.; Grubbs, Steven

    2015-01-01

    This article discusses the status of World Geography Education and the importance of these concepts in developing 21st century students. Moreover, the authors also showcase how World Geography concepts can be intentionally taught through a technological/engineering, design-based learning challenge that requires students to solve a global housing…

  10. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  11. Implementation Science: New Approaches to Integrating Quality and Safety Education for Nurses Competencies in Nursing Education.

    Science.gov (United States)

    Dolansky, Mary A; Schexnayder, Julie; Patrician, Patricia A; Sales, Anne

    Although quality and safety competencies were developed and disseminated nearly a decade ago by the Quality and Safety Education for Nurses (QSEN) project, the uptake in schools of nursing has been slow. The use of implementation science methods may be useful to accelerate quality and safety competency integration in nursing education. The article includes a definition and description of implementation science methods and practical implementation strategies for nurse educators to consider when integrating the QSEN competencies into nursing curriculum.

  12. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  13. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  14. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  15. Integrating Free and Open Source Solutions into Geospatial Science Education

    Directory of Open Access Journals (Sweden)

    Vaclav Petras

    2015-06-01

    Full Text Available While free and open source software becomes increasingly important in geospatial research and industry, open science perspectives are generally less reflected in universities’ educational programs. We present an example of how free and open source software can be incorporated into geospatial education to promote open and reproducible science. Since 2008 graduate students at North Carolina State University have the opportunity to take a course on geospatial modeling and analysis that is taught with both proprietary and free and open source software. In this course, students perform geospatial tasks simultaneously in the proprietary package ArcGIS and the free and open source package GRASS GIS. By ensuring that students learn to distinguish between geospatial concepts and software specifics, students become more flexible and stronger spatial thinkers when choosing solutions for their independent work in the future. We also discuss ways to continually update and improve our publicly available teaching materials for reuse by teachers, self-learners and other members of the GIS community. Only when free and open source software is fully integrated into geospatial education, we will be able to encourage a culture of openness and, thus, enable greater reproducibility in research and development applications.

  16. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  17. Computational Thinking and Integrative Education (STEAM in Science Education

    Directory of Open Access Journals (Sweden)

    Rıdvan ÖZCAN

    2018-01-01

    Full Text Available this study, it was aimed to determine in which level science teachers use argumentation in their science classroom. Case study was used as a research model. This study has been carried out in a province in Aegean Region with a participating group that consists of 6 volunteer science teachers. In order to collect data, the observation form which is consisted of 24 items was used to decide in which level teachers’ using argumentation and intervention form consisting of 13 questions about argumentation were used. According to results of the study, science teachers did not commonly use argumentation. In the light of the interviews, it was seen that most of the teachers did not have any real qualifications about argumentation, the concepts in argumentation and the activities used in argumentation.

  18. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  19. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  20. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  1. Affordable Integrated Technology Projects Science Education towards New Horizons

    Science.gov (United States)

    Paoletti, Franco; Carlucci, Lisa Marie

    2009-03-01

    The new-era concept of education supports a type of instruction whereby technology directly acts as a conduit of change, fundamentally altering what is learned, how it is learned, and the role of the educator in the classroom. In our current world, the learning about technology itself has become a goal and a means to successful participation in today's society. Efficient integration of technology to enhance and support the educational process will: 1) provide educators with the resources and the freedom to actualize innovative educational programs; 2) allow educators to be successful in challenging each student to reach his/her highest potential to ultimately increase academic achievement. This study analyzes what technology integration into education means identifying the benefits and the challenges that educators need to meet in order to be successful in their efforts while providing examples of how to successfully implement effective programs under budgetary constraints.

  2. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  3. Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives

    Science.gov (United States)

    Davis, Nancy T.; Callihan, Laurie P.

    2013-01-01

    This article examines the multiple methodologies used in educational research and proposes a model that includes all of them as contributing to understanding educational contexts and research from multiple perspectives. The model, based on integral theory (Wilber in a theory of everything. Shambhala, Boston, 2000) values all forms of research as…

  4. Promoting Science and Technology in Primary Education: A Review of Integrated Curricula

    NARCIS (Netherlands)

    Drs Rens Gresnigt; Koeno Gravemeijer; Hanno Keulen, van; Liesbeth Baartman; Ruurd Taconis

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  5. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Gresnigt, H.L.L.; Taconis, R.; Keulen, van Hanno; Gravemeijer, K.P.E.; Baartman, L.K.J.

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from

  6. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Hanno van Keulen; Rens Gresnigt; Liesbeth Baartman; Ruurd Taconis; Koeno Gravemeijer

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  7. Education and Professional Outreach as an Integrated Component of Science and Graduate Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A. A.

    2007-12-01

    Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web

  8. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  9. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  10. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  11. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  12. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  13. INTEGRATION OF BUSINESS, EDUCATION AND SCIENCE AT THE REGIONAL LEVEL FOR IMPLEMENTING THE NATIONAL TECHNOLOGICAL INITIATIVE

    Directory of Open Access Journals (Sweden)

    Innara Lyapina

    2018-01-01

    Full Text Available Current world affairs show that the post-industrial stage of development of all mature world powers’ economies is followed by creation of a new development paradigm, which is based on the economy of knowledge, science achievements, innovations, global information and communication systems, and which leads to innovative economy formation. In the context of the national innovation economy formation in the Russian Federation, prerequisites are created for integrating the efforts of business, science and education representatives to develop, produce and market high-tech products which have significant economic or social potential. And this is not only the task announced by the Russian government, but also a natural process in the country’s economy, which contributes to the increase in the integration participants’ efficiency. The result of such integrated interaction of education, science and business consists in a synergistic effect through formation of an interactive cooperation model that involves the active use of combined knowledge, ideas, technologies and other resources during innovative projects implementation. At the same time, integration processes are diverse, complex and occur in each case taking into account the integrating parties’ activity specifics. Within this framework, the goal of the research is to characterize the impact of the education, science and business integration process, on the national technological initiative implementation in the country on the whole and to study the integrating experience of these entities at the regional level. In the course of the research, the stages of the Russian national innovation economy formation process have been studied; the role of education, science and business in the National Technological Initiative implementation has been characterized; it’s been proved that educational institutions are the key link in the integration process in the chain “educationscience

  14. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  15. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    Science.gov (United States)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  16. Integrated, Multidisciplinary and Technology-Enhanced Science Education: The Next Frontier

    OpenAIRE

    Dinov, Ivo D.

    2008-01-01

    Contemporary science education at all levels presents several critical pedagogical and social challenges to educators and learners alike. Among these challenges are the widening Intergenerational Information Technology (IIT) divide and the need for a comprehensive and balanced multidisciplinary training. In the past few years, it has become clear that one significant hurdle impedes the efforts to integrate information technology in the classroom – the Intergenerational IT divide. The IIT gap ...

  17. An Integrative Cultural Model to better situate marginalized science students in postsecondary science education

    Science.gov (United States)

    Labouta, Hagar Ibrahim; Adams, Jennifer Dawn; Cramb, David Thomas

    2018-03-01

    In this paper we reflect on the article "I am smart enough to study postsecondary science: a critical discourse analysis of latecomers' identity construction in an online forum", by Phoebe Jackson and Gale Seiler (Cult Stud Sci Educ. https://doi.org/10.1007/s11422-017-9818-0). In their article, the authors did a significant amount of qualitative analysis of a discussion on an online forum by four latecomer students with past negative experiences in science education. The students used this online forum as an out-of-class resource to develop a cultural model based on their ability to ask questions together with solidarity as a new optimistic way to position themselves in science. In this forum, we continue by discussing the identity of marginalized science students in relation to resources available in postsecondary science classes. Recent findings on a successful case of a persistent marginalized science student in spite of prior struggles and failures are introduced. Building on their model and our results, we proposed a new cultural model, emphasizing interaction between inside and outside classroom resources which can further our understanding of the identity of marginalized science students. Exploring this cultural model could better explain drop-outs or engagement of marginalized science students to their study. We, then, used this model to reflect on both current traditional and effective teaching and learning practices truncating or re-enforcing relationships of marginalized students with the learning environment. In this way, we aim to further the discussion initiated by Jackson and Seiler and offer possible frameworks for future research on the interactions between marginalized students with past low achievements and other high and mid achieving students, as well as other interactions between resources inside and outside science postsecondary classrooms.

  18. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    Science.gov (United States)

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  19. Education, outreach, and inclusive engagement: Towards integrated indicators of successful program outcomes in participatory science.

    Science.gov (United States)

    Haywood, Benjamin K; Besley, John C

    2014-01-01

    The use and utility of science in society is often influenced by the structure, legitimacy, and efficacy of the scientific research process. Public participation in scientific research (PPSR) is a growing field of practice aimed at enhancing both public knowledge and understanding of science (education outreach) and the efficacy and responsiveness of scientific research, practice, and policy (participatory engagement). However, PPSR objectives focused on "education outreach" and "participatory engagement" have each emerged from diverse theoretical traditions that maintain distinct indicators of success used for program development and evaluation. Although areas of intersection and overlap among these two traditions exist in theory and practice, a set of comprehensive standards has yet to coalesce that supports the key principles of both traditions in an assimilated fashion. To fill this void, a comprehensive indicators framework is proposed with the goal of promoting a more integrative and synergistic PPSR program development and assessment process.

  20. Epistemology, development, and integrity in a science education professional development program

    Science.gov (United States)

    Hancock, Elizabeth St. Petery

    This research involved interpretive inquiry to understand changes in the notion of "self" as expressed by teachers recently enrolled as graduate students in an advanced degree program in science education at Florida State University. Teachers work in a context that integrates behavior, social structure, culture, and intention. Within this context, this study focused on the intentional realm that involves interior understandings, including self-epistemology, professional self-identity, and integrity. Scholarship in adult and teacher development, especially ways of knowing theory, guided my efforts to understand change in these notions of self. The five participants in this study were interviewed in depth to explore their "self"-related understandings in detail. The other primary data sources were portfolios and work the participants submitted as part of the program. Guided by a constructivist methodology, I used narrative inquiry and grounded theory to conduct data analysis. As learners and teachers, these individuals drew upon epistemological orientations emphasizing a procedural orientation to knowledge. They experienced varying degrees of interior and exterior development in self and epistemology. They created integrity in their efforts to align their intentions with their actions with a dynamic relationship to context. This study suggests that professional development experiences in science education include consideration of the personal and the professional, recognize and honor differing perspectives, facilitate development, and assist individuals to recognize and articulate their integrity.

  1. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  2. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  3. INTEGRATED EDUCATION

    Directory of Open Access Journals (Sweden)

    Lioara-Bianca BUBOIU

    2015-04-01

    Full Text Available Accepting and valuing people with disabilities is a key aspect of social policies promoted worldwide. The implementation of these policies aim normalize the lives of people with disabilities through full integration in the society to which they belong. Removing discrimination and social barriers equates to a maturing of the society, maturing translated by accepting diversity that surrounds us. Each person must be appreciated at its true value regardless of its condition of normality or deviation from it. Valuing individuals can be achieved only through a full acceptance in society, by assigning statuses and fulfilling social roles. School integration of children with special educational needs in mainstream education is a challenge and involves many aspects to be successful. It is the premise of social integration, the basis for future socio-professional insertion. Integrated education is the first step towards a world of equal opportunities, a world without discrimination.

  4. Integration and Differentiation as the Universal Scientific Categories and their Reflection in the Theory and Practice of Natural Science Education

    Directory of Open Access Journals (Sweden)

    V. A. Ignatova

    2013-01-01

    Full Text Available The post-industrial society gives way to the qualitatively new formation of education, integrated at its every level: integration with science and production; cooperation of different educational establishments; succession of educational levels; cross-disciplinary and inter-disciplinary expertise development; choice of methods, technologies and organizational forms of education and upbringing, etc. The integration and differentiation in their didactic unity reflect the complexity and contradiction of educational process, either of them dominating in certain socio-economic conditions of the given historic period. The retrospective analysis of the above correlation regarding the natural science disciplines demonstrates the lack of theoretical and methodological bases for integration, and its accidental unsystematic character in educational processes. The main conclusion of the study is the need for the complex competence model to combine the ideas of integration and differentiation providing both the wide outlook and professional training. For overcoming the predominance of differentiated education, the author suggests adapting the concepts of post-non-classical science, and selection and structuring of educational information with the reference to the semantic universals of systematic synergetic approach. The research findings can be used in pedagogic research methodology, educational process design and modeling, its content, technology and organization. 

  5. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  6. An integrated model of decision-making in health contexts: the role of science education in health education

    Science.gov (United States)

    Arnold, Julia C.

    2018-03-01

    Health education is to foster health literacy, informed decision-making and to promote health behaviour. To date, there are several models that seek to explain health behaviour (e.g. the Theory of Planned Behaviour or the Health Belief Model). These models include motivational factors (expectancies and values) that play a role in decision-making in health contexts. In this theoretical paper, it is argued that none of these models makes consequent use of expectancy-value pairs. It is further argued that in order to make these models fruitful for science education and for informed decision-making, models should systematically incorporate knowledge as part of the decision-making process. To fill this gap, this theoretical paper introduces The Integrated Model of Decision-Making in Health Contexts. This model includes three types of knowledge (system health knowledge, action-related health knowledge and effectiveness health knowledge) as influencing factors for motivational factors (perceived health threat, attitude towards health action, attitude towards health outcome and subjective norm) that are formed of expectancy-value pairs and lead to decisions. The model's potential for health education in science education as well as research implications is discussed.

  7. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  8. Science Education for Environmental Awareness: Approaches to Integrating Cognitive and Affective Domains

    Science.gov (United States)

    Littledyke, Michael

    2008-01-01

    Science education has an important part in developing understanding of concepts that underpin environmental issues, leading potentially to pro-environmental behaviour. However, science is commonly perceived negatively, leading to inappropriate and negative models of science that do not connect to people's experiences. The article argues that the…

  9. Integrating research, clinical care, and education in academic health science centers.

    Science.gov (United States)

    King, Gillian; Thomson, Nicole; Rothstein, Mitchell; Kingsnorth, Shauna; Parker, Kathryn

    2016-10-10

    Purpose One of the major issues faced by academic health science centers (AHSCs) is the need for mechanisms to foster the integration of research, clinical, and educational activities to achieve the vision of evidence-informed decision making (EIDM) and optimal client care. The paper aims to discuss this issue. Design/methodology/approach This paper synthesizes literature on organizational learning and collaboration, evidence-informed organizational decision making, and learning-based organizations to derive insights concerning the nature of effective workplace learning in AHSCs. Findings An evidence-informed model of collaborative workplace learning is proposed to aid the alignment of research, clinical, and educational functions in AHSCs. The model articulates relationships among AHSC academic functions and sub-functions, cross-functional activities, and collaborative learning processes, emphasizing the importance of cross-functional activities in enhancing collaborative learning processes and optimizing EIDM and client care. Cross-functional activities involving clinicians, researchers, and educators are hypothesized to be a primary vehicle for integration, supported by a learning-oriented workplace culture. These activities are distinct from interprofessional teams, which are clinical in nature. Four collaborative learning processes are specified that are enhanced in cross-functional activities or teamwork: co-constructing meaning, co-learning, co-producing knowledge, and co-using knowledge. Practical implications The model provides an aspirational vision and insight into the importance of cross-functional activities in enhancing workplace learning. The paper discusses the conceptual and empirical basis to the model, its contributions and limitations, and implications for AHSCs. Originality/value The model's potential utility for health care is discussed, with implications for organizational culture and the promotion of cross-functional activities.

  10. Integrating Vygotsky's theory of relational ontology into early childhood science education

    Science.gov (United States)

    Kirch, Susan A.

    2014-03-01

    In Science Education during Early Childhood: A Cultural- Historical Perspective, Wolff-Michael Roth, Maria Inês Mafra Goulart and Katerina Plakitsi explore the practical application of Vygotsky's relational ontological theory of human development to early childhood science teaching and teacher development. In this review, I interrogate how Roth et al. conceptualize "emergent curriculum" within the Eurocentric cultural-historical traditions of early childhood education that evolved primarily from the works of Vygotsky and Piaget and compare it to the conceptualizations from other prominent early childhood researchers and curriculum developers. I examine the implications of the authors' interpretation of emergence for early childhood science education and teacher preparation.

  11. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  12. Planning for Integrated Science Education in Africa. Report of a Regional Workshop.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This report of a workshop held in Nigeria for the leaders of science education at primary and lower secondary levels in 15 African nations describes the status of science instruction in those countries. The workshop was sponsored by UNESCO/UNICEF and continued from September 20th through October 4th, 1971. The main address to the conference,…

  13. Effective Integration of the World-Wide Web in Earth Science Education.

    Science.gov (United States)

    Herbert, Bruce; Bednarz, Sarah; Boyd, Tom; Blake, Sally; Harder, Vicki; Sutter, Marilyn

    The earth sciences is an evolving set of disciplines encompassing more than 30 specialties; however, earth scientists continue to be trained within the traditional disciplinary structure. Earth science education should focus not only on student acquisition and retention of factual knowledge, but also on the development of higher-order skills…

  14. Integration of Place-Based Education Into Science Classes From Prekindergarten Through Grade 5

    Science.gov (United States)

    Wade-Lyles, Terri A.

    In a large urban district in Ohio, 29.2% of Grade 5, 28.7% of Grade 8, and 45.7% of Grade 10 students passed the state test in science. School district administrators formed a community partnership with local science institutions in order to provide students with hands-on place-based learning experiences intended to improve science academic achievement in PK-Grade 5. The purpose of this qualitative program evaluation was to determine the level of implementation of that place-based program by examining the efficacy of the teachers' embedded professional development and their experiences with the training components. Bruner's theory of cognitive development was used to examine teachers' needs in facilitating the program. A stratified random sample of 659 PK-Grade 5 teachers from 73 district elementary schools was selected, and 57 teachers responded to an anonymous online survey of 5 open-ended questions. Data were analyzed using thematic analysis to identity factors that enhanced or impeded the implementation of place-based education programming based on their professional development. The key findings indicated that over half of the participants viewed resources as lacking, training as limited, and planning that is too time consuming, and complicated. Participants expressed the need for clarity regarding resources and more training on how to plan for and integrate the placed-based approach. The resulting project was an executive summary and interactive workshop for program stakeholders, such as administrators, teachers, and ultimately students, who would benefit from this project by improving the place-based program.

  15. Tipping Points and Balancing Acts: Grand Challenges and Synergistic Opportunities of Integrating Research and Education, Science and Solutions

    Science.gov (United States)

    McCaffrey, M. S.; Stroeve, J. C.

    2011-12-01

    The "Grand Challenges" to address Global Change identified by the International Council for Science (ICSU) and its partners through the Earth System Sustainability Initiative-improving forecasting, enhancing and integrating observation systems, confining and minimizing global environmental change, responding effectively to change, as well as innovating and evaluating these efforts-require an integrative approach that engages and inspires society in general and young people in particular. What are some of the effective strategies-and stumbling blocks-in being able to make Earth System science and related sustainability efforts relevant and practical to non-technical audiences? Recent climate education projects have pioneered new strategies toward linking and infusing research with education, science with solutions. For example, the Climate Literacy and Energy Awareness Network (CLEAN), a National Science Digital Library Pathway funded by NSF, has approached this integral approach by "closing the loop" between climate and energy topics, identifying and annotating high quality online resources relating to the carbon cycle and related topics. The Inspiring Climate Education Excellence (ICEE) project, funded by NASA, offers professional development for teachers that infuses climate science with solutions as an emerging "best practice" while being sensitive to the emotional, psychological and political aspects of avoiding "gloom and doom" on one hand or advocating for particular policy solutions on another. Other examples includes NASA's climate website (http://climate.nasa.gov ), which serves as a robust, engaging portal for climate research and data, especially for educators. The recent PBS series Earth: The Operators' Manual and related book and website are other recent example of how climate science research, education and solutions can be incorporated in a way that is appealing and informative. The Alliance for Climate Education (ACE) has given assemblies in

  16. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  17. Integrating Science and Technology into a Policy of Lifelong Education in Nigeria.

    Science.gov (United States)

    Urevbu, Andrew O.

    1985-01-01

    Examines Nigeria's National Policy on Education guidelines, specifically focusing on science and technological education. Discusses the development of vocational and technical schools, transfer of technology, and the role of research institutes. Recommendations are made concerning academic survival skills, respect for manual skills, improved…

  18. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  19. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  20. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  1. Possibilities and Limits of Integrating Science and Diversity Education in Preservice Elementary Teacher Preparation

    Science.gov (United States)

    Bravo, Marco A.; Mosqueda, Eduardo; Solís, Jorge L.; Stoddart, Trish

    2014-08-01

    In this paper we present findings from a project that documented the development of preservice teachers' beliefs and practices in delivering science instruction that considers issues of language and culture. Teacher candidates in the intervention group ( n = 65) received a science methods course and teaching practicum experience that provided guidance in teaching science in culturally and linguistically responsive ways. Comparisons between a control group of preservice teachers ( n = 45) and those involved in the intervention yielded stronger beliefs about the efficacy in promoting collaboration in science teaching than the intervention group. Observations of these preservice teachers during their teaching practicum revealed differences in favor of the intervention group in: (a) implementing science instruction that addressed the language and literacy involved in science; (b) using questions that elicited higher order thinking and; (c) providing scaffolds (e.g., purposeful feedback, probing student background knowledge) when confronting abstract scientific concepts. Implications for preservice teacher education are addressed.

  2. Sophiology as an Example of Integral Science and Education in the Slavonic Tradition

    Directory of Open Access Journals (Sweden)

    Emil Páleš

    2015-05-01

    Full Text Available Several thinkers among the Slavs and in the Orthodox East have been led by the vision of Sophia – integral wisdom. Sophiology is an effort to integrate different sources of knowledge: revelation, reason and sensory experience. Its intention is to overcome the split among the psychic components of the human personality, which is echoed in the split among social processes and institutions. Such effort is of importance for the education of independent and morally responsible (women and for the renewal of society’s weakened fundamental values. Sophiology’s basic intuition is the unity of creation; nature and society are shaped by the same beings or principles that are manifested and also operate within the human soul. Thanks to this, one can understand the external world by drawing on one’s inner experience and vice versa, and give meaning to things by means of all-pervading analogies. This epistemological presupposition has been all but abandoned recently as a relic of a romantic or even older medieval way of thinking. In Slovakia, this has been reflected in the argument within the Štúrovci group concerning the principle of spiritual vision, which played a vital role in its Slavonic science project. We shall demonstrate that knowledge of this kind is still possible. It is possible, for example, to understand and effectively predict cultural epochs in history from the sequence and contents of psychic configurations during the biographical development of an individual. Introspective observation of archetypes sheds light on the evolution of new species, which appear to be a somatization of these archetypes. Architecture can be derived from the shapes of the human body, specifically those organs associated with the qualities of the soul that prevail in a given historical period. The inwardly perceived effects of some metals correspond to their outward qualities. Therefore, developmental psychology and history, history and paleontology

  3. Health Care and Family and Consumer Sciences Education: An Integrative Approach.

    Science.gov (United States)

    Montgomery, Ruth; Rider, Mary Ellen

    2001-01-01

    Uses ecological systems theory as a foundation for integrating health care and its public policy issues into family and consumer sciences classrooms. Offers teachers alternative perspectives on consumer behavior changes and needs in heath care systems and policies. Contains 24 references. (JOW)

  4. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    Science.gov (United States)

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  5. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  6. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  7. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  8. Vertical integration of basic science in final year of medical education.

    Science.gov (United States)

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  9. The methodological foundations of mutual integration of scientific knowledge in the field of physical education and sports and related sciences.

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2012-02-01

    Full Text Available Possibilities of application of scientific knowledge in physical education and sport in contiguous scientific directions are considered. The advanced studies of leading specialists in area of physical education and sport are analysed. It is rotined that on the modern stage scientific developments in area of physical education and sport attained a level, when can be utillized in fundamental and applied sciences. Scientific researches in area of physical education and sport to the application scientific areas, such as pedagogics, psychology, design, programming et al are related. One of examples of mutual integration of scientific knowledge in area of physical education and sport there is theoretical conception of individualization of preparation of sportsmen.

  10. Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education

    Science.gov (United States)

    Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee

    2011-01-01

    An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…

  11. Integrated Lecture and Laboratory Chemistry Components of Science Education Program for Early and Middle Childhood Education Majors

    Science.gov (United States)

    Lunsford, S. K.

    2004-05-01

    Two new chemistry courses were developed for early childhood and middle childhood education majors. The results of a pre- and posttest in the courses indicate success in developing student content knowledge and ability to problem solve. In addition these courses are designed to develop preservice teachers' understanding of the National Science Education Standards and foster support for implementing these standards in their classrooms. These courses provide materials, resources, and guidance in implementing the standards in their future teaching careers.

  12. Bridging the Chasm: Challenges, Opportunities, and Resources for Integrating a Dissemination and Implementation Science Curriculum into Medical Education.

    Science.gov (United States)

    Ginossar, Tamar; Heckman, Carolyn J; Cragun, Deborah; Quintiliani, Lisa M; Proctor, Enola K; Chambers, David A; Skolarus, Ted; Brownson, Ross C

    2018-01-01

    Physicians are charged with implementing evidence-based medicine, yet few are trained in the science of Dissemination and Implementation (D&I). In view of the potential of evidence-based training in D&I to help close the gap between research and practice, the goal of this review is to examine the importance of D&I training in medical education, describe challenges to implementing such training, and provide strategies and resources for building D&I capacity. We conducted (1) a systematic review to identify US-based D&I training efforts and (2) a critical review of additional literature to inform our evaluation of the challenges and opportunities of integrating D&I training in medical education. Out of 269 unique articles reviewed, 11 described US-based D&I training. Although vibrant and diverse training opportunities exist, their capacity is limited, and they are not designed to meet physicians' needs. Synthesis of relevant literature using a critical review approach identified challenges inherent to changing medical education, as well as challenges related to D&I science. Finally, selected strategies and resources are available for facilitating incorporation of D&I training into medical education and overcoming existing challenges. Integrating D&I training in the medical education curriculum, and particularly in residency and fellowship training, holds promise for bridging the chasm between scientific discoveries and improved patient care and outcomes. However, unique challenges should be addressed, including the need for greater evidence.

  13. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    Science.gov (United States)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  14. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  15. Integration of science and education on the example of cooperation of Semipalatinsk State University of Shakarim and National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Syzdykov, E.B.; Gavrilova, N.B.; Asambaev, A.Zh.

    2002-01-01

    In this work the ways of integration of science and education on the example of cooperation of Semipalatinsk State University of Shakarim and National Nuclear Center of the Republic of Kazakhstan are presented. (author)

  16. Features of construction of the individual trajectory education to computer science on the basis dynamic integrated estimation of level of knowledge

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2010-12-01

    Full Text Available In article features of realisation of the mechanism of construction of an optimum trajectory of education to computer science on the basis of a dynamic integrated estimation of level of knowledge are considered.

  17. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  18. Going Beyond Academic Integrity Might Broaden our Understanding of Plagiarism in Science Education: A Perspective from a Study in Brazil.

    Science.gov (United States)

    Santos, Christiane C; Santos, Patrícia S Dos; Sant'ana, Maurício C; Masuda, Hatisaburo; Barboza, Monica B; Vasconcelos, Sonia M R

    2017-05-01

    Fostering innovation and creativity is a priority in the science and education policy agenda of most countries, which have advocated that innovative minds and processes will boost scientific and economic growth. While our knowledge society has embraced this view, fostering creativity is among the major challenges faced by educators and policymakers. For example, plagiarism, which may be considered a form of imitation and repetition, is a global concern at schools and universities. However, most discussions focus on academic integrity, which, we believe, leaves some gaps in the approach to the problem. As part of an ongoing project on plagiarism, science and education policy, we show results from a survey sent to 143 high-school science teachers at one of the most highly regarded federal schools in Brazil. Among respondents (n=42), about 50% admit that students plagiarize in assignments. Additionally, many of these educators suggest that the way biology, chemistry and physics are taught at school stimulates more repetition than creativity. Our findings are consistent with the need for a broader perspective on plagiarism and with initiatives to stimulate creativity and critical thinking among students. Although we offer a perspective from Brazil, it may illuminate current discussions on plagiarism, particularly in emerging countries.

  19. Going Beyond Academic Integrity Might Broaden our Understanding of Plagiarism in Science Education: A Perspective from a Study in Brazil

    Directory of Open Access Journals (Sweden)

    CHRISTIANE C. SANTOS

    Full Text Available ABSTRACT Fostering innovation and creativity is a priority in the science and education policy agenda of most countries, which have advocated that innovative minds and processes will boost scientific and economic growth. While our knowledge society has embraced this view, fostering creativity is among the major challenges faced by educators and policymakers. For example, plagiarism, which may be considered a form of imitation and repetition, is a global concern at schools and universities. However, most discussions focus on academic integrity, which, we believe, leaves some gaps in the approach to the problem. As part of an ongoing project on plagiarism, science and education policy, we show results from a survey sent to 143 high-school science teachers at one of the most highly regarded federal schools in Brazil. Among respondents (n=42, about 50% admit that students plagiarize in assignments. Additionally, many of these educators suggest that the way biology, chemistry and physics are taught at school stimulates more repetition than creativity. Our findings are consistent with the need for a broader perspective on plagiarism and with initiatives to stimulate creativity and critical thinking among students. Although we offer a perspective from Brazil, it may illuminate current discussions on plagiarism, particularly in emerging countries.

  20. Integrative STEM Education Defined

    OpenAIRE

    Sanders, Mark E.

    2015-01-01

    “My work with integrative STEM education began in 1990 with the NSF-funded Technology, Science, Mathematics Integration Project… By 2008, I was convinced “STEM Education” was (and always would be) a hopelessly ambiguous phrase, and therefore felt we absolutely needed to rename our “STEM Education” graduate program and develop a tight operational definition of the central idea underlying our program, in hopes of preventing the sort of hopeless ambiguity that ruined the term “STEM education” fr...

  1. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    Science.gov (United States)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  2. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  3. Little Botany: A Mobile Game Utilizing Data Integration to Enhance Plant Science Education

    Directory of Open Access Journals (Sweden)

    Suphanut Jamonnak

    2017-01-01

    Full Text Available Mobile devices are rapidly becoming the new medium of educational and social life for young people, and hence mobile educational games have become an important mechanism for learning. To help school-aged children learn about the fascinating world of plants, we present a mobile educational game called Little Botany, where players can create their own virtual gardens in any location on earth. One unique feature of Little Botany is that the game is built upon real-world data by leveraging data integration mechanism. The gardens created in Little Botany are augmented with real-world location data and real-time weather data. More specifically, Little Botany is using real-time weather data for the garden location to simulate how the weather affects plants growth. Little Botany players can learn to select what crops to plant, maintain their own garden, watch crops to grow, tend the crops on a daily basis, and harvest them. With this game, users can also learn plant structure and three chemical reactions.

  4. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  5. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    Science.gov (United States)

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  7. INQUIRY-BASED SCIENCE COMIC PHYSICS SERIES INTEGRATED WITH CHARACTER EDUCATION

    Directory of Open Access Journals (Sweden)

    D Yulianti

    2016-04-01

    Full Text Available This study aimed to test the level of readability and feasibility of science comic, to knowcharacter development through a small test in some schools. The research design was Research & Development, trials were using quasi-experimental pre-test-post-test experimental design. The instruments to measure attitudes were: a questionnaire and observation sheet, a test used to measure comprehension of the material. The results showed that learning science by inquiry-based science comic can improvecharacters and cognitive achievement of primary school students. Results in the form of inquiry-based science comic can be utilized in learning science as a companion teaching materials.

  8. Perspektiven einer Rezeption neurowissenschaftlicher Erkenntnisse in der Erziehungswissenschaft (Perspectives of an Integration of Neuro-Scientific Findings into Educational Science).

    Science.gov (United States)

    Becker, Nicole

    2002-01-01

    Sketches the status quo and possible starting points for the adoption of neuro-scientific findings by educational science. Describes the latest developments in U.S. research. Discusses the adoption of these points by German educational science. Outlines the possibilities and limits of an interdisciplinary discourse. (CAJ)

  9. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  10. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  11. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  12. Wabanaki Youth in Science (WaYS): A Tribal Mentoring and Educational Program Integrating Traditional Ecological Knowledge and Western Science

    Science.gov (United States)

    tish carr; Laura S. Kenefic; Darren J. Ranco

    2017-01-01

    The Wabanaki Youth in Science (WaYS) program provides mentoring and training opportunities in the life sciences for Native American youth in Maine. This program, which was motivated by a shortage of young natural resource professionals to manage tribal lands, uses a multifaceted approach (i.e., camps, community outreach, and internships with cultural resource and...

  13. Possibilities and Limits of Integrating Science and Diversity Education in Preservice Elementary Teacher Preparation

    Science.gov (United States)

    Bravo, Marco A.; Mosqueda, Eduardo; Solís, Jorge L.; Stoddart, Trish

    2014-01-01

    In this paper we present findings from a project that documented the development of preservice teachers' beliefs and practices in delivering science instruction that considers issues of language and culture. Teacher candidates in the intervention group (n = 65) received a science methods course and teaching practicum experience that provided…

  14. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    Science.gov (United States)

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  15. Exploring Educational Quality and Relevance through Integrating ...

    African Journals Online (AJOL)

    Exploring Educational Quality and Relevance through Integrating Environmental and Social Issues in Science Education. ... However, the new contextualised concept of learning and teaching was applied only to one of them. A post-test was ...

  16. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  17. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  18. Education for eScience Professionals: Integrating Data Curation and Cyberinfrastructure

    Directory of Open Access Journals (Sweden)

    Youngseek Kim

    2011-03-01

    Full Text Available Large, collaboratively managed datasets have become essential to many scientific and engineering endeavors, and their management has increased the need for "eScience professionals" who solve large scale information management problems for researchers and engineers. This paper considers the dimensions of work, worker, and workplace, including the knowledge, skills, and abilities needed for eScience professionals. We used focus groups and interviews to explore the needs of scientific researchers and how these needs may translate into curricular and program development choices. A cohort of five masters students also worked in targeted internship settings and completed internship logs. We organized this evidence into a job analysis that can be used for curriculum and program development at schools of library and information science.

  19. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    International Nuclear Information System (INIS)

    Tran, Trinh-Ba; Ed van den Berg, Ed; Beishuizen, Jos; Ellermeijer, Ton

    2015-01-01

    Integration of technology (e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers’ learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2–3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  20. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    Science.gov (United States)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos

    2016-05-01

    Integration of technology ( e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers' learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2-3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  1. Collaborative Project-Based Learning: An Integrative Science and Technological Education Project

    Science.gov (United States)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-01-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…

  2. Examination of the Effects of STEM Education Integrated as a Part of Science, Technology, Society and Environment Courses

    Science.gov (United States)

    Yildirim, Bekir; Selvi, Mahmut

    2016-01-01

    This study was carried out to determine the view of prospective teachers with regard to STEM education given in Science, Technology, Society and Environment course and the effects of STEM education on prospective teachers' attitudes towards renewable energy sources and awareness of environment problems. The study was carried out in 2014-2015…

  3. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Directory of Open Access Journals (Sweden)

    Maria Åström

    2012-06-01

    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  4. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  5. Integrating climate change mitigation, adaptation, communication and education strategies in Matanzas Province, Cuba: A Citizen Science Approach

    Science.gov (United States)

    Rodriguez Bueno, R. A.; Byrne, J. M.

    2015-12-01

    The Environment Service Center of Matanzas (ESCM), Cuba and the University of Lethbridge are collaborating on the development of climate mitigation and adaptation programs in Matanzas province. Tourism is the largest industry in Matanzas. Protecting that industry means protecting coastal zones and conservation areas of value to tourism. These same areas are critical to protecting the landscape from global environmental change: enhanced tropical cyclones, flooding, drought and a range of other environmental change impacts. Byrne (2014) adapted a multidisciplinary methodology for climate adaptation capacity definition for the population of Nicaragua. A wide array of adaptive capacity skills and resources were integrated with agricultural crop modeling to define regions of the country where adaptive capacity development were weakest and should be improved. In Matanzas province, we are developing a series of multidisciplinary mitigation and adaptation programs that builds social science and science knowledge to expand capacity within the ESCM and the provincial population. We will be exploring increased risk due to combined watershed and tropical cyclone flooding, stresses on crops, and defining a range of possibilities in shifting from fossil fuels to renewable energy. The program will build ongoing interactions with thousands of Matanzas citizens through site visits carried out by numerous Cuban and visiting students participating in a four-month education semester with a number of Lethbridge and Matanzas faculty. These visits will also provide local citizens with better access to web-based interactions. We will evaluate mitigation and adaptive capacities in three municipalities and some rural areas across the province. Furthermore, we will explore better ways and means to communicate between the research and conservation staff and the larger population of the province.

  6. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  7. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  8. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  9. An Integrated Model of Decision-Making in Health Contexts: The Role of Science Education in Health Education

    Science.gov (United States)

    Arnold, Julia C.

    2018-01-01

    Health education is to foster health literacy, informed decision-making and to promote health behaviour. To date, there are several models that seek to explain health behaviour (e.g. the Theory of Planned Behaviour or the Health Belief Model). These models include motivational factors (expectancies and values) that play a role in decision-making…

  10. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  11. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  12. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  13. Integrating History and Philosophy of the Life Sciences in Practice to Enhance Science Education: Swammerdam's "Historia Insectorum Generalis" and the Case of the Water Flea

    Science.gov (United States)

    Kendig, Catherine

    2013-01-01

    Hasok Chang ("Sci Educ" 20:317-341, 2011) shows how the recovery of past experimental knowledge, the physical replication of historical experiments, and the extension of recovered knowledge can increase scientific understanding. These activities can also play an important role in both science and history and philosophy of science…

  14. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  15. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  16. Educational Technology: Integration?

    Science.gov (United States)

    Christensen, Dean L.; Tennyson, Robert D.

    This paper presents a perspective of the current state of technology-assisted instruction integrating computer language, artificial intelligence (AI), and a review of cognitive science applied to instruction. The following topics are briefly discussed: (1) the language of instructional technology, i.e., programming languages, including authoring…

  17. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  18. Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism

    Science.gov (United States)

    Barak, Miri

    2017-04-01

    Changes in our global world have shifted the skill demands from acquisition of structured knowledge to mastery of skills, often referred to as twenty-first century competencies. Given these changes, a sequential explanatory mixed methods study was undertaken to (a) examine predominant instructional methods and technologies used by teacher educators, (b) identify attributes for learning and teaching in the twenty-first century, and (c) develop a pedagogical framework for promoting meaningful usage of advanced technologies. Quantitative and qualitative data were collected via an online survey, personal interviews, and written reflections with science teacher educators and student teachers. Findings indicated that teacher educators do not provide sufficient models for the promotion of reform-based practice via web 2.0 environments, such as Wikis, blogs, social networks, or other cloud technologies. Findings also indicated four attributes for teaching and learning in the twenty-first century: (a) adapting to frequent changes and uncertain situations, (b) collaborating and communicating in decentralized environments, (c) generating data and managing information, and (d) releasing control by encouraging exploration. Guided by social constructivist paradigms and twenty-first century teaching attributes, this study suggests a pedagogical framework for fostering meaningful usage of advanced technologies in science teacher education courses.

  19. Technology Integration in Science Education: A Study of How Teachers Use Modern Learning Technologies in Biology Classrooms

    Science.gov (United States)

    Gnanakkan, Dionysius Joseph

    , teacher education, teaching practice, administrators, and learning technology developers. More detailed research within similar school settings (public, charter, and private) is needed to verify the common findings across the different cases in this study. An implication is that learning technology integration could be modeled with instructional scaffolds and questioning and incorporating higher order thinking tasks. Learning technology developers should consider the collaborative learning groups while developing these technologies.

  20. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  1. A discourse on the integration of library and information science educational program with professional practicum——The case of NSL

    Institute of Scientific and Technical Information of China (English)

    CHU Jingli

    2008-01-01

    There is an ongoing professional tensionin the LIS community about the structural relationship between LIS education and professional practice in terms of the best way in fostering and strengthening the education program for librarianship.This is increasingly becoming an urgent issue due to the pressing demands of a rapidly changing information environment.The divergent viewpoints and approaches of these two professional bodies toward one of the most important issues of their common interest are further aggravated by each of their own entrenched professional provincialism as well as by their isolated professional undertakings.These factors are inevitably threatening the vitality and thriving of both bodies.In an attempt to ease this developing trend of professional tension from evolving further into a mutually self-destructive situation,it is suggested in this paper that librarians and library educators should join hands together and transcend their own provincial interest by solving this thorny issue of this professional tension which has multi-dimensional adverse impacts on both professional enterprises.The collaboration of these two parties can serve as a catalyst to bring the two professional groups together more closely and in an organic way to reconstruct a sound LIS educational program with an integral component of professional practicum such as the case of National Science Library,the Chinese Academy of Sciences (CAS).The author believes that the integration of LIS education with professional practicum being offered at National Science Library of CAS (NSL) may shed light onto a new vista of hope for those who are so dedicated themselves to the changes of the LIS education.

  2. A discourse on the integration of library and information science educational program with professional practicum——The case of NSL

    Institute of Scientific and Technical Information of China (English)

    CHU; Jingli

    2008-01-01

    There is an ongoing professional tension in the LIS community about the structural relationship between LIS education and professional practice in terms of the best way in fostering and strengthening the education program for librarianship.This is increasingly becoming an urgent issue due to the pressing demands of a rapidly changing information environment.The divergent viewpoints and approaches of these two professional bodies toward one of the most important issues of their common interest are further aggravated by each of their own entrenched professional provincialism as well as by their isolated professional undertakings.These factors are inevitably threatening the vitality and thriving of both bodies.In an attempt to ease this developing trend of professional tension from evolving further into a mutually self-destructive situation,it is suggested in this paper that librarians and library educators should join hands together and transcend their own provincial interest by solving this thorny issue of this professional tension which has multi-dimensional adverse impacts on both professional enterprises.The collaboration of these two parties can serve as a catalyst to bring the two professional groups together more closely and in an organic way to reconstruct a sound LIS educational program with an integral component of professional practicum such as the case of National Science Library,the Chinese Academy of Sciences(CAS).The author believes that the integration of LIS education with professional practicum being offered at National Science Library of CAS(NSL)may shed light onto a new vista of hope for those who are so dedicated themselves to the changes of the LIS education.

  3. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  4. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  5. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  6. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  7. Integrating education and incubation

    DEFF Research Database (Denmark)

    Hjortsø, Carsten Nico Portefée; Riis, Nina Louise Fynbo

    During the last decade student business incubation activities have become mainstream activities in Western universities. This is also the case in Danish higher education where all universities have established in-house student incubators. The models applied are different and place varied emphasis...... on the integration of extracurricular activities with formal credit awarding activities. In a Danish context, such integration has become increasingly important due to recent political reforms aimed at shortening the time it takes students to graduate in order to reduce national higher education expenditures....... On this backdrop, this paper explores the following questions: • How and to what extent do university student incubators collaborate with formal study programmes? • And which factors influence this integration of curricular and extracurricular activities?...

  8. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  9. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  10. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  11. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  12. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  13. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  14. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  15. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  16. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  17. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  18. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  19. Female distance education students overtaking males in science ...

    African Journals Online (AJOL)

    This study was initiated to compare the performance of male and female distance education students of the University of Education, Winneba in Integrated Science. This was done by randomly selecting the cumulated grades of male and female students of 2002, 2003 and 2004-year groups in Integrated Science for analysis ...

  20. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  1. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  2. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  3. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  4. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  5. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  6. Bridging the digital divide through the integration of computer and information technology in science education: An action research study

    Science.gov (United States)

    Brown, Gail Laverne

    The presence of a digital divide, computer and information technology integration effectiveness, and barriers to continued usage of computer and information technology were investigated. Thirty-four African American and Caucasian American students (17 males and 17 females) in grades 9--11 from 2 Georgia high school science classes were exposed to 30 hours of hands-on computer and information technology skills. The purpose of the exposure was to improve students' computer and information technology skills. Pre-study and post-study skills surveys, and structured interviews were used to compare race, gender, income, grade-level, and age differences with respect to computer usage. A paired t-test and McNemar test determined mean differences between student pre-study and post-study perceived skills levels. The results were consistent with findings of the National Telecommunications and Information Administration (2000) that indicated the presence of a digital divide and digital inclusion. Caucasian American participants were found to have more at-home computer and Internet access than African American participants, indicating that there is a digital divide by ethnicity. Caucasian American females were found to have more computer and Internet access which was an indication of digital inclusion. Sophomores had more at-home computer access and Internet access than other levels indicating digital inclusion. Students receiving regular meals had more computer and Internet access than students receiving free/reduced meals. Older students had more computer and Internet access than younger students. African American males had been using computer and information technology the longest which is an indication of inclusion. The paired t-test and McNemar test revealed significant perceived student increases in all skills levels. Interviews did not reveal any barriers to continued usage of the computer and information technology skills.

  7. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    Science.gov (United States)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  8. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  9. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  10. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  11. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  12. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  13. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  14. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  15. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  16. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  17. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  18. Vanishing Boundaries between Science and Art: Modelling Effective Middle Years of Schooling Practice in Pre-Service Science Education

    Science.gov (United States)

    Paige, Kathryn; Whitney, John

    2008-01-01

    This paper describes an innovation in science pre-service education that endeavours to increase student engagement in learning and doing science in the middle years through integrating science, mathematics and art. (Contains 8 figures.)

  19. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  20. Integrate Digital Storytelling in Education

    Science.gov (United States)

    Alismail, Halah Ahmed

    2015-01-01

    In the 21st century, educators believe using technology can be an effective factor in education for the new generation, making educational goals easier to achieve. In fact, technology is being studied by teachers and implemented into classrooms for a positive effect on student learning. Many teachers are integrating multimedia tools in teaching…

  1. Multi-Year Professional Development Grounded in Educative Curriculum Focused on Integrating Technology with Reformed Science Teaching Principles

    Science.gov (United States)

    Longhurst, Max L.; Coster, Daniel C.; Wolf, Paul G.; Duffy, Aaron M.; Lee, Hyunju; Campbell, Todd

    2016-01-01

    Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This…

  2. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    Science.gov (United States)

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  3. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  4. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  6. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  7. Achieving Quality Integrated Education.

    Science.gov (United States)

    Hawley, Willis D.; Rosenholtz, Susan J.

    While desegregation is neither a necessary nor a sufficient condition for ensuring either equity or quality education for minorities, the evidence is convincing that it is "educationally more difficult" to improve student achievement in segregated schools. Desegregation offers the opportunity to enhance the quality of education, particularly when…

  8. Integrating Mathematical Modeling for Undergraduate Pre-Service Science Education Learning and Instruction in Middle School Classrooms

    Science.gov (United States)

    Carrejo, David; Robertson, William H.

    2011-01-01

    Computer-based mathematical modeling in physics is a process of constructing models of concepts and the relationships between them in the scientific characteristics of work. In this manner, computer-based modeling integrates the interactions of natural phenomenon through the use of models, which provide structure for theories and a base for…

  9. Fuels planning: science synthesis and integration; social issues fact sheet 07: The "laws" of effective public education about fire hazards

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Within the past 10 years, breakthrough research has identified factors that are most important for effectively communicating about wildland fire hazards. This fact sheet discusses seven "Laws" of effective public communication that should be considered in any state-of-the-art education campaign.

  10. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    fundamental reforms in public education is challenging. The coalition must be able to reach consensus on a vision of reform and, then, sustain the reform over an extended period of time. This is not easy when power and authority are highly fragmented (and perhaps at odds), where interest groups live or die on confromtation politics, when public and private sectors exhibit a basic distrust of one another, and when everyone is an expert--real or imagined--on topics more-or-less related to education. In addition, the SSI's are operating in a turbulent climate. Policy makers may be working on standards-based reforms in K-12 education at the same time they are seeking efficiencies in state government, consider deregulation, and experiment with integrated social services. Criminal justice, health, and welfare are competing in state capitols for the resources required to bring about education reforms. And, within this shifting policy landscape, the SSI's are seeking higher priority for mathematics and science, as well as attempting to develop the infrastructure and capacity to support change in the schools. Simply keeping mathematics and science education high on the agenda of state policy-makers is a challenge. Each of these component strategies of the SSI's is important. The critical question is whether, in a given state, the SSI strategies, when combined with other state reform initiatives, form a coherent, comprehensive plan for improving public education. While the oldest of the SSI's are only in their fourth year of activity, it is already clear that the reforms they are seeking will take longer than five years to accomplish. (The SSI's are supported by five-year grants from the NSF.) The instructional reforms advocated by the SSI's require time to implement, and once in place, additional time to produce results. Elected officials often focus on the short-term, and they can become impatient when the results are slow. There appears to be no ready solution to the conflict

  11. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    Science.gov (United States)

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  12. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  13. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  14. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  15. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  16. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  17. MST 1: Proceedings of a conference on the integration of mathematics, science and technology in precollege education

    Energy Technology Data Exchange (ETDEWEB)

    Swyler, K. [ed.

    1995-11-01

    Example MST activities examined here show: (1) an inquiry-driven learning stimulus, involving (2) the synthesis of concepts in math, science and technology, through (3) the application of the scientific method and engineering problem solving/test protocols, and provoking (4) a stimulus for further exploration. A semi-exploratory learning approach offered background aimed at enabling participants to take meaningful courses of investigation; this approach must be balanced by maintaining contact with framework content standards. On the whole, the philosophy underlying the MST learning approach--as envisioned in the draft NYS Framework, and embodied in the example activities--is strongly endorsed. This endorsement is broad-based: those represented include teachers of mathematics, science, and technology, and school district administrators--in roughly equal numbers. Discussion centers not on whether the MST approach should be pursued, but on what is involved in doing it. Teams of conference participants were given time to plan or extend MST initiatives in their own districts. Outlines of the initiatives proposed by ten of the teams are disseminated herein.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Integrated Ph. D. Programme in Biological, Chemical and Physical Sciences at Indian Institute of Sciences Introductory Summer School on Astronomy and Astrophysics. Information and Announcements Volume 1 Issue 2 February 1996 pp 121- ...

  19. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  20. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  1. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  2. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  3. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  4. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  5. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    Effects of constructivist teaching strategies and traditional lecture method on students' learning outcomes in Nigeria's integrated science education · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. DI Oludipe, DB Awofodu ...

  6. Educators' motivation on integration of ICTs into pedagogy: case of ...

    African Journals Online (AJOL)

    Educators' motivation on integration of ICTs into pedagogy: case of disadvantaged areas .... disciplines such as Information Sciences, Business and. Engineering, it has been noted ..... by a particular textbook. One has .... the ETHICS method.

  7. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  8. Practical education in family planning: integrative review

    Directory of Open Access Journals (Sweden)

    Creusa Ferreira da Silva

    2017-07-01

    Full Text Available Objectives: To identify educational practices in family planning, facilitating factors, difficulties and resulting impacts. Method: This is an integrative literature review, using the three descriptors: "family planning", "health education" and "contraception"; In the databases of the Scientific Electronic Library Online (SciELO, Latin American and Caribbean Literature in Health Sciences (LILACS and Nursing Database (BDENF, were searched in January and February 2016. Results: Regarding the accomplishment of educational practices, most of the studies pointed out its accomplishment. The difficulties and facilitators aspects were related to the management of the health service, professional competence and users. Guarantee of family rights and autonomy were the impacts pointed out. Conclusion: The study showed that educational practices in family planning are tools to be encouraged as a guarantee and respect for sexual and reproductive rights. Descriptors: family planning; education in health; contraception.

  9. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  10. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  11. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  12. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  13. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  14. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  15. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  16. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  17. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  18. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  19. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  20. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  1. Spiritual Nursing Care Education An Integrated Strategy for Teaching Students.

    Science.gov (United States)

    White, Donna M; Hand, Mikel

    The failure of nursing schools to integrate spiritual nursing care education into the curriculum has contributed to a lack in nurses' spiritual care ability. Developing, integrating, and testing a Spiritual Care Nursing Education strategy in an Associates of Science nursing program significantly increased the perceived spiritual care competence of student nurses. Utilizing a faculty team to develop learning activities to address critical spiritual care attributes offers a method to integrate spiritual nursing care content throughout the curriculum in ASN and BSN programs.

  2. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  3. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  5. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  7. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  8. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  9. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  10. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  11. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  12. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  13. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  14. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  15. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  16. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  17. A study of integrated learning and the value of science in remote education: using the Internet to relay the total solar eclipse of 2001 June 11 in Africa

    Science.gov (United States)

    Takahashi, N.; Agata, H.; Maeda, K.; Okyudo, M..; Yamazaki, Y.

    A total solar eclipse was observed on 2001 June 21 in Angola, Zambia, and Zimbabwe in Africa. For the purpose of promotion of science education using a solar eclipse as an educational project, the whole image and an enlarged image of the Sun, that showed the process of an eclipse and how things went in the observation area, were broadcast to the world through the Internet (Live Eclipse). Such images were distributed to four primary schools in Hiroshima and the Science and Technology Museum in Tokyo to give a remote lecture through computers. To find the effectiveness of the lecture, the learning effect on the participating children was examined two times before and after the remote lecture on the solar eclipse.

  18. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  19. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  20. Potential Uses of EarthSLOT (an Earth Science, Logistics, and Outreach Terrainbase) for Education and Integration in the International Polar Year

    Science.gov (United States)

    Nolan, M.

    2004-12-01

    EarthSLOT is an internet-based, 3D, interactive terrain and data visualization system that may have many potential uses as an education and integration tool for International Polar Year projects. Recently funded by NSF's Office of Polar Programs for use in the Arctic, the global nature of the application lends itself well for use at both poles and everywhere in between. The application allows one to start with a spinning earth and zoom down to surface level. The highest resolution digital elevation models available provide the necessary 3D topographic perspective and a variety of possible high-resolution satellite and aerial imagery layers add surface realism; resolution can be down to the centimeter level for either type of data, and frequently acquired satellite imagery may be updated automatically as it arrives. Superimposed on this can be nearly any form of vector or annotation layers, such as shapefiles, polygons, point data, and 3D models (still and moving), which can be easily imported from existing GIS applications or spreadsheets. External databases can also be queried and the results served seamlessly. The entire application is served over the internet, and any connection with speeds over 300kps allows one to interactively fly with a minimum of performance lag. EarthSLOT stands for Earth Science, Logistics, and Outreach Terrainbase, targeting the user-groups of scientists, logisticians, and the public. Approved scientific users can add their own vector content to the application on their own, such that they can create their own custom applications featuring their data but using our underlying earth model with a minimum of interaction with us. For example, an oceanographer can add ship tracks or buoy locations to the model with links to data, host the link on his or her own web page, and invite collaborators to view the spatial relationship of their data to underlying bathymetry. Logisticians or program managers interested in understanding the spatial

  1. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  2. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  4. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  5. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    Science.gov (United States)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials

  6. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  7. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  8. Fostering Ethical Integrity in Nursing Education.

    Science.gov (United States)

    Eby, Ruth A; Hartley, Patricia Lynn; Hodges, Patricia J; Hoffpauir, Rebecca Baldwin

    Nursing students bring an array of morals, values, and ethics that may be inconsistent with ethical integrity. This study explored nurse educator perceptions of student ethical integrity and how educators can foster an ethical foundation in students and novice educators. Four major themes influencing ethical integrity emerged: the learning environment, behaviors, ethical principles, and a toolbox of strategies. Strategies for fostering ethical integrity included: modeling ethical integrity, effective communication, grading accuracy, faculty perceptions, and faculty peer mentoring.

  9. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  10. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  11. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  12. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  13. Overview of the First Forum about Informal Science Education

    Science.gov (United States)

    Lebron Santos, Mayra; Pantoja, Carmen

    2018-01-01

    The First Forum on Informal Science Education was held at the University of Puerto Rico in 2015. This Forum had the following goals:1. Gather for the first time professionals dedicated to public communication and science outreach in Puerto Rico. 2. Exchange experiences and dissemination strategies with international professional science communicators.3. Encourage a fruitful dialogue between communicators with experience in museums, the media, and the integration of sciences with the arts.4. Encourage dialogue between communicators to facilitate future collaborations.The invited speakers came from Ibero-America and addressed aspects of science communication in museums and the media, the dissemination of science through the arts, the participation of universities in informal science education and the formal education of science communicators. The participants included museum specialists, journalists, artists, outreach specialists, formal educators interested in science outreach, and college students. During the Forum special events for the public were coordinated to celebrate the International Year of Light (2015). The exhibit “Light: Beyond the Bulb” was displayed. Dr. Julieta Fierro, recipient of the prestigious Kalinga Prize for the Popularization of Science awarded by UNESCO, presented the public talk “Light in the Universe”. Dr. Inés Rodríguez Hidalgo, director of the Science Museum of Valladolid, presented the talk "O Sole Mío: An Invitation to Solar Physics". We present an overview of the forum and some critical reflections on the topics discussed.

  14. Quality Assurance in Educational Administration in the Teaching of Farm Mathematics for National Integration in Nigeria

    Science.gov (United States)

    Enemali, I. A.; Adah, Obe Christopher

    2015-01-01

    Farm mathematics, an aspect of agricultural science education is being taught in our educational institutions in the country. This effort is to enhance agricultural productivity and quality of agricultural science education for national integration. For the realization of this, a quality assured educational administration is vital. The paper…

  15. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  16. Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other

    Science.gov (United States)

    Luther, Rachel

    2013-01-01

    Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…

  17. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  18. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  19. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  1. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  3. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  4. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  5. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  6. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  7. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  8. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  9. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  10. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  11. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  12. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  13. The integration of Mathematics, Science and Technology in early childhood education and the foundation phase: The role of the formation of the professional identities of beginner teachers

    Directory of Open Access Journals (Sweden)

    Marie Botha

    2015-02-01

    Full Text Available This article focuses on the professional identity formation of six beginner teachers (three in early childhood education and three in the foundation phase, involved in the teaching of Mathematics, Science and Technology (MST. Attention is in particular being paid to the role of professional identity in how they applied innovative teaching methods such as enquiry-based teaching. The study is based on the personal narratives of the six teachers, regarding their own learning experiences in MST, the impact of their professional training at an institution of higher education, as well as their first experiences as MST teachers in the workplace. A qualitative research design was applied and data was obtained through visual (photo collages and written stories, observation and interviews. Whilst all the teachers held negative attitudes towards Mathematics, this situation was turned around during their university training. The three teachers in early childhood education experienced their entrance to the profession as positive, due mainly to the support of colleagues in their application of innovative teaching methods. Two teachers in the foundation phase, however, experienced the opposite. The findings emphasise the complex processes in the moulding of a professional teacher identity and how teaching practices are influenced by these processes.

  14. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  15. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  16. EDUCATION AS THE PRACTICE OF FREEDOM AND THE PROSPECT OF INTEGRAL EDUCATION IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    João Ricardo Silva

    2018-03-01

    Full Text Available In this article we discuss the idea of Education as a Freedom Practice, taking into account an emancipatory perspective of Integral Education for Higher Education. Thus, we reflect on an integral education in opposition to the hegemonic and simplistic version of an education for the market and even in opposition to that which means absorption of superior objective knowledge. The methodology used was the bibliographical research, where we sought a dynamic synthesis between Marxist authors and the colonial / postcolonial discussion. The theoretical horizon was a dialectical historical materialism, but without neglecting that knowledge is beyond the Western gaze and that science is not the only logic of valid knowledge. Given that knowledge is not only a reflection of reality, but the interpretation of this, the search for an integral education is also the search for inter-knowledge. This leads us to deacralize the university and to transform it into a place of building democratic relations. Keywords: Integral Education. Practices of freedom. Higher Education.

  17. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  18. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  19. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  20. Praxeologies and Institutional Interactions in the Advanced Science Teacher Education

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    disciplines in conjunction. In particular the inquiry process of Study and Research Paths (SRP) is experimented as a promising design to bring about disciplinary interaction. SRP is internationally a very recent design, entirely new to Danish teacher education, and the thesis add to the knowledge of its......The present thesis consists of six papers that address three important aspects in mathematics and science teacher education: ‘Integrating two or more teaching disciplines’, ‘learning from practice’ and ‘interaction between institutions’. These aspects are studied in combination as they have...... unfolded in the context of developing and implementing a Danish education programme called the Advanced Science Teacher Education (ASTE), that aim to educate lower secondary school teachers, who among other things are to excel at interdisciplinarity. The essence of integrated teaching is elusive...

  1. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  2. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  3. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  4. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  5. Systems Theory and the Earth Systems Approach in Science Education. ERIC Digest.

    Science.gov (United States)

    Lee, Hyongyong

    The systems approach provides a framework for integrating different scientific disciplines. This approach is used often in Earth Systems Education. This ERIC Digest describes the systems theory and its influence on science education. (Contains 16 references.) (YDS)

  6. Integrated Public Education, Fertility and Human Capital

    Science.gov (United States)

    Azarnert, Leonid V.

    2014-01-01

    This paper analyzes the consequences of integration in public education. I show that the flight from the integrated multicultural public schools to private education increases private educational expenditures and, as a result, decreases fertility among more affluent parents whose children flee. In contrast, among less prosperous parents…

  7. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  8. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  9. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  10. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  11. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  12. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  13. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  16. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  17. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  18. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  19. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  1. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  2. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  3. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  9. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  11. Science Education and Test-Based Accountability: Reviewing Their Relationship and Exploring Implications for Future Policy

    Science.gov (United States)

    Anderson, Kevin J. B.

    2012-01-01

    Assuming that quality science education plays a role in economic growth within a country, it becomes important to understand how education policy might influence science education teaching and learning. This integrative research review draws on Cooper's methodology (Cooper, 1982; Cooper & Hedges, 2009) to synthesize empirical findings on the…

  12. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  13. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, N.; Wanjala, F.

    2017-01-01

    AFRA-NEST was Conceived at the AFRA Ministerial Conference held in Aswan in 2007. The main objective of AFRA-NEST is to facilitate operation and networking in higher education, training and related research in Nuclear Science (NS&T) in the African Region through: • Sharing of information and materials of nuclear education and training. The strategies for implementing the objectives are: the use ICT for web-based education and training,; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels for teaching and research in the various nuclear disciplines. The main function of the AFRA-NEST is to; foster sustainable human resource development and nuclear knowledge management; host the Cyber Learning Platform for Nuclear Education and Training for the AFRA region and to integrate all available higher education capabilities in Africa

  14. Effects of Integrating Peace Education in the Nigeria Education System

    Science.gov (United States)

    Olowo, Oluwatoyin Olusegun

    2016-01-01

    This paper attempted to investigate the effects of integrating Peace Education into Nigeria educational system. Four research questions were designed for the study. The researcher designed an instrument tagged: Questionnaire on effect of Integrating Peace Education (QEIPE). The entire population of two hundred respondents spread across Secondary…

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Sum of Powers of Natural Numbers using Integration. N Marikannan V Ravichandran. Classroom Volume 8 Issue 2 February 2003 pp 80-84. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Integration and Polar Coordinates. S Kesavan. General Article Volume 18 Issue 11 November 2013 pp 996-1003. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/11/0996-1003. Keywords.

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 7. A Course on Integration Theory. B J Venkatachala. Book Review Volume 2 Issue 7 July 1997 pp 93-94. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/07/0093-0094. Author Affiliations.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. The Meaning of Integration – II. A K Nandakumaran. General Article Volume 9 Issue 5 May 2004 pp 41-50. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/05/0041-0050. Keywords. Riemann ...

  19. European Meteorological Society and education in atmospheric sciences

    Science.gov (United States)

    Halenka, T.; Belda, M.

    2010-09-01

    EMS is supporting the exchange of information in the area of education in atmospheric sciences as one of its priority and organizing the educational sessions during EMS annual meetings as a good occasion for such an exchange. Brief thought will be given to the fate of the series of International Conferences on School and Popular Meteorological and Oceanographic Education - EWOC (Education in Weather, Ocean and Climate) and to the project oriented basis of further cooperation in education in atmospheric sciences across Europe. Another tool of EMS is the newly established and developed EDU portal of EMS. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view EMS is trying to provide the information about the possibility of education in meteorology and climatology in different countries in centralised form, with uniform shape and content, but validated on national level. In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. The European Meteorological Society is trying to follow this process with implication to atmospheric sciences. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. One of the elements of EMS activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the

  20. Integrated STEM: A New Primer for Teaching Technology Education

    Science.gov (United States)

    Asunda, Paul A.; Mativo, John

    2017-01-01

    Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…

  1. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  2. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  3. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  4. Knowledge systems and the colonial legacies in African science education

    Science.gov (United States)

    Ziegler, John R.; Lehner, Edward

    2017-10-01

    This review surveys Femi Otulaja and Meshach Ogunniyi's, Handbook of research in science education in sub-Saharan Africa, Sense, Rotterdam, 2017, noting the significance of the theoretically rich content and how this book contributes to the field of education as well as to the humanities more broadly. The volume usefully outlines the ways in which science education and scholarship in sub-Saharan Africa continue to be impacted by the region's colonial history. Several of the chapters also enumerate proposals for teaching and learning science and strengthening academic exchange. Concerns that recur across many of the chapters include inadequate implementation of reforms; a lack of resources, such as for classroom materials and teacher training; and the continued and detrimental linguistic, financial, and ideological domination of African science education by the West. After a brief overview of the work and its central issues, this review closely examines two salient chapters that focus on scholarly communications and culturally responsive pedagogy. The scholarly communication section addresses the ways in which African science education research may in fact be too closely mirroring Western knowledge constructions without fully integrating indigenous knowledge systems in the research process. The chapter on pedagogy makes a similar argument for integrating Western and indigenous knowledge systems into teaching approaches.

  5. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  6. A Review of Integrated Courses in Pharmacy Education and Impact of Integration in Pharm D Curricula

    Directory of Open Access Journals (Sweden)

    Maryam Nikanmehr

    2017-03-01

    Full Text Available Today, due to ever-increasing knowledge and large volumes of information, educational planners of various fields around the world, have been seeking to establish a better and faster refresh for learning. Integration can be a good educational strategy by blending different subjects and contents when presented to students. The aim of this study is to evaluate the medical literature about integration in the curriculum; its process, importance, necessity and different types of it.This review article was prepared by searching the PubMed database, Google Scholar and science direct websites, national and international journals in the field of medical education curricula. The keywords were educational planning, curriculum integration, and medical education with integration and incorporation.Integration and its eleven steps can be an important strategy in educational planning. According to various studies, integration can enhance the students’ learning and skills in medicinal and pharmaceutical care. It also improves the satisfaction of faculty and students, the quality of education and increases the students’ grades at their examinations. Considering the proper planning, cooperation and co-teaching of faculty members, focus on the desired performance of students and correct assessment of the fundamental principles of integration are crucial to this strategy.

  7. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  8. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    Science.gov (United States)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  9. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  10. Integrating systems Approaches into Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Westerhoff, H.V.; Mosekilde, Erik; Noe, C. R.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose...... of the conference was to promote the ‘Integration of Systems Approaches into Pharmaceutical Sciences’ in view of optimising the development of new effective drugs. And a challenge this is, considering both the high attrition rates in the pharmaceutical industry and the failure of finding definitive drug solutions...... for many of the diseases that plague mankind today. The conference was co-sponsored by the American College of Clinical Pharmacology, the European Center for Pharmaceutical Medicine, and the Swiss Society of Pharmaceutical Sciences and, besides representatives from the European Regulatory Agencies and FDA...

  11. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  12. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  13. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  14. An Ecology of Science Education.

    Science.gov (United States)

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  15. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  16. How Integration Can Benefit Physical Education

    Science.gov (United States)

    Wilson-Parish, Nichelle; Parish, Anthony

    2016-01-01

    One method for physical educators to increase their contact hours with their students is curricular integration, which consists of combining two or more subject areas with the goal of fostering enhanced learning in each subject area. This article provides an example of a possible integrated lesson plan involving physical education and art.

  17. Integrating Systems Thinking Into Nursing Education.

    Science.gov (United States)

    Phillips, Janet M; Stalter, Ann M

    2016-09-01

    A critical need exists for nursing leadership in current complex health care settings. Systems thinking can be incorporated into nursing education at all levels by using evidence-based principles in education. Teaching tips are provided using a systems awareness model to guide nurse educators in the assessment and integration of systems thinking and engaging learners in interprofessional education and practice. J Contin Educ Nurs. 2016;47(9):395-397. Copyright 2016, SLACK Incorporated.

  18. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  19. Integral Education in Light of Earthrise

    Directory of Open Access Journals (Sweden)

    Craig Chalquist

    2015-02-01

    Full Text Available This article explores the relationship between integral education and the emerging terrestrial consciousness—a consciousness of interdependency, sovereignty, and earthly responsibility. It asserts that integral education is well positioned at this time when urgent environmental catastrophes threaten our planet, to help us recover an integral relation with the universe and our planet Earth, and contribute to restoration of a sense of earthly wonder and reverence.

  20. Integrating Sustainable Development Education into Secondary ...

    African Journals Online (AJOL)

    This is more so, at the tertiary level where disciplinary integration, which is now ... government, introductory technology, home economics, agricultural science and ... and learning equipment and the publication of textbooks, which will factor in, ...

  1. Integrating social science knowledge into natural resource management public involvement practice

    DEFF Research Database (Denmark)

    Stummann, Cathy Brown

    This PhD study explores the long-recognized challenge of integrating social science knowledge into NRM public involvement practice theoretically and empirically. Theoretically, the study draws on research from adult learning, continuing rofessional education and professional knowledge development...... to better understand how social science knowledge can benefit NRM public involvement practice. Empirically, the study explores the potential of NRM continuing professional education as a means for introducing social science knowledge to public NRM professionals. The study finds social science knowledge can...... be of value to NRM public involvement prospectively and retrospectively; and that continuing professional education can be an effective means to introducing social science knowledge to public NRM professionals. In the design of NRM continuing professional education focused on social science knowledge...

  2. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  3. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  4. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Issue front ... Metabolic Engineering: Biological Art of Producing Useful Chemicals · Ram Kulkarni ... General Article. Is Calculus a Failure in Cryptography?

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  7. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  8. Global human capital: integrating education and population.

    Science.gov (United States)

    Lutz, Wolfgang; KC, Samir

    2011-07-29

    Almost universally, women with higher levels of education have fewer children. Better education is associated with lower mortality, better health, and different migration patterns. Hence, the global population outlook depends greatly on further progress in education, particularly of young women. By 2050, the highest and lowest education scenarios--assuming identical education-specific fertility rates--result in world population sizes of 8.9 and 10.0 billion, respectively. Better education also matters for human development, including health, economic growth, and democracy. Existing methods of multi-state demography can quantitatively integrate education into standard demographic analysis, thus adding the "quality" dimension.

  9. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa.

    Science.gov (United States)

    Hiatt, Robert A; Engmann, Natalie J; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M; Macfarlane, Sarah B; Ngugi, Anthony K; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W

    2017-04-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches.A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education.Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa.

  10. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  11. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  12. Symposium 3 - Science Education “Leopoldo de Meis”: The Critical Importance of Science Education for Society

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Symposium 3 - Science Education “Leopoldo de Meis” Chair: Wagner Seixas da Silva, Universidade Federal do Rio de JaneiroAbstract:Three ambitious goals for science education:1. Enable all children to acquire the problem-solving, thinking, and communication skills of scientists – so that they can be productive and competitive in the new world economy.2. Generate a “scientific temper” for each nation, with scientifically trained people in many professions, ensuring the rationality and the tolerance essential for a democratic society.3. Help each nation generate new scientific knowledge and technology by casting the widest possible net for talent.My preferred strategy for the United States:1. Science education should have a much larger role in all school systems, but only if this science education is of a different kind than is experienced in most schools today.2. Making such a change will require a redefinition of what we mean by the term  “science education”.3. To create continually improving education systems, we will need much more collaborative, effective, and use-inspired education research - research that is focused on real school needs and that integrates the best school teachers into the work.4. Our best teachers need to have a much larger voice in helping to steer our national and state policies, as well as in our local school systems!

  13. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  14. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  15. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 11. November 2016, pages 965-1062. pp 965-966 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 967-967 Science Smiles ... pp 971-983 General Article.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  18. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  19. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  20. Is Museum Education "Rocket Science"?

    Science.gov (United States)

    Dragotto, Erin; Minerva, Christine; Nichols, Michelle

    2006-01-01

    The field of museum education has advanced and adapted over the years to meet the changing needs of audiences as determined by new research, national policy, and international events. Educators from Chicago's Adler Planetarium & Astronomy Museum provide insight into a (somewhat) typical museum education department, especially geared for readers…

  1. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  2. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  3. Biopolitics and the `subject' of labor in science education

    Science.gov (United States)

    Bazzul, Jesse

    2017-12-01

    Viewing science education as a site of biopolitical engagement—intervention into forces that seek to define, control, and exploit life (biopower)—requires that science educators ask after how individuals and populations are governed by technologies of power. In this paper, I argue that microanalyses, the analysis of everyday practices and discourses, are integral to biopolitical engagement, are needed to examine practices that constitute subjectivities and maintain oppressive social conditions. As an example of a microanalysis I will discuss how repetitive close-ended lab/assessment tasks, as well as discourses surrounding careers in science, can work to constitute students as depoliticized, self-investing subjects of human capital. I also explore the relationship between science education, (bio)labor and its relation to biopolitics, which remains an underdeveloped area of science education. This paper, part of my doctoral work, began to take shape in 2011, shortly after the 2008 economic crisis achieved a tiny breached in the thick neoliberal stupor of everyday (educational) life.

  4. Reconsidering social science theories in natural resource management continuing professional education

    DEFF Research Database (Denmark)

    Stumann, Cathy Brown; Gamborg, Christian

    2014-01-01

    on the impact of these changes for NRM professionals resulted in many studies calling for NRM professionals to learn a host of new social science-related skills and knowledge. Twenty years later, research continues to show that NRM professionals are struggling to develop these ‘new’ skills and calls...... for integrating the social sciences in NRM education and practice endure. This paper discusses the challenge of integrating social science skills and knowledge into NRM public involvement practice and continuing professional education. The paper argues for a reconsideration of how social science theories relate...... to professionals’ practical theories and concludes with some implications and proposals for NRM continuing professional education....

  5. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    Science.gov (United States)

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  6. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  7. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  8. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  9. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    Science.gov (United States)

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  10. A Network for Integrated Science and Mathematics Teaching and Learning Conference Plenary Papers. NSF/SSMA Wingspread Conference (Racine, Wisconsin, April 1991). School Science and Mathematics Association Topics for Teachers Series Number 7.

    Science.gov (United States)

    Berlin, Donna F., Ed.

    The integration of mathematics and science is not a new concept. However, during recent years it has been a major focus in education reform. A Wingspread conference promoted discussion regarding the integration of mathematics and science and explored ways to improve science and mathematics education in grades K-12. Papers from the conference…

  11. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  12. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    Science.gov (United States)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  13. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  14. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  15. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  16. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  17. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  18. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  19. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    Science.gov (United States)

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  20. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  1. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  2. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  3. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  4. Integration of Sustainability in Engineering Education

    DEFF Research Database (Denmark)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies...... used to integrate sustainability in engineering education. However, there is a lack of understanding of the relation between ESD and PBL principles and the ways in which they can be integrated and practised in the engineering curricula. This paper aims to investigate the relation between PBL and ESD...... knowledge and the tacit presence of sustainability. Originality/value: The existence of a PBL curriculum at institutional level, such as at Aalborg University, enables investigation of how the PBL and ESD principles are practised, highlighting the limitations and potentials of integrating sustainability...

  5. What is the Integral in Integral Education? From Progressive Pedagogy to Integral Pedagogy

    Directory of Open Access Journals (Sweden)

    Tom Murray

    2009-06-01

    Full Text Available Integrally-informed educational approaches have much in common withprogressive (including reform, alternative, holistic, and transformative approaches, andshare many of the same values. One function of the integral approach is to provide anoverarching model within which to coordinate different progressive methods. Thoughintegral adds much more than that, descriptions of integral education sometimes soundlike progressive educational principles recast with new terminology. This essay attemptsto clarify what the integral approach adds over and above progressive educationaltheories. After an overview of progressive pedagogical principles, the integral approachis discussed in terms of integral as a model, a method, a community, and a developmentalstage. Integral as a type of consciousness or developmental level is elaborated upon asconsisting of construct-awareness, ego-awareness, relational-awareness, and systemawareness,all important to the educational process. Finally, challenges and supportsystems for realizing integral education are discussed.

  6. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  7. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  8. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  9. Educational Outreach: The Space Science Road Show

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with

  10. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  11. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  12. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  13. INTEGRAL EDUCATION, TIME AND SPACE: PROBLEMATIZING CONCEPTS

    Directory of Open Access Journals (Sweden)

    Ana Elisa Spaolonzi Queiroz Assis

    2018-03-01

    Full Text Available Integral Education, despite being the subject of public policy agenda for some decades, still carries disparities related to its concept. In this sense, this article aims to problematize not only the concepts of integral education but also the categories time and space contained in the magazines Em Aberto. They were organized and published by the National Institute of Educational Studies Anísio Teixeira (INEP, numbers 80 (2009 and 88 (2012, respectively entitled "Educação Integral e tempo integral" and " Políticas de educação integral em jornada ampliada". The methodology is based on Bardin’s content analysis, respecting the steps of pre-analysis (research corpus formed by the texts in the journals; material exploration (reading the texts encoding data choosing the registration units for categorization; and processing and interpretation of results, based on Saviani’s Historical-Critical Pedagogy. The work reveals convergent and divergent conceptual multiplicity, provoking a discussion about a critical conception of integral education. Keywords: Integral Education. Historical-Critical Pedagogy. Content Analysis.

  14. Integrating Ethics into Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Otrel-Cass, Kathrin; Børsen, Tom

    2015-01-01

    In this chapter, the authors aim to explore the necessity of teaching ethics as part of engineering education based on the gaps between learning “hard” knowledge and “soft” skills in the current educational system. They discuss why the nature of engineering practices makes it difficult to look...... products are not value neutral. With a focus on Problem-Based Learning (PBL), the authors examine why engineers need to incorporate ethical codes in their decision-making process and professional tasks. Finally, they discuss how to build creative learning environments that can support attaining...... the objectives of engineering education....

  15. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  16. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  17. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  18. Integrating Education: Parekhian Multiculturalism and Good Practice

    Science.gov (United States)

    McGlynn, Claire

    2009-01-01

    This paper explores the concept of good practice in integrating education in divided societies. Using Northern Ireland as a case study, the paper draws on data from eight schools (both integrated Catholic and Protestant, and separate) that are identified as exemplifying good practice in response to cultural diversity. Analysis is provided through…

  19. Academic Integrity: Information Systems Education Perspective

    Science.gov (United States)

    McHaney, Roger; Cronan, Timothy Paul; Douglas, David E.

    2016-01-01

    Academic integrity receives a great deal of attention in institutions of higher education. Universities and colleges provide specific honor codes or have administrative units to promote good behaviors and resolve dishonesty allegations. Students, faculty, and staff have stakes in maintaining high levels of academic integrity to ensure their…

  20. Integrating IT education and the world outside

    NARCIS (Netherlands)

    de Brock, EO; Khosrowpour, M

    2000-01-01

    An important, existing challenge of IT education that will surely remain in the 21(st) century is to integrate IT education and the world outside in an early stage of the curriculum in a sensible, real-life, and useful manner: Moreover we would like to reach that goal in such a durable way that we

  1. Integrating Research Competencies in Massage Therapy Education.

    Science.gov (United States)

    Hymel, Glenn M.

    The massage therapy profession is currently engaged in a competency-based education movement that includes an emphasis on promoting massage therapy research competencies (MTRCs). A systems-based model for integrating MTRCs into massage therapy education was therefore proposed. The model and an accompanying checklist describe an approach to…

  2. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  3. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  4. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    232. Mahlburg's Work on Crank Functions. Ramanujan's Partitions Revisited. Nagesh Juluru and Arni S R Srinivasa Rao. REFLECTIONS. 268. The Scientific Enterprise. Science in the Modern Indian Context. V V Raman. R. R. R4. 2. 1. C r. L. R3+ rL. H. A. C. D. B. E. 244. 223. Transverse section of the ring porous wood ...

  5. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  6. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  7. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  8. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Sketch made by Niels Bohr in 1944 to illustrate the content of his debate with Einstein on the uncertainty principle at the 6th Solvay Conference in 1930. Niels Bohr (1885–1962). Sketch by Homi Bhabha. (Courtesy: TIFR, Bombay). Front Cover. 871. Science Smiles. Ayan Guha. 876. Back Cover. 948. Classics. Biology and ...

  9. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    (Credit: M S Pavan, IISc). Adolf von Baeyer. (1835–1917). (Illustration: Subhankar Biswas). Front Cover. Science Smiles. Ayan Guha. 488. Back Cover. Inside Back Cover. Flowering Trees. Credit: R Arun Singh, IISc. 483. REFLECTIONS. 570 Ramanujan's Circle. Inspirors, Patrons and Mentors. Utpal Mukhopadhyay. 489.

  10. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  11. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108. Classics. Are we Utilizing our. Water Resources. Wisely? B P Radhakrishna. General Editorial on. Publication Ethics. 1. 93. 71.

  12. Integrating Scientific Methods and Knowledge into the Teaching of Newton's Theory of Gravitation: An Instructional Sequence for Teachers' and Students' Nature of Science Education

    Science.gov (United States)

    Develaki, Maria

    2012-01-01

    The availability of teaching units on the nature of science (NOS) can reinforce classroom instruction in the subject, taking into account the related deficiencies in textbook material and teacher training. We give a sequence of teaching units in which the teaching of Newton's gravitational theory is used as a basis for reflecting on the…

  13. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  14. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  15. [Humanities in medical education: between reduction and integration].

    Science.gov (United States)

    Han, Taehee

    2015-09-01

    Reductive logic has been a major reasoning style in development of modern biomedical sciences. However, when "medical humanities" is developed by reductive reasoning, integrative and holistic values of humanities tend to be weakened. In that sense, identity and significance of "medical humanities" continue to be controversial despite of its literal clarity. Humanities in medical education should be established by strengthening humanistic and socialistic aspects of regular medical curriculum as well as developing individual "medical humanities" programs.

  16. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  17. Bridging the Gap: The Role of Research in Science Education

    Science.gov (United States)

    Adams, M. L.; Michael, P. J.

    2001-12-01

    Teaching in K-12 science classrooms across the country does not accurately model the real processes of science. To fill this gap, programs that integrate science education and research are imperative. Teachers Experiencing Antarctica and the Arctic (TEA) is a program sponsored and supported by many groups including NSF, the Division of Elementary, Secondary, and Informal Education (ESIE), and the American Museum of Natural History (AMNH). It places teachers in partnerships with research scientists conducting work in polar regions. TEA immerses K-12 teachers in the processes of scientific investigation and enables conveyance of the experience to the educational community and public at large. The TEA program paired me with Dr. Peter Michael from the University of Tulsa to participate in AMORE (Arctic Mid-Ocean Ridge Expedition) 2001. This international mission, combining the efforts of the USCGC Healy and RV Polarstern, involved cutting-edge research along the geologically and geophysically unsampled submarine Gakkel Ridge. While in the field, I was involved with dredge operations, CTD casts, rock cataloging/ processing, and bathymetric mapping. While immersed in these aspects of research, daily journals documented the scientific research and human aspects of life and work on board the Healy. E-mail capabilities allowed the exchange of hundreds of questions, answers and comments over the course of our expedition. The audience included students, numerous K-12 teachers, research scientists, NSF personnel, strangers, and the press. The expedition interested and impacted hundreds of individuals as it was proceeding. The knowledge gained by science educators through research expeditions promotes an understanding of what research science is all about. It gives teachers a framework on which to build strong, well-prepared students with a greater awareness of the role and relevance of scientific research. Opportunities such as this provide valauble partnerships that bridge

  18. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  19. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  20. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  1. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  2. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  3. Art-science integration: Portrait of a residency

    Science.gov (United States)

    Feldman, Rhoda Lynn

    This dissertation is based on a year-long study of an arts integration residency at Hampton, a public elementary school in the Midwest. The study examined residency curriculum and pedagogies, factors facilitating and constraining the integration, and the perception of the artist, teachers, and students of the program and arts integration within it. The Hampton residency, "Art and Science: A Shared Evolution," represented a historical approach to the linking of the two disciplines within the framework of a survey extending from the origins of the universe to relativity theory, from cave paintings to Picasso. Findings indicate that integration encompassed more than issues of curriculum and pedagogy---that it was closely linked to the nature and extent of artist-teacher collaboration (importance of the interpersonal element); that multiple factors seemed to militate against integration and collaboration, including differing expectations of teachers and artist for the residency and integration, the lack of sustained professional development to support the integration of disciplines and collaboration of participants, and the pressure upon teachers of high stakes testing; that a common prep period was a necessary but not sufficient condition for collaboration to occur; and that the pedagogy of the artist while at Hampton was different than while at another school with similar demographics. The experience at Hampton seems to support conceiving of integration as a partnership capitalizing on the strengths of each partner, including teachers in the planning and development of curriculum, establishing structures to support teachers and artists in integrating curriculum and building/sustaining collaborative relationships, and insuring alignment of residency units with subject-area teaching. The study revealed that while integration in theory can offer an antidote for fragmentation of the school curriculum, in practice it is difficult to execute in a way that is meaningful to

  4. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  5. Integrated and Contextual Basic Science Instruction in Preclinical Education: Problem-Based Learning Experience Enriched with Brain/Mind Learning Principles

    Science.gov (United States)

    Gülpinar, Mehmet Ali; Isoglu-Alkaç, Ümmühan; Yegen, Berrak Çaglayan

    2015-01-01

    Recently, integrated and contextual learning models such as problem-based learning (PBL) and brain/mind learning (BML) have become prominent. The present study aimed to develop and evaluate a PBL program enriched with BML principles. In this study, participants were 295 first-year medical students. The study used both quantitative and qualitative…

  6. Integrated STEM in secondary education: A case study

    International Nuclear Information System (INIS)

    De Meester, Jolien; Dehaene, Wim; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet

    2015-01-01

    Despite many opportunities to study STEM (Science, Technology, Engineering and Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils’ interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school’s teachers and a STEM education research group of the University of Leuven. To examine the pupils’ attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils’ interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils’ understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.

  7. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  8. The Integration of HIV and AIDS as a Socio-Scientific Issue in the Life Sciences Curriculum

    Science.gov (United States)

    Wolff, Eugenie; Mnguni, Lindelani

    2015-01-01

    The potential of science to transform lives has been highlighted by a number of scholars. This means that critical socio-scientific issues (SSIs) must be integrated into science curricula. Development of context-specific scientific knowledge and twenty-first-century learning skills in science education could be used to address SSIs such as…

  9. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  10. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  11. Framing a future for soil science education.

    Science.gov (United States)

    Field, Damien

    2017-04-01

    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  12. Widening participation in nurse education: An integrative literature review.

    Science.gov (United States)

    Heaslip, Vanessa; Board, Michele; Duckworth, Vicky; Thomas, Liz

    2017-12-01

    Widening participation into higher education is espoused within educational policy in the UK, and internationally, as a mechanism to promote equality and social mobility. As nurse education is located within higher education it has a responsibility to promote widening participation within pre-registration educational programmes. It could also be argued that the profession has a responsibility to promote equality to ensure its' workforce is as diverse as possible in order to best address the health needs of diverse populations. To undertake an integrative review on published papers exploring Widening Participation in undergraduate, pre-registration nurse education in the UK. A six step integrative review methodology was utilised, reviewing papers published in English from 2013-2016. Search of CINAHL, Education Source, MEDLINE, PsychINFO, SocINDEX, Science Direct, Business Source Complete, ERIC, British Library ETOS, Teacher Reference Centre, Informit Health Collection and Informit Humanities and Social Science Collection which highlighted 449 citations; from these 14 papers met the review inclusion criteria. Both empirical studies and editorials focusing upon widening participation in pre-registration nurse education in the UK (2013-2016) were included. Papers excluded were non UK papers or papers not focussed upon widening participation in pre-registration nursing education. Research papers included in the review were assessed for quality using appropriate critical appraisal tools. 14 papers were included in the review; these were analysed thematically identifying four themes; knowledge and identification of WP, pedagogy and WP, attrition and retention and career prospects. Whilst widening participation is a key issue for both nurse education and the wider profession there is a lack of conceptualisation and focus regarding mechanisms to both encourage and support a wider diversity of entrant. Whilst there are some studies, these focus on particular individual

  13. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  14. LRN, ERN:, & BERN @ Wireless Integrating the Sciences (WITS) Theatre

    Science.gov (United States)

    Hilliard, L.; Campbell, B.; Foody, M.; Klitsner, D.

    2010-01-01

    In order to develop a call to action for a learning tool that would work to best teach Science Technology Engineering and Math (STEM), the NASA Goddard team will partner with the inventor of Bop It!, an interactive game of verbs and following instructions; and Global Imagination, the developers of Magic Planet. In this paper Decision-making Orbital Health! (DOH!) will be described as a game derived from the basic functions necessary for Bop lt!, a familiar game. that will ask the educational audience to respond to changing commands to Bop It!, Twist It!, and Squeeze It! The success of the new version of the game, will be that the Earth will be making these commands from Dynamic Planet, and the crowd assembled can play wirelessly. Wireless Integrating The Sciences (WITS) Theatre : A balanced approach will describe how the communities local to Goddard and perhaps San Francisco will develop curriculum that helps kids teach kids with an engaging game and a STEM message. The performing arts will be employed to make it entertaining and appropriate to the size of the gathering, and the students educational level.

  15. Future challenges in nuclear science education

    International Nuclear Information System (INIS)

    Yates, S.W.

    1993-01-01

    The role of Division of Nuclear Chemistry and Technology of the American Chemical Society in nuclear science education is reviewed, and suggestions for enhanced involvement in additional areas are presented. Possible new areas of emphasis, such as educational programs for pre-college students and non-scientific public, are discussed. Suggestions for revitalizing the position of radiochemistry laboratories in academic institutions are offered. (author) 7 refs

  16. Confluent education: an integrative method for nursing (continuing) education.

    NARCIS (Netherlands)

    Francke, A.L.; Erkens, T.

    1994-01-01

    Confluent education is presented as a method to bridge the gap between cognitive and affective learning. Attention is focused on three main characteristics of confluent education: (a) the integration of four overlapping domains in a learning process (readiness, the cognitive domain, the affective

  17. Evaluating Education and Science in the KSC Visitor Complex Exhibits

    Science.gov (United States)

    Erickson, Lance K.

    2000-01-01

    The continuing development of exhibits at the Kennedy Space Center's Visitor Complex is an excellent opportunity for NASA personnel to promote science and provide insight into NASA programs and projects for the approximately 3 million visitors that come to KSC annually. Stated goals for the Visitor Complex, in fact, emphasize science awareness and recommend broadening the appeal of the displays and exhibits for all age groups. To this end, this summer project seeks to evaluate the science content of planned exhibits/displays in relation to these developing opportunities and identify specific areas for enhancement of existing or planned exhibits and displays. To help expand the educational and science content within the developing exhibits at the Visitor Complex, this project was structured to implement the goals of the Visitor Center Director. To accomplish this, the exhibits and displays planned for completion within the year underwent review and evaluation for science content and educational direction. Planning emphasis for the individual displays was directed at combining the elements of effective education with fundamental scientific integrity, within an appealing format.

  18. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    studies, survey results, and descriptive categories. Costs and benefits to the scientist are discussed through the use of case studies, surveys, and observations. Third, student learning outcomes from a case study are presented. It is argued that the partnership created the opportunity for the integration of imaginative tools of science (specifically GIS in the case study) and authentic science inquiry. The last component is the discussion of the various tools of science utilized by the scientists for their research, taught to the science teachers by the scientists, and then taught to the students by the science teachers. At each step the technology was modified to fit the levels and applications of the specific science teacher, the grade level taught, and the content area taught. Examples of imaginative tools utilized include Geographic Information System (GIS), Global Positioning System (GPS), Google Earth, time-lapse photography, digital microscopy, and Excel. In summary, by examining this collaborative partnership through the lens of the scientists, the science teachers, and the science teachers' students it is evident that this partnership has created new science education specialists and can ultimately improve scientific literacy in K-12 students. Reference: NRC (2005). How Students Learn. The National Academies Press. Washington D.C.

  19. ARISE: American renaissance in science education

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-14

    The national standards and state derivatives must be reinforced by models of curricular reform. In this paper, ARISE presents one model based on a set of principles--coherence, integration of the sciences, movement from concrete ideas to abstract ones, inquiry, connection and application, sequencing that is responsive to how people learn.

  20. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  1. Evaluating trauma nursing education: An integrative literature review.

    Science.gov (United States)

    Ding, Min; Metcalfe, Helene; Gallagher, Olivia; Hamdorf, Jeffrey M

    2016-09-01

    A review of the current literature evaluating trauma nursing education. A variety of trauma nursing courses exist, to educate nurses working in trauma settings, and to maintain their continuing professional development. Despite an increase in the number of courses delivered, there appears to be a lack of evidence to demonstrate the effectiveness of trauma nursing education and in particular the justification for this resource allocation. Integrative literature review. A search of international literature on trauma nursing education evaluation published in English from 1985 to 2015 was conducted through electronic databases CINAHL Plus, Google Scholar, PubMed, Austhealth, Science Citation Index Expanded (Web of Science), Sciverse Science Direct (Elsevier) & One file (Gale). Only peer reviewed journal articles identifying trauma course and trauma nursing course evaluation have been included in the selection criteria. An integrative review of both quantitative and qualitative literature guided by Whittemore and Knafl's theoretical framework using Bowling's and Pearson's validated appraisal checklists, has been conducted for three months. Only 17 studies met the inclusion criteria, including 14 on trauma course evaluation and 3 on trauma nursing course evaluation. Study findings are presented as two main themes: the historical evolution of trauma nursing education and evaluation of trauma nursing education outcomes. Trauma nursing remains in its infancy and education in this specialty is mainly led by continuing professional development courses. The shortage of evaluation studies on trauma nursing courses reflects the similar status in continuing professional development course evaluation. A trauma nursing course evaluation study will address the gap in this under researched area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  3. Integrated Food studies education and research:

    DEFF Research Database (Denmark)

    Hansen, Mette Weinreich; Hansen, Stine Rosenlund

    2018-01-01

    The research group Foodscapes Innovation and Networks has addressed integrated food studies issues in re-search and education since 2010. Based on experiences in the group, this paper aims at discussing the chal-lenges, learning outcomes and potentials for pushing an integrated thinking into rese......The research group Foodscapes Innovation and Networks has addressed integrated food studies issues in re-search and education since 2010. Based on experiences in the group, this paper aims at discussing the chal-lenges, learning outcomes and potentials for pushing an integrated thinking...... into research and education. It also addresses the challenges in integration when the methodological approaches and theoretical frameworks chosen are ontologically and epistemologically different. A discussion of the limitations of integration is thus also part of the paper. The conceptual framework...... of ontonorms (Mol, 2013) is suggested as a common point of departure for a further development of integration. This is suggested relevant due to the fact that it forces different traditions to reflect their own value-related basis and discuss implications of this approach in a broader sense. The common values...

  4. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  5. Integrative Medicine in Preventive Medicine Education

    Science.gov (United States)

    Jani, Asim A.; Trask, Jennifer; Ali, Ather

    2016-01-01

    During 2012, the USDHHS’s Health Resources and Services Administration funded 12 accredited preventive medicine residencies to incorporate an evidence-based integrative medicine curriculum into their training programs. It also funded a national coordinating center at the American College of Preventive Medicine, known as the Integrative Medicine in Preventive Medicine Education (IMPriME) Center, to provide technical assistance to the 12 grantees. To help with this task, the IMPriME Center established a multidisciplinary steering committee, versed in integrative medicine, whose primary aim was to develop integrative medicine core competencies for incorporation into preventive medicine graduate medical education training. The competency development process was informed by central integrative medicine definitions and principles, preventive medicine’s dual role in clinical and population-based prevention, and the burgeoning evidence base of integrative medicine. The steering committee considered an interdisciplinary integrative medicine contextual framework guided by several themes related to workforce development and population health. A list of nine competencies, mapped to the six general domains of competence approved by the Accreditation Council of Graduate Medical Education, was operationalized through an iterative exercise with the 12 grantees in a process that included mapping each site’s competency and curriculum products to the core competencies. The competencies, along with central curricular components informed by grantees’ work presented elsewhere in this supplement, are outlined as a roadmap for residency programs aiming to incorporate integrative medicine content into their curricula. This set of competencies adds to the larger efforts of the IMPriME initiative to facilitate and enhance further curriculum development and implementation by not only the current grantees but other stakeholders in graduate medical education around integrative medicine

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Use of Isotopes for Studying Reaction Mechanisms-Secondary Kinetic Isotope Effect. Uday Maitra J Chandrasekhar. Series Article Volume 2 Issue 8 August 1997 pp 18-25 ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 10. October 2002, pages 1-100. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Timoshenko: Father of Engineering ...

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 10. October 1998, pages 1-102. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. From Fourier Series to Fourier Transforms.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 1. January 1999, pages 1-95. pp 1-2 Editorial. Editorial ... More Details Fulltext PDF. pp 80-88 Reflections. Some Moral and Technical Consequences of Automation.

  13. Science and Higher Education in Korea.

    Science.gov (United States)

    Lee, Sungho

    The role and contribution of academic science to national development in the Republic of Korea is discussed. After an overview on the development of the Korean system of higher education, attention is directed to the national research system and its articulation with the academic system. Consideration is given to: factors that contributed to the…

  14. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 8. August 2006, pages 1-106. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir Gilbert Thomas Walker · J Srinivasan M ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 11. November 2014, pages 971-1070. pp 971-971 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 972-973 Article-in-a-Box. Georg Cantor ...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 14, Issue 1. January 2009, pages 1-100. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir James Lighthill · Renuka Ravindran.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 8. August 2005, pages 1-105. pp 1-1 Editorial. Editorial · Priti Shankar · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Theodore von Kármán – Rocket Scientist.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 2. February 2006, pages 1-101. pp 1-1 Editorial. Editorial · S Ramasubramanian · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. David Huffman · Priti Shankar.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 11. November 2012, pages 1019-1120. pp 1019-1019 Editorial. Editorial · Y N Srikant · More Details Fulltext PDF. pp 1022-1033 Series Article. Fascinating Organic ...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 9, Issue 10. October 2004, pages 1-98. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. G. I. Taylor – An Amateur Scientist.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 2, Issue 4. April 1997, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. The Chandrasekhar Limit · G Srinivasan.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 6. June 2005, pages 1-98. pp 1-1 Editorial. Editorial · Jaywant H Arakeri · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Roentgen and his Rays.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 7. July 2014, pages 585-668. pp 585-585 Editorial. Editorial · S Ranganathan · More Details Fulltext PDF. pp 586-589 Article-in-a-Box. Robert Burns Woodward ...

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 8. August 2014, pages 667-778. pp 667-667 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 668-669 Table of Contents. Table of Contents.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 12, Issue 1. January 2007, pages 1-96. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 12. December 2014, pages 1069-1210. pp 1069-1070 Editorial. Editorial · T N Guru Row Angshuman Roy Choudhury · More Details Fulltext PDF. pp 1071-1073 ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 7. July 2015, pages 571-664. pp 571-571 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 572-573 Table of Contents. Table of Contents.

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 2. February 2002, pages 1-96. pp 1-1 Editorial. Editorial · Amitabh Joshi · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Claude Elwood Shannon · Priti Shankar.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 10. October 2015, pages 863-950b. pp 863-863 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 864-865 Article-in-a-Box. Jan Hendrik Oort ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 9. September 2002, pages 1-102. pp 1-2 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Fritz Haber · Animesh Chakravorty.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 2. February 2011, pages 103-202. pp 103-103 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 104-104 Article-in-a-Box. A Short Biography of Israel ...

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 8. August 2010, pages 681-772. pp 681-681 Editorial. Editorial · G K Ananthasuresh · More Details Fulltext PDF. pp 682-683 Table of Contents. Table of Contents.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 11. November 2006, pages 1-98. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-4 Article-in-a-Box. Bernhard Riemann.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 10. October 2012, pages 923-1020. pp 923-923 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 924-925 Article-in-a-Box. S N De - An Appreciation.

  16. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Programming Languages - A Brief Review. V Rajaraman ... V Rajaraman1 2. IBM Professor of Information Technology, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India; Hon.Professor, Supercomputer Education & Research Centre Indian Institute of Science, Bangalore 560012, India ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Keywords. Scalars; four-vectors; lorentz transformation; special relativity. ... Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Physical Research Laboratory. P Sharma. Information and Announcements Volume 4 Issue 7 July 1999 pp 92-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/07/0092-0096 ...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Erwin Schrödinger, “What is Life? The Physical Aspect of the Living Cell”. N Mukunda. Book Review Volume 4 Issue 2 February 1999 pp 85-87. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 12. December 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-6 Article-in-a-Box. Isaac Newton (1642/43-1727).

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 11. November 2002, pages 1-102. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Stephen Jay Gould: A View of Life.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Fractals: A New Geometry of Nature. Balakrishnan Ramasamy T S K V Iyer P Varadharajan. Classroom Volume 2 Issue 10 October 1997 pp 62-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 23 .... pp 387-391 Book Review ... Parava: Soaring Towards New Directions in Human-Animal Relations.

  6. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  7. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 12. Jacques Monod and the Advent of the Age of Operons. R Jayaraman. General Article Volume 15 Issue 12 December 2010 pp 1084-1096. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 9. September 2016, pages 767-863. pp 767-768 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 769-772 Article in a Box. The Creative Genius: John Nash.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 11. November 1996, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Karl Popper · G Prathap · More Details ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 1. January 2011, pages 1-104. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Leeuwenhoek: Discoverer of the Microbial ...

  12. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 5. May 1998, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-2 Article-in-a-Box. Thermal Ionisation and the Saha Equation!

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 6; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 6, Issue 10. October 2001, pages 1- ... pp 96-97 Book Review. Call of Indian Birds – An Audio Cassette · Lt General Baljit Singh · More Details Fulltext PDF. pp 97-100 Book Review. Essentials ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 8 ... P G Babu · More Details Fulltext PDF. pp 56-65 Feature Article. Nature Watch - Hornbills – Giants Among the Forest Birds · T R Shankar Raman Divya Mudappa.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 4. April 2008 ... K R Y Simha Dhruv C Hoysall · More Details Fulltext PDF. pp 394-397 Think It Over. Solution to How Many Birds are Unwatched · Soubhik Chakraborty.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 15; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 5 ... pp 411-427 General Article. Bird of Passage at Four Universities - Student Days of Rudolf Peierls · G Baskaran · More Details Fulltext PDF. pp 428-433 General Article.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 1. January 2008, pages 1-102. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. The Ribosome and the 2009 Nobel Prize in Chemistry. Laasya Samhita Umesh Varshney. General Article Volume 15 Issue 6 June 2010 pp 526-537. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 2. February 1996, pages 1-130. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Chief Editor's column - After the Eclipse.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 6. June 1999, pages 1-102. pp 1-2 Editorial. Editorial · Alladi Sitaram · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Mahalanobis and Indian Statistics · T Krishnan.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Haber Process for Ammonia Synthesis. Jayant M Modak. General Article Volume 7 Issue 9 September 2002 pp 69-77. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/09/0069-0077 ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 10. October 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Archimedes · P N Shankar.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 8, Issue 10. October 2003, pages 1-101. pp 1-1 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Satish Dhawan · Srinivas Bhogle.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 6. June 2010, pages 489-584. pp 489-490 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 491-492 Article-in-a-Box. Conrad Waddington and the ...

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Detergents – Zeolites and Enzymes Excel Cleaning Power. B S Sekhon Manjeet K Sangha. General Article Volume 9 Issue 8 August 2004 pp 35-45. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 3. March 1996, pages 1-130. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-3 Article-in-a-Box. Fermat and the Minimum Principle.

  8. weaving together climate science and chemistry education

    African Journals Online (AJOL)

    Preferred Customer

    ... students, educators, and the general public, designed to help bridge the gap ... Design Principles of Visualizing and Understanding the Science of Climate ... The user is also able to examine simple models for these predictions ... Figure 6 illustrates the fluctuations in mean global temperature over an 800 ka span and.

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 12. December 2002, pages 1-106. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-4 Article-in-a-Box. K. S. Krishnan – An Outstanding Scientist.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Artificial Seeds and their Applications. G V S Saiprasad. General Article Volume 6 Issue 5 May 2001 pp 39-47. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0039-0047 ...

  11. Radiation risk and science education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1996-01-01

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author)

  12. Science, human nature, and a new paradigm for ethics education.

    Science.gov (United States)

    Lampe, Marc

    2012-09-01

    For centuries, religion and philosophy have been the primary basis for efforts to guide humans to be more ethical. However, training in ethics and religion and imparting positive values and morality tests such as those emanating from the categorical imperative and the Golden Rule have not been enough to protect humankind from its bad behaviors. To improve ethics education educators must better understand aspects of human nature such as those that lead to "self-deception" and "personal bias." Through rationalizations, faulty reasoning and hidden bias, individuals trick themselves into believing there is little wrong with their own unethical behavior. The application of science to human nature offers the possibility of improving ethics education through better self-knowledge. The author recommends a new paradigm for ethics education in contemporary modern society. This includes the creation of a new field called "applied evolutionary neuro-ethics" which integrates science and social sciences to improve ethics education. The paradigm can merge traditional thinking about ethics from religious and philosophical perspectives with new ideas from applied evolutionary neuro-ethics.

  13. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  14. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  15. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  16. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  17. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  18. SSC education: Science to capture the imagination

    International Nuclear Information System (INIS)

    Gadsden, T.; Kivlighn, S.

    1992-01-01

    To the great majority of Americans, science is merely a collection of facts and theories that should (for unknown reasons) be memorized and perhaps even understood in order for one to function as a responsible citizen. Few see science as a way of thinking and questioning and as an approach to learning the secrets of our world. In addition, most children and many adults have a stereotypical view of scientists as studious men in lab coats who spend all their time working alone in dark and smelly chemical or biological laboratories. The Superconducting Super Collider (SSC) totally contradicts such a perception. This great instrument is being created by thousands of scientists, engineers, business people, technicians, administrators, and others, from dozens of nations, working together to realize a shared vision to seek answers to shared questions. The SSCL also provides an opportunity to change the mistaken impressions about science and scientists that have resulted in fewer students pursuing careers in fields related to science. In addition, it will serve as a catalyst to help people understand the roles that scientific thought and inquiry can play in bettering their lives and the lives of their offspring. Recognizing this problem in our society, the creators of the SSC Laboratory made a commitment to use the SSC to improve science education. Consequently, in addition to building the world's premier high-energy physics laboratory, the SSCL has a second goal: creation of a major national and international educational resource. To achieve the latter goal, the Education Office of the SSCL is charged with using the resources of the Laboratory, both during construction and during operation, to improve education in science and mathematics at all levels (prekindergarten through post-doctorate) and for all components of our society (including the general public), in the United States and around the world

  19. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... DEPARTMENT OF EDUCATION Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications for New Awards for Fiscal....305D, 84.305E, 84.324A, 84.324B, and 84.324C. Summary: The Director of the Institute of Education...

  20. Integrated Design for Geoscience Education with Upward Bound Students

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive