WorldWideScience

Sample records for integrated radiative forcing

  1. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  2. Radiative forcing calculations for CH3Br

    International Nuclear Information System (INIS)

    Grossman, A.S.; Blass, W.E.; Wuebbles, D.J.

    1995-06-01

    Methyl Bromide, CH 3 Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13μ, was determined using a well tested Coriolis resonance and ell-doubling (and ell-resonance) computational system. A radiative forcing value of 0.00493 W/m 2 /ppbv was obtained for CH 3 Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C0 2 , on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH 3 Br. The results give GWPs for CH 3 Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C0 2 = 1, following IPCC [1994]). While CH 3 Br has a GWP which is approximately 25 percent of the GWP of CH 4 , the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time

  3. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  4. Resolution of the uncertainties in the radiative forcing of HFC-134a

    International Nuclear Information System (INIS)

    Forster, Piers M. de F; Burkholder, J.B.; Clerbaux, C.; Coheur, P.F.; Dutta, M.; Gohar, L.K.; Hurley, M.D.; Myhre, G.; Portmann, R.W.; Shine, K.P.; Wallington, T.J.; Wuebbles, D.

    2005-01-01

    HFC-134a (CF 3 CH 2 F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50-100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly ∼25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A 'recommended' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the 'recommended' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount. We calculate that the radiative forcing efficiency of HFC-134a is 0.16+/-0.02Wm -2 ppbv -1

  5. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  6. Tropospheric radiative forcing of CH4

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.

    1994-04-01

    We have evaluated the tropospheric radiative forcing of CH 4 in the 0-3000 cm -1 wavenumber range and compared this with prior published calculations. The atmospheric test cases involved perturbed methane scenarios in both a McClatchey mid latitude, summer, clear sky approximation, model atmosphere, as well as a globally and seasonally averaged model atmosphere containing a representative cloud distribution. The scenarios involved pure CH 4 radiative forcing and CH 4 plus a mixture of H 2 O, CO 2 , O 3 , and N 2 O. The IR radiative forcing was calculated using a correlated k-distribution transmission model. The major purposes of this paper are to first, use the correlated k-distribution model to calculate the tropospheric radiative forcing for CH 4 , as the only radiatively active gas, and in a mixture with H 2 O, CO 2 , O 3 , and N 2 O, for a McClatchey mid-latitude summer, clear-sky model atmosphere, and to compare the results to those obtained in the studies mentioned above. Second, we will calculate the tropospheric methane forcing in a globally and annually averaged atmosphere with and without a representative cloud distribution in order to validate the conjecture given in IPCC (1990) that the inclusion of clouds in the forcing calculations results in forcing values which are approximately 20 percent less than those obtained using clear sky approximations

  7. Radiative forcing for changes in tropospheric O3

    International Nuclear Information System (INIS)

    Grossman, A.S.; Wuebbles, D.J.; Grant, K.E.

    1994-06-01

    We have evaluated the radiative forcing for assumed changes in tropospheric O 3 in the 500-1650 cm -1 wavenumber range. The radiative forcing calculations were performed as a function of latitude as well as for a globally and seasonally averaged model atmosphere, both in a clear sky approximation and in a model containing a representative cloud distribution. The scenarios involved radiative forcing calculations for O 3 at normal atmospheric abundance and at a tropospheric abundance depleted by 25 ppbv, at each altitude, for all northern hemisphere latitudes. Normal abundances of H 2 O, CO 2 , CH 4 , and N 2 O were included in the calculations. The IR radiative forcing was calculated using a correlated k-distribution radiative transfer model. The tropospheric radiative forcing values are compared to the IPCC formulae for ozone tropospheric forcing as well as other published values to determine the validity of the correlated k-distribution approach to the radiative forcing calculations. The results for the global average atmosphere show agreement with previous results to the order of 10 percent. We conclude that the O 3 forcing is linear in the background abundance and that the radiative forcing for ozone for the globally averaged atmosphere and the latitude averaged radiative forcing in the clear sky approximation are in agreement to within 10 percent. For the case of an atmosphere in which the tropospheric ozone has been depleted by 25 ppbv at all altitudes in the northern hemisphere, the mid latitude zone contributes ∼50 percent of the forcing, tropic zone contributes ∼37 percent of the forcing and the polar zone contributes ∼13 percent of the total forcing

  8. The impact of diurnal variations of air traffic on contrail radiative forcing

    Directory of Open Access Journals (Sweden)

    N. Stuber

    2007-06-01

    Full Text Available We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe.

    We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.

  9. Integration of radiation monitoring for nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, J T; Thompson, N Y [Royal Military Coll. of Canada, Kingston, ON (Canada)

    1994-12-31

    The Canadian Forces have established Nuclear Emergency Response Teams to cope with potential radiation accidents. Previously, only gamma and high-energy beta radiation could be detected. Recently, new radiation sampling, detecting, and analytical equipment has been bought, including air samplers, beta counters, high-purity germanium gamma detectors, and multi-channel analyzers together with Gamma Vision Software to analyze gamma spectra. The purpose of the present study is to propose a way to use the new equipment, to analyze the results from the gamma and beta detectors, and to integrate the results into a format for decision making. Integration is achieved through the creation of a computer program, Radiation Integration Program (RIP). This program analyzes gross beta counts, and uses them to estimate danger to the thyroid. As well the results from Gamma Vision are converted from Bq to dose rate for several parts of the body. Overall gamma results affecting the thyroid are compared to the beta results to verify the initial estimations.

  10. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electromagnetic radiation reaction force and radiation potential in general five-dimensional relativity

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1989-01-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics to account for the radiation reaction force. A conjecture that the radiation reaction force and the Lorentz force should be distinct, but in unified forms, results in a five-dimensional unified theory of five variables. It is found that a semicylindrical condition can reconcile the apparent differences between a five-dimensional physical space and our four-dimensional perceptions. Analysis of the geodesic equations results in the notion of gauge dynamics which manifests the influence of the unrestricted fifth variable. The element g 55 of the five-dimensional metric is identified as the radiation potential, which can directly determine the radiation reaction force. This gives a distinct physical origin for the radiation process in classical theory. The potential suggests that the electron can have excited states in quantum electrodynamics. This theory is supported with calculations which demonstrate that the motion of the fifth variable directly causes physical changes in the four-dimensional subspace

  12. Micromechanical Resonator Driven by Radiation Pressure Force.

    Science.gov (United States)

    Boales, Joseph A; Mateen, Farrukh; Mohanty, Pritiraj

    2017-11-22

    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.

  13. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  14. Radiative Forcing Over Ocean by Ship Wakes

    Science.gov (United States)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  15. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  16. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  17. Black carbon radiative forcing at TOA decreased during aging.

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  18. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    International Nuclear Information System (INIS)

    Mitri, F. G.

    2015-01-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries

  19. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  20. Surface radiative forcing of forest disturbances over northeastern China

    International Nuclear Information System (INIS)

    Zhang, Yuzhen; Liang, Shunlin

    2014-01-01

    Forests provide important climate forcing through biogeochemical and biogeophysical processes. In this study, we investigated the climatic effects of forest disturbances due to changes in forest biomass and surface albedo in terms of radiative forcing over northeastern China. Four types of forest disturbances were considered: fires, insect damage, logging, and afforestation and reforestation. The mechanisms of the influence of forest disturbances on climate were different. ‘Instantaneous’ net radiative forcings caused by fires, insect damage, logging, and afforestation and reforestation were estimated at 0.53 ± 0.08 W m −2 , 1.09 ± 0.14 W m −2 , 2.23 ± 0.27 W m −2 , and 0.14 ± 0.04 W m −2 , respectively. Trajectories of CO 2 -driven radiative forcing, albedo-driven radiative forcing, and net forcing were different with time for each type of disturbance. Over a decade, the estimated net forcings were 2.24 ± 0.11 W m −2 , 0.20 ± 0.31 W m −2 , 1.06 ± 0.41 W m −2 , and −0.47 ± 0.07 W m −2 , respectively. These estimated radiative forcings from satellite observations provided evidence for the mechanisms of the influences of forest disturbances on climate. (paper)

  1. On the forces acting on radiating charge

    International Nuclear Information System (INIS)

    Khachatrian, B.V.

    2001-01-01

    It is shown that the force acting on a radiating charge is stipulated by two reasons- owing to exchange of a momentum between the radiating charge and electromagnetic field of radiation, and also between the charge and field accompanying the charge. 7 refs

  2. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  3. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  4. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  5. Novel applications of the temporal kernel method: Historical and future radiative forcing

    Science.gov (United States)

    Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.

    2017-12-01

    We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.

  6. A general method for computing the total solar radiation force on complex spacecraft structures

    Science.gov (United States)

    Chan, F. K.

    1981-01-01

    The method circumvents many of the existing difficulties in computational logic presently encountered in the direct analytical or numerical evaluation of the appropriate surface integral. It may be applied to complex spacecraft structures for computing the total force arising from either specular or diffuse reflection or even from non-Lambertian reflection and re-radiation.

  7. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    Science.gov (United States)

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  8. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  9. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Science.gov (United States)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  10. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  11. Active electromagnetic invisibility cloaking and radiation force cancellation

    Science.gov (United States)

    Mitri, F. G.

    2018-03-01

    This investigation shows that an active emitting electromagnetic (EM) Dirichlet source (i.e., with axial polarization of the electric field) in a homogeneous non-dissipative/non-absorptive medium placed near a perfectly conducting boundary can render total invisibility (i.e. zero extinction cross-section or efficiency) in addition to a radiation force cancellation on its surface. Based upon the Poynting theorem, the mathematical expression for the extinction, radiation and amplification cross-sections (or efficiencies) are derived using the partial-wave series expansion method in cylindrical coordinates. Moreover, the analysis is extended to compute the self-induced EM radiation force on the active source, resulting from the waves reflected by the boundary. The numerical results predict the generation of a zero extinction efficiency, achieving total invisibility, in addition to a radiation force cancellation which depend on the source size, the distance from the boundary and the associated EM mode order of the active source. Furthermore, an attractive EM pushing force on the active source directed toward the boundary or a repulsive pulling one pointing away from it can arise accordingly. The numerical predictions and computational results find potential applications in the design and development of EM cloaking devices, invisibility and stealth technologies.

  12. Compression force and radiation dose in the Norwegian Breast Cancer Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Waade, Gunvor G.; Sanderud, Audun [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); Hofvind, Solveig, E-mail: solveig.hofvind@kreftregisteret.no [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); The Cancer Registry of Norway, P.O. 5313 Majorstuen, 0304 Oslo (Norway)

    2017-03-15

    Highlights: • Compression force and radiation dose for 17 951 screening mammograms were analyzed. • Large variations in mean applied compression force between the breast centers. • Limited associations between compression force and radiation dose. - Abstract: Purpose: Compression force is used in mammography to reduce breast thickness and by that decrease radiation dose and improve image quality. There are no evidence-based recommendations regarding the optimal compression force. We analyzed compression force and radiation dose between screening centers in the Norwegian Breast Cancer Screening Program (NBCSP), as a first step towards establishing evidence-based recommendations for compression force. Materials and methods: The study included information from 17 951 randomly selected screening examinations among women screened with equipment from four different venors at fourteen breast centers in the NBCSP, January-March 2014. We analyzed the applied compression force and radiation dose used on craniocaudal (CC) and mediolateral-oblique (MLO) view on left breast, by breast centers and vendors. Results: Mean compression force used in the screening program was 116N (CC: 108N, MLO: 125N). The maximum difference in mean compression force between the centers was 63N for CC and 57N for MLO. Mean radiation dose for each image was 1.09 mGy (CC: 1.04mGy, MLO: 1.14mGy), varying from 0.55 mGy to 1.31 mGy between the centers. Compression force alone had a negligible impact on radiation dose (r{sup 2} = 0.8%, p = < 0.001). Conclusion: We observed substantial variations in mean compression forces between the breast centers. Breast characteristics and differences in automated exposure control between vendors might explain the low association between compression force and radiation dose. Further knowledge about different automated exposure controls and the impact of compression force on dose and image quality is needed to establish individualised and evidence

  13. A cost-effective technique for integrating personal radiation dose assessment with personal gravimetric sampling

    International Nuclear Information System (INIS)

    Strydom, R.; Rolle, R.; Van der Linde, A.

    1992-01-01

    During recent years there has been an increasing awareness internationally of radiation levels in the mining and milling of radioactive ores, including those from non-uranium mines. A major aspect of radiation control is concerned with the measurement of radiation levels and the assessment of radiation doses incurred by individual workers. Current techniques available internationally for personnel monitoring of radiation exposures are expensive and there is a particular need to reduce the cost of personal radiation monitoring in South African gold mines because of the large labour force employed. In this regard the obvious benefits of integrating personal radiation monitoring with existing personal monitoring systems already in place in South African gold mines should be exploited. A system which can be utilized for this purpose is personal gravimetric sampling. A new cost-effective technique for personal radiation monitoring, which can be fully integrated with the personal gravimetric sampling strategy being implemented on mines, has been developed in South Africa. The basic principles of this technique and its potential in South African mines are described. 9 refs., 7 figs

  14. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    Science.gov (United States)

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  15. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  16. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    Science.gov (United States)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  17. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-04-01

    To better quantify radiative effects of dust over the Arabian Peninsula we have developed a standalone column radiation transport model coupled with the Mie calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments are carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18-20 March 2012. Comprehensive ground-based observations and satellite retrievals are used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing are estimated both from the model and from observations. Diurnal cycle of the the shortwave instantaneous dust direct radiative forcing is studied for a range of aerosol and surface characteristics representative for the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing are evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions along with anisotropic aerosol scattering are mostly responsible for diurnal effects. We also discuss estimates of the climatological dust instantaneous direct radiative forcing over land and the Red Sea using two approaches. The first approach is based on the probability density function of the aerosol optical depth, and the second is based on the climatologically average Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  18. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    Science.gov (United States)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  19. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  20. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  1. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  2. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  3. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiazzi, P.; O' Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  4. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  5. Winds from accretion disks driven by the radiation and magnetocentrifugal force

    OpenAIRE

    Proga, D.

    2000-01-01

    We study the 2-D, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks threaded by a strong, large-scale, ordered magnetic field. The radiation force is due to spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. The effects of the magnetic field are approximated by adding a force that emulates a magnetocentrifugal force. Our approach allows us to calculate disk winds when the magnetic field controls th...

  6. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

  7. Laser radiation forces in laser-produced plasmas

    International Nuclear Information System (INIS)

    Stamper, J.A.

    1975-01-01

    There are two contributions to laser radiation forces acting on the electrons. Transfer of momentum from the fields to the electrons results in a field pressure contribution and occurs whenever there is absorption or reflection. The quiver pressure contribution, associated with electron quiver motion, is due to inhomogeneous fields inducing momentum transfer within the electron system. It is shown that the ponderomotive force with force density, (epsilon-1)/8πdel 2 >, does not include the field contribution and does not lead to a general description of macroscopic processes. A theory is discussed which does give a general macroscopic description (absorption, reflection, refraction, and magnetic field generation) and which reduces to the ponderomotive force for purely sinusoidal fields in a neutral, homogeneous, nonabsorbing plasma

  8. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Directory of Open Access Journals (Sweden)

    E. M. Wilcox

    2012-01-01

    Full Text Available Observations from Earth observing satellites indicate that dark carbonaceous aerosols that absorb solar radiation are widespread in the tropics and subtropics. When these aerosols mix with clouds, there is generally a reduction of cloudiness owing to absorption of solar energy in the aerosol layer. Over the subtropical South Atlantic Ocean, where smoke from savannah burning in southern Africa resides above a persistent deck of marine stratocumulus clouds, radiative heating of the smoke layer leads to a thickening of the cloud layer. Here, satellite observations of the albedo of overcast scenes of 25 km2 size or larger are combined with additional satellite observations of clouds and aerosols to estimate the top-of-atmosphere direct radiative forcing attributable to presence of dark aerosol above bright cloud, and the negative semi-direct forcing attributable to the thickening of the cloud layer. The average positive direct radiative forcing by smoke over an overcast scene is 9.2±6.6 W m−2 for cases with an unambiguous signal of absorbing aerosol over cloud in passive ultraviolet remote sensing observations. However, cloud liquid water path is enhanced by 16.3±7.7 g m−2 across the range of values for sea surface temperature for cases of smoke over cloud. The negative radiative forcing associated with this semi-direct effect of smoke over clouds is estimated to be −5.9±3.5 W m−2. Therefore, the cooling associated with the semi-direct cloud thickening effect compensates for greater than 60 % of the direct radiative effect. Accounting for the frequency of occurrence of significant absorbing aerosol above overcast scenes leads to an estimate of the average direct forcing of 1.0±0.7 W m−2 contributed by these scenes averaged over the subtropical southeast Atlantic Ocean during austral winter. The regional average of the negative semi-direct forcing is −0.7±0.4 W m−2

  9. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  10. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  11. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  12. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  13. Integrating Contractors into the Logistics Force

    National Research Council Canada - National Science Library

    Terrell, Ronald G

    2006-01-01

    ... a panacea. For a combatant commander to effectively integrate them with his military force requires an understanding of the operational environment, contractor capabilities, acceptable levels of risk...

  14. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  15. The Integrated Radiation Mapper Assistant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, R.E.; Tripp, L.R. [Odetics, Inc., Anaheim, CA (United States)

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout the room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.

  16. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  17. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Berntsen, T.; Isaksen, I.S.A.; Fuglestvedt, J.S.; Myhre, G.; Larsen, T. Alsvik; Stordal, F.; Freckleton, R.S.; Shine, K.P.

    1997-12-31

    As described in this report, changes in tropospheric ozone since pre-industrial times due to changes in emissions have been calculated by the University of Oslo global three-dimensional photochemical model. The radiative forcing caused by the increase in ozone has been calculated by means of two independent radiative transfer models: the University of Reading model (Reading), and the University of Oslo/Norwegian Institute for Air Research model (OsloRad). Significant increases in upper tropospheric ozone concentrations are found at northern mid-latitudes at about 10 km altitude. In the tropical regions the largest increase is found at about 15 km altitude. The increase is found to be caused mainly by enhanced in situ production due to transport of precursors from the boundary layer, with a smaller contribution from increased transport of ozone produced in the boundary layer. The lifetime of ozone in the troposphere decreased by about 35% as a result of enhanced concentrations of HO{sub 2}. The calculated increase in surface ozone in Europe is in good agreement with observations. The calculations of radiative forcing include the effect of clouds and allow for thermal adjustment in the stratosphere. The global and annual averaged radiative forcing at the tropopause from both models are in the lower part of the Intergovernmental Panel on Climate Change estimated range. The calculated radiative forcing is similar in magnitude to the negative radiative forcing by sulfate aerosols, but displaced southward in source regions at northern mid-latitudes. The increase in tropospheric ozone is calculated to have cooled the lower stratosphere by up to 0.9 K, with possibly half of this cooling occurring in the past 2 to 3 decades. 76 refs., 16 figs., 9 tabs.

  18. Key drivers of ozone change and its radiative forcing over the 21st century

    Science.gov (United States)

    Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.

    2018-05-01

    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.

  19. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring

    2012-01-01

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...

  20. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  1. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  2. Radiation sensitivity of integrated circuits Pt. 1

    International Nuclear Information System (INIS)

    Bereczkine Kerenyi, Ilona

    1986-01-01

    The cosmic ray sensitivity of CMOS integrated circuits are overviewed in three parts. The aim is to analyze the effects of ionizing radiation on the degradation of electronic parameters, the effects of the electric state during irradiation, and the radiation hardening of ICs. In this Part 1 a general introduction of the response of semiconductors to cosmic radiation is given, and the radiation tolerance and hardening of small-scale integrated CMOS ICs is analyzed in detail. The devices include various basic inverters and simple gate ICs. (R.P.)

  3. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  4. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  5. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  6. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  7. Equivalence of some integrals of the radiation theory

    International Nuclear Information System (INIS)

    Chia, T.T.

    1977-01-01

    A definite integral which occurs in radiation theory is shown to be equal in value to another definite integral by evaluating the flux from a spherically symmetrical radiating sphere in two ways. As a corollary, an alternate proof of the invariance of the specific intensity of a ray in empty space along its path is presented. Furthermore, the equality of these two indefinite integrals leads to the conversion of members of a class of indefinite and definite integrals involving arbitrary functions of angle into other integrals. These transformations facilitate the calculation of some of these integrals which arise not only in the theory of radiation, but in other physical situations with spherical or axial symmetry - especially those in which inverse-square laws are involved. (Auth.)

  8. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  9. Transverse components of the radiation force on nonspherical particles in the T-matrix formalism

    International Nuclear Information System (INIS)

    Saija, Rosalba; Antonia Iati, Maria; Giusto, Arianna; Denti, Paolo; Borghese, Ferdinando

    2005-01-01

    In the framework of the transition matrix approach, we calculate the force exerted by a plane wave (radiation force) on a dispersion of nonspherical particles modeled as aggregates of spheres. Beyond the customary radiation pressure we also consider the components of the radiation force in a plane orthogonal to the direction of incidence of the incoming wave (transverse components). Our calculations show that, although the latter are generally smaller than the radiation pressure, they are in no way negligible and may be important for some applications, e.g. when studying the dynamics of cosmic dust grains. We also calculate the ensemble average of the components of the radiation force over the orientation of the particles in two physically significant cases: the case of random distribution and the case in which the orientations are randomly distributed around an axis fixed in space (axial average). As expected, we find that, unlike the case of random orientation, the transverse components do not vanish for axial average

  10. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  11. Integrated nuclear radiation detector and monitor

    International Nuclear Information System (INIS)

    Biehl, B.L.; Lieberman, S.I.

    1982-01-01

    A battery powered device which can continuously monitor and detect nuclear radiation utilizing fully integrated circuitry and which is provided with an alarm which alerts persons when the radiation level exceeds a predetermined threshold

  12. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  13. Interagency task force on the health effects of ionizing radiation. final report

    International Nuclear Information System (INIS)

    1979-06-01

    This is the final report of the task force and incorporates the findings and recommendations of six smaller work groups, each with a more specific focus; i.e., science, privacy, care and benefits, exposure reduction, public information, and institutional arrangements. A research agenda that could provide some answers to questions about the effects of low-level radiation is proposed, along with recommendations to facilitate research. A public information program is outlined. Recommendations are advanced to improve systems that deliver care and benefits to those who may have been injured by exposure to radiation, and proposals for steps that might reduce unnecessary radiation exposure in the future are identified. The task force also recommends measures to institutionalize the interagency cooperation that characterized the task force. Three tables and one figure show the collective estimates of the U.S. general population, Federal research financing, cancer linked to radiation in particular populations, and a general dose-response model

  14. Integrated Radiation Analysis and Design Tools

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Radiation Analysis and Design Tools (IRADT) Project develops and maintains an integrated tool set that collects the current best practices, databases,...

  15. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    Science.gov (United States)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  16. Radiative flux and forcing parameterization error in aerosol-free clear skies.

    Science.gov (United States)

    Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M

    2015-07-16

    Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

  17. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    Science.gov (United States)

    Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C

    2013-01-01

    Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  18. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    Directory of Open Access Journals (Sweden)

    Winfred Mugge

    Full Text Available Complex regional pain syndrome (CRPS is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  19. [Radiative and hygienic certification in Armed Forces, problems of its implementation and ways of perfection].

    Science.gov (United States)

    Rusakov, V N; Cherkashin, A V; Shishkanov, A P; Ian'shin, L A; Gracheva, T N

    2010-12-01

    Radiative and hygienic passportization is one of the most actual pattern of socio and hygienic monitoring in Armed Forces. Radiative and hygienic passport is the main document which characterizes the safety control in military unit and uses the sources of ionizing radiation. Sanitary and epidemiologic institutions were imputed to control the formation of radiative and hygienic passports, analysis and generalization of its data, formation of conclusions about the condition of radiation security in the military units. According to radiative and hygienic passportization, which took place in 2009, the radiation security in the Armed Forces and organizations is satisfactory, but there are some problems of providing of radiation security of personnel under the professional and medical radiation. The salvation of its problems requires the effective work of official functionary of radiac object and institutions of state sanitary and epidemiological supervision in Armed Forces of Russian Federation.

  20. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  1. Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and

  2. System integration for radiation records

    International Nuclear Information System (INIS)

    Lawson, B.J.; Farrell, L.; Meacham, C.; Tapio, J.

    1994-01-01

    System integration is the process where through networking and/or software development, necessary business information is available in a common computing environment. System integration is becoming an important objective for many businesses. System integration can improve productivity and efficiency, reduce redundant stored information and errors, and improve availability of information. This paper will discuss the information flow in a radiation health environment, and how system integration can help. Information handled includes external dosimetry and internal dosimetry. The paper will focus on an ORACLE based system integration software product

  3. Integrated occupational radiation exposure information system

    International Nuclear Information System (INIS)

    Hunt, H.W.

    1983-06-01

    The integrated (Occupational Radiation Exposure) data base information system has many advantages. Radiation exposure information is available to operating management in a more timely manner and in a more flexible mode. The ORE system has permitted the integration of scattered files and data to be stored in a more cost-effective method that permits easy and simultaneous access by a variety of users with different data needs. The external storage needs of the radiation exposure source documents are several orders of magnitude less through the use of the computer assisted retrieval techniques employed in the ORE system. Groundwork is being layed to automate the historical files, which are maintained to help describe the radiation protection programs and policies at any one point in time. The file unit will be microfilmed for topical indexing on the ORE data base

  4. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  5. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  6. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  7. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  8. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  9. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  10. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  11. Performance of a forced convection solar drier integrated with gravel as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Mohanraj, M. [Dr Mahalingam College of Engineering and Technology, Pollachi (India). Dept. of Mechanical Engineering; Chandrasekar, P. [Swinburne Univ. of Technology, Sarawak (Malaysia). School of Engineering Sciences

    2009-07-01

    Sun drying is the most common method used in India to dry agricultural products such as grains, fruits and vegetables. The rate of drying depends on solar radiation, ambient temperature, wind velocity, relative humidity, initial moisture content, type of crops, crop absorptivity and mass product per unit exposed area. However, this method of spreading the crop in a thin layer on the ground has several disadvantages. This paper reported on a study that focused on developing a forced convection solar drier integrated with heat storage materials for drying various agricultural crops. The indirect forced convection solar drier, integrated with gravel as a sensible heat material, was used to dry pineapple slices under conditions similar to those found in Pollachi, India. The performance of the system was discussed along with the drying characteristics, drying rate, and specific moisture extraction rate. The results showed that the moisture content (wet basis) of pineapple was reduced from about 87.5 to 14.5 per cent (equilibrium moisture content) in about 29 hours in the bottom tray and 32 hours in the top tray. The thermal efficiency of the solar air heater was also reviewed. 9 refs., 5 figs.

  12. A simulation technique for 3D MR-guided acoustic radiation force imaging

    International Nuclear Information System (INIS)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  13. Observational determination of surface radiative forcing by CO2 from 2000 to 2010.

    Science.gov (United States)

    Feldman, D R; Collins, W D; Gero, P J; Torn, M S; Mlawer, E J; Shippert, T R

    2015-03-19

    The climatic impact of CO2 and other greenhouse gases is usually quantified in terms of radiative forcing, calculated as the difference between estimates of the Earth's radiation field from pre-industrial and present-day concentrations of these gases. Radiative transfer models calculate that the increase in CO2 since 1750 corresponds to a global annual-mean radiative forcing at the tropopause of 1.82 ± 0.19 W m(-2) (ref. 2). However, despite widespread scientific discussion and modelling of the climate impacts of well-mixed greenhouse gases, there is little direct observational evidence of the radiative impact of increasing atmospheric CO2. Here we present observationally based evidence of clear-sky CO2 surface radiative forcing that is directly attributable to the increase, between 2000 and 2010, of 22 parts per million atmospheric CO2. The time series of this forcing at the two locations-the Southern Great Plains and the North Slope of Alaska-are derived from Atmospheric Emitted Radiance Interferometer spectra together with ancillary measurements and thoroughly corroborated radiative transfer calculations. The time series both show statistically significant trends of 0.2 W m(-2) per decade (with respective uncertainties of ±0.06 W m(-2) per decade and ±0.07 W m(-2) per decade) and have seasonal ranges of 0.1-0.2 W m(-2). This is approximately ten per cent of the trend in downwelling longwave radiation. These results confirm theoretical predictions of the atmospheric greenhouse effect due to anthropogenic emissions, and provide empirical evidence of how rising CO2 levels, mediated by temporal variations due to photosynthesis and respiration, are affecting the surface energy balance.

  14. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    International Nuclear Information System (INIS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-01-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  15. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  16. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  18. Drift forces on vacancies and interstitials in alloys with radiation-induced segregation

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1983-01-01

    Radiation-induced segregation in alloys leads to compositional gradients around point defect sinks such as voids and dislocations. These compositional gradients in turn affect the drift forces on both interstitials and vacancies and thereby modify the bias. Linear irreversible thermodynamics is employed to derive the total drift force on interstitials and vacancies in substitutional binary alloys. The obtained results are evaluated for binary Fe-Ni alloys. It is shown that radiation-induced segregation produces new drift forces which can be of the same order of magnitude as the stress-induced drift force produced by edge dislocations in an alloy with uniform composition. Hence, segregation results in a significant modification of the bias for void nucleation and swelling. The additional drift forces on interstitials and vacancies are due to the compositional dependence of the formation and migration energies; due to the dependence of the point defect's strain energy on the local elastic properties; due to a coherency strain field caused by lattice parameter variations; and finally due to the Kirkendall force produced by the difference in tracer mobilities. Estimates of these forces given for Fe-Ni alloys indicate that the Kirkendall force is small compared to the other segregation-induced forces on interstitials. In contrast, the Kirkendall force seems to be the dominant one for vacancies. (orig.)

  19. The influence of the radiation pressure force on possible critical surfaces in binary systems

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1978-01-01

    Using a spherically symmetric approximation for the radiation pressure force to compute a possible critical surface for binary systems, previous authors found that the surface opens up at the far side of the companion. It is shown that this effect may be unreal, and could be a consequence of the simple approximation for the radiation pressure force, Due to the influence of the radiation force, mass will be lost over the whole surface of the star. In that way much mass could leave the system in massive binary systems. On the basis of evolutionary models, including mass loss by stellar wind, the results were applied on the X-ray binaries 3U 1700 - 37 and HD 77581. (Auth.)

  20. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Weyant, J.

    2014-01-01

    Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in

  1. On the role of coulomb forces in atomic radiative emission

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1988-10-01

    It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)

  2. Integrating the Healthcare Enterprise in Radiation Oncology Plug and Play-The Future of Radiation Oncology?

    International Nuclear Information System (INIS)

    Abdel-Wahab, May; Rengan, Ramesh; Curran, Bruce; Swerdloff, Stuart; Miettinen, Mika; Field, Colin; Ranjitkar, Sunita; Palta, Jatinder; Tripuraneni, Prabhakar

    2010-01-01

    Purpose: To describe the processes and benefits of the integrating healthcare enterprises in radiation oncology (IHE-RO). Methods: The IHE-RO process includes five basic steps. The first step is to identify common interoperability issues encountered in radiation treatment planning and the delivery process. IHE-RO committees partner with vendors to develop solutions (integration profiles) to interoperability problems. The broad application of these integration profiles across a variety of vender platforms is tested annually at the Connectathon event. Demonstration of the seamless integration and transfer of patient data to the potential users are then presented by vendors at the public demonstration event. Users can then integrate these profiles into requests for proposals and vendor contracts by institutions. Results: Incorporation of completed integration profiles into requests for proposals can be done when purchasing new equipment. Vendors can publish IHE integration statements to document the integration profiles supported by their products. As a result, users can reference integration profiles in requests for proposals, simplifying the systems acquisition process. These IHE-RO solutions are now available in many of the commercial radiation oncology-related treatment planning, delivery, and information systems. They are also implemented at cancer care sites around the world. Conclusions: IHE-RO serves an important purpose for the radiation oncology community at large.

  3. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    Science.gov (United States)

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  4. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Directory of Open Access Journals (Sweden)

    Yafei Qin

    2012-03-01

    Full Text Available An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  5. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  6. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  7. Further results on a family of generalized radiation integrals

    International Nuclear Information System (INIS)

    Galue, Leda; Kiryakova, Virginia

    1994-01-01

    In this paper we continue an investigation of a family of generalized radiation integrals. Several recurrence relations are presented. By differentiation of these integrals with respect to the parameters λ and μ we obtain also various integrals that include the logarithmic function in the integrand. Finally, we propose an algorithm for numerical evaluation of the generalized radiation integrals and illustrate it by tables of their values computed for selected values of the parameters. (author)

  8. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China.

    Science.gov (United States)

    Kang, Na; Kumar, K Raghavendra; Yu, Xingna; Yin, Yan

    2016-09-01

    Aerosol optical properties were measured and analyzed through the ground-based remote sensing Aerosol Robotic Network (AERONET) over an urban-industrial site, Nanjing (32.21° N, 118.72° E, and 62 m above sea level), in the Yangtze River Delta, China, during September 2007-August 2008. The annual averaged values of aerosol optical depth (AOD500) and the Ångström exponent (AE440-870) were measured to be 0.94 ± 0.52 and 1.10 ± 0.21, respectively. The seasonal averaged values of AOD500 (AE440-870) were noticed to be high in summer (autumn) and low in autumn (spring). The characterization of aerosol types showed the dominance of mixed type followed by the biomass burning and urban-industrial type of aerosol at Nanjing. Subsequently, the curvature (a 2) obtained from the second-order polynomial fit and the second derivative of AE (α') were also analyzed to understand the dominant aerosol type. The single scattering albedo at 440 nm (SSA440) varied from 0.88 to 0.93 with relatively lower (higher) values during the summer (spring), suggesting an increase in black carbon and mineral dust (desert dust) aerosols of absorbing (scattering) nature. The averaged monthly and seasonal evolutions of shortwave (0.3-4.0 μm) direct aerosol radiative forcing (DARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and bottom of atmosphere (SUR) during the study period. Further, the aerosol forcing efficiency (AFE) and the corresponding atmospheric heating rates (AHR) were also estimated from the forcing within the atmosphere (ATM). The derived DARF values, therefore, produced a warming effect within the atmosphere due to strong absorption of solar radiation.

  9. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  10. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  11. Air pollution radiative forcing from specific emissions sectors at 2030

    Science.gov (United States)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  12. Expert judgments about transient climate response to alternative future trajectories of radiative forcing.

    Science.gov (United States)

    Zickfeld, Kirsten; Morgan, M Granger; Frame, David J; Keith, David W

    2010-07-13

    There is uncertainty about the response of the climate system to future trajectories of radiative forcing. To quantify this uncertainty we conducted face-to-face interviews with 14 leading climate scientists, using formal methods of expert elicitation. We structured the interviews around three scenarios of radiative forcing stabilizing at different levels. All experts ranked "cloud radiative feedbacks" as contributing most to their uncertainty about future global mean temperature change, irrespective of the specified level of radiative forcing. The experts disagreed about the relative contribution of other physical processes to their uncertainty about future temperature change. For a forcing trajectory that stabilized at 7 Wm(-2) in 2200, 13 of the 14 experts judged the probability that the climate system would undergo, or be irrevocably committed to, a "basic state change" as > or =0.5. The width and median values of the probability distributions elicited from the different experts for future global mean temperature change under the specified forcing trajectories vary considerably. Even for a moderate increase in forcing by the year 2050, the medians of the elicited distributions of temperature change relative to 2000 range from 0.8-1.8 degrees C, and some of the interquartile ranges do not overlap. Ten of the 14 experts estimated that the probability that equilibrium climate sensitivity exceeds 4.5 degrees C is > 0.17, our interpretation of the upper limit of the "likely" range given by the Intergovernmental Panel on Climate Change. Finally, most experts anticipated that over the next 20 years research will be able to achieve only modest reductions in their degree of uncertainty.

  13. Structural analysis of γ radiation-induced chromosomal aberrations observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Qu Shuang; Chen Ying; Ge Shili; Liu Xiulin; Zhou Pingkun; Zhang Sa; Zhang Detian

    2003-01-01

    Objective: To find a new method for the measurement of radiation-induced damage, the structures of normal chromosomes and 60 Co γ-ray-induced chromosomal aberration were analyzed by atomic force microscopy. Methods: Normal and irradiated chromosomes of human peripheral blood lymphocytes were prepared, then three-dimensional structure and height of chromosomes were analyzed by atomic force microscopy. Results: Three-dimensional structures of normal chromosomes and dicentric aberration in irradiated chromosomes were observed clearly. The data of chromosome height were helpful to recognizing the dicentric aberrations. Conclusion: Atomic force microscopy providing three-dimension image and linear measurement is a new and valuable tool for structural analysis of radiation-induced chromosomal aberrations

  14. Does temperature nudging overwhelm aerosol radiative ...

    Science.gov (United States)

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c

  15. Design optimization of radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    1975-01-01

    Ionizing-radiation-induced threshold voltage shifts in CMOS integrated circuits will drastically degrade circuit performance unless the design parameters related to the fabrication process are properly chosen. To formulate an approach to CMOS design optimization, experimentally observed analytical relationships showing strong dependences between threshold voltage shifts and silicon dioxide thickness are utilized. These measurements were made using radiation-hardened aluminum-gate CMOS inverter circuits and have been corroborated by independent data taken from MOS capacitor structures. Knowledge of these relationships allows one to define ranges of acceptable CMOS design parameters based upon radiation-hardening capabilities and post-irradiation performance specifications. Furthermore, they permit actual design optimization of CMOS integrated circuits which results in optimum pre- and post-irradiation performance with respect to speed, noise margins, and quiescent power consumption. Theoretical and experimental results of these procedures, the applications of which can mean the difference between failure and success of a CMOS integrated circuit in a radiation environment, are presented

  16. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  17. Application of Stochastic Sensitivity Analysis to Integrated Force Method

    Directory of Open Access Journals (Sweden)

    X. F. Wei

    2012-01-01

    Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.

  18. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  19. One-dimensional central-force problem, including radiation reaction

    International Nuclear Information System (INIS)

    Kasher, J.C.

    1976-01-01

    Two equal masses of equal charge magnitude (either attractive or repulsive) are held a certain distance apart for their entire past history. AT t = 0 one of them is either started from rest or given an initial velocity toward or away from the other charge. When the Dirac radiation-reaction force is included in the force equation, our Taylor-series numerical calculations lead to two types of nonphysical results for both the attractive and repulsive cases. In the attractive case, the moving charge either stops and moves back out to infinity, or violates energy conservation as it nears collision with the fixed charge. For the repulsive charges, the moving particle either eventually approaches and collides with the fixed one, or violates energy conservation as it goes out to infinity. These results lead us to conclude that the Lorentz-Dirac equation is not valid for the one-dimensional central-force problem

  20. Radiofrequency radiation: safe working practices in the Royal Australian Air Force

    International Nuclear Information System (INIS)

    Joyner, K.H.; Stone, K.R.

    1988-01-01

    The Royal Australian Air Force (RAAF) has long recognised the value of its work force and the need to preserve their health and wellbeing to achieve operational objectives. The Directorate of Air Force Safety (DAFS) is required by the Chief of the Air Staff to take all measures possible to prevent accidents and incidents in the RAAF, under the provisions of the Defence Instruction, 'Air Force Safety and Occupational Health Policy'. Consequently, the RAAF has exercised a pragmatic approach to radiofrequency radiation (RFR) and has always adopted and implemented strict exposure standards. DAFS receives technical advice on RFR from the Directorate of Telecommunications Engineering (DTELENG) and on occupational health from the Directorate General of Air Force Health Services (DGAFHS)

  1. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    Science.gov (United States)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their

  2. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    Science.gov (United States)

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  3. Radiation-reaction force on a small charged body to second order

    Science.gov (United States)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  4. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-01-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series

  5. An integrated artificial neural networks approach for predicting global radiation

    International Nuclear Information System (INIS)

    Azadeh, A.; Maghsoudi, A.; Sohrabkhani, S.

    2009-01-01

    This article presents an integrated artificial neural network (ANN) approach for predicting solar global radiation by climatological variables. The integrated ANN trains and tests data with multi layer perceptron (MLP) approach which has the lowest mean absolute percentage error (MAPE). The proposed approach is particularly useful for locations where no available measurement equipment. Also, it considers all related climatological and meteorological parameters as input variables. To show the applicability and superiority of the integrated ANN approach, monthly data were collected for 6 years (1995-2000) in six nominal cities in Iran. Separate model for each city is considered and the quantity of solar global radiation in each city is calculated. Furthermore an integrated ANN model has been introduced for prediction of solar global radiation. The acquired results of the integrated model have shown high accuracy of about 94%. The results of the integrated model have been compared with traditional angstrom's model to show its considerable accuracy. Therefore, the proposed approach can be used as an efficient tool for prediction of solar radiation in the remote and rural locations with no direct measurement equipment.

  6. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  7. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  8. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.; Brindley,  Helen; Banks,  Jamie

    2015-01-01

    Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  9. Sound radiation quantities arising from a resilient circular radiator.

    Science.gov (United States)

    Aarts, Ronald M; Janssen, Augustus J E M

    2009-10-01

    Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either Stenzel functions (1-(sigma/a)2)n, with sigma the radial coordinate on the radiator, or linear combinations of Zernike functions Pn(2(sigma/a)2-1), with Pn the Legendre polynomial of degree n. Both sets of functions give rise, via King's integral for the pressure, to integrals for the quantities of interest involving the product of two Bessel functions. These integrals have a power series expansion and allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am. 65, 608-621 (1979)] are generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation between the radiated power in the near-field on one hand and in the far field on the other is highlighted.

  10. Impact of nonlinear distortion on acoustic radiation force elastography.

    Science.gov (United States)

    Draudt, Andrew B; Cleveland, Robin O

    2011-11-01

    High-intensity focused ultrasound (HIFU) produces an acoustic radiation force that induces tissue displacement, which can be measured by monitoring time shifts in the backscattered signals from interrogation pulses. If the pulse occurs simultaneously with the HIFU, the arrival time of the backscatter will be biased because nonlinearity associated with the HIFU changes the local sound speed. Measurements of the pressure field using 1.1 MHz HIFU and a 7.5 MHz pulse in water exhibited a nonlinearly induced apparent displacement (NIAD) that varied with the HIFU pressure, propagation distance and the timing of the pulse relative to the HIFU. Nonlinear simulations employing the KZK equation predicted NIADs that agreed with measurements. Experiments with chicken breast demonstrated a NIAD with magnitude similar to that expected from the radiation force. Finally it was shown that if two pulses were fired with different phases relative to the HIFU, then upon averaging, the NIAD could be mitigated. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  12. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  13. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  14. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  15. Radiation forces and the Abraham-Minkowski problem

    Science.gov (United States)

    Brevik, Iver

    2018-04-01

    Recent years have witnessed a number of beautiful experiments in radiation optics. Our purpose with this paper is to highlight some developments of radiation pressure physics in general, and thereafter to focus on the importance of the mentioned experiments in regard to the classic Abraham-Minkowski problem. That means, what is the “correct” expression for electromagnetic momentum density in continuous matter. In our opinion, one often sees that authors over-interpret the importance of their experimental findings with respect to the momentum problem. Most of these experiments are actually unable to discriminate between these energy-momentum tensors at all, since they can be easily described in terms of force expressions that are common for Abraham and Minkowski. Moreover, we emphasize the inherent ambiguity in applying the formal conservation principles to the radiation field in a dielectric, the reason being that the electromagnetic field in matter is only a subsystem which has to be supplemented by the mechanical subsystem to be closed. Finally, we make some suggestions regarding the connection between macroscopic electrodynamics and the Casimir effect, suggesting that there is a limit for the magnitudes of the cutoff parameters in QFT related to surface tension in ordinary hydromechanics.

  16. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    Science.gov (United States)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  17. Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, William R.; Janetos, Anthony C.

    2013-02-01

    Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

  18. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  19. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.

    Science.gov (United States)

    Joos, Fortunat; Spahni, Renato

    2008-02-05

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.

  20. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  1. Integrated nuclear and radiation protection systems

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, V.; Cerga, V.; Pirvu, V.; Badea, E.

    1993-01-01

    A multifunctional radiation monitoring equipment, flexible and capable to meet virtually environmental radiation monitoring, activity measurement and computational requirements, for nuclear laboratories has been designed. It can be used as a radiation protection system, for radionuclide measurement in isotope laboratories, nuclear technology, health physics and nuclear medicine, nuclear power stations and nuclear industry. The equipment is able to measure, transmit and record gamma dose rate and isotope activities. Other parameters and functions are optionally available, such as: self-contained alarm level, system self-test, dose integrator, syringe volume calculation for a given dose corrected for decay, calibration factor, 99 Mo assays performing and background subtraction

  2. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.

    2016-01-01

    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...

  3. Integral bubble and jet models with pressure forces

    Science.gov (United States)

    Vulfson, A. N.; Nikolaev, P. V.

    2017-07-01

    Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.

  4. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula

    Science.gov (United States)

    Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2017-07-01

    This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K

  5. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  6. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  7. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  8. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  9. The radiative forcing potential of different climate geoengineering options

    Directory of Open Access Journals (Sweden)

    T. M. Lenton

    2009-08-01

    Full Text Available Climate geoengineering proposals seek to rectify the Earth's current and potential future radiative imbalance, either by reducing the absorption of incoming solar (shortwave radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on energy balance considerations and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. It allows us to compare the relative effectiveness of a range of proposals. We consider geoengineering options as additional to large reductions in CO2 emissions. By 2050, some land carbon cycle geoengineering options could be of comparable magnitude to mitigation "wedges", but only stratospheric aerosol injections, albedo enhancement of marine stratocumulus clouds, or sunshades in space have the potential to cool the climate back toward its pre-industrial state. Strong mitigation, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition may have greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean

  10. Double gated-integrator for shaping nuclear radiation detector signals

    International Nuclear Information System (INIS)

    Gal, J.

    2001-01-01

    A new shaper, the double gated-integrator, for shaping nuclear radiation detector signals is investigated both theoretically and experimentally. The double gated-integrator consists of a pre-filter and two cascaded gated integrators. Two kinds of pre-filters were considered: a rectangular one and an exponential one. The results of the theoretical calculation show that the best figure of demerit for the double gated-integrator with exponential pre-filter is 1.016. This means that its noise to signal ratio is only 1.6% worse than that it is for infinite cusp shaping. The practical realization of the exponential pre-filter and that of the double gated integrator, both in analogue and in digital way, is very simple. Therefore, the double gated-integrator with exponential pre-filter could be a promising solution for shaping nuclear radiation detector signals

  11. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Pikor, A.; Reiss, E.M.

    1980-01-01

    Substantial effort has been directed at radiation-hardening CMOS integrated circuits using various oxide processes. While most of these integrated circuits have been successful in demonstrating megarad hardness, further investigations have shown that the 'wet-oxide process' is most compatible with the RCA CD4000 Series process. This article describes advances in the wet-oxide process that have resulted in multimegarad hardness and yield to MIL-M-38510 screening requirements. The implementation of these advances into volume manufacturing is geared towards supplying devices for aerospace requirements such as the Defense Meterological Satellite program (DMSP) and the Global Positioning Satellite (GPS). (author)

  12. A study of the radiative forcing and global warming potentials of hydrofluorocarbons

    International Nuclear Information System (INIS)

    Zhang Hua; Wu Jinxiu; Lu Peng

    2011-01-01

    We developed a new radiation parameterization of hydrofluorocarbons (HFCs), using the correlated k-distribution method and the high-resolution transmission molecular absorption (HITRAN) 2004 database. We examined the instantaneous and stratospheric adjusted radiative efficiencies of HFCs for clear-sky and all-sky conditions. We also calculated the radiative forcing of HFCs from preindustrial times to the present and for future scenarios given by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES, in short). Global warming potential and global temperature potential were then examined and compared on the basis of the calculated radiative efficiencies. Finally, we discuss surface temperature changes due to various HFC emissions.

  13. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  14. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

    International Nuclear Information System (INIS)

    Menon, Surabi; Akbari, Hashem; Sednev, Igor; Levinson, Ronnen; Mahanama, Sarith

    2010-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 W m -2 , and temperature decreased by ∼0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental US the total outgoing radiation increased by 2.3 W m -2 , and land surface temperature decreased by ∼0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO 2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be ∼57 Gt CO 2 . A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO 2 offsets would require simulations which better characterize urban surfaces and represent the full annual cycle.

  15. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  16. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  17. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  18. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  19. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    Science.gov (United States)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  20. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  1. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  2. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  3. Tailored long range forces on polarizable particles by collective scattering of broadband radiation

    International Nuclear Information System (INIS)

    Holzmann, D; Ritsch, H

    2016-01-01

    Collective coherent light scattering by polarizable particles creates surprisingly strong, long range inter-particle forces originating from interference of the light scattered by different particles. While for monochromatic laser beams this interaction decays with the inverse distance, we show here that in general the effective interaction range and geometry can be controlled by the illumination bandwidth and geometry. As generic example we study the modifications inter-particle forces within a 1D chain of atoms trapped in the field of a confined optical nanofiber mode. For two particles we find short range attraction as well as optical binding at multiple distances. The range of stable distances shrinks with increasing light bandwidth and for a very large bandwidth field as e.g. blackbody radiation. We find a strongly attractive potential up to a critical distance beyond which the force gets repulsive. Including multiple scattering can even lead to the appearance of a stable configuration at a large distance. Such broadband scattering forces should be observable contributions in ultra-cold atom interferometers or atomic clocks setups. They could be studied in detail in 1D geometries with ultra-cold atoms trapped along or within an optical nanofiber. Broadband radiation force interactions might also contribute in astrophysical scenarios as illuminated cold dust clouds. (paper)

  4. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    Science.gov (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  5. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  6. Air Pollution Radiative Forcing From Specific Emissions Sectors at 2030: Prototype for a New IPCC Bar Chart

    Science.gov (United States)

    Unger, N.; Shindell, D. T.; Koch, D. M.

    2007-05-01

    Reduction of short-lived air pollutants provides a way to mitigate global warming in the short-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the GISS atmospheric composition-climate model to quantify near future (2030 A1B) ozone (O3) and sulfate global mean direct radiative forcing impacts from 6 emissions sectors from 7 geographic regions. At 2030 the net forcings for the emissions sectors (including O3, sulfate, black and organic carbon forcings) are (in mW/m2): transportation = +106; biomass burning = +69; domestic = +38; power = -158; industry = -124. Hence the transportation sector is the most attractive target to counter global warming via reduction of short-lived air pollutants. Substantial transportation sector O3 forcings come from all regions (5-12 mW/m2). Central and Southern Africa and South America contribute the largest biomass burning O3 forcings (11-15 mW/m2). Domestic biofuel emissions from East Asia, South Asia and Central and South Africa and power and industry emissions from East Asia also contribute substantial O3 forcings (7-15mW/m2). The global mean sulfate forcings are dominated by the power and industry sectors with largest contributions from East Asia, South Asia and North Africa and Middle East (-30 to -50 mW/m2). Linear relationships exist between global mean radiative forcing by O3 and biomass burning and domestic biofuel CO precursor emissions independent of the region of origin with sensitivity of 0.02mW/m2/TgCO. Similarly, linear relationships are available for global mean radiative forcing by sulfate and SO2 precursor emissions that depend upon region but are independent of the emissions sector with sensitivities ranging from -3 to -12mW/m2/TgS. Such emissions to forcing diagnostics will assist development of climate-motivated policy for O3 and sulfate.

  7. Numerical study of acoustic streaming and radiation forces on micro particles

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Muller, Peter Barkholt; Barnkob, Rune

    2012-01-01

    , and 2) Stokes drag from the induced acoustic streaming flow. Both effects are second order and require the solution of the full linearized Navier-Stokes equation in order to be captured correctly. The model shows the transition from streaming drag to radiation force dominated regimes. The transition...

  8. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    Science.gov (United States)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  9. Force feedback facilitates multisensory integration during robotic tool use

    NARCIS (Netherlands)

    Sengül, A.; Rognini, G.; van Elk, M.; Aspell, J.E.; Bleuler, H.; Blanke, O.

    2013-01-01

    The present study investigated the effects of force feedback in relation to tool use on the multisensory integration of visuo-tactile information. Participants learned to control a robotic tool through a surgical robotic interface. Following tool-use training, participants performed a crossmodal

  10. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Directory of Open Access Journals (Sweden)

    D. G. Streets

    2012-04-01

    Full Text Available We calculate decadal aerosol direct and indirect (warm cloud radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2, nitrate (−0.2 W m−2, organic carbon (−0.2 W m−2, and black carbon (+0.4 W m−2. The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect, mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  11. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  12. Origin and radiative forcing of black carbon aerosol: production and consumption perspectives.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Yi, Kan; Yang, Haozhe; Guan, Dabo; Liu, Zhu; Zhang, Jiachen; Ou, Jiamin; Dorling, Stephen; Mi, Zhifu; Shen, Huizhong; Zhong, Qirui; Tao, Shu

    2018-04-24

    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM) and a multiregional input-output analysis (MRIO). BC is physically transported (i.e., atmospheric transport) from western to eastern countries in the mid-latitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia is also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America and East Asia (0.01Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.

  13. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    Full Text Available Climatic effects of short-lived climate forcers (SLCFs differ from those of long-lived greenhouse gases, because they occur rapidly after emission and because they depend upon the region of emission. The distinctive temporal and spatial nature of these impacts is not captured by measures that rely on global averages or long time integrations. Here, we propose a simple measure, the Specific Forcing Pulse (SFP, to quantify climate warming or cooling by these pollutants, where we define "immediate" as occurring primarily within the first year after emission. SFP is the amount of energy added to or removed from a receptor region in the Earth-atmosphere system by a chemical species, per mass of emission in a source region. We limit the application of SFP to species that remain in the atmosphere for less than one year. Metrics used in policy discussions, such as total forcing or global warming potential, are easily derived from SFP. However, SFP conveys purely physical information without incurring the policy implications of choosing a time horizon for the global warming potential.

    Using one model (Community Atmosphere Model, or CAM, we calculate values of SFP for black carbon (BC and organic matter (OM emitted from 23 source-region combinations. Global SFP for both atmosphere and cryosphere impacts is divided among receptor latitudes. SFP is usually greater for open-burning emissions than for energy-related (fossil-fuel and biofuel emissions because of the timing of emission. Global SFP for BC varies by about 45% for energy-related emissions from different regions. This variation would be larger except for compensating effects. When emitted aerosol has larger cryosphere forcing, it often has lower atmosphere forcing because of less deep convection and a shorter atmospheric lifetime.

    A single model result is insufficient to capture uncertainty. We develop a best estimate and uncertainties for SFP by combining forcing results from

  14. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  15. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  16. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  17. Integration of Radiation-Hard Magnetic Random Access Memory with CMOS ICs

    CERN Document Server

    Cerjan, C J

    2000-01-01

    The research undertaken in this LDRD-funded project addressed the joint development of magnetic material-based nonvolatile, radiation-hard memory cells with Sandia National Laboratory. Specifically, the goal of this project was to demonstrate the intrinsic radiation-hardness of Giant Magneto-Resistive (GMR) materials by depositing representative alloy combinations upon radiation-hardened silicon-based integrated circuits. All of the stated goals of the project were achieved successfully. The necessary films were successfully deposited upon typical integrated circuits; the materials retained their magnetic field response at the highest radiation doses; and a patterning approach was developed that did not degrade the as-fabricated properties of the underlying circuitry. These results establish the feasibility of building radiation-hard magnetic memory cells.

  18. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Integration of video and radiation analysis data

    International Nuclear Information System (INIS)

    Menlove, H.O.; Howell, J.A.; Rodriguez, C.A.; Eccleston, G.W.; Beddingfield, D.; Smith, J.E.; Baumgart, C.W.

    1995-01-01

    For the past several years, the integration of containment and surveillance (C/S) with nondestructive assay (NDA) sensors for monitoring the movement of nuclear material has focused on the hardware and communications protocols in the transmission network. Little progress has been made in methods to utilize the combined C/S and NDA data for safeguards and to reduce the inspector time spent in nuclear facilities. One of the fundamental problems in the integration of the combined data is that the two methods operate in different dimensions. The C/S video data is spatial in nature; whereas, the NDA sensors provide radiation levels versus time data. The authors have introduced a new method to integrate spatial (digital video) with time (radiation monitoring) information. This technology is based on pattern recognition by neural networks, provides significant capability to analyze complex data, and has the ability to learn and adapt to changing situations. This technique has the potential of significantly reducing the frequency of inspection visits to key facilities without a loss of safeguards effectiveness

  20. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  1. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    Science.gov (United States)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  2. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    Directory of Open Access Journals (Sweden)

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  3. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A A; Rubinov, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Gaida, L S; Guzatov, D V; Svistun, A Ch [Yanka Kupala State University of Grodno, Grodno (Belarus)

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  4. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  6. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    Directory of Open Access Journals (Sweden)

    K. M. Sterle

    2013-02-01

    Full Text Available When contaminated by absorbing particles, such as refractory black carbon (rBC and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g–1 compared to bulk values in the snowpack (~3 ng g–1. Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m−2 during April and May, with dust likely contributing a greater share of the forcing.

  7. Air Force Integrated Personnel and Pay System (AFIPPS)

    Science.gov (United States)

    2016-03-01

    Technical Guidance to include Information Technolgy (IT) Standards identified in the Technical View One (1) (TV-1) and implementation guidance of GIG...Compliant with Global Information Grid (GIG) Technical Guidance to include Information Technolgy (IT) Standards identified in the Technical View One...2016 Major Automated Information System Annual Report Air Force Integrated Personnel and Pay System (AFIPPS) Defense Acquisition Management

  8. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    Science.gov (United States)

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  9. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance

    Science.gov (United States)

    Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang

    2017-06-01

    Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.

  10. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2013-02-01

    Full Text Available This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation; and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages.

    The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m

  11. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  12. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  13. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  14. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  15. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  16. Asian Dust particles impacts on air quality and radiative forcing over Korea

    International Nuclear Information System (INIS)

    Kim, Y J; Noh, Y M; Song, C H; Yoon, S C; Han, J S

    2009-01-01

    Asian Dust particles originated from the deserts and loess areas of the Asian continent are often transported over Korea, Japan, and the North Pacific Ocean during spring season. Major air mass pathway of Asian dust storm to Korea is from either north-western Chinese desert regions or north-eastern Chinese sandy areas. The local atmospheric environment condition in Korea is greatly impacted by Asian dust particles transported by prevailing westerly wind. Since these Asian dust particles pass through heavily populated urban and industrial areas in China before it reach Korean peninsular, their physical, chemical and optical properties vary depending on the atmospheric conditions and air mass pathway characteristics. An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosols utilizing various in-situ and optical remote sensing methods, which include a multi-channel Raman LIDAR system, sunphotometer, satellite, and in-situ instruments. Results from recent studies on impacts of Asian dust particles on local air quality and radiative forcing over Korea are summarized here.

  17. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  18. Resonant passive–active vibration absorber with integrated force feedback control

    International Nuclear Information System (INIS)

    Høgsberg, Jan; Brodersen, Mark L; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction. (technical note)

  19. Progress in radiation immune thermionic integrated circuits

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs

  20. Progress in radiation immune thermionic integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, D.K.; McCormick, J.B. (comps.)

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs.

  1. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second

  2. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  3. AFM lateral force calibration for an integrated probe using a calibration grating

    International Nuclear Information System (INIS)

    Wang, Huabin; Gee, Michelle L.

    2014-01-01

    Atomic force microscopy (AFM) friction measurements on hard and soft materials remain a challenge due to the difficulties associated with accurately calibrating the cantilever for lateral force measurement. One of the most widely accepted lateral force calibration methods is the wedge method. This method is often used in a simplified format but in so doing sacrifices accuracy. In the present work, we have further developed the wedge method to provide a lateral force calibration method for integrated AFM probes that is easy to use without compromising accuracy and reliability. Raw friction calibration data are collected from a single scan image by continuous ramping of the set point as the facets of a standard grating are scanned. These data are analysed to yield an accurate lateral force conversion/calibration factor that is not influenced by adhesion forces or load deviation. By demonstrating this new calibration method, we illustrate its reliability, speed and ease of execution. This method makes accessible reliable boundary lubrication studies on adhesive and heterogeneous surfaces that require spatial resolution of frictional forces. - Highlights: • We develop a simple and accurate method for lateral force calibration in AFM friction measurements. • We detail the basis of the method and illustrate how to use it and its reliability with example data. • Our method is easy, accurate and accounts for the affects of adhesion on friction measurements. • The method is applicable to integrated probes, as opposed to colloidal probes. • This allows accurate AFM friction measurements on spatially heterogeneous and adhesive surfaces

  4. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  5. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  6. Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing

    Science.gov (United States)

    Li, Ying; Thompson, David W. J.; Huang, Yi; Zhang, Minghong

    2014-03-01

    The signature of the northern annular mode/North Atlantic Oscillation (NAM/NAO) in the vertical and horizontal distribution of tropospheric cloudiness is investigated in CloudSat and CALIPSO data from June 2006 to April 2011. During the Northern Hemisphere winter, the positive polarity of the NAM/NAO is marked by increases in zonally averaged cloud incidence north of ~60°N, decreases between ~25 and 50°N, and increases in the subtropics. The tripolar-like anomalies in cloud incidence associated with the NAM/NAO are largest over the North Atlantic Ocean basin/Middle East and are physically consistent with the NAM/NAO-related anomalies in vertical motion. Importantly, the NAM/NAO-related anomalies in tropospheric cloud incidence lead to significant top of atmosphere cloud radiative forcing anomalies that are comparable in amplitude to those associated with the NAM/NAO-related temperature anomalies. The results provide observational evidence that the most prominent pattern of Northern Hemisphere climate variability is significantly linked to variations in cloud radiative forcing. Implications for two-way feedback between extratropical dynamics and cloud radiative forcing are discussed.

  7. Pipeline integrity management: integration of geotechnical and mechanical assessment to control potential risks due to external forces

    Energy Technology Data Exchange (ETDEWEB)

    Malpartida Moya, John E.; Sota, Giancarlo Massucco de la; Seri, Walter [Compania Operadora de Gas del Amazonas, Lima (Peru)

    2009-07-01

    Every pipeline integrity management system evaluates and controls various threats. On pipelines which have particular characteristics as it is the case of the Andean pipelines and pipelines crossing jungles, one of the main threats are the external forces. Even, this threat causes a greater number of failures than other threats like corrosion or the third part damage. Facing this situation, the pipeline integrity management system of TgP has achieved an important development in the use and suitable handling of the information provided by diverse techniques of pipeline mechanical inspection and geotechnical inspection of the right-of-way (ROW). This document presents our methodology, which interrelate information of the in-line inspection, information of geotechnical inspections of the ROW, instrumentation (Strain Gages), topographic monitoring, among others. All this information is supported in a Geographic Information System (GIS) which allows us to integrate the information. By means of the pipeline integrity management system we control potential risks due to external forces, we have been able to act before events become critical, with no occurrence of failures. This system allows us simultaneously to optimize efforts and preserve the mechanical integrity of our pipelines, not producing neither personal nor environmental nor economical affectation. (author)

  8. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available of stratospheric ozone, greenhouse gasses, aerosols and sulphur dioxide, can improve the model's skill to simulate inter-annual variability over southern Africa. The paper secondly explores the role of different radiative forcings of future climate change over...

  9. Nonlinear aspects of acoustic radiation force in biomedical applications

    International Nuclear Information System (INIS)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-01-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams

  10. Nonlinear aspects of acoustic radiation force in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov [NOAA Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305 (United States); Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com [Artann Laboratories, Inc., 1459 Lower Ferry Rd., West Trenton, New Jersey,08618 (United States)

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  11. Nonlinear aspects of acoustic radiation force in biomedical applications

    Science.gov (United States)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  12. Time evolution of tropospheric ozone and its radiative forcing

    International Nuclear Information System (INIS)

    Berntsen, Terje K.; Isaksen, Ivar S.A.; Myhre, Gunnar; Stordal, Frode

    1999-01-01

    The overview presents results from studies of ozone concentrations from pre industrial time and up to the end of the 20th century. Different models and also a global 3-D chemistry transport model have been used. Experiments have been performed for 1850, 1900, 1950, 1960, 1970, 1980 and 1990. The radiative forcing increases with increasing ozone levels and has been steadily increasing. It has escalated towards the end of the century. Comparative evaluations with project results and external results are presented. Connections to other greenhouse gases are mentioned

  13. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  14. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  15. A piecewise-integration method for simulating the influence of external forcing on climate

    Institute of Scientific and Technical Information of China (English)

    Zhifu Zhang; Chongjian Qiu; Chenghai Wang

    2008-01-01

    Climate drift occurs in most general circulation models (GCMs) as a result of incomplete physical and numerical representation of the complex climate system,which may cause large uncertainty in sensitivity experiments evaluating climate response to changes in external forcing.To solve this problem,we propose a piecewise-integration method to reduce the systematic error in climate sensitivity studies.The observations are firstly assimilated into a numerical model by using the dynamic relaxation technique to relax to the current state of atmosphere,and then the assimilated fields are continuously used to reinitialize the simulation to reduce the error of climate simulation.When the numerical model is integrated with changed external forcing,the results can be split into two parts,background and perturbation fields,and the background is the state before the external forcing is changed.The piecewise-integration method is used to continuously reinitialize the model with the assimilated field,instead of the background.Therefore,the simulation error of the model with the external forcing can be reduced.In this way,the accuracy of climate sensitivity experiments is greatly improved.Tests with a simple low-order spectral model show that this approach can significantly reduce the uncertainty of climate sensitivity experiments.

  16. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    Science.gov (United States)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  17. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  18. Interagency task force on the health effects of ionizing radiation: report of the work group on public information

    International Nuclear Information System (INIS)

    1979-06-01

    The health effects of ionizing radiation recently have been the focus of increased public concern. In response to this concern, in a May 9, 1978, memorandum the White House requested the Secretary of Health, Education, and Welfare to coordinate an interagency program that would, among other things, ensure public awareness and knowledge of the health effects of ionizing radiation. As a result, the Interagency Task Force on Ionizing Radiation was formed. The Information Work Group of the Task Force was asked to outline a public information program to meet the needs of the general public, the health and scientific community, workers, and other persons exposed to low levels of ionizing radiation in the past and at present or who may be exposed in the future. The Work Group is composed of 16 members, each representing an agency participating on the Interagency Task Force on Ionizing Radiation. The Work Group members used the draft Reports of the Science Work Group, the Radiation Exposure Reduction Work Group, the Care and Benefits Work Group, and the Privacy Work Group as a basis for developing the Information Report. In addition, the Information Work Group conducted a preliminary review of existing federal information programs. Meetings were held with representatives of environmental and trade groups, unions, and professional societies to help define the dimensions and priorities of a public information program

  19. Sonic excitation by means of ultrasound; an experimental illustration of acoustic radiation forces

    NARCIS (Netherlands)

    Roozen, N.B.; Nuij, P.W.J.M.

    2011-01-01

    Ultrasonic acoustic waves are known to induce a vibration of particles around an equilibrium position. However, for large acoustic amplitudes, due to non-linear acoustic effects, a rectified, net acoustic radiation force can occur. Experimental work is performed in which the non-linear behavior is

  20. Source attribution of black carbon and its direct radiative forcing in China

    International Nuclear Information System (INIS)

    Yang, Yang; Wang, Hailong; Ma, Po-Lun; Rasch, Philip J.; Smith, Steven J.

    2017-01-01

    The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, and 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m -2 ) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.

  1. Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud

    International Nuclear Information System (INIS)

    Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut

    2008-01-01

    We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility

  2. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  3. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  4. Integrated NTP Vehicle Radiation Design

    Science.gov (United States)

    Caffrey, Jarvis; Rodriquez, Mitchell

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves

  5. Integrated NTP Vehicle Radiation Design

    Science.gov (United States)

    Caffrey, Jarvis A.; Rodriquez, Mitchell A.

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.

  6. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  7. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2006-01-01

    Full Text Available Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA yields a new harmonized estimate for the aerosol direct radiative forcing (RF under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth. The clear-sky forcing efficiency (forcing per unit optical depth has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate

  8. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    Science.gov (United States)

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  9. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  10. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    Science.gov (United States)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; hide

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  11. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Gunnar [Dept. of Geosciences, Univ. of Oslo (Norway); Center for International Climate and Environmental Research-Oslo (CICERO), Oslo (Norway); Kvalevaag, Maria [Dept. of Geosciences, Univ. of Oslo (Norway); Raedel, Gaby; Cook, Jolene; Shine, Keith P. [Dept. of Meteorology, Univ. of Reading (United Kingdom); Clark, Hannah [CNRM/GAME Meteo France, Toulouse (France); Lab. d' Aerologie, Univ. de Toulouse (France); Karcher, Fernand [CNRM/GAME Meteo France, Toulouse (France); Markowicz, Krzysztof; Kardas, Aleksandra; Wolkenberg, Paulina [Inst. of Geophysics, Univ. of Warsaw (Poland); Balkanski, Yves [LSCE/IPSL, Lab. CEA-CNRS-UVSQ (France); Ponater, Michael [Deutsches Zentrum fuer Luft und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany); Forster, Piers; Rap, Alexandru [School of Earth and Environment, Univ. of Leeds (United Kingdom); Leon, Ruben Rodriguez de [Manchester Metropolitan Univ. (United Kingdom)

    2009-12-15

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. a combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15% for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30%. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF. and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations. (orig.)

  12. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing.

    Science.gov (United States)

    Trouet, Valerie; Harley, Grant L; Domínguez-Delmás, Marta

    2016-03-22

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections.

  13. An Integrated Strategy Framework (ISF) for Combining Porter's 5-Forces, Diamond, PESTEL, and SWOT Analysis

    OpenAIRE

    Anton, Roman

    2015-01-01

    INTRODUCTION Porter's Five-Forces, Porter's Diamond, PESTEL, the 6th-Forths, and Humphrey's SWOT analysis are among the most important and popular concepts taught in business schools around the world. A new integrated strategy framework (ISF) combines all major concepts. PURPOSE Porter's Five-Forces, Porter's Diamond, PESTEL, the 6th-Forths, and Humphrey's SWOT analysis are among the most important and popular concepts taught in business schools around the world. A new integrated strategy fr...

  14. A study of existing experimental data and validation process for evaluated high energy nuclear data. Report of task force on integral test for JENDL High Energy File in Japanese Nuclear Data Committee

    International Nuclear Information System (INIS)

    Oyama, Yukio; Baba, Mamoru; Watanabe, Yukinobu

    1998-11-01

    JENDL High Energy File (JENDL-HE) is being produced by Japanese Nuclear Data Committee (JNDC) to provide common fundamental nuclear data in the intermediate energy region for many applications concerning a basic research, an accelerator-driven nuclear waste transmutation, a fusion material study, and medical applications like the radiation therapy. The first version of JENDL-HE, which contains the evaluated nuclear data up to 50 MeV, is planned to release in 1998. However, a method of integral test with which we can validate the high-energy nuclear data file has not been established. The validation of evaluated nuclear data through the integral tests is necessary to promote utilization of JENDL-HE. JNDC set up a task force in 1997 to discuss the problems concerning the integral tests of JENDL-HE. The task force members have surveyed and studied the current status of the problems for a year to obtain a guideline for development of the high-energy nuclear database. This report summarizes the results of the survey and study done by the task force for JNDC. (author)

  15. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  16. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  17. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  18. Radiative forcing in the ACCMIP historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5. The models reproduce present-day total aerosol optical depth (AOD relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects. The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58% to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF

  19. Radiative forcing in the ACCMIP historical and future climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  20. Polymer micro-grippers with an integrated force sensor for biological manipulation

    International Nuclear Information System (INIS)

    Mackay, R E; Le, H R; Clark, S; Williams, J A

    2013-01-01

    The development of a novel micro-system integrating SU-8 polymer micro-grippers with a tensile force sensor for handling and characterizing the mechanical properties of delicate biological materials, such as fibrils, is presented. The micro-grippers are actuated by the electro-thermal effect and have gripping forces comparable to the common ‘hot-and-cold-arm’ grippers. A robust finite element model was developed to investigate system performance and validated experimentally. A new micro-mechanical calibration method using a piezoelectric manipulator with a micro-force measurement system was successfully applied to test the structure. Both FEA simulation and micro-mechanical testing results indicated that the system could fulfil the requirements for micro-object manipulation within a biological environment. (paper)

  1. Integrated radiation information system in the Czech Republic

    International Nuclear Information System (INIS)

    Drabova, D.; Prouza, Z.; Malatova, I.; Kuca, P.; Bucina, I.

    1998-01-01

    Outline and organizational structure of radiation monitoring network (RMN) in the Czech Republic is conformable with similar networks abroad integrated system of a number of components serve for continuous monitoring of radiation situation on the territory of the Czech Republic, detecting an abnormal radiological situation due to domestic source, detecting a non notified accident abroad with consequences on the territory of the Czech Republic, monitoring the evolution, determining the components of any radioactivity discharge, first estimation of accident extent, forecasting of accident development and of dispersion of radionuclides in the vicinity of source, acquisition of base for decision upon evaluation and other countermeasures and remedial actions, assessment and forecast of contamination for regulation of food and water consumption, review of enforced countermeasures based on actual monitoring data and refined forecast. For model calculations and decision making in case of a nuclear accident an integrated comprehensive computer based information system is now being set up in Czech Republic. (R.P.)

  2. Interannual Variability in Radiative Forcing and Snowmelt Rates by Desert Dust in Snowcover in the Colorado River Basin

    Science.gov (United States)

    Skiles, S.; Painter, T. H.; Barrett, A. P.; Landry, C.; Deems, J. S.; Winstral, A. H.

    2010-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. This research expands on the work done in Painter et al. (2007) by assessing the interannual variability in radiative forcing, melt rates, and shortening of snow cover duration from 2005 to 2010, and the relative response of melt rates to simulated increases in air temperature. We ran the SNOBAL snowmelt model over the 6 year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Observations indicate that dust concentrations are not correlated with total number of dust events and that dust loading and concentrations vary by an order of magnitude during the 6 year record. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. Over the 6 years of record we have shown that for all years dust advances melt relative to a clean snowpack, even in lowest dust concentration years melt is advanced by up to 26 days. The greatest dust radiative impact occurred in 2009, when snow cover duration was shortened by 50 days, and the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature. In the presence of dust there is little impact from temperature increases of 2 °C and 4 °C (0-4 days) and, in the absence of dust radiative forcing, temperature increases shorten snow cover duration by 5-18 days, compared with the 26

  3. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop

    Science.gov (United States)

    Sali, Andrej; Berman, Helen M.; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K.; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M.J.J.; Chiu, Wah; Dal Peraro, Matteo; Di Maio, Frank; Ferrin, Thomas E.; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L.; Meiler, Jens; Marti-Renom, Marc A.; Montelione, Gaetano T.; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J.; Saibil, Helen; Schröder, Gunnar F.; Schwieters, Charles D.; Seidel, Claus A. M.; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L.; Velankar, Sameer; Westbrook, John D.

    2016-01-01

    Summary Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models? PMID:26095030

  4. Evaluation of integrity of radiation sources of nuclear gauges

    International Nuclear Information System (INIS)

    Torohate, Wiclif Francisco

    2016-01-01

    Nuclear equipment meters are mainly used in the industry in quality control and process control. The principle of operation consists in a shielded radioactive source together with a radiation detector such that the radiation interacts with the material to be analyzed before reaching the detector, providing real time data. Can be as their fixed and mobile mobility, the unique properties of ionizing radiation are used in three basic modes, transmission, backscatter or dispersion or induced (reactive). With the advancement and technological modernization in the world, the demand for nuclear gauges becomes increasingly larger. Currently in Brazil there are about 465 process control plants and 21 portable systems and Mozambique about 45 facilities using nuclear gauges. This font registration is done through a process called source inventory that allows also to know the category of the source, the danger or risk to human health that the source offers. The handling of this equipment requires personnel, certified, skilled and well trained in radiation protection area in accordance with the requirements of the various CNEN Rules. Due to the presence of radioactive source and because these devices are used by workers risk because there external radiation. In this context, we made the smear test in two fixed meters from the IRD industry laboratory, which determines the integrity of the source package, mandatory item in periodic integrity testing of the radiation source of this type of device. A set of procedures is made for its implementation as an evaluation of the radiological risk by radiological survey. It was intended to contribute to the learning handling and safe use of these meters. (author)

  5. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  6. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  7. Combat Pair: The Evolution of Air Force-Navy Integration in Strike Warfare

    National Research Council Canada - National Science Library

    Lambeth, Benjamin

    2007-01-01

    This report documents the exceptional cross-service harmony that the U.S. Air Force and U.S. Navy have steadily developed in their conduct of integrated strike operations since the first Persian Gulf War in 1991...

  8. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    Science.gov (United States)

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  9. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  10. Numerical simulation and experimental research of the integrated high-power LED radiator

    Science.gov (United States)

    Xiang, J. H.; Zhang, C. L.; Gan, Z. J.; Zhou, C.; Chen, C. G.; Chen, S.

    2017-01-01

    The thermal management has become an urgent problem to be solved with the increasing power and the improving integration of the LED (light emitting diode) chip. In order to eliminate the contact resistance of the radiator, this paper presented an integrated high-power LED radiator based on phase-change heat transfer, which realized the seamless connection between the vapor chamber and the cooling fins. The radiator was optimized by combining the numerical simulation and the experimental research. The effects of the chamber diameter and the parameters of fin on the heat dissipation performance were analyzed. The numerical simulation results were compared with the measured values by experiment. The results showed that the fin thickness, the fin number, the fin height and the chamber diameter were the factors which affected the performance of radiator from primary to secondary.

  11. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.

    Science.gov (United States)

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-03-16

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO 2 , the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO 2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO 2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO 2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m 2 . For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m 2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m 2 , leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  12. Emergence of Integrated Urology-Radiation Oncology Practices in the State of Texas

    International Nuclear Information System (INIS)

    Jhaveri, Pavan M.; Sun Zhuyi; Ballas, Leslie; Followill, David S.; Hoffman, Karen E.; Jiang Jing; Smith, Benjamin D.

    2012-01-01

    Purpose: Integrated urology-radiation oncology (RO) practices have been advocated as a means to improve community-based prostate cancer care by joining urologic and radiation care in a single-practice environment. However, little is known regarding the scope and actual physical integration of such practices. We sought to characterize the emergence of such practices in Texas, their extent of physical integration, and their potential effect on patient travel times for radiation therapy. Methods and Materials: A telephone survey identified integrated urology-RO practices, defined as practices owned by urologists that offer RO services. Geographic information software was used to determine the proximity of integrated urology-RO clinic sites with respect to the state's population. We calculated patient travel time and distance from each integrated urology-RO clinic offering urologic services to the RO treatment facility owned by the integrated practice and to the nearest nonintegrated (independent) RO facility. We compared these times and distances using the Wilcoxon-Mann-Whitney test. Results: Of 229 urology practices identified, 12 (5%) offered integrated RO services, and 182 (28%) of 640 Texas urologists worked in such practices. Approximately 53% of the state population resides within 10 miles of an integrated urology-RO clinic site. Patients with a diagnosis of prostate cancer at an integrated urology-RO clinic site travel a mean of 19.7 miles (26.1 min) from the clinic to reach the RO facility owned by the integrated urology-RO practice vs 5.9 miles (9.2 min) to reach the nearest nonintegrated RO facility (P<.001). Conclusions: Integrated urology-RO practices are common in Texas and are generally clustered in urban areas. In most integrated practices, the urology clinics and the integrated RO facilities are not at the same location, and driving times and distances from the clinic to the integrated RO facility exceed those from the clinic to the nearest

  13. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  14. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  15. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    Science.gov (United States)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers

  16. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Integration of optical fibers in radiative environments: Advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Ouerdane, Y.; Boukenter, A.; Marcandella, C.; Bisutti, J.; Baggio, J.; Meunier, J. P.

    2011-01-01

    We review the advantages and limitations for the integration of optical fibers in radiative environments. Optical fibers present numerous advantages for applications in harsh environments such as their electromagnetic immunity. This explains the increasing interest of the radiation effects community to evaluate their vulnerability for future facilities. However, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation. We illustrate the major mechanisms and parameters that govern the degradation mechanism, mainly the radiation-induced attenuation phenomena. We focus on the fiber transient radiation responses when exposed to the pulsed and mixed environment associated with the Megajoule class lasers devoted to the fusion by inertial confinement study. (authors)

  18. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [VTT Energy, Espoo (Finland)

    1996-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  19. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  20. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  1. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E.; Zubov, V.; Egorova, T.; Ozolin, Y. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  2. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E; Zubov, V; Egorova, T; Ozolin, Y [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1998-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  3. CONCERT-'European Joint Programme for the Integration at Radiation Protection Research'; CONCERT-''European Joint Programme for the Integration at Radiation Protection Research''

    Energy Technology Data Exchange (ETDEWEB)

    Birschwilks, Mandy; Schmitt-Hannig, Annemarie [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Internationale und Nationale Zusammenarbeit im Strahlenschutz; Jung, Thomas [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Strahlenschutz und Gesundheit

    2016-08-01

    In 2009 the High Level Expert Group (HLEG) on low dose research recommended the development of a scientific platform for low dose radiation research. The foundation of MELODI (Multidisciplinary European Low Dose Initiative) occurred in 2010. In 2015 a new project on radiation protection research was established: CONCERT (European Joint Programme for the Integration at Radiation Protection Research). The aim is the coordination of the already existing scientific platforms MELODI (radiation effects and interactions), ALLIANCE (radioecology), NERIS (nuclear and radiological emergency protection) and EURADOS (radiation dosimetry). With CONCERT an efficient use of this infrastructure for research cooperation and transparency is intended.

  4. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A C [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  5. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.C. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  6. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  7. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  8. Radiation damage to integrated injection logic cells

    International Nuclear Information System (INIS)

    Pease, R.L.; Galloway, K.F.; Stehlin, R.A.

    1975-01-01

    The effects of neutron and total dose gamma irradiations on the electrical characteristics of an integrated injection logic (l 2 L) cell and an l 2 L multiple inverter circuit were investigated. These units were designed and fabricated to obtain circuit development information and did not have radiation hardness as a goal. The following parameters of the test structures were measured as a function of total dose and neutron fluence: the dc common-base current gain of the lateral pnp transistor; the dc common-emitter current gain of the vertical npn transistor; the forward current-voltage characteristics of the injector-substrate junction, and the propagation delay versus power dissipation per gate for the multiple inverter circuit. The limitations of the present test structures in a radiation environment and possible hardening techniques are discussed

  9. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  10. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  11. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E W; Kelder, H; Velthoven, P F.J. van; Wauben, W M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J P; Velders, G J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J; Scheeren, B A [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1998-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  12. Technique for selection of transient radiation-hard junction-isolated integrated circuits

    International Nuclear Information System (INIS)

    Crowley, J.L.; Junga, F.A.; Stultz, T.J.

    1976-01-01

    A technique is presented which demonstrates the feasibility of selecting junction-isolated integrated circuits (JI/ICS) for use in transient radiation environments. The procedure guarantees that all PNPN paths within the integrated circuit are identified and describes the methods used to determine whether the paths represent latchup susceptible structures. Two examples of the latchup analysis are given involving an SSI and an LSI bipolar junction-isolated integrated circuit

  13. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  14. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcingF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  15. Force control of a robot for surface contamination detection

    International Nuclear Information System (INIS)

    Petterson, B.J.; Jones, J.F.

    1987-01-01

    A system is under development at Sandia National Laboratories for use in understanding the issues relating to automated robotic handling of spent nuclear fuel shipping casks. The goal of robotic handling is reduction of personnel radiation exposure at the proposed geologic repositories. One of the major technology development areas has been the integration of sensors into the control of the robot system to allow operation in semi-structured environments. In particular, a multiaxis force sensor is used to make robot trajectory corrections based on the contact force between the robot and workpiece. This force feedback system allows contact swipes (smears) to be made on the cask surface in a repeatable manner. 8 refs., 3 figs

  16. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    Science.gov (United States)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  17. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    Science.gov (United States)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    dominate the both surface mass concentration and the columnar burden. The BC contributed only 6% to the aerosol mass loading, but its contribution to the total AOD and net atmospheric forcing were 12% and 75%, respectively. The mean radiative forcing was -6.8 to -8.7 W m-2 at the top-of-atmosphere and -28 to -33 W m-2 at surface. Furthermore BC aerosols contributed 45-49% to the surface radiative forcing along with the water soluble aerosols (49-52%), thus, significantly contributing to solar dimming

  18. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  19. Cloud forcing: A modeling perspective

    International Nuclear Information System (INIS)

    Potter, G.L.; Mobely, R.L.; Drach, R.S.; Corsetti, T.G.; Williams, D.N.; Slingo, J.M.

    1990-11-01

    Radiation fields from a perpetual July integration of a T106 version of the ECMWF operational model are used as surrogate observations of the radiation budget at the top of the atmosphere to illustrate various difficulties that modellers might face when trying to reconcile cloud radiation forcings derived from satellite observations with model-generated ones. Differences between the so-called Methods 1 and 2 of Cess and Potter (1987) and a variant Method 3 are addressed. Method 1 is shown to be the least robust of all methods, due to potential uncertainties related to persistent cloudiness, length of the period over which clear-sky conditions are looked for, biases in retrieved clear-sky quantities due to an insufficient sampling of the diurnal cycle. We advocate the use of Method 2 as the only unambiguous one to produce consistent radiative diagnostics for intercomparing model results. Impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature (used as a surrogate climate change) is discussed. 17 refs., 12 figs., 1 tab

  20. Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing

    Science.gov (United States)

    Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...

  1. Tropospheric Aerosol Radiative Forcing Observational eXperiment - University of Washington instrumented C-131A aircraft Data Set

    Data.gov (United States)

    National Aeronautics and Space Administration — TARFOX_UWC131A is the Tropospheric Aerosol Radiative Forcing Observational eXperiment (TARFOX) - University of Washington instrumented C-131A aircraft data set. The...

  2. Satellite observed impacts of wildfires on regional atmosphere composition and shortwave radiative forcing: multiple cases study

    Science.gov (United States)

    Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.

    2017-12-01

    Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke

  3. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    Science.gov (United States)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  4. Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies

    Science.gov (United States)

    Messina, Riccardo; Antezza, Mauro

    2014-05-01

    We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

  5. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  6. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    Science.gov (United States)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  7. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  8. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  9. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  10. Design of two digital radiation tolerant integrated circuits for high energy physics experiments data readout

    CERN Document Server

    Bonacini, Sandro

    2003-01-01

    High Energy Physics research (HEP) involves the design of readout electron- ics for its experiments, which generate a high radiation ¯eld in the detectors. The several integrated circuits placed in the future Large Hadron Collider (LHC) experiments' environment have to resist the radiation and carry out their normal operation. In this thesis I will describe in detail what, during my 10-months partic- ipation in the digital section of the Microelectronics group at CERN, I had the possibility to work on: - The design of a radiation-tolerant data readout digital integrated cir- cuit in a 0.25 ¹m CMOS technology, called \\the Kchip", for the CMS preshower front-end system. This will be described in Chapter 3. - The design of a radiation-tolerant SRAM integrated circuit in a 0.13 ¹m CMOS technology, for technology radiation testing purposes and fu- ture applications in the HEP ¯eld. The SRAM will be described in Chapter 4. All the work has carried out under the supervision and with the help of Dr. Kostas Klouki...

  11. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  12. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    Science.gov (United States)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  13. CONCERT. ''European joint programme for the integration of radiation protection research''

    International Nuclear Information System (INIS)

    Schmitt-Hannig, A.; Birschwilks, M.; Jung, T.

    2016-01-01

    CONCERT is a joint project of the EU and its member states which assume joint financing: Over the next five years the largest European radiation protection programme so far will have available about 28 Million Euros for research and integrative measures, whereby the European Commission will bear 70 per cent of the costs. Integrative measures include, among others, targeted vocational education and training of junior researchers in radiation protection, better access to research and irradiation facilities for scientists, as well as a stronger connection of universities and research centres in radiation protection research.

  14. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  15. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  16. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Paul E., E-mail: pwallner@theabr.org [21st Century Oncology, LLC, and the American Board of Radiology, Bethesda, Maryland (United States); Anscher, Mitchell S. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Barker, Christopher A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bassetti, Michael [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin (United States); Bristow, Robert G. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Cancer Center/University of Toronto, Toronto, Ontario (Canada); Cha, Yong I. [Department of Radiation Oncology, Norton Cancer Center, Louisville, Kentucky (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Graves, Edward E. [Departments of Radiation Oncology and Radiology, Stanford University, Stanford, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania (United States); Hei, Tom K. [Center for Radiation Research, Columbia University, New York, New York (United States); Kimmelman, Alec C. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Kozak, Kevin R. [Department of Human Oncology, University of Wisconsin (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan (United States); Marples, Brian [Department of Radiation Oncology, Oakland University, Oakland, California (United States); and others

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

  17. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

    Directory of Open Access Journals (Sweden)

    Deepti Sharma

    2012-01-01

    Full Text Available Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as 1.00±0.51 and 0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF over Patiala. The ARF at surface (SRF and top of atmosphere (TOA ranges from ∼−50 to −100 Wm−2 and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM, ranging between ∼+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.

  18. Solar Radiation as Driving Force In Early Evolution

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  19. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  20. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  1. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: krgverma@yahoo.com [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  2. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    International Nuclear Information System (INIS)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-01-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α_3_8_0_–_1_0_2_0) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m"−"3) and the lowest in July (1.1 ± 0.2 μg m"−"3). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m"−"2, + 26.9 ± 0.2 W m"−"2, + 18.0 ± 0.6 W m"−"2 and + 18.5 ± 3.1 W m"−"2 during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m"−"2) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD_5_0_0 are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean atmospheric forcing is found to be

  3. Interoperability, Integration, and Interdependence Between the United States and Canadian Forces: Recreating the Devil’s Brigade

    Science.gov (United States)

    2016-05-26

    www.arcic.army.mil/Articles/cdd-Force-Design-in-a-Constrained­ Environment.aspx. 45 Tzu , Sun . The Art of War... Bibliography Army Capabilities Integration Center. “Force 2025 and Beyond.” US Army. February 18, 2016. Accessed February 20, 2016. http

  4. Lateral expansion and carbon exchange of a boreal peatland in Finland resulting in 7000 years of positive radiative forcing

    Science.gov (United States)

    Mathijssen, Paul J. H.; Kähkölä, Noora; Tuovinen, Juha-Pekka; Lohila, Annalea; Minkkinen, Kari; Laurila, Tuomas; Väliranta, Minna

    2017-03-01

    Data on past peatland growth patterns, vegetation development, and carbon (C) dynamics during the various Holocene climate phases may help us to understand possible future climate-peatland feedback mechanisms. In this study, we analyzed and radiocarbon dated several peat cores from Kalevansuo, a drained bog in southern Finland. We investigated peatland succession and C dynamics throughout the Holocene. These data were used to reconstruct the long-term atmospheric radiative forcing, i.e., climate impact of the peatland since initiation. Kalevansuo peat records revealed a general development from fen to bog, typical for the southern boreal zone, but the timing of ombrotrophication varied in different parts of the peatland. Peat accumulation patterns and lateral expansion through paludification were influenced by fires and climate conditions. Long-term C accumulation rates were overall lower than the average values found from literature. We suggest the low accumulation rates are due to repeated burning of the peat surface. Drainage for forestry resulted in a nearly complete replacement of typical bog mosses by forest species within 40 years after drainage. The radiative forcing reconstruction suggested positive values (warming) for the first 7000 years following initiation. The change from positive to negative forcing was triggered by an expansion of bog vegetation cover and later by drainage. The strong relationship between peatland area and peat type with radiative forcing suggests a possible feedback for future changing climate, as high-latitude peatlands may experience prominent regime shifts, such as fen to bog transitions.

  5. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  6. Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series

    International Nuclear Information System (INIS)

    Li, Renxian; Ren, Kuan Fang; Han, Xiang'e; Wu, Zhensen; Guo, Lixin; Gong, Shuxi

    2013-01-01

    Debye series expansion (DSE) is employed to the analysis of radiation pressure force (RPF) exerted on biological cells induced by high-order Bessel beams (BB). The beam shape coefficients (BSCs) for high-order Bessel beams are calculated using analytical expressions obtained by the integral localized approximation (ILA). Different types of cells, including a real Chinese Hamster Ovary (CHO) cell and a lymphocyte which are respectively modeled by a coated and five-layered sphere, are considered. The RPF induced by high-order Bessel beams is compared with that by Gaussian beams and zeroth-order Bessel beams, and the effect of different scattering processes on RPF is studied. Numerical calculations show that high-order Bessel beams with zero central intensity can also transversely trap particle in the beam center, and some scattering processes can provide longitudinal pulling force. -- Highlights: ► BSCs for high-order Bessel beam (HOBB) is derived using ILA. ► DSE is employed to study the RPF induced by HOBB exerted on multilayered cells. ► RPF is decided by radius relative to the interval of peaks in intensity profile. ► HOBB can also transversely trap high-index particle in the vicinity of beam axis. ► RPF for some scattering processes can longitudinally pull particles back

  7. Proposal to integrate the service on radiation hygiene at the primary health care services for workers exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Frometa Suarez, Ileana; Lopez Pumar, Georgina; Gonzalez Amil, Melva

    1998-01-01

    The National Health System implemented in the last few years a new pattern of primary attention for workers by creating doctors offices in work centers. At the same time, the Ministry of Public Health (MINSAP) carries the medical surveillance of the staff exposed to ionizing radiation. This work proposes a program to integrate the consulting room on radiation hygiene to primary health care services for workers that work with ionizing radiation sources, aiming to ameliorate and improve them

  8. Factors Affecting Aerosol Radiative Forcing from Both Production-based and Consumption-based View

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2017-12-01

    Aerosol radiative forcing (RF) is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. This problem becomes more complicated when taking into account the role of international trade, which means reallocated aerosol RF due to separation of regions producing goods and emissions and regions consuming those goods. Here we analyze major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA) and black carbon (BC), extending the work of Lin et al. (2016, Nature Geoscience). We contrast five factors determining production-based (RFp, due to a region's production of goods) and consumption-based (RFc, due to a region's consumption) forcing by 11 major regions, including population size, per capita output, emission intensity (emission per output), chemical efficiency (mass per unit emission) and radiative efficiency (RF per unit mass). Comparing across the 11 regions, East Asia produces the strongest RFp and RFc of SIOA and BC and the second largest RFp and RFc of POA primarily due to its high emission intensity. Although Middle East and North Africa has low emissions, its RFp is strengthened by its largest chemical efficiency for POA and BC and second largest chemical efficiency for SIOA. However, RFp of South-East Asia and Pacific is greatly weakened by its lowest chemical efficiency. Economic trade means that net importers (Western Europe, North America and Pacific OECD) have higher RFc than RFp by 50-100%. And such forcing difference is mainly due to the high emission intensity of the exporters supplying these regions. For North America, SIOA's RFc is 50% stronger than RFp, for that emission intensity of SIOA is 5.2 times in East Asia and 2.5 times in Latin America and Caribbean compared with that in North America, and the chemical efficiency in the top four exporters are

  9. Climate hypersensitivity to solar forcing?

    Directory of Open Access Journals (Sweden)

    W. Soon

    2000-05-01

    Full Text Available We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot and solar UV (SUV. The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous · Solar physics · astrophysics · and astronomy (ultraviolet emissions

  10. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology

    International Nuclear Information System (INIS)

    Cullinan, Michael A; Panas, Robert M; Culpepper, Martin L

    2012-01-01

    This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.6 nN, respectively. The accuracy of the force sensor was measured to be better than 1% over the device’s full range. (paper)

  11. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  12. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    Science.gov (United States)

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  13. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  14. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  15. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  16. A difference quotient-numerical integration method for solving radiative transfer problems

    International Nuclear Information System (INIS)

    Ding Peizhu

    1992-01-01

    A difference quotient-numerical integration method is adopted to solve radiative transfer problems in an anisotropic scattering slab medium. By using the method, the radiative transfer problem is separated into a system of linear algebraic equations and the coefficient matrix of the system is a band matrix, so the method is very simple to evaluate on computer and to deduce formulae and easy to master for experimentalists. An example is evaluated and it is shown that the method is precise

  17. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  18. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process

    International Nuclear Information System (INIS)

    Krasin, M.J.; Hudson, M.M.; Kaste, S.C.

    2004-01-01

    The application of PET imaging to pediatric radiation oncology allows new approaches to targeting and selection of radiation dose based not only on the size of a tumor, but also on its metabolic activity. In order to integrate PET into treatment planning for radiation oncology, logistical issues regarding patient setup, image fusion, and target selection must be addressed. Through prospective study, the role of PET in pediatric malignancies will be established for diagnosis, treatment, and surveillance. To explore the potential role of PET and its incorporation into treatment planning in pediatric radiation oncology, an example case of pediatric Hodgkin's disease is discussed. (orig.)

  19. Integrated pressure-force-kinematics measuring system for the characterisation of plantar foot loading during locomotion.

    Science.gov (United States)

    Giacomozzi, C; Macellari, V; Leardini, A; Benedetti, M G

    2000-03-01

    Plantar pressure, ground reaction force and body-segment kinematics measurements are largely used in gait analysis to characterise normal and abnormal function of the human foot. The combination of all these data together provides a more exhaustive, detailed and accurate view of foot loading during activities than traditional measurement systems alone do. A prototype system is presented that integrates a pressure platform, a force platform and a 3D anatomical tracking system to acquire combined information about foot function and loading. A stereophotogrammetric system and an anatomically based protocol for foot segment kinematics is included in a previously devised piezo-dynamometric system that combines pressure and force measurements. Experimental validation tests are carried out to check for both spatial and time synchronisation. Misalignment of the three systems is found to be within 6.0, 5.0 and 1.5 mm for the stereophotogrammetric system, force platform and pressure platform, respectively. The combination of position and pressure data allows for a more accurate selection of plantar foot subareas on the footprint. Measurements are also taken on five healthy volunteers during level walking to verify the feasibility of the overall experimental protocol. Four main subareas are defined and identified, and the relevant vertical and shear force data are computed. The integrated system is effective when there is a need for loading measurements in specific plantar foot subareas. This is attractive both in clinical assessment and in biomechanics research.

  20. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2008-06-01

    Full Text Available A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E, a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3 during the initial days, which, however, increased (0.86 as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmradiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  1. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Misra, A. [Physical Research Lab., Ahmedabad (India); Jayaraman, A. [National Atmospheric Research Lab., Gadanki (India)

    2008-07-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13 N, 75.70 E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 {mu}m) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 {mu}mradiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours. (orig.)

  2. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    Science.gov (United States)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  3. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2014-01-01

    The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w₀ and a diffraction convergence length known as the Rayleigh range z(R). Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere's resonance frequencies for kw₀≤1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero radiation force. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  5. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    Science.gov (United States)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  6. Systems Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces (Concepts de systemes pour la defense aerienne integree de forces internationales mobiles d'intervention en situation de crise)

    National Research Council Canada - National Science Library

    2001-01-01

    The meeting proceedings from this symposium on System Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces was organized and sponsored by the Systems Concepts and Integration (SCI...

  7. Interannual Variability in Dust Deposition, Radiative Forcing, and Snowmelt Rates in the Colorado River Basin

    Science.gov (United States)

    Skiles, M.; Painter, T. H.; Deems, J. S.; Barrett, A. P.

    2011-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. Here we present the impacts of dust deposition onto alpine snow cover using a 7-year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. We assess the radiative and hydrologic impacts with a two-layer point snow energy balance snowmelt model that calculates snowmelt and predicts point runoff using measured inputs of energy exchanges and snow properties. By removing the radiative forcing due to dust, we can determine snowmelt under observed dusty and modeled clean conditions. Additionally, we model the relative response of melt rates to simulated increases in air temperature. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. The greatest dust radiative impact occurred in 2009, when the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover and snow cover duration was shortened by 50 days. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature in terms of acceleration of snowmelt. We have completed the same analysis over a 2-year energy balance record at the Grand Mesa Study plot (GMSP) in west central Colorado, 150 km north of SBBSA. This new location allows us to assess site variability. For example, at SBBSA 2010 and 2011 were the second and third highest dust deposition years, respectively, but 2010 was a larger year with 3

  8. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  9. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    Science.gov (United States)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  10. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  11. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    Science.gov (United States)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  12. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  13. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations.

    Science.gov (United States)

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban

    2017-02-15

    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m 2 and 33.45W/m 2 respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m 2 in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  15. A block-iterative nodal integral method for forced convection problems

    International Nuclear Information System (INIS)

    Decker, W.J.; Dorning, J.J.

    1992-01-01

    A new efficient iterative nodal integral method for the time-dependent two- and three-dimensional incompressible Navier-Stokes equations has been developed. Using the approach introduced by Azmy and Droning to develop nodal mehtods with high accuracy on coarse spatial grids for two-dimensional steady-state problems and extended to coarse two-dimensional space-time grids by Wilson et al. for thermal convection problems, we have developed a new iterative nodal integral method for the time-dependent Navier-Stokes equations for mechanically forced convection. A new, extremely efficient block iterative scheme is employed to invert the Jacobian within each of the Newton-Raphson iterations used to solve the final nonlinear discrete-variable equations. By taking advantage of the special structure of the Jacobian, this scheme greatly reduces memory requirements. The accuracy of the overall method is illustrated by appliying it to the time-dependent version of the classic two-dimensional driven cavity problem of computational fluid dynamics

  16. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  17. Integrative Metabolic Signatures for Hepatic Radiation Injury.

    Directory of Open Access Journals (Sweden)

    Irwin Jack Kurland

    Full Text Available Radiation-induced liver disease (RILD is a dose-limiting factor in curative radiation therapy (RT for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI and were contrasted to mice, which received 10 Gy whole body irradiation (WBI. Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate, fatty acids (lineolate, n-hexadecanoic acid and DNA damage markers (uridine.We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.

  18. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas.

    Science.gov (United States)

    Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei

    2017-07-24

    We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.

  19. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    Science.gov (United States)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  20. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  1. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    Science.gov (United States)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  2. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  3. Advancing coupled human-earth system models: The integrated Earth System Model Project

    Science.gov (United States)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  4. On an integral equation arising in the transport of radiation through a slab involving internal reflection

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2005-01-01

    The integral equation derived by Nieuwenhuizen and Luck for transmission of radiation through an optically thick diffusive medium is reconsidered in the light of radiative transfer theory and extended to slabs of arbitrary thickness. (author)

  5. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  6. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    Science.gov (United States)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record

  7. Radiation induced currents in MRI RF coils: application to linac/MRI integration

    Science.gov (United States)

    Burke, B.; Fallone, B. G.; Rathee, S.

    2010-02-01

    The integration of medical linear accelerators (linac) with magnetic resonance imaging (MRI) systems is advancing the current state of image-guided radiotherapy. The MRI in these integrated units will provide real-time, accurate tumor locations for radiotherapy treatment, thus decreasing geometric margins around tumors and reducing normal tissue damage. In the real-time operation of these integrated systems, the radiofrequency (RF) coils of MRI will be irradiated with radiation pulses from the linac. The effect of pulsed radiation on MRI radio frequency (RF) coils is not known and must be studied. The instantaneous radiation induced current (RIC) in two different MRI RF coils were measured and presented. The frequency spectra of the induced currents were calculated. Some basic characterization of the RIC was also done: isolation of the RF coil component responsible for RIC, dependence of RIC on dose rate, and effect of wax buildup placed on coil on RIC. Both the time and frequency characteristics of the RIC were seen to vary with the MRI RF coil used. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence on dose rate was seen. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. This study shows a measurable RIC present in MRI RF coils. This unwanted current could be possibly detrimental to the signal to noise ratio in MRI and produce image artifacts.

  8. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  9. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-01-01

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  10. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  11. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  12. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  13. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  14. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  15. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  16. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.

    Science.gov (United States)

    Talasaz, A; Patel, R V

    2013-01-01

    Tactile sensing and force reflection have been the subject of considerable research for tumor localization in soft-tissue palpation. The work presented in this paper investigates the relevance of force feedback (presented visually as well as directly) during tactile sensing (presented visually only) for tumor localization using an experimental setup close to one that could be applied for real robotics-assisted minimally invasive surgery. The setup is a teleoperated (master-slave) system facilitated with a state-of-the-art minimally invasive probe with a rigidly mounted tactile sensor at the tip and an externally mounted force sensor at the base of the probe. The objective is to capture the tactile information and measure the interaction forces between the probe and tissue during palpation and to explore how they can be integrated to improve the performance of tumor localization. To quantitatively explore the effect of force feedback on tactile sensing tumor localization, several experiments were conducted by human subjects to locate artificial tumors embedded in the ex vivo bovine livers. The results show that using tactile sensing in a force-controlled environment can realize, on average, 57 percent decrease in the maximum force and 55 percent decrease in the average force applied to tissue while increasing the tumor detection accuracy by up to 50 percent compared to the case of using tactile feedback alone. The results also show that while visual presentation of force feedback gives straightforward quantitative measures, improved performance of tactile sensing tumor localization is achieved at the expense of longer times for the user. Also, the quickness and intuitive data mapping of direct force feedback makes it more appealing to experienced users.

  17. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  18. Acoustic Radiation Force Impulse Quantification in the Evaluation of Thyroid Elasticity in Pediatric Patients With Hashimoto Thyroiditis.

    Science.gov (United States)

    Yucel, Serap; Ceyhan Bilgici, Meltem; Kara, Cengiz; Can Yilmaz, Gulay; Aydin, H Murat; Elmali, Muzaffer; Tomak, Leman; Saglam, Dilek

    2018-05-01

    To evaluate the parenchymal elasticity of the thyroid gland with acoustic radiation force impulse imaging in pediatric patients with Hashimoto thyroiditis and to compare it with healthy volunteers. Twenty-six patients with Hashimoto thyroiditis and 26 healthy volunteers between 6 and 17 years were included. The shear wave velocity (SWV) values of both thyroid lobes in both groups were evaluated. The age and sex characteristics of the controls and patients with Hashimoto thyroiditis were similar. The SWV of the thyroid gland in patients with Hashimoto thyroiditis (mean ± SD, 1.67 ± 0.63 m/s) was significantly higher than that in the control group (1.30 ± 0.13 m/s; P thyroid lobes in both groups. A receiver operating characteristic curve analyses showed an optimal cutoff value of 1.41 m/s, with 73.1% sensitivity, 80.8% specificity, a 79.2 % positive predictive value, and a 75.0% negative predictive value (area under the curve, 0.806; P Hashimoto thyroiditis, there was a positive correlation between the SWV values versus anti-thyroperoxidase (Pearson r = 0.46; P = .038). There were no correlations between age, body mass index, thyroid function test results, and anti-thyroglobulin values and versus SWV values. Also, no significant differences were seen between the groups for gland size, gland vascularity, and l-thyroxine treatment. Acoustic radiation force impulse elastography showed a significant difference in the stiffness of the thyroid gland between children with Hashimoto thyroiditis and the healthy group. Using acoustic radiation force impulse elastography immediately after a standard ultrasound evaluation may predict chronic autoimmune thyroiditis. © 2017 by the American Institute of Ultrasound in Medicine.

  19. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  20. Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Sutton, A P

    2009-01-01

    Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.

  1. Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals.

    Science.gov (United States)

    Race, C P; Mason, D R; Sutton, A P

    2009-03-18

    Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.

  2. ACOUSTIC RADIATION FORCE IMPULSE IS EQUIVALENT TO LIVER BIOPSY TO EVALUATE LIVER FIBROSIS IN PATIENTS WITH CHRONIC HEPATITIS C AND NONALCOHOLIC FATTY LIVER DISEASE

    Directory of Open Access Journals (Sweden)

    Juliana Ayres de Alencar Arrais GUERRA

    2015-09-01

    Full Text Available BackgroundLiver biopsy is recommended as the gold standard method for assessing the stage of liver fibrosis in patients with chronic liver disease. However, it is invasive, with potential risks and complications. Elastography is an ultrasound technique that provides information of changes in the liver tissue, evaluating tissue elasticity and acoustic radiation force impulse is one of the available techniques.ObjectiveThe main objective of this study was to evaluate the sensitivity and specificity of acoustic radiation force impulse comparing to liver biopsy to evaluate fibrosis in patients with chronic hepatitis C virus and nonalcoholic fatty liver disease.MethodsTwenty four patients were included, everyone underwent liver biopsy and acoustic radiation force impulse, and the results were compared with values described in the literature by several authors.ResultsIn the population of patients with chronic hepatitis C, our data were better correlated with data published by Carmen Fierbinteanu-Braticevici et al., with an accuracy of 82.4%, sensitivity of 71.4% and specificity of 90%. For nonalcoholic fatty liver disease, our data were better correlated with data published by Masato Yoneda et al., with an accuracy of 85.7%, sensitivity 80% and specificity of 100%.ConclusionAcoustic radiation force impulse is a method with good accuracy to distinguish initial fibrosis from advanced fibrosis in hepatitis C virus and nonalcoholic fatty liver disease and can replace biopsy in most cases.

  3. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  4. Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Domenico Capriglione

    2018-03-01

    Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.

  5. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  6. Health physics experience with nondestructive X-radiation facilities in the US Air Force

    International Nuclear Information System (INIS)

    Stencel, J.R.; Piltingsrud, H.V.

    1976-01-01

    Radiation safety experience in the construction and use of enclosed nondestructive inspection (NDI) facilities in the US Air Force, has reaffirmed the constant need for the health physicist to continually monitor and assit in upgrading these facilities. Health physics contributions include evaluation of initial shielding requirements, proper selection of construction material, insuring that adequate safety devices are installed and adequate personnel dosimetry devices are available, surveying the facility, and assisting in the safety education program. There is a need to better define NDI warning/safety devices, using the National Bureau of Standards, (NBS) Handbook 107 as the most applicable guide

  7. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  8. k-OptForce: integrating kinetics with flux balance analysis for strain design.

    Directory of Open Access Journals (Sweden)

    Anupam Chowdhury

    2014-02-01

    Full Text Available Computational strain design protocols aim at the system-wide identification of intervention strategies for the enhanced production of biochemicals in microorganisms. Existing approaches relying solely on stoichiometry and rudimentary constraint-based regulation overlook the effects of metabolite concentrations and substrate-level enzyme regulation while identifying metabolic interventions. In this paper, we introduce k-OptForce, which integrates the available kinetic descriptions of metabolic steps with stoichiometric models to sharpen the prediction of intervention strategies for improving the bio-production of a chemical of interest. It enables identification of a minimal set of interventions comprised of both enzymatic parameter changes (for reactions with available kinetics and reaction flux changes (for reactions with only stoichiometric information. Application of k-OptForce to the overproduction of L-serine in E. coli and triacetic acid lactone (TAL in S. cerevisiae revealed that the identified interventions tend to cause less dramatic rearrangements of the flux distribution so as not to violate concentration bounds. In some cases the incorporation of kinetic information leads to the need for additional interventions as kinetic expressions render stoichiometry-only derived interventions infeasible by violating concentration bounds, whereas in other cases the kinetic expressions impart flux changes that favor the overproduction of the target product thereby requiring fewer direct interventions. A sensitivity analysis on metabolite concentrations shows that the required number of interventions can be significantly affected by changing the imposed bounds on metabolite concentrations. Furthermore, k-OptForce was capable of finding non-intuitive interventions aiming at alleviating the substrate-level inhibition of key enzymes in order to enhance the flux towards the product of interest, which cannot be captured by stoichiometry-alone analysis

  9. The laboratory testing system for radiation rsistance investigations of integrated circuits

    International Nuclear Information System (INIS)

    Wronski, W.; Wislowski, J.

    1986-01-01

    In order to evaluate the radiation tolerance of integrated circuits MCY 7102 type /MOS RAM/ two devices were built: isotope arrangement for irradiation, and portable tester registering every error of storage block which consists of 32 IC's. Principle of operation and construction of this devices is described. Exemplary results of investigations are shown. (author)

  10. The general 2-D moments via integral transform method for acoustic radiation and scattering

    Science.gov (United States)

    Smith, Jerry R.; Mirotznik, Mark S.

    2004-05-01

    The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.

  11. Prediction of ionizing radiation effects in integrated circuits using black-box models

    International Nuclear Information System (INIS)

    Williamson, P.W.

    1976-10-01

    A method is described which allows general black-box modelling of integrated circuits as distinct from the existing method of deriving the radiation induced response of the model from actual terminal measurements on the device during irradiation. Both digital and linear circuits are discussed. (author)

  12. Sound radiation quantities arising from a resilient circular radiator

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2009-01-01

    Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are

  13. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  14. Dust aerosol properties and radiative forcing observed in spring during 2001-2014 over urban Beijing, China.

    Science.gov (United States)

    Yu, Xingna; Lü, Rui; Kumar, K Raghavendra; Ma, Jia; Zhang, Qiuju; Jiang, Yilun; Kang, Na; Yang, Suying; Wang, Jing; Li, Mei

    2016-08-01

    The ground-based characteristics (optical and radiative properties) of dust aerosols measured during the springtime between 2001 and 2014 were investigated over urban Beijing, China. The seasonal averaged aerosol optical depth (AOD) during spring of 2001-2014 was about 0.78 at 440 nm. During dust days, higher AOD occurred associated with lower Ångström exponent (AE). The mean AE440-870 in the springtime was about 1.0, indicating dominance of fine particles over the region. The back-trajectory analysis revealed that the dust was transported from the deserts of Inner Mongolia and Mongolia arid regions to Beijing. The aerosol volume size distribution showed a bimodal distribution pattern, with its highest peak observed in coarse mode for all episodes (especially for dust days with increased volume concentration). The single scattering albedo (SSA) increased with wavelength on dust days, indicating the presence of more scattering particles. Furthermore, the complex parts (real and imaginary) of refractive index showed distinct characteristics with lower imaginary values (also scattering) on dust days. The shortwave (SW; 0.2-4.0 μm) and longwave (LW; 4-100 μm) aerosol radiative forcing (ARF) values were computed from the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model both at the top of atmosphere (TOA) and the bottom of atmosphere (BOA) during dust and non-dust (dust free) days, and the corresponding heating rates and forcing efficiencies were also estimated. The SW (LW) ARF, therefore, produced significant cooling (warming) effects at both the TOA and the BOA over Beijing.

  15. Radiation oncology systems integration

    International Nuclear Information System (INIS)

    Ragan, D.P.

    1991-01-01

    ROLE7 is intended as a complementary addition to the HL7 Standard and not as an alternative standard. Attempt should be made to mould data elements which are specific to radiation therapy with existing HL7 elements. This can be accomplished by introducing additional values to some element's table-of-options. Those elements which might be specific to radiation therapy could from new segments to be added to the Ancillary Data Reporting set. In order to accomplish ROLE7, consensus groups need be formed to identify the various functions related to radiation oncology that might motivate information exchange. For each of these functions, the specific data elements and their format must be identified. HL7 is organized with a number of applications which communicate asynchronously. Implementation of ROLE7 would allow uniform access to information across vendors and functions. It would provide improved flexibility in system selection. It would allow a more flexible and affordable upgrade path as systems in radiation oncology improve. (author). 5 refs

  16. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  17. Plasmonically enhanced thermomechanical detection of infrared radiation.

    Science.gov (United States)

    Yi, Fei; Zhu, Hai; Reed, Jason C; Cubukcu, Ertugrul

    2013-04-10

    Nanoplasmonics has been an attractive area of research due to its ability to localize and manipulate freely propagating radiation on the nanometer scale for strong light-matter interactions. Meanwhile, nanomechanics has set records in the sensing of mass, force, and displacement. In this work, we report efficient coupling between infrared radiation and nanomechanical resonators through nanoantenna enhanced thermoplasmonic effects. Using efficient conversion of electromagnetic energy to mechanical energy in this plasmo-thermomechanical platform with a nanoslot plasmonic absorber integrated directly on a nanobeam mechanical resonator, we demonstrate room-temperature detection of nanowatt level power fluctuations in infrared radiation. We expect our approach, which combines nanoplasmonics with nanomechanical resonators, to lead to optically controlled nanomechanical systems enabling unprecedented functionality in biomolecular and toxic gas sensing and on-chip mass spectroscopy.

  18. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    International Nuclear Information System (INIS)

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.

    1991-01-01

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein

  19. Development of a compact light weight DELRAD probe and its integration with UAV NETRA for aerial radiation surveillance

    International Nuclear Information System (INIS)

    Prasad, Mahaveer; Yadav, Ashok Kumar; Gupta, D.K.; Bhatnagar, Vivek; Singh, Chiman; Mishrilal

    2018-01-01

    The DEfence Laboratory RAdiation Detector - 'DELRAD' is an indigenously developed Hybrid Micro Circuit Module employing Si PIN diodes for detection of gamma radiation. Using this as a detector, the 'DELRAD Probe' has been designed and developed specifically for the UAV, NETRA for aerial surveillance of the nuclear affected areas. The critical requirement of very light weight radiation sensor as payload (<50gm) for the UAV NETRA is met by designing this Probe weighing approx. 40gm. The sensor is capable of measuring gamma radiation levels from 1mR/h to 1000R/h. The Probe has been tested, calibrated and integrated with the UAV NETRA. In addition to this, the radiation testing during flight of UAV NETRA integrated with DELRAD probe has also been carried out and results have been recorded. The work carried out proves the capability of Defence Laboratory, Jodhpur, (DRDO) in the area of 'Aerial Surveillance of Nuclear Radiation Affected Area' using Unmanned Aerial Vehicles (UAVs)

  20. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    International Nuclear Information System (INIS)

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  1. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  2. CONCERT. ''European joint programme for the integration of radiation protection research''; CONCERT. Gemeinsame Europaeische Forschungsfoerderung

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Hannig, A.; Birschwilks, M.; Jung, T. [Bundesamt fuer Strahlenschutz (Germany)

    2016-07-01

    CONCERT is a joint project of the EU and its member states which assume joint financing: Over the next five years the largest European radiation protection programme so far will have available about 28 Million Euros for research and integrative measures, whereby the European Commission will bear 70 per cent of the costs. Integrative measures include, among others, targeted vocational education and training of junior researchers in radiation protection, better access to research and irradiation facilities for scientists, as well as a stronger connection of universities and research centres in radiation protection research.

  3. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  4. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  5. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  6. The West-African Special Operations Forces: Development and Integration in the Context of the Sub-Saharan Growing Threats

    Science.gov (United States)

    2016-06-10

    Consequently, criminal groups and armed militant gangs have engaged in kidnappings, extortion, car bombings, murder, and other forms of violent attacks...under severe financial constraints, limiting their access to late-model, “high- tech ” weapons and to substantial quantities of materiel. The example...tool, the Special Forces “the fact Special Forces proved today”: the 2014- 2019 military planning law takes it into account, by integrating it into

  7. Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanju [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Singh, Balwinder [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Bond, Tami C. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA

    2018-02-02

    The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BC and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of

  8. The contribution of China's emissions to global climate forcing.

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-17

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  9. Integral -tracking extreme radiation across the Universe

    Science.gov (United States)

    2002-10-01

    . Galactic black holes also give off gamma rays, and with such awesome power that you can detect them almost halfway across the known Universe. As well as making the most accurate studies of these objects to date, Integral will also investigate the mysterious blasts of gamma rays that explode across the Universe about once a day, the gamma-ray bursts. They can last just a few seconds and can come from any direction in space. The origin of gamma-ray bursts has remained unexplained for years, from their first observation in the late 1960s. Today, many scientists think that gamma ray bursts could be linked to the death throes of the very first stars. Alternatively, they could be generated by colliding neutron stars, or could be caused by the explosion of supermassive stars at the end of their lives, the hypernovae. Integral's instruments will study gamma-ray bursts with the highest accuracy ever and may discover something about their origins. Integral’s instruments Integral has four instruments to give the spacecraft maximum versatility in its task of studying the gamma-ray Universe. Designed to complement each other, their combined observations will allow scientists to get a very complete and accurate picture of each celestial target at different wavelengths. The first two are dedicated gamma-ray instruments. Imager on Board the Integral Satellite (IBIS) is the sharpest-resolution gamma-ray camera ever built. Spectrometer on Integral (SPI) will measure the energy of gamma rays with exceptional accuracy. In particular, it will be more sensitive to fainter radiation than any previous gamma-ray spectrometer. The other two instruments are designed to provide complementary scientific data about Integral’s targets. The Joint European X-Ray Monitor (JEM-X) will make observations simultaneously with the main gamma-ray instruments and will provide images at X-ray wavelengths. The Optical Monitoring Camera (OMC) will do the same but at visible-light wavelengths. The total weight of

  10. Impact of late radiation effects on cancer survivor children: an integrative review

    International Nuclear Information System (INIS)

    Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia; Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia

    2016-01-01

    We aimed to identify the late effects of radiation exposure in pediatric cancer survivors. An integrated literature review was performed in the databases MEDLINE and LILACS and SciELO. Included were articles in Portuguese and English, published over the past 10 years, using the following keywords: “neoplasias/neoplasms” AND “radioterapia/radiotherapy” AND “radiação/radiation”. After analysis, 14 articles - published in nine well-known journals - met the inclusion criteria. The publications were divided into two categories: “Late endocrine effects” and “Late non-endocrine effects”. Considering the increased survival rates in children who had cancer, the impact of late effects of exposure to radiation during radiological examinations for diagnosis and treatment was analyzed. Childhood cancer survivors were exposed to several late effects and should be early and regularly followed up, even when exposed to low radiation doses

  11. Impact of late radiation effects on cancer survivor children: an integrative review

    Energy Technology Data Exchange (ETDEWEB)

    Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2016-07-01

    We aimed to identify the late effects of radiation exposure in pediatric cancer survivors. An integrated literature review was performed in the databases MEDLINE and LILACS and SciELO. Included were articles in Portuguese and English, published over the past 10 years, using the following keywords: “neoplasias/neoplasms” AND “radioterapia/radiotherapy” AND “radiação/radiation”. After analysis, 14 articles - published in nine well-known journals - met the inclusion criteria. The publications were divided into two categories: “Late endocrine effects” and “Late non-endocrine effects”. Considering the increased survival rates in children who had cancer, the impact of late effects of exposure to radiation during radiological examinations for diagnosis and treatment was analyzed. Childhood cancer survivors were exposed to several late effects and should be early and regularly followed up, even when exposed to low radiation doses.

  12. Computation of the radiation Q of dielectric-loaded electrically small antennas in integral equation formulations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....

  13. Use of radiation and radiation practices in 1993. Events and statistics

    International Nuclear Information System (INIS)

    Havukainen, R.

    1994-05-01

    In the end of the year 1993 there were in force 1740 safety licences for the use of radiation granted by the Finnish Centre for Radiation and Nuclear Safety (STUK). In addition to this there were 2100 places for dental x-ray activities in Finland. All together 12726 radiation sources and 313 radioisotope laboratories were in use. The import of radioactive substances was 3.9 x 10 15 Bq and the export 2.5 x 10 13 Bq. The production of short-lived isotopes was 1.3 x 10 13 Bq. The monitoring of personal radiation doses was organized for 11171 workers and 1299 working places. The annual dose (the integrated readings of dosemeters) was greater than registration threshold for 24% of workers. The collective dose (the sum of the results of the dose measurements) registered to the Finnish Dose Register was 6.9 manSv; 74% belonged to the workers of nuclear power plants. The sum of the personal doses measured in 1993 were for three interventional radiologists and fifteen workers in nuclear power plants 20 mSv or more. The effective doses were in each case under the annual dose limit of 50 mSv. The effective doses for the interventional radiologists were under 20 mSv. (7 figs., 16 tabs.)

  14. An integrated campaign for investigation of winter-time continental haze over Indo-Gangetic Basin and its radiative effects

    International Nuclear Information System (INIS)

    Das, Sanat Kumar; Chatterjee, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji

    2015-01-01

    An outflow of continental haze occurs from Indo-Gangetic Basin (IGB) in the North to Bay of Bengal (BoB) in the South. An integrated campaign was organized to investigate this continental haze during December 2013–February 2014 at source and remote regions within IGB to quantify its radiative effects. Measurements were carried out at three locations in eastern India; 1) Kalas Island, Sundarban (21.68°N, 88.57°E) — an isolated island along the north-east coast of BoB, 2) Kolkata (22.57°N, 88.42°E) — an urban metropolis and 3) Siliguri (26.70°N, 88.35°E) — an urban region at the foothills of eastern Himalayas. Ground-based AOD (at 0.5 μm) is observed to be maximum (1.25 ± 0.18) over Kolkata followed by Siliguri (0.60 ± 0.17) and minimum over Sundarban (0.53 ± 0.18). Black carbon concentration is found to be maximum at Kolkata (21.6 ± 6.6 μg·m −3 ) with almost equal concentrations at Siliguri (12.6 ± 5.2 μg·m −3 ) and Sundarban (12.3 ± 3.0 μg·m −3 ). Combination of MODIS-AOD and back-trajectories analysis shows an outflow of winter-time continental haze originating from central IGB and venting out through Sundarban towards BoB. This continental haze with high extinction coefficient is identified up to central BoB using CALIPSO observations and is found to contribute ~ 75% to marine AOD over central BoB. This haze produces significantly high aerosol radiative forcing within the atmosphere over Kolkata (75.4 Wm −2 ) as well as over Siliguri and Sundarban (40 Wm −2 ) indicating large forcing over entire IGB, from foothills of the Himalayas to coastal region. This winter-time continental haze also causes about similar radiative heating (1.5 K·day −1 ) from Siliguri to Sundarban which is enhanced over Kolkata (3 K·day −1 ) due to large emission of local urban aerosols. This high aerosol heating over entire IGB and coastal region of BoB can have considerable impact on the monsoonal circulation and more importantly, such haze

  15. An integrated campaign for investigation of winter-time continental haze over Indo-Gangetic Basin and its radiative effects

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanat Kumar, E-mail: sanatkrdas@gmail.com [Environmental Sciences Section, Bose Institute, Kolkata (India); Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); Chatterjee, Abhijit [Environmental Sciences Section, Bose Institute, Kolkata (India); Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); National Facility on Astroparticle Physics and Space Science, Darjeeling (India); Ghosh, Sanjay K. [Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); National Facility on Astroparticle Physics and Space Science, Darjeeling (India); Raha, Sibaji [Environmental Sciences Section, Bose Institute, Kolkata (India); Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); National Facility on Astroparticle Physics and Space Science, Darjeeling (India)

    2015-11-15

    An outflow of continental haze occurs from Indo-Gangetic Basin (IGB) in the North to Bay of Bengal (BoB) in the South. An integrated campaign was organized to investigate this continental haze during December 2013–February 2014 at source and remote regions within IGB to quantify its radiative effects. Measurements were carried out at three locations in eastern India; 1) Kalas Island, Sundarban (21.68°N, 88.57°E) — an isolated island along the north-east coast of BoB, 2) Kolkata (22.57°N, 88.42°E) — an urban metropolis and 3) Siliguri (26.70°N, 88.35°E) — an urban region at the foothills of eastern Himalayas. Ground-based AOD (at 0.5 μm) is observed to be maximum (1.25 ± 0.18) over Kolkata followed by Siliguri (0.60 ± 0.17) and minimum over Sundarban (0.53 ± 0.18). Black carbon concentration is found to be maximum at Kolkata (21.6 ± 6.6 μg·m{sup −3}) with almost equal concentrations at Siliguri (12.6 ± 5.2 μg·m{sup −3}) and Sundarban (12.3 ± 3.0 μg·m{sup −3}). Combination of MODIS-AOD and back-trajectories analysis shows an outflow of winter-time continental haze originating from central IGB and venting out through Sundarban towards BoB. This continental haze with high extinction coefficient is identified up to central BoB using CALIPSO observations and is found to contribute ~ 75% to marine AOD over central BoB. This haze produces significantly high aerosol radiative forcing within the atmosphere over Kolkata (75.4 Wm{sup −2}) as well as over Siliguri and Sundarban (40 Wm{sup −2}) indicating large forcing over entire IGB, from foothills of the Himalayas to coastal region. This winter-time continental haze also causes about similar radiative heating (1.5 K·day{sup −1}) from Siliguri to Sundarban which is enhanced over Kolkata (3 K·day{sup −1}) due to large emission of local urban aerosols. This high aerosol heating over entire IGB and coastal region of BoB can have considerable impact on the monsoonal circulation and more

  16. Study concerning an integrated radiation monitoring systems for nuclear facilities

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, M.; Cerga, V.; Pirvu, V; Badea, E.

    1996-01-01

    This paper presents an integrated radiation monitoring system designed to assess the effects of nuclear accidents and to provide a basis for making right decisions and countermeasures in order to reduce health damages. The system implies a number of stationary monitoring equipment, data processing unit and a communication network. The system meets the demands of efficiency and reliability, providing the needed tools to easily create programs able to process simple input data filling the information management system. (author). 10 refs

  17. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  18. Structural analysis of radiation-induced chromosome aberrations by atomic force microscope (AFM) before and after Giemsa staining

    International Nuclear Information System (INIS)

    Murakami, M.; Kanda, R.; Minamihisamatsu, M.; Hayata, I.

    2003-01-01

    Full text: We have studied structures of chromosome aberration induced by ionizing radiation by an atomic force microscope (AFM). The AFM could visualize the fine structure of chromosomes on Giemsa stained or unstained samples, although it was difficult to visualize unstained chromosomes by light microscope. The height data of chromosomes obtained by AFM provided useful information to describe detailed structure of chromatid gaps induced by heavy ion irradiation. A fibrous structure was observed on the unstained chromosome and these structures were considered to be the 30nm fibers on the chromosome. These types of structures were observed in the gaps as well as on surface of the chromosome. Further more, other types of chromosome aberration induced by ionizing radiation visualized by AFM will be presented

  19. Role of radiation embrittlement in reactor vessel integrity assessment

    International Nuclear Information System (INIS)

    Marston, T.U.; Chexal, V.K.; Wyckoff, M.

    1982-01-01

    Reactor vessel integrity calculations are complex. The effect of radiation embrittlement on vessel material properties is a very important aspect of any vessel integrity evaluation. The importance of realistic (based on surveillance capsule results) rather than conservative estimates of the material properties (based on regulatory curves) cannot be overestimated. It is also important to make realistic thermal hydraulic and system operations assumptions. In addition, use of actual flaw sizes from in-service inspections (versus hypothetical flaw size selection) will promote realism. Important research results exist that need to be incorporated into the regulatory process. The authors believe results from current research and development efforts will demonstrate that, with reasonable assumptions and best estimate calculations, the safety of even the older reactor vessels with high copper content welds can be assured over their design lifetimes without the need for major fixes. The utilities, through EPRI and the vendors, have dedicated a significant effort to solving the pressurized thermal shock problem

  20. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  1. Radiation pressure actuation of test masses

    International Nuclear Information System (INIS)

    Garoi, F; Ju, L; Zhao, C; Blair, D G

    2004-01-01

    In this paper, we investigate the use of radiation pressure force as test mass actuation for laser interferometer gravitational wave detectors. It is shown that it is viable to provide radiation pressure control on test masses for frequencies above ∼0.2 Hz in high performance vibration isolation systems. A very low mass, low frequency resonator has been used to verify that radiation pressure force is not corrupted by other forces such as due to radiometer effects

  2. Hadronization of quark-diquark model for nucleon structure and nuclear force by path integral

    International Nuclear Information System (INIS)

    Nagata, Keitaro

    2003-01-01

    One of the central issues of the hadron physics is how to interpret the properties and the origin of nuclear force. Nuclear force is in principle the manifestation of dynamics of quarks and gluons but no trial has been successful yet in describing the nuclear force by using QCD, the fundamental theory of the strong interactions. Phenomenon related to the chiral symmetry and the spontaneous breaking of the chiral symmetry is one of the important phenomena for the understanding of hadron physics. Nambu-Jona-Lasinio (NJL) model is one of the quark system models to explain the phenomena concerning the chiral symmetry. Although the method to deduce the Lagrangian describing mesons by applying the path integral to NJL model has been well known as the bosonization, it has been difficult to extend it to baryons because baryons are three-body system. In this paper, a method is reported to deduce Lagrangian which describes baryon-meson from quark-diquark Lagrangian by assuming that baryons are the bound states of quark and diquark. (S. Funahashi)

  3. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  4. Forcings and feedbacks by land ecosystem changes on climate change

    Science.gov (United States)

    Betts, R. A.

    2006-12-01

    Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.

  5. An integrated framework for effective reduction of occupational radiation exposure in a nuclear power plant

    International Nuclear Information System (INIS)

    Joo, Hyun Moon; Hak, Soo Kim; Young, Ho Cho; Chang, Sun Kang

    1998-01-01

    For effective reduction of occupational radiation exposure in a nuclear power plant, it is necessary to identify repetitive high radiation jobs during maintenance and refueling operation and comprehensively assess them. An integrated framework for effective reduction of occupational radiation exposure is proposed in this study. The framework consists of three parts; data collection, statistical analysis, and ALARA findings. A PC-based database program, INSTORE, is used for data collection and reduction, and the Rank Sum Method is used in identifying high radiation jobs. As a case study, the data accumulated in Kori Units 3 and 4 have been analyzed. The results of this study show that the radiation job classifications of SG related work have much effect on annual ORE collective dose in Kori Units 3 and 4. As an example of ALARA findings, hence, the improvements for the radiation job classifications of SG related work are summarized

  6. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  7. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    International Nuclear Information System (INIS)

    Jaffray, D.

    2015-01-01

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  8. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    Energy Technology Data Exchange (ETDEWEB)

    Jaffray, D. [Princess Margaret Cancer Centre (Canada)

    2015-06-15

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  9. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method

    Science.gov (United States)

    Osetrin, Evgeny; Osetrin, Konstantin

    2017-11-01

    We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.

  10. A Synthetical Estimation of Northern Hemisphere Sea-ice Albedo Radiative Forcing and Feedback between 1982 and 2009

    Science.gov (United States)

    Cao, Y.

    2014-12-01

    The decreasing surface albedo caused by continously vanishing sea ice over the Arctic plays a very important role in Arctic warming amplification. However, the quantification of the change of radiative forcing at top of atmosphere (TOA) introduced by the decreasing sea ice albedo and its generated feedback to the climate remain uncertain. Two recent representative studies showed a large difference with each other: Flanner et al. (2011) used a method of synthesis of surface albedo and radiative kernels and found that the change of sea ice radiative forcing (ΔSIRF) in Northern Hemisphere (NH) from 1979 to 2008 was 0.22 (0.15 - 0.32) W m-2, and the corresponding sea ice albedo feedback (SIAF) over NH was 0.28 (0.19 - 0.41) W m-2 K-1; while Pistone et al. (2014) directly used the observed planetary albedo to estimate the NH ΔSIRF and SIAF from 1979 to 2011 and draw a NH ΔSIRF of 0.43 ± 0.07 W m-2, which was nearly twice as larger as Flanner's result, and the estimated global SIAF was 0.31 ± 0.04 W m-2 K-1. Motivated by reconciling the difference between these two studies and obtaining a more accurate qualification of the NH ΔSIRF, we used a newly released satellite-retrieved surface albedo product CLARA-A1 and made an attempt in two steps: Firstly, based on synthesising the surface albedo and raditive kernels, we calcualted the ΔSIRF from 1982 to 2009 was 0.20 ± 0.05 W m-2, and the NH SIAF was 0.25 W m-2 K-1; After comparing with TOA observed radiative flux, we found it's quite likely the kernel methods yield an underestimation for the all-sky ΔSIRF. Then, we tried to use TOA observed broadband radiative flux to adjust the estimation with kernels. After an adjustment, the NH all-sky ΔSIRF was 0.34 ± 0.09 W m-2, and the corresponding SIAF was 0.43 W m-2 K-1 over NH and 0.31 W m-2 K-1 over the entire globe.

  11. Contribution to the study of ionizing radiation effects on bipolar technologies: application to the hardening of integrated circuits

    International Nuclear Information System (INIS)

    Briand, R.

    2001-01-01

    The use of analog integrated circuits in radiation environments raises the problem of their behaviour with respect to the different effects induced by particles and radiations. The first chapter of this thesis presents the origins of radiations and the different topologies of bipolar transistors. The effects of ionizing radiations on bipolar components, like cumulative dose, dose rates, and single events, are detailed in three distinct chapters with the same scientifical approach. The simulation of the physical degradation phenomena of the components allows to establish original electrical models coming from the understanding of the induced mechanisms. These models are used to evaluate the degradations occurring in linear analogic circuits. Common and original hardening methods are presented, some of which are applied to bipolar integrated circuit technologies. Finally, experimental laser beam test techniques are presented, which are used to reproduce the dose rate and the single events. (J.S.)

  12. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    Science.gov (United States)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  13. The contribution of China’s emissions to global climate forcing

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-01

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on “common but differentiated responsibilities” reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China’s present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China’s relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China’s strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China’s eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  14. Liouville's equation and radiative acceleration in general relativity

    International Nuclear Information System (INIS)

    Keane, A.J.

    1999-01-01

    spacetimes. In the case of the Schwarzschild spacetime we find a solution of the Liouville equation which is invariant under the Killing vector symmetries and we adopt this as our model radiation field. Once a particular solution has been chosen the radiation field has been specified completely throughout the spacetime. In chapter 4 we investigate null and timelike geodesics in the Schwarzschild spacetime. Studying the null geodesics allows us to determine the viewing angles, that is, the (semi) angular size of the compact object as viewed by a stationary observer at an arbitrary point in the spacetime. The timelike geodesics are the trajectories of the (massive) test particles subject to no external radiation force and therefore constitute a limiting case of the radiative acceleration results. Given the radiation field one can calculate the radiation pressure force and because of special relativistic effects, the radiation pressure force experienced by the particle becomes velocity dependent. In chapter 5 we integrate the equations of motion for the case of purely radial motion in the Thomson limit. In this case we can obtain a tractable analytic expression for the solution in phase space, which can be compared with the high frequency case. In this chapter we consider a relativistic critical luminosity of a compact object, i.e. a relativistic Eddington luminosity. We also introduce and discuss terminal velocities and saturation velocities associated with a particular compact object. The terminal velocity of a radiation field is the 3-velocity required to annul the radiation pressure force on the test particle, neglecting the influence of any gravitational force on the particle. The saturation velocity is defined in the same way except the gravitational force is included. The saturation velocities are of course highly frequency dependent and provide important information about the dynamics of the system. In chapter 6 we discuss the Compton differential cross-section for

  15. Forcing the issue on radiation policy

    International Nuclear Information System (INIS)

    Rockwell, T.

    1999-01-01

    For those frustrated by an inability to get a fair hearing on evidence that challenges current radiation policy, the recent case of a group of tobacco interests suing the US Environmental Protection Agency (EPA) in Federal court on its policy on second-hand smoke has important implications for radiation policy. The issue was only tangentially about tobacco; its main thrust was at EPA's arbitrary and capricious rule-making process. The EPA is at least as vulnerable to the same charges in the radiation area, particularly with respect to radon. Radiation protection is associated in many people's minds with the US Nuclear Regulatory Commission (NRC), but other agencies have also been involved. Radon, like second-hand smoke, has been tolerated for generations, and EPA has the burden of proving that it is a public hazard. The law and the unwritten rules of science are quite explicit in defining what must be done to make such a finding. In the case of radon, there is no prior basis for public concern. In fact, the public uses radium spas with radon concentrations up to one million times as high as the EPA permissible limit. In many countries, such spa usage is formally prescribed by physicians and paid for by national health insurance. The health effects, if any, from radon, as from second-hand smoke, are hard to quantify. But, this does not justify--in either case--the EPA's straying from its published criteria and procedures for testing whether such health effects occur. A Federal court has now demonstrated its willingness to judge and strike down the EPA's actions regarding second-hand smoke on their own merits, without attempting to be an arbiter of science. The result is a welcome breath of fresh air and an object lesson for those concerned about the mounting costs of treating radon as a major public health hazard

  16. Applications of acoustic radiation force impulse quantification in chronic kidney disease: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [Dept. of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing (China)

    2016-08-15

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation.

  17. Applications of acoustic radiation force impulse quantification in chronic kidney disease: A review

    International Nuclear Information System (INIS)

    Wang, Liang

    2016-01-01

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation

  18. Modeling of 2008 Kasatochi Volcanic Sulfate Direct Radiative Forcing: Assimilation of OMI SO2 Plume Height Data and Comparison with MODIS and CALIOP Observations

    Science.gov (United States)

    Wang, J.; Park, S.; Zeng, J.; Ge, C.; Yang, K.; Carn, S.; Krotkov, N.; Omar, A. H.

    2013-01-01

    Volcanic SO2 column amount and injection height retrieved from the Ozone Monitoring Instrument (OMI) with the Extended Iterative Spectral Fitting (EISF) technique are used to initialize a global chemistry transport model (GEOS-Chem) to simulate the atmospheric transport and lifecycle of volcanic SO2 and sulfate aerosol from the 2008 Kasatochi eruption, and to subsequently estimate the direct shortwave, top-of-the-atmosphere radiative forcing of the volcanic sulfate aerosol. Analysis shows that the integrated use of OMI SO2 plume height in GEOS-Chem yields: (a) good agreement of the temporal evolution of 3-D volcanic sulfate distributions between model simulations and satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), and (b) an e-folding time for volcanic SO2 that is consistent with OMI measurements, reflecting SO2 oxidation in the upper troposphere and stratosphere is reliably represented in the model. However, a consistent (approx. 25 %) low bias is found in the GEOS-Chem simulated SO2 burden, and is likely due to a high (approx.20 %) bias of cloud liquid water amount (as compared to the MODIS cloud product) and the resultant stronger SO2 oxidation in the GEOS meteorological data during the first week after eruption when part of SO2 underwent aqueous-phase oxidation in clouds. Radiative transfer calculations show that the forcing by Kasatochi volcanic sulfate aerosol becomes negligible 6 months after the eruption, but its global average over the first month is -1.3W/sq m, with the majority of the forcing-influenced region located north of 20degN, and with daily peak values up to -2W/sq m on days 16-17. Sensitivity experiments show that every 2 km decrease of SO2 injection height in the GEOS-Chem simulations will result in a approx.25% decrease in volcanic sulfate forcing; similar sensitivity but opposite sign also holds for a 0.03 m increase of geometric radius of

  19. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign.

    Science.gov (United States)

    Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia

    2009-08-01

    Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RHwater content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.

  20. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2008-01-01

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  1. Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2injection studied with the LMDZ-S3A model

    Science.gov (United States)

    Kleinschmitt, Christoph; Boucher, Olivier; Platt, Ulrich

    2018-02-01

    The enhancement of the stratospheric sulfate aerosol layer has been proposed as a method of geoengineering to abate global warming. Previous modelling studies found that stratospheric aerosol geoengineering (SAG) could effectively compensate for the warming by greenhouse gases on the global scale, but also that the achievable cooling effect per sulfur mass unit, i.e. the forcing efficiency, decreases with increasing injection rate. In this study we use the atmospheric general circulation model LMDZ with the sectional aerosol module S3A to determine how the forcing efficiency depends on the injected amount of SO2, the injection height, and the spatio-temporal pattern of injection. We find that the forcing efficiency may decrease more drastically for larger SO2 injections than previously estimated. As a result, the net instantaneous radiative forcing does not exceed the limit of -2 W m-2 for continuous equatorial SO2 injections and it decreases (in absolute value) for injection rates larger than 20 Tg S yr-1. In contrast to other studies, the net radiative forcing in our experiments is fairly constant with injection height (in a range 17 to 23 km) for a given amount of SO2 injected. Also, spreading the SO2 injections between 30° S and 30° N or injecting only seasonally from varying latitudes does not result in a significantly larger (i.e. more negative) radiative forcing. Other key characteristics of our simulations include a consequent stratospheric heating, caused by the absorption of solar and infrared radiation by the aerosol, and changes in stratospheric dynamics, with a collapse of the quasi-biennial oscillation at larger injection rates, which has impacts on the resulting spatial aerosol distribution, size, and optical properties. But it has to be noted that the complexity and uncertainty of stratospheric processes cause considerable disagreement among different modelling studies of stratospheric aerosol geoengineering. This may be addressed through detailed

  2. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  3. Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car

    Science.gov (United States)

    Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.

    2017-05-01

    The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.

  4. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  5. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  6. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  7. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  8. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  9. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  10. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  11. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  12. Confronting the Uncertainty in Aerosol Forcing Using Comprehensive Observational Data

    Science.gov (United States)

    Johnson, J. S.; Regayre, L. A.; Yoshioka, M.; Pringle, K.; Sexton, D.; Lee, L.; Carslaw, K. S.

    2017-12-01

    The effect of aerosols on cloud droplet concentrations and radiative properties is the largest uncertainty in the overall radiative forcing of climate over the industrial period. In this study, we take advantage of a large perturbed parameter ensemble of simulations from the UK Met Office HadGEM-UKCA model (the aerosol component of the UK Earth System Model) to comprehensively sample uncertainty in aerosol forcing. Uncertain aerosol and atmospheric parameters cause substantial aerosol forcing uncertainty in climatically important regions. As the aerosol radiative forcing itself is unobservable, we investigate the potential for observations of aerosol and radiative properties to act as constraints on the large forcing uncertainty. We test how eight different theoretically perfect aerosol and radiation observations can constrain the forcing uncertainty over Europe. We find that the achievable constraint is weak unless many diverse observations are used simultaneously. This is due to the complex relationships between model output responses and the multiple interacting parameter uncertainties: compensating model errors mean there are many ways to produce the same model output (known as model equifinality) which impacts on the achievable constraint. However, using all eight observable quantities together we show that the aerosol forcing uncertainty can potentially be reduced by around 50%. This reduction occurs as we reduce a large sample of model variants (over 1 million) that cover the full parametric uncertainty to around 1% that are observationally plausible.Constraining the forcing uncertainty using real observations is a more complex undertaking, in which we must account for multiple further uncertainties including measurement uncertainties, structural model uncertainties and the model discrepancy from reality. Here, we make a first attempt to determine the true potential constraint on the forcing uncertainty from our model that is achievable using a comprehensive

  13. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  14. Use of radiation and radiation practices in 1993. Events and statistics

    Energy Technology Data Exchange (ETDEWEB)

    Havukainen, R [ed.

    1994-05-01

    In the end of the year 1993 there were in force 1740 safety licences for the use of radiation granted by the Finnish Centre for Radiation and Nuclear Safety (STUK). In addition to this there were 2100 places for dental x-ray activities in Finland. All together 12726 radiation sources and 313 radioisotope laboratories were in use. The import of radioactive substances was 3.9 x 10 {sup 15} Bq and the export 2.5 x 10 {sup 13} Bq. The production of short-lived isotopes was 1.3 x 10 {sup 13} Bq. The monitoring of personal radiation doses was organized for 11171 workers and 1299 working places. The annual dose (the integrated readings of dosemeters) was greater than registration threshold for 24% of workers. The collective dose (the sum of the results of the dose measurements) registered to the Finnish Dose Register was 6.9 manSv; 74% belonged to the workers of nuclear power plants. The sum of the personal doses measured in 1993 were for three interventional radiologists and fifteen workers in nuclear power plants 20 mSv or more. The effective doses were in each case under the annual dose limit of 50 mSv. The effective doses for the interventional radiologists were under 20 mSv. (7 figs., 16 tabs.).

  15. Tidal forces in Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, M.U. [University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan); Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2017-06-15

    The aim of this paper is to examine the tidal forces occurring in a Kiselev black hole surrounded by radiation and dust fluids. It is noted that the radial and angular components of the tidal force change the sign between event and Cauchy horizons. We solve the geodesic deviation equation for radially free-falling bodies toward Kiselev black holes. We explain the geodesic deviation vector graphically and point out the location of the event and Cauchy horizons for specific values of the radiation and dust parameters. (orig.)

  16. Synthetic radiation diagnostics in PIConGPU. Integrating spectral detectors into particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, Richard; Burau, Heiko; Huebl, Axel; Steiniger, Klaus [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Debus, Alexander; Widera, Rene; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present the in-situ far field radiation diagnostics in the particle-in-cell code PIConGPU. It was developed to close the gap between simulated plasma dynamics and radiation observed in laser plasma experiments. Its predictive capabilities, both qualitative and quantitative, have been tested against analytical models. Now, we apply this synthetic spectral diagnostics to investigate plasma dynamics in laser wakefield acceleration, laser foil irradiation and plasma instabilities. Our method is based on the far field approximation of the Lienard-Wiechert potential and allows predicting both coherent and incoherent radiation spectrally from infrared to X-rays. Its capability to resolve the radiation polarization and to determine the temporal and spatial origin of the radiation enables us to correlate specific spectral signatures with characteristic dynamics in the plasma. Furthermore, its direct integration into the highly-scalable GPU framework of PIConGPU allows computing radiation spectra for thousands of frequencies, hundreds of detector positions and billions of particles efficiently. In this talk we will demonstrate these capabilities on resent simulations of laser wakefield acceleration (LWFA) and high harmonics generation during target normal sheath acceleration (TNSA).

  17. A double-integration hypothesis to explain ocean ecosystem response to climate forcing

    Science.gov (United States)

    Di Lorenzo, Emanuele; Ohman, Mark D.

    2013-01-01

    Long-term time series of marine ecological indicators often are characterized by large-amplitude state transitions that can persist for decades. Understanding the significance of these variations depends critically on the underlying hypotheses characterizing expected natural variability. Using a linear autoregressive model in combination with long-term zooplankton observations off the California coast, we show that cumulative integrations of white-noise atmospheric forcing can generate marine population responses that are characterized by strong transitions and prolonged apparent state changes. This model provides a baseline hypothesis for explaining ecosystem variability and for interpreting the significance of abrupt responses and climate change signatures in marine ecosystems. PMID:23341628

  18. SEM analysis of ionizing radiation effects in linear integrated circuits. [Scanning Electron Microscope

    Science.gov (United States)

    Stanley, A. G.; Gauthier, M. K.

    1977-01-01

    A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.

  19. Coherent synchrotron radiation and bunch stability in a compactstorage ring

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco; Warnock, Robert; Ruth, Ronald; Ellison, James A.

    2004-04-09

    We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wave lengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of r.m.s.length much greater than the shielding cutoff. The paper includes a derivation and extensive analysis of the complete impedance function Z for synchrotron radiation with parallel plate shielding. We find corrections to the lowest approximation to the coherent force which involve ''off-diagonal'' values of Z, that is, fields with phase velocity not equal to the particle velocity.

  20. Meeting the Radiative Forcing Targets of the Representative Concentration Pathways with Agricultural Climate Impacts

    Science.gov (United States)

    Kyle, P.; Müller, C.; Calvin, K. V.; Thomson, A. M.

    2013-12-01

    The Representative Concentration Pathways (RCPs) have formed the basis for much of the current scientific understanding of future climate change impacts and mitigation. However, the emissions scenarios underlying the RCPs were produced by integrated assessment models that did not include impacts of future climate change on the modeled evolution of the agricultural and energy systems. Given the prominent role of bioenergy in greenhouse gas emissions mitigation, and given the importance of land-use-related emissions in determining future atmospheric CO2 concentrations, it is possible that agricultural climate impacts may cause significant changes to the means and costs of mitigating greenhouse gas emissions. This study builds on several international modeling exercises aimed at improving understanding of climate change impacts--CMIP-5 and ISI-MIP--that have generated global gridded climate impacts on yields of major agricultural crops in each of the four RCPs. We use the climate outcomes from the HadGEM2-ES climate model, and the agricultural yield outcomes from the LPJmL crop growth model to inform inputs to the GCAM integrated assessment model, allowing analysis of how agricultural climate impacts may affect the long-term global and regional strategies for achieving the greenhouse gas concentration pathways of the RCPs. Our results indicate that for this combination of models and emissions scenarios, strongly negative climate impacts on several major commodity classes--prominently cereals and oil seeds, and particularly in the high-radiative-forcing RCPs--lead to a long-term increase in cropland and therefore land-use-related CO2 emissions. All else equal, this increases the emissions mitigation burden on the rest of the system, and therefore increases total net costs of emissions mitigation. However, the future climate change impacts on C4 bioenergy crops tend to be positive, limiting the shock of agricultural climate impacts on the modeled energy supply and

  1. The Effect of Forcing on Vacuum Radiation

    OpenAIRE

    Jones-Smith, Katherine; Mathur, Harsh; Lowenstein, Ashton

    2018-01-01

    Vacuum radiation has been the subject of theoretical study in both cosmology and condensed matter physics for many decades. Recently there has been impressive progress in experimental realizations as well. Here we study vacuum radiation when a field mode is driven both parametrically and by a classical source. We find that in the Heisenberg picture the field operators of the mode undergo a Bogolyubov transformation combined with a displacement, in the Schr\\"odinger picture the oscillator evol...

  2. Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration

    International Nuclear Information System (INIS)

    Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.

    2005-01-01

    We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms

  3. Development and Testing of an Integrated Rotating Dynamometer Based on Fiber Bragg Grating for Four-Component Cutting Force Measurement.

    Science.gov (United States)

    Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang

    2018-04-18

    Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force.

  4. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  5. Studies on improvement of tomato productivity in a large-scale greenhouse: Prediction of tomato yield based on integrated solar radiation

    International Nuclear Information System (INIS)

    Hisaeda, K.; Nishina, H.

    2007-01-01

    As there are currently many large-scale production facilities that have contracts with the large retailing companies, accurate prediction of yield is necessary. The present study developed a method to predict tomato yield accurately using the data on the outside solar radiation. The present study was conducted in a Venlo-type greenhouse (29,568 square m) at Sera Farm Co., Ltd. in Sera-cho in Hiroshima prefecture. The cultivar used for this experiment was plum tomato. The sowing took place on July 18, the planting took place on August 30, and the harvesting started on October 9, 2002. The planting density was 2.5 plants msup(-2). As the results of the analysis of correlation between the weekly tomato yield and the integrated solar radiation for the period from October 7 to July 28 (43 weeks), the highest correlation (r = 0.518) between the weekly tomato yield and the solar radiation integrated from seven to one weeks before the harvesting was observed. Further investigation by the same correlation analysis was conducted for the 25 weeks period from December 8 to May 26, during which time the effect of growing stages and air temperature were considered to be relatively small. The results showed the highest correlation (r = 0.730) between the weekly tomato yield and the solar radiation integrated from eight to one weeks before the harvesting. The tomato yield occasionally needed to be adjusted at Sera Farm. Consequently, the correlation between the three-week moving average of tomato yield and the integrated solar radiation was calculated. The results showed the highest correlation was obtained for the period from eight to one weeks before the harvesting (r = 0.860). This study therefore showed that it was possible to predict the tomato yield (y: kg.msup(-2).weeksup(-1)) using the following equation on the solar radiation integrated from eight to one weeks before the harvesting(x: MJ.msup(-2)): y = 7.50 x 10 sup(-6)x + 0.148 (rsup(2) = 0.740)

  6. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  7. Integrating existing radiation monitors into a microprocessor-based display system

    International Nuclear Information System (INIS)

    Kalita, R, S.; Bartucci, C.M.; Mason, R.G.; Greaves, C.

    1992-01-01

    Plantwide digital radiation monitoring systems (RMSs) have been generally installed as part of the original design for newer nuclear reactors. For older plants, area and process radiation monitors were either analog or a combination of analog and digital but were not part of an integrated system design. At some plants, individual monitors have been replaced or modified, resulting in a rainbow of different monitors and vendors being represented at the plant. Usually at some point, consideration is given to replacing these monitors with a state-of-the-art RMS to improve overall reliability and achieve the benefits of sound human factors engineering. This can be a very costly project in terms of expenditures for engineering, equipment, construction, startup, and time. When human engineering deficiencies (HEDs) became an issue at Zion station, Commonwealth Edison elected to install a computer-based radiation monitoring display system (RMDS) that would interface existing raidation monitors. After reviewing the existing as-built RMS configuration and internal circuits of the various monitors, it was concluded that a microprocessor-based RMDS could be successfully designed and installed that would solve the HEDs and would tie the older analog channels into a system configuration. Although in many cases, internal modifications were made to existing RMS monitors, the RMDS upgrade allowed the existing RMS monitors to retain their original functionality and location

  8. Assessment of aerosols optical properties and radiative forcing over an Urban site in North-Western India.

    Science.gov (United States)

    Mor, Vikram; Dhankhar, Rajesh; Attri, S D; Soni, V K; Sateesh, M; Taneja, Kanika

    2017-05-01

    The present work is aimed to analyze aerosols optical properties and to estimate aerosol radiative forcing (ARF) from January to December 2013, using sky radiometer data over Rohtak, an urban site in North-Western India. The results reveal strong wavelength dependency of aerosol optical depth (AOD), with high values of AOD at shorter wavelengths and lower values at longer wavelength during the study period. The highest AOD values of 1.07 ± 0.45 at 500 nm were observed during July. A significant decline in Ångström exponent was observed during April-May, which represents the dominance of coarse mode particles due to dust-raising convective activities. Aerosols' size distribution exhibits a bimodal structure with fine mode particles around 0.17 µm and coarse mode particles with a radius around 5.28 µm. Single scattering albedo values were lowest during November-December at all wavelengths, ranging from 0.87 to 0.76, which corresponds to the higher absorption during this period. Aerosols optical properties retrieved during observation period are used as input for SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) to estimate the direct ARF at the surface, in the atmosphere and at the top of the atmosphere (TOA). The ARF at the TOA, surface and in the atmosphere are found to be in the range of -4.98 to -19.35 W m -2 , -8.01 to -57.66 W m -2 and +3.02 to +41.64 W m -2 , respectively. The averaged forcing for the whole period of observations at the TOA is -11.26 W m -2 , while at the surface it is -38.64 W m -2 , leading to atmospheric forcing of 27.38 W m -2 . The highest (1.168 K day -1 ) values of heating rate was estimated during November, whereas the lowest value (0.084 K day -1 ) was estimated for the February.

  9. Non-Equilibrium Thermodynamic Analysis of Double Diffusive, Nanofluid Forced Convection in Catalytic Microreactors with Radiation Effects

    Directory of Open Access Journals (Sweden)

    Lilian Govone

    2017-12-01

    Full Text Available This paper presents a theoretical investigation of the second law performance of double diffusive forced convection in microreactors with the inclusion of nanofluid and radiation effects. The investigated microreactors consist of a single microchannel, fully filled by a porous medium. The transport of heat and mass are analysed by including the thick walls and a first order, catalytic chemical reaction on the internal surfaces of the microchannel. Two sets of thermal boundary conditions are considered on the external surfaces of the microchannel; (1 constant temperature and (2 constant heat flux boundary condition on the lower wall and convective boundary condition on the upper wall. The local thermal non-equilibrium approach is taken to thermally analyse the porous section of the system. The mass dispersion equation is coupled with the transport of heat in the nanofluid flow through consideration of Soret effect. The problem is analytically solved and illustrations of the temperature fields, Nusselt number, total entropy generation rate and performance evaluation criterion (PEC are provided. It is shown that the radiation effect tends to modify the thermal behaviour within the porous section of the system. The radiation parameter also reduces the overall temperature of the system. It is further demonstrated that, expectedly, the nanoparticles reduce the temperature of the system and increase the Nusselt number. The total entropy generation rate and consequently PEC shows a strong relation with radiation parameter and volumetric concentration of nanoparticles.

  10. Scattering and absorption characteristics of aerosols at an urban megacity over IGB: Implications to radiative forcing

    Science.gov (United States)

    Srivastava, A. K.; Bisht, D. S.; Singh, Sachchidanand; Kishore, N.; Soni, V. K.; Singh, Siddhartha; Tiwari, S.

    2018-06-01

    Aerosol scattering and absorption characteristics were investigated at an urban megacity Delhi in the western Indo-Gangetic Basin (IGB) during the period from October 2011 to September 2012 using different in-situ measurements. The scattering coefficient (σsp at 550 nm) varied between 71 and 3014 Mm-1 (mean 710 ± 615 Mm-1) during the entire study period, which was about ten times higher than the absorption coefficient (σabs at 550 nm 67 ± 40 Mm-1). Seasonally, σsp and σabs were substantially higher during the winter/post-monsoon periods, which also gave rise to single scattering albedo (SSA) by 5%. The magnitude of SSA (at 550 nm) varied between 0.81 and 0.94 (mean: 0.89 ± 0.05). Further, the magnitude of scattering Ångström exponent (SAE) and back-scattering Ångström exponent (BAE) showed a wide range from -1.20 to 1.57 and -1.13 to 0.87, respectively which suggests large variability in aerosol sizes and emission sources. Relatively higher aerosol backscatter fraction (b at 550 nm) during the monsoon (0.25 ± 0.10) suggests more inhomogeneous scattering, associated with the coarser dust particles. However, lower value of b during winter (0.13 ± 0.02) is associated with more isotropic scattering due to dominance of smaller size particles. This is further confirmed with the estimated asymmetry parameter (AP at 550 nm), which exhibits opposite trend with b. The aerosol optical parameters were used in a radiative transfer model to estimate aerosol radiative forcing. A mean radiative forcing of -61 ± 22 W m-2 (ranging from -111 to -40 W m-2) was observed at the surface and 42 ± 24 W m-2 (ranging from 18 to 87 W m-2) into the atmosphere, which can give rise to the mean atmospheric heating rate of 1.18 K day-1.

  11. Testicular microlithiasis and preliminary experience of acoustic radiation force impulse imaging

    International Nuclear Information System (INIS)

    Pedersen, Malene Roland; Osther, Palle Jørn Sloth; Rafaelsen, Søren Rafael

    2016-01-01

    Elastography of the testis can be used as a part of multiparametric examination of the scrotum. To determine the testicular stiffness using acoustic radiation force impulse imaging (ARFI) technique in men with testicular microlithiasis (TML). In 2013, 12 patients with diagnosed testicular microlithiasis in 2008 (mean age, 51 years; age range, 25–76 years) underwent a 5-year follow-up B-mode ultrasonography with three ARFI elastography measurements of each testis. We used a Siemens Acuson S3000 machine. No malignancy was found at the 5-year follow-up B-mode and elastography in 2013. However, we found an increase in TML; in the previous ultrasonography in 2008, eight men had bilateral TML, whereas in 2013, 10 men were diagnosed with bilateral TML. The mean elasticity of testicles with TML was 0.82 m/s (interquartile range [IQR], 0.72–0.88 m/s; range, 65–1.08 m/s). Elastography velocity of testis with TML seems to be in the same velocity range as in men with normal testis tissue

  12. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  13. The Optical Bichromatic Force in Molecular Systems

    Science.gov (United States)

    Aldridge, Leland; Galica, Scott; Eyler, E. E.

    2015-05-01

    The optical bichromatic force has been demonstrated to be useful for slowing atomic beams much more rapidly than radiative forces. Through numerical simulations, we examine several aspects of applying the bichromatic force to molecular beams. One is the unavoidable existence of out-of-system radiative decay, requiring one or more repumping beams. We find that the average deceleration varies strongly with the repumping intensity, but when using optimal parameters, the force approaches the limiting value allowed by population statistics. Another consideration is the effect of fine and hyperfine structure. We examine a simplified multlevel model based on the B X transition in calcium monofluoride. To circumvent optical pumping into coherent dark states, we include two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. Our results indicate that the bichromatic force remains a viable option for creating large forces in molecular beams, with a reduction in the peak force by approximately an order of magnitude compared to a two-level atom, but little effect on the velocity range over which the force is effective. We also describe our progress towards experimental tests of the bichromatic force on a molecular beam of CaF. Supported by the National Science Foundation.

  14. Gender Integration and the Swedish Armed Forces

    DEFF Research Database (Denmark)

    Gustafsson, Daniel Marcus Sunil

    This paper discusses different gender aspects of the Swedish Armed Forces with specific references to sexual harassment and prostitution. By using the concept of Hegemonic Masculinity, sexual harassment of the women in the Swedish Armed Forces is explained in terms of a need of the men within...... the organisation to reinforce the notion of women as inferior and subordinate to men, whereby the external hegemony is believed to be restored. Likewise, male Swedish peacekeepers’ demand for prostitution during international peacekeeping missions is explained in terms of a need to confirm manhood and as homo...

  15. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    Directory of Open Access Journals (Sweden)

    B. Newsome

    2017-12-01

    regions such as the tropics, poles and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered alongside other processes when model results disagree with measurement. Calculations for the pre-industrial simulation allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 W m−2. This uncertainty (13 % is comparable to the inter-model spread in ozone radiative forcing found in previous model–model intercomparison studies where the rate constants used in the models are all identical or very similar. Thus, the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well-known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.

  16. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  17. A flexible, computer-integrated robotic transfer system

    International Nuclear Information System (INIS)

    Lewis, W.I. III; Taylor, R.M.

    1987-01-01

    This paper reviews a robotic system used to transport materials across a radiation control zone and into a row of shielded cells. The robot used is a five-axis GCA 600 industrial robot mounted on a 50-ft ESAB welding track. Custom software incorporates the track as the sixth axis of motion. An IBM-PC integrates robot control, force sensing, and the operator interface. Multiple end-effectors and a quick exchange mechanism are used to handle a variety of materials and tasks. Automatic error detection and recovery is a key aspect of this system

  18. Behavior of adhesion forces of silicone adhesive sealants and mastic butyl under the influence of ionizing radiation

    International Nuclear Information System (INIS)

    Costa, Wanderley da

    2012-01-01

    Adhesives are products that can keep materials together by bonds between the surfaces. Sealants are products that can keep filled a space between two surfaces, through a barrier that is configured as a 'bridge' between the two surfaces. The mastic is a product made of a mixture of substances with the primary butyl polymer, with the consistency of a mass not dried that can be used as a sealant. The polysiloxane, also known as silicone are the most important synthetic polymers with inorganic structure, and are matrices of silicone adhesive sealants. To demonstrate the behavior of the adhesive forces of these products under different conditions, we used five different techniques. These products were subjected to two different conditions to verify the behavior of adhesion, one at the environmental condition and another under the ionizing radiation. The results showed not only differences between products (silicone and mastic), but also that the adhesive forces have different behaviors under the conditions which the samples were subjected. With this was reached the goal of this study that aspired show the differences between the mastic and silicone, this last one is often considered - erroneously - the same as mastic. Thus it was proven that: 1. silicone can be regarded as an adhesive and a sealant at ambient conditions, 2. mastic improves substantially adhesion in an environment of ionizing radiation and this property can be an excellent alternative to the adhesive market. (author)

  19. Climate forcing and infectious disease transmission in urban landscapes: integrating demographic and socioeconomic heterogeneity.

    Science.gov (United States)

    Santos-Vega, Mauricio; Martinez, Pamela P; Pascual, Mercedes

    2016-10-01

    Urbanization and climate change are the two major environmental challenges of the 21st century. The dramatic expansion of cities around the world creates new conditions for the spread, surveillance, and control of infectious diseases. In particular, urban growth generates pronounced spatial heterogeneity within cities, which can modulate the effect of climate factors at local spatial scales in large urban environments. Importantly, the interaction between environmental forcing and socioeconomic heterogeneity at local scales remains an open area in infectious disease dynamics, especially for urban landscapes of the developing world. A quantitative and conceptual framework on urban health with a focus on infectious diseases would benefit from integrating aspects of climate forcing, population density, and level of wealth. In this paper, we review what is known about these drivers acting independently and jointly on urban infectious diseases; we then outline elements that are missing and would contribute to building such a framework. © 2016 New York Academy of Sciences.

  20. In vivo reproducibility of robotic probe placement for an integrated US-CT image-guided radiation therapy system

    Science.gov (United States)

    Lediju Bell, Muyinatu A.; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter; Wong, John

    2014-03-01

    Radiation therapy is used to treat cancer by delivering high-dose radiation to a pre-defined target volume. Ultrasound (US) has the potential to provide real-time, image-guidance of radiation therapy to identify when a target moves outside of the treatment volume (e.g. due to breathing), but the associated probe-induced tissue deformation causes local anatomical deviations from the treatment plan. If the US probe is placed to achieve similar tissue deformations in the CT images required for treatment planning, its presence causes streak artifacts that will interfere with treatment planning calculations. To overcome these challenges, we propose robot-assisted placement of a real ultrasound probe, followed by probe removal and replacement with a geometrically-identical, CT-compatible model probe. This work is the first to investigate in vivo deformation reproducibility with the proposed approach. A dog's prostate, liver, and pancreas were each implanted with three 2.38-mm spherical metallic markers, and the US probe was placed to visualize the implanted markers in each organ. The real and model probes were automatically removed and returned to the same position (i.e. position control), and CT images were acquired with each probe placement. The model probe was also removed and returned with the same normal force measured with the real US probe (i.e. force control). Marker positions in CT images were analyzed to determine reproducibility, and a corollary reproducibility study was performed on ex vivo tissue. In vivo results indicate that tissue deformations with the real probe were repeatable under position control for the prostate, liver, and pancreas, with median 3D reproducibility of 0.3 mm, 0.3 mm, and 1.6 mm, respectively, compared to 0.6 mm for the ex vivo tissue. For the prostate, the mean 3D tissue displacement errors between the real and model probes were 0.2 mm under position control and 0.6 mm under force control, which are both within acceptable

  1. Technological characteristics of bread containing integral irradiated flours

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Mastro, Nelida L. del

    2011-01-01

    Wheat is normally used to make bread, pasta, and noodles, because among the cereal flours, only wheat flour has the ability to form cohesive dough upon hydration. For that reason, only partial substitution of wheat flour can be recommended. In this work, pan breads were prepared with 30% content of irradiated whole wheat, whole rye and coarse cornmeal and the influence of blending on bread making capabilities investigated through some technological characteristics. All-brand wheat, rye and cornmeal flours were irradiated with 0, 1, 3 and 9 kGy in a 60 Co and the deformation force, height and weight of breads prepared with those blends were then determined. Breads prepared with irradiated whole wheat flour showed an increase in the deformation force with the increase of radiation dose. The bread height presented also an increase for the doses of 1 and 3 kGy. Breads prepared with refined wheat flour blended with irradiated whole rye flour showed an increased deformation force for radiation doses of 1 and 3 kGy and an increase in weight for samples irradiated with 1 kGy. Coarse cornmeal blended flour showed a great increase of the deformation force upon irradiation, and an increase in weight for samples irradiated with 3 kGy. The results indicate that the addition of irradiated integral flour, whole wheat, whole rye flour and cornmeal to wheat flour may confer changes in physical properties beside an increment in nutritional value. (author)

  2. Magnetic force micropiston: An integrated force/microfluidic device for the application of compressive forces in a confined environment

    Science.gov (United States)

    Fisher, J. K.; Kleckner, N.

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  3. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    efficiency is +23.7 W m-2 at the surface, -7.9 W m-2 within the atmosphere, and +15.8 W m-2 at the top of the atmosphere. The use of column-integrated dust PSD from AERONET may also produce a good agreement with measured irradiances and BTs, but with significantly different values of the RI. This implies large differences, up to a factor of 2.5 at surface, in the estimated dust radiative forcing, and in the IR heating rate. This study shows that spectrally resolved measurements of BTs are important to better constrain the dust IR optical properties, and to obtain a reliable estimate of its radiative effects. Efforts should be directed at obtaining an improved description of the dust size distribution and its vertical distribution, as well as at including regionally resolved optical properties.

  4. Sci—Fri PM: Topics — 03: The Global Task Force on Radiotherapy for Cancer Control: Core Investments

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, J. [Western University, London, Ontario (Canada); Jaffray, D. A.; MacPherson, M. S. [Princess Margaret Cancer Centre, Toronto, Ontario (Canada)

    2014-08-15

    The Union for International Cancer Control (UICC) is a membership-based, non-governmental organization with a mandate to “…to unite the cancer community to reduce the global cancer burden, to promote greater equity, and to integrate cancer control into the world health and development agenda.” COMP is an associate member of the UICC. It is well recognized by the UICC that there are major gaps between high, and low and middle income countries, in terms of access to cancer services including access to radiation therapy. In this context, the UICC has developed a Global Task Force on Radiotherapy for Cancer Control with a charge to answer a single question: “What does it cost to close the gap between what exists today and reasonable access to radiotherapy globally?” The Task Force consists of leaders internationally recognized for their radiation treatment related expertise (radiation oncologists, medical physicists, radiation therapists) as well as those with global health and economics specialization. The Task Force has developed three working groups: (1) to look at the global burden of cancer; (2) to look at the infrastructure requirements (facilities, equipment, personnel); and (3) to consider outcomes in terms of numbers of lives saved and palliated patients. A report is due at the World Cancer Congress in December 2014. This presentation reviews the infrastructure considerations under analysis by the second work group. The infrastructure parameters being addressed include capital costs of buildings and equipment and operating costs, which include human resources, equipment servicing and quality control, and general overhead.

  5. EVALUATION OF THE POUNDING FORCES DURING EARTHQUAKE USING EXPLICIT DYNAMIC TIME INTEGRATION METHOD

    Directory of Open Access Journals (Sweden)

    Nica George Bogdan

    2017-09-01

    Full Text Available Pounding effects during earthquake is a subject of high significance for structural engineers performing in the urban areas. In this paper, two ways to account for structural pounding are used in a MATLAB code, namely classical stereomechanics approach and nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures acted by ELCentro recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion are numerical integrated using central finite difference method, an explicit method, having the main advantage that in the displacement at the ith+1 step is calculated based on the loads from the ith step. Thus, the collision is checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. First, a comparison is done using available data in the literature. Both linear and nonlinear behavior of the structures during earthquake is further investigated. Several layout scenarios are also investigated, in which one or more weak buildings are adjacent to a stiffer building. One of the main findings in this paper is related to the behavior of a weak structure located between two stiff structures.

  6. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  7. The use of radiation and the other radiation practices in 1992

    International Nuclear Information System (INIS)

    Havukainen, R.

    1993-05-01

    In the end of the year 1992 there were in force 1630 safety licenses for the use of radiation granted by the Finnish Centre for Radiation and Nuclear Safety (STUK). In addition to this there were 2022 places for dental x-ray activities in Finland. All together 12468 radiation sources and 308 radioisotope laboratories were in use. The import of radioactive substances was 3.9 x 10 15 Bq and the export 2.6 x 10 13 Bq. The production of short-lived isotopes was 1.1 x 10 13 Bq. The monitoring of personal radiation doses were organized for 11978 workers and 1286 working places. The annual dose (the integrated readings of dosemeters) was greater than registration threshold for 23 % of workers. The collective dose (the sum of the results of the dose measurements) registered to the Finnish Dose Register was 7.6 manSv; 78 % belonged to the workers of nuclear power plants. The sum of the personal doses measured in 1992 were for eight radiologists or interventional radiologists and eight workers in nuclear power plants 20 mSv or more. The effective doses were in each case under the annual dose limit of 50 mSv. The effective doses for the radiologists and interventional radiologists were under 20 mSv. It was reported to STUK eight failures or exceptional events. The reasons for these events were usually human mistakes or neglects. (editor)

  8. Latch-up and radiation integrated circuit--LURIC: a test chip for CMOS latch-up investigation

    International Nuclear Information System (INIS)

    Estreich, D.B.

    1978-11-01

    A CMOS integrated circuit test chip (Latch-Up and Radiation Integrated Circuit--LURIC) designed for CMOS latch-up and radiation effects research is described. The purpose of LURIC is (a) to provide information on the physics of CMOS latch-up, (b) to study the layout dependence of CMOS latch-up, and (c) to provide special latch-up test structures for the development and verification of a latch-up model. Many devices and test patterns on LURIC are also well suited for radiation effects studies. LURIC contains 86 devices and related test structures. A 12-layer mask set allows both metal gate CMOS and silicon gate ELA (Extended Linear Array) CMOS to be fabricated. Six categories of test devices and related test structures are included. These are (a) the CD4007 metal gate CMOS IC with auxiliary test structures, (b) ELA CMOS cells, (c) field-aided lateral pnp transistors, (d) p-well and substrate spreading resistance test structures, (e) latch-up test structures (simplified symmetrical latch-up paths), and (f) support test patterns (e.g., MOS capacitors, p + n diodes, MOS test transistors, van der Pauw and Kelvin contact resistance test patterns, etc.). A standard probe pattern array has been used on all twenty-four subchips for testing convenience

  9. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  10. Integration of radiation protection in safety management: sharing best practices between radiation protection and other safety areas

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Fessler, Andreas

    2008-01-01

    Full text: The Institute for Reference Materials and Measurements (IRMM) located in Geel is one of the seven institutes of the Joint Research Centre of the European Commission (EC, DG JRC). The institute was founded in 1960 as a nuclear research centre, but has gradually shifted its activities to also include 'non-nuclear' domains, mainly in the areas of food safety and environmental surveillance. As the activities on the IRMM site are currently quite diversified, they necessitate the operation of nuclear controlled areas, accelerators, as well as bio safety restricted areas and chemical laboratories. Therefore, the care for occupational health and safety and for environmental protection has to take into consideration various types of hazards and threats. Recently an integrated management system according to ISO-9001, ISO-14001 and OHSAS-18001 was implemented. The integrated system combines 'vertically' quality, occupational health and safety and environmental issues and covers 'horizontally' the nuclear, biological and chemical fields. The paper outlines how the radiation protection can be included in an overall health, safety and environmental management system. It will give various practical examples where synergies can be applied: 1-) the overall policy; 2-) The assessment and ranking of all risks and the identification, in a combined way, of the appropriate prevention measures; 3-) The planning and review of related actions; 4-) The monitoring, auditing and registration of anomalies and incidents and the definition of corrective actions; 5-) The training of personnel based on lessons learned from past experiences; 6-) The organisation of an internal emergency plan dealing with nuclear and non-nuclear hazards. Based on these examples, the benefits of having an integrated approach are commented. In addition, the paper will illustrate how the recent ICRP fundamental recommendations and more particularly some of the principles of radiation protection such as

  11. Integrative shell of the program complex MARS (Version 1.0) radiation transfer in three-dimensional geometries

    International Nuclear Information System (INIS)

    Degtyarev, I.I.; Lokhovitskij, A.E.; Maslov, M.A.; Yazynin, I.A.

    1994-01-01

    The first version of integrative shell of the program complex MARS is written for calculating radiation transfer in the three-dimensional geometries. The integrative shell allows the user to work in convenient form with complex MARS, creat input files data and get graphic visualization of calculated functions. Version 1.0 is adapted for personal computers of types IBM-286,386,486 with operative size memory not smaller than 500K. 5 refs

  12. A universal access layer for the Integrated Tokamak Modelling Task Force

    International Nuclear Information System (INIS)

    Manduchi, G.; Iannone, F.; Imbeaux, F.; Huysmans, G.; Lister, J.B.; Guillerminet, B.; Strand, P.; Eriksson, L.-G.; Romanelli, M.

    2008-01-01

    The Integrated Tokamak Modelling (ITM) Task Force aims at providing a suite of codes for preparing and analyzing future ITER discharges. In the framework of the ITM, the universal access layer (UAL) provides the capability of storing and retrieving data involved in simulation. The underlying data structure is hierarchical and the granularity in data access is given by the definition of a set of consistent physical objects (CPOs). To describe the data structure of the overall ITM database, the XML schema description (XSD) has been used. Originally intended to describe the structure of XML documents, XSD is used here to provide an unambiguous way of describing how data are structured, regardless of the actual implementation of the underlying database. The MDSplus-based UAL implementation is currently under test and other prototypes for investigating alternative data storage systems are foreseen

  13. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  14. Integration of Chandrasekhar's integral equation

    International Nuclear Information System (INIS)

    Tanaka, Tasuku

    2003-01-01

    We solve Chandrasekhar's integration equation for radiative transfer in the plane-parallel atmosphere by iterative integration. The primary thrust in radiative transfer has been to solve the forward problem, i.e., to evaluate the radiance, given the optical thickness and the scattering phase function. In the area of satellite remote sensing, our problem is the inverse problem: to retrieve the surface reflectance and the optical thickness of the atmosphere from the radiance measured by satellites. In order to retrieve the optical thickness and the surface reflectance from the radiance at the top-of-the atmosphere (TOA), we should express the radiance at TOA 'explicitly' in the optical thickness and the surface reflectance. Chandrasekhar formalized radiative transfer in the plane-parallel atmosphere in a simultaneous integral equation, and he obtained the second approximation. Since then no higher approximation has been reported. In this paper, we obtain the third approximation of the scattering function. We integrate functions derived from the second approximation in the integral interval from 1 to ∞ of the inverse of the cos of zenith angles. We can obtain the indefinite integral rather easily in the form of a series expansion. However, the integrals at the upper limit, ∞, are not yet known to us. We can assess the converged values of those series expansions at ∞ through calculus. For integration, we choose coupling pairs to avoid unnecessary terms in the outcome of integral and discover that the simultaneous integral equation can be deduced to the mere integral equation. Through algebraic calculation, we obtain the third approximation as a polynomial of the third degree in the atmospheric optical thickness

  15. Potential theory of radiation

    International Nuclear Information System (INIS)

    Chiu, Hueihuang.

    1989-01-01

    A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended

  16. Australia's proactive approach to radiation protection of the environment: how integrated is it with radiation protection of humans?

    Science.gov (United States)

    Hirth, G A; Grzechnik, M; Tinker, R; Larsson, C M

    2018-01-01

    Australia's regulatory framework has evolved over the past decade from the assumption that protection of humans implies protection of the environment to the situation now where radiological impacts on non-human species (wildlife) are considered in their own right. In an Australian context, there was a recognised need for specific national guidance on protection of non-human species, for which the uranium mining industry provides the major backdrop. National guidance supported by publications of the Australian Radiation Protection and Nuclear Safety Agency (Radiation Protection Series) provides clear and consistent advice to operators and regulators on protection of non-human species, including advice on specific assessment methods and models, and how these might be applied in an Australian context. These approaches and the supporting assessment tools provide a mechanism for industry to assess and demonstrate compliance with the environmental protection objectives of relevant legislation, and to meet stakeholder expectations that radiological protection of the environment is taken into consideration in accordance with international best practice. Experiences from the past 5-10 years, and examples of where the approach to radiation protection of the environment has been well integrated or presented some challenges will be discussed. Future challenges in addressing protection of the environment in existing exposure situations will also be discussed.

  17. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    Science.gov (United States)

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  18. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  19. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    Science.gov (United States)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  20. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  1. Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study

    Science.gov (United States)

    Yannopapas, Vassilios; Galiatsatos, Pavlos G.

    2008-04-01

    According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.

  2. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  3. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  4. Observations of black carbon aerosols characteristics over an urban environment: Radiative forcing and related implications.

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera; Rahman, Said

    2017-12-15

    With observations of black carbon (BC) aerosol concentrations, optical and radiative properties were obtained over the urban city of Karachi during the period of March 2006-December 2008. BC concentrations were continuously measured using an Aethalometer, while optical and radiative properties were estimated through the Optical Properties of Aerosols and Clouds (OPAC) and Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) models, respectively. For the study period, the measured BC concentrations were higher during January, February and November, while lower during May, June, July and August. A maximum peak value was observed during January 2007 while the minimum value was observed during June 2006. The Short Wave (SW) BC Aerosol Radiative Forcing (ARF) both at Top of the Atmosphere (ToA) and within ATMOSphere (ATMOS) were positive during all the months, whereas negative SW BC ARF was found at the SurFaCe (SFC). Overall, SW BC ARF was higher during January, February and November, while relatively lower ARF was found during May, June, July and August. Conversely, the Long Wave (LW) BC ARF at ToA and SFC remained positive, whereas within ATMOS it shifted towards positive values (heating effect) during June-August. Finally, the net (SW+LW) BC ARF were found to be positive at ToA and in ATMOS, while negative at SFC. Moreover, a systematic increase in Atmospheric Heating Rate (AHR) was found during October to January. Additionally, we found highest correlation between Absorption Aerosol Optical Depth (AOD abs ) and SW BC ARF within ATMOS followed by SFC and ToA. Overall, the contribution of BC to the total ARF was found to greater than 84% for the whole observational period while contributing up to 93% during January 2007. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impaired skin integrity related to radiation therapy

    International Nuclear Information System (INIS)

    Ratliff, C.

    1990-01-01

    Skin reactions associated with radiation therapy require frequent nursing assessment and intervention. Preventive interventions and early management can minimize the severity of the skin reaction. With the understanding of the pathogenesis of radiation skin reactions, the ET nurse can determine who is at risk and then implement preventive measures. Because radiation treatment is fractionated, skin reactions do not usually occur until midway through the course of therapy and will subside within a few weeks after completion of radiation. Many patients and their families still fear that radiation causes severe burns. Teaching and anticipatory guidance by the ET nurse is needed to assist patients and their families to overcome this fear, and to educate them on preventive skin care regimens

  6. Evaluation of the knowledge of the French armed forces health service after a regulatory training in patients' radiation protection

    International Nuclear Information System (INIS)

    Nombo, M.; Gagna, G.; Lahutte, M.; Bourguignon, M.; Amabile, J.-C.

    2017-01-01

    According to the Public Health Code, all the professionals who perform therapeutic or diagnostic acts with ionizing radiation (IR) and the professionals involved in the implementation of these acts and the maintenance of the equipment should be given theoretical and practical training. Such training must focus on the protection of the people exposed to IR for medical purposes. Knowledge should be updated at least every 10 years, under the Nuclear Safety Authority. For the Ministry of Defense, the Military School of the Val-de-Grace offers a training day dedicated to the health-care professionals of the Military Hospitals and the forces using or prescribing examinations requiring ionizing radiation. The objective of the study was to assess the efficiency of this training day on patients' radiation protection organized for the French Armed Forces Health Service; the study was carried out with questionnaires assessing the knowledge and the quality of the interventions. A multicentric prospective study was conducted from September 2013 to November 2014 in four Military Hospitals (Val-de- Grace, St. Anne, Percy and Legouest) on French Armed Forces Health Service professionals who agreed to answer a questionnaire containing 50 multiple choice questions, both at the beginning and at the end of the training day. The analysis was focused on the comparison of the scores obtained before and after the training (overall ratings, by profession and according to the monitoring of previous training or not). The results of the primary care physicians' questionnaires were of particular interest (physicians serving in military units). The results were obtained from a total of 126 respondents over five training sessions in the four Military Hospitals. A significant 18% increase of the overall score after training according to the Student's test with p < 0.001 was observed. However, there was no significant difference between the results obtained by the professionals who

  7. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    Science.gov (United States)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  8. Local and integral disruption forces on the tokamak wall

    Science.gov (United States)

    Pustovitov, V. D.; Kiramov, D. I.

    2018-04-01

    The disruption-induced forces on the tokamak wall are evaluated analytically within the standard large-aspect-ratio model that implies axisymmetry, circular plasma and wall, and absence of halo currents. Additionally, the ideal-wall reaction is assumed. The disruptions are modelled as rapid changes in the plasma pressure (thermal quench (TQ)) and net current (current quench (CQ)). The force distribution over the poloidal angle is found as a function of these inputs. The derived formulas allow comparison of the TQ- and CQ-produced forces calculated differently, with and without account of the poloidal current induced in the wall. The latter variant represents the inherent property of the codes treating the wall as a set of toroidal filaments. It is proved here that such a simplification leads to unacceptably large errors in the simulated forces for both TQs and CQs. It is also shown that the TQ part of the force must prevail over that due to CQ in the high-β scenarios developed for JT-60SA and ITER.

  9. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  10. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann-Smith, J. H., E-mail: jsmith@magnet.fsu.edu; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Cartier, S. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETHZ, 8092 Zürich (Switzerland); Medjoubi, K. [Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin–BP 48, 91192 GIF-sur-Yvette Cedex (France)

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  11. Attractive forces study in macromolecules and critical systems; Etude des forces attractives dans les macromolecules et les systemes critiques

    Energy Technology Data Exchange (ETDEWEB)

    Penninckx-Sans, A.

    1995-07-10

    The attractive forces effect is particularly interesting at the proximity of a critical point. In a liquid system, there are two kinds of attractive forces in presence : the forces bound to the solution volume and those generated by the presence of the solution surface or by a solution interface. In the first case, the attractive forces are the more important as the system is in a critical field. For this study, the selected example is a polymer solution in a two solvents mixture. A formulation in terms of way integrals as part of statistical physics has lead us to find again some known results on the polymer chain conformation in the presence of two solvents (collapse of the polymer on itself) far from the critical point and to extend these results to the critical field. In the case of attractive forces created by the surface in some critical systems (polymer of infinite size in solution and binary mixture near the de mixture point), the adsorption profile created by the attraction of one specie by the surface, follows a scale law. The optical methods usually used for the study of these systems do not give characteristic sign of concentration profile in power law. In the case where the interaction potential between radiation and matter is attractive, the reflectivity gives a separate mark of the existence of the scale law in the form of a resonance. After some theoretical forecasts, the author has used this method on the binary mixture methanol-cyclohexane in order to reveal experimentally a reflectivity pseudo-discontinuity and then the existence of the power law in the critical adsorption profile. (O.L.). 69 refs., 60 tabs.

  12. Radiation effects for high-energy protons and X-ray in integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cirne, K.H. [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    Full text: Electronic circuits are strongly influenced by ionizing radiation. The necessity to develop integrated circuits (IC's) featuring radiation hardness is largely growing to meet the stringent environment in space electronics [1]. This work aims to development a test platform to qualify electronic devices under the influence of high radiation dose, for aerospace applications. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them heavy ions, alpha particles, protons, gamma and X-rays. Radiation effects on the ICs are usually divided into three categories: Total Ionizing Dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; Single Events Effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits and Displacement Damage (DD) which can change the arrangement of the atoms in the lattice [2]. In this study we are investigating the radiation effects in rectangular-gate and circular-gate MOSFETs, manufactured with standard CMOS fabrication process, using particle beams produced in electrostatic tandem accelerators and X-rays. Initial tests for TID effects were performed using the 1.7 MV 5SDH tandem Pelletron accelerator of the Instituto de Fisica da USP with a proton beam of 2.6 MeV. The devices were exposed to different doses, varying the beam current, and irradiation time with the accumulated dose reaching up to Grad. To study the effect of X-rays on the electronic devices, an XRD-7000 (Shimadzu) X-ray setup was used as a primary X-ray source. The devices were irradiated with a total dose from krad to Grad using different dose rates. The results indicate that changes of the I-V characteristic curve are strongly dependents on the geometry of the devices. [1] Duzellier, S., Aerospace Science and Technology 9, p. 93

  13. A piezo motor based on a new principle with high output force, rigidity and integrity: The Tuna Drive

    Science.gov (United States)

    Liu, Xiaolong; Lu, Qingyou

    2012-11-01

    We present a linear piezoelectric motor as simple as one piezoelectric scanner tube (PST) spring-clamping a central shaft at both ends with roughly equal clamping forces. The clamping points are aligned with ±X electrodes at one end and ±Y electrodes at the other end. Thus, the ±X (or ±Y) push-pull motions of the PST can cause the push-pull motions of the clamping points on the shaft (called push-pull rubbing), which reduces the total dynamic friction force at one (or the other) end of the PST. This new piezo motor advances one step by fast push-pull rubbing at one end while slowly retracting the PST followed by fast push-pull rubbing at the other end while slowly elongating the PST. Apart from the obvious advantages of simplicity, rigidity, integrity, etc., we will also show that this motor can produce a large output force, which we believe is because of the huge drop of the clamping friction force when the push-pull rubbing occurs.

  14. Problems of organization of interaction of administrative bodies and the forces engaged in liquidation of after-effects of radiation accident

    International Nuclear Information System (INIS)

    Popov, A.P.; Perevezentsev, A.M.

    1995-01-01

    The paper defines the main problems arising in connection with organization of interaction of the administrative bodies and the forces involved in liquidation of after-effects of radiation accident. It is demonstrated that in order to increase the efficiency of interaction of the administrative bodies of various levels it is necessary to make it automatic. The paper revealed the meaning of the levels of relationship between various automatic systems. 4 refs

  15. Interagency task force on the health effects of ionizing radiation: report of the work group on records and privacy

    International Nuclear Information System (INIS)

    1979-06-01

    Research scientists studying the health effects of ionizing radiation have expressed the view that their work is sometimes impeded by legal restrictions on access to necessary records. In light of the critical importance of scientifically sound, efficient, and timely epidemiological research to resolve the difficult issues raised by the President's memorandum, the Task Force determined to inquire into the extent of this problem, and to ascertain whether new legislation or regulation was needed to eliminate serious roadblocks

  16. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia; Pereira, Aline Garcia

    2011-01-01

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  17. Radiation chemistry - extravaganza or an integral component of radiation processing of food

    International Nuclear Information System (INIS)

    Simic, M.G.; DeGraff, E.

    1983-01-01

    The role of radiation chemistry in radiation processing of foods is discussed in detail. A few examples demonstrating the relevance of the radiation chemistry of model systems to food-irradiation technology are given. The importance of irradiation parameters such as dose, dose rate, temperature, atmosphere, physical state and additives in achieving acceptable and high quality of irradiated foods are emphasized. A few examples of radiation-induced free radical reactions in model compounds relevant to foods are also discussed. (author)

  18. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  19. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  20. Veterinary applications of ionising radiation HERCA Task Force on Veterinary Applications. Main results of the Questionnaire 'National regulatory requirements with regard to veterinary medical applications of ionising radiation' and conclusions of the TF

    International Nuclear Information System (INIS)

    Van Bladel, Lodewijk; Berlamont, Jolien; Michalczak, Herbert; Balogh, Lajos; Peremans, Kathelijne

    2013-11-01

    In the fall of 2012, the subject of radiation protection in veterinary medicine was raised during the meeting of the HERCA Board. Issues with regard to this subject had been brought to the attention of HERCA by the European College of Veterinary Diagnostic Imaging (ECVDI). In October 2012, the Board decided to charge a small Task Force (TF) to further explore the issues in this field. This TF drew up a questionnaire which looked at the general radiation protection regulatory requirements in veterinary medicine applications of ionizing radiation. The results of this study showed large differences in the requirements applicable in the HERCA member countries. The TF also noticed the increasing use of more complex imaging procedures and of different radio-therapeutic modalities, which may imply greater risks of exposure of humans to ionising radiation. These results were presented during the HERCA Board meeting in Berlin, Germany and on which the Board decided to establish a Working Group on veterinary applications of ionising radiations (WG Vet). The main results of the Questionnaire 'National regulatory requirements with regard to veterinary medicine applications of ionising radiation' is attached in Appendix