WorldWideScience

Sample records for integrated organic light-emitting

  1. Array of organic thin film transistors integrated with organic light emitting diodes on a plastic substrate

    International Nuclear Information System (INIS)

    Ryu, Gi-Seong; Choe, Ki-Beom; Song, Chung-Kun

    2006-01-01

    In order to demonstrate the possible application of an organic thin film transistor (OTFT) to a flexible active matrix organic light emitting diode (OLED) an array of 64 x 64 pixels was fabricated on a 4-in. size poly-ethylene-terephehalate substrate. Each pixel was composed of one OTFT integrated with one OLED. OTFTs successfully drove OLEDs by varying current in a wide range and some images were displayed on the array by emitting green light. The OTFTs used poly(4-vinylphenol) for the gate and pentacene for the semiconductor taking account compatibility with the PET substrate. The average mobility in the array was 0.2 cm 2 /V.s, which was reduced from 1.0 cm 2 /V.s in a single OTFT, and its variation over the entire substrate was 10%

  2. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    Science.gov (United States)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  3. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  4. Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems

    Directory of Open Access Journals (Sweden)

    Graeme Williams

    2014-02-01

    Full Text Available The rapid development of microfluidics and lab-on-a-chip (LoC technologies have allowed for the efficient separation and manipulation of various biomaterials, including many diagnostically relevant species. Organic electronics have similarly enjoyed a great deal of research, resulting in tiny, highly efficient, wavelength-selective organic light-emitting diodes (OLEDs and organic photodetectors (OPDs. We consider the blend of these technologies for rapid detection and diagnosis of biological species. In the ideal system, optically active or fluorescently labelled biological species can be probed via light emission from OLEDs, and their subsequent light emission can be detected with OPDs. The relatively low cost and simple fabrication of the organic electronic devices suggests the possibility of disposable test arrays. Further, with full integration, the finalized system can be miniaturized and made simple to use. In this review, we consider the design constraints of OLEDs and OPDs required to achieve fully organic electronic optical bio-detection systems. Current approaches to integrated LoC optical sensing are first discussed. Fully realized OLED- and OPD-specific photoluminescence detection systems from literature are then examined, with a specific focus on their ultimate limits of detection. The review highlights the enormous potential in OLEDs and OPDs for integrated optical sensing, and notes the key avenues of research for cheap and powerful LoC bio-detection systems.

  5. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    International Nuclear Information System (INIS)

    Cai, Yuankun

    2010-01-01

    O 2 doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 μs). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  6. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yuankun [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    rate due to microheterogeneity. Effect of TiO2 doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 μs). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  7. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    International Nuclear Information System (INIS)

    Chengliang Qian

    2006-01-01

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime τ decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. τ was measured as a function of the lactate concentration; as the lactate concentration increases, τ increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of ∼32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented

  8. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Chengliang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime τ decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. τ was measured as a function of the lactate concentration; as the lactate concentration increases, τ increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of ~32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  9. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  10. GREEN LIGHT EMITTING TRICOMPONENT LUMINOPHORS OF 2-NAPHTHOL FOR CONSTRUCTION OF ORGANIC LIGHT EMITTING DEVICES

    OpenAIRE

    K. G. MANE , P. B. NAGORE , DR. S. R. PUJARI

    2018-01-01

    This article presents a previous study and incredible progress in basic theoretical modeling, and working for organic light-emitting devices (OLEDs) including preparation and characteristic studies of Organo- Luminescent Materials by conventional solid state reaction technique.

  11. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  12. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  13. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  14. Nanoengineering of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lupton, J.M.

    2000-11-01

    This thesis reports nanoengineerging of the emission and transport properties of organic light-emitting diodes (LEDs). This is achieved by a control of the electronic material properties and the photonic device properties. A novel class of conjugated materials for electroluminescence (EL) applications is presented, based on successively branching, or dendritic, materials comprising an emissive core and a shielding dendritic architecture. Exciton localisation at the centre of these dendrimers is observed in both luminescence and absorption. A detailed quantum chemical investigation using an exciton model supports these findings and accurately describes the energies and oscillator strengths of transitions in the core and branches. The dendrimer generation describes the degree of branching and gives a direct measure of the separation and interaction between chromophores. Increasing generation is found to lead to a reduction in red tail emission. This correlates with an increase in operating field and LED efficiency. Dendrimer blends with triplet harvesting dendritic phosphors are also investigated and found to exhibit unique emission properties. A numerical device model is presented, which is used to describe the temperature dependence of single layer polymer LEDs by fitting the field-dependent mobility and the barrier to hole injection. The device model is also used to obtain mobility values for the dendrimer materials, which are in excellent agreement with results obtained from time-of-flight measurements. The dendrimer generation is shown to provide a direct control of hopping mobility, which decreases by two orders of magnitude as the dendrimer generation increases from 0 to 3. The photonic properties and spontaneous emission of an LED are modified by incorporating a periodic wavelength scale microstructure into the emitting film. This is found to double the amount of light emitted with no effect on the device current. An investigation of the angular dependence

  15. Degradation in organic light emitting devices

    Science.gov (United States)

    Dinh, Vincent Vinh

    This thesis is about the fundamental causes of degradation in tris(8-Hydroxyquinoline) Aluminum (Alq3)-based organic light emitting diodes (OLEDs). Degradation typically occurs when a current is forced through an insulating material. Since the insulator does not support conduction waves (in its ground state), chemical restructuring must occur to accommodate the current. OLEDs have many technical advantages over the well known semiconductor-based light emitting diodes (LEDs). OLEDs have quantum efficiencies ˜1% (˜10 times higher than the LEDs), and operational power thresholds ˜.05mW (˜100 lower than the LEDs). OLEDs are preferred in power limited and portable devices; devices such as laptops and displays consume ˜1/4 of the supplied power---any power saving is significant. Other advantages, like better compliance to curved surfaces and ease of fabrication, give the OLEDs an even greater edge over the LEDs. OLEDs must have at least comparable or better lifetimes to remain attractive. Typical OLEDs last several 100hrs compared to the several 1000hrs for the LEDs. For reliable OLED application, it is necessary to understand the above breakdown mechanism. In this thesis, we attempt to understand the breakdown by looking at how OLEDs are made, how they work, and when they don't. In the opening sections, we give an overview of OLEDs and LEDs, especially how sustained luminescence is achieved through current circulation. Then in Chapter 2, we look at the basic components in the OLEDs. In Chapter 3 we look at how a hole material (like poly-vinyl carbazole or PVK) establishes an excitonic environment for the sustained luminescence in Alq3. We then approximate how potential is distributed when a simple luminescence system is in operation. In Chapter 4, we look at ways of measuring this distribution via the OLED impedance. Finally in Chapter 5, we look at the OLED stability under light emission conditions via PVK and Alq3 photoemission and photoabsorption spectra

  16. Aggregation in organic light emitting diodes

    Science.gov (United States)

    Meyer, Abigail

    Organic light emitting diode (OLED) technology has great potential for becoming a solid state lighting source. However, there are inefficiencies in OLED devices that need to be understood. Since these inefficiencies occur on a nanometer scale there is a need for structural data on this length scale in three dimensions which has been unattainable until now. Local Electron Atom Probe (LEAP), a specific implementation of Atom Probe Tomography (APT), is used in this work to acquire morphology data in three dimensions on a nanometer scale with much better chemical resolution than is previously seen. Before analyzing LEAP data, simulations were used to investigate how detector efficiency, sample size and cluster size affect data analysis which is done using radial distribution functions (RDFs). Data is reconstructed using the LEAP software which provides mass and position data. Two samples were then analyzed, 3% DCM2 in C60 and 2% DCM2 in Alq3. Analysis of both samples indicated little to no clustering was present in this system.

  17. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)

    65

    out by measuring sheet resistance, optical transmittance and surface ... role in the organic light-emitting diode (OLED) performance because it determines the .... coated glass by thermal vacuum deposition method and optimize it by using ...

  18. Vacuum Deposited Organic Light Emitting Devices on Flexible Substrates

    National Research Council Canada - National Science Library

    Forrest, Stephen

    2002-01-01

    The objective of this eight year program was to demonstrate both passive and active matrix, flexible, small scale displays based on small molecular weight organic light emitting device (OLED) technology...

  19. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    Science.gov (United States)

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  1. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  2. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    Science.gov (United States)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  3. [A novel yellow organic light-emitting device].

    Science.gov (United States)

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  4. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    Science.gov (United States)

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  5. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  6. Magnetoelectroluminescence in organic light-emitting diodes

    Science.gov (United States)

    Lawrence, Joseph E.; Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2016-06-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.

  7. Magnetoelectroluminescence in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lawrence, Joseph E.; Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2016-01-01

    The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurable magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.

  8. Si light-emitting device in integrated photonic CMOS ICs

    Science.gov (United States)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  9. Investigation of organic light emitting diodes for interferometric purposes

    Science.gov (United States)

    Pakula, Anna; Zimak, Marzena; Sałbut, Leszek

    2011-05-01

    Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.

  10. Capturing triplet emission in white organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of EHSE, School of Engineering and IT, B-purple-12, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-08-15

    The state-of-the art in the white organic light emitting devices (WOLEDs) is reviewed for further developments with a view to enhance the capture of triplet emission. In particular, applying the new exciton-spin-orbit-photon interaction operator as a perturbation, rates of spontaneous emission are calculated in a few phosphorescent materials and compared with experimental results. For iridium based phosphorescent materials the rates agree quite well with the experimental results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Top-emitting organic light-emitting diodes.

    Science.gov (United States)

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  12. Investigation of phosphorescent blue organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2008-07-01

    Recently, rapid development of phosphorescent materials has significantly improved the efficiency of organic light emitting diodes (OLEDs). By using efficient phosphorescent emitter materials white OLEDs with high power efficiency values could be demonstrated. But especially blue phosphorescent devices, due to stability issues, need to be further investigated und optimized. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated and characterized to study the impact of charge carriers on device performance.

  13. Printing method for organic light emitting device lighting

    Science.gov (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  14. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-06-01

    Full Text Available The development of Organic Light Emitting Diode (OLED, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene, PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis, Optical Parameters (OP and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the Quartz/ITO/PEDOT/PANI-X1 layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED, has indicated that the OLED has higher irradiance. After 1000 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  15. Kinetics of transient electroluminescence in organic light emitting diodes

    Science.gov (United States)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  16. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    International Nuclear Information System (INIS)

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-01-01

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m 2 . This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  17. Degradation of phosphorescent blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2009-07-01

    Development of phosphorescent materials has significantly improved the efficiency of organic light-emitting diodes (OLEDs). By using efficient red, green and blue phosphorescent emitter materials high efficient white OLEDs can be achieved. However, due to low stability of blue phosphorescent materials the lifetime of phosphorescent white OLEDs remains an issue. As a result, degradation of blue phosphorescent materials needs to be further investigated and improved. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated. For investigation of degradation process the devices were stressed with electrical current and UV-light to study the impact of charge carriers as well as excitons and exciton-polaron quenching on the stability of the blue dye.

  18. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  19. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  20. Time-dependent simulation of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Sharifi, M J

    2009-01-01

    Several methods to simulate the behavior of organic light-emitting diodes (OLEDs) have been proposed in the past. In this paper, we develop a previous method, based on the master equation, in order to allow the simulation of time-dependent behavior and transient states. The calculation algorithm of the program that we have written is described. The time-dependent behaviors of two simple monolayer devices and of a more complicated three-layer device were simulated by means of this program, and the results are discussed. The results show that the turn-off speed of an OLED might be very slow, especially in the case of a multilayer device. This behavior is related to the low mobility of the organic material in weak electric fields. An interesting feature of the time behavior is pointed out, whereby the recombination rate may become considerably larger after the falling edge of an applied voltage pulse. Moreover, the validity of the transient electro-luminescent method for measuring carrier mobility in organic material has been examined by means of simulation. The results show that there is some inconsistency especially in high electric fields

  1. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Science.gov (United States)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  2. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.

    Science.gov (United States)

    Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C

    2018-03-01

    While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Green Fluorescent Organic Light Emitting Device with High Luminance

    Directory of Open Access Journals (Sweden)

    Ning YANG

    2014-06-01

    Full Text Available In this work, we fabricated the small molecule green fluorescent bottom-emission organic light emitting device (OLED with the configuration of glass substrate/indium tin oxide (ITO/Copper Phthalocyanine (CuPc 25 nm/ N,N’-di(naphthalen-1-yl-N,N’-diphenyl-benzidine (NPB 45 nm/ tris(8-hydroxyquinoline aluminium (Alq3 60 nm/ Lithium fluoride (LiF 1 nm/Aluminum (Al 100 nm where CuPc and NPB are the hole injection layer and the hole transport layer, respectively. CuPc is introduced in this device to improve carrier injection and efficiency. The experimental results indicated that the turn-on voltage is 2.8 V with a maximum luminance of 23510 cd/m2 at 12 V. The maximum current efficiency and power efficiency are 4.8 cd/A at 100 cd/m2 and 4.2 lm/W at 3 V, respectively. The peak of electroluminance (EL spectrum locates at 530 nm which is typical emission peak of green light. In contrast, the maximum current efficiency and power efficiency of the device without CuPc are only 4.0 cd/A at 100 mA/cm2 and 4.2 lm/W at 3.6 V, respectively.

  4. Efficiency optimization of green phosphorescent organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Soo; Jeon, Woo Sik; Yu, Jae Hyung [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Pode, Ramchandra, E-mail: rbpode@khu.ac.k [Department of Physics, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Kwon, Jang Hyuk, E-mail: jhkwon@khu.ac.k [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of)

    2011-03-01

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp{sub 2}) and green phosphorescent Ir(ppy){sub 3} [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m{sup 2} is noticed in this Bepp{sub 2} single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  5. High efficiency electrophosphorescence from bilayer organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Minghang; Lin, Ming-Te; Shepherd, Nigel D [Department of Material Science and Engineering, University of North Texas, Denton, TX (United States); Chen, Wei-Hsuan; Oswald, Iain; Omary, Mohammad [Department of Chemeistry, University of North Texas, Denton, TX (United States)

    2011-09-14

    An electron mobility of 2.7 x 10{sup -5} cm{sup 2} V{sup -1} s{sup -1} was measured for the phosphorescent emitter bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)(Pt(ptp)2), which prompted its evaluation as both the emissive layer and electron transport layer in organic light emitting diodes with a simple bilayer structure. Power and external quantum efficiencies of 54.0 {+-} 0.2 lm W{sup -1} and 15.9% were obtained, which as far as we could ascertain are amongst the highest reported values for bilayer devices. We ascribe the high device efficiency to the combination of the high electron mobility, short excited-state lifetime (117 ns) and high luminescence quantum yield (60%) of the bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II). The colour temperature of the devices was 2855 K at 5 V, which places the emission in the 'warm' light spectral region.

  6. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  7. Carrier Modulation Layer-Enhanced Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-07-01

    Full Text Available Organic light-emitting diode (OLED-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML, also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.

  8. Kinetics of transient electroluminescence in organic light emitting diodes

    International Nuclear Information System (INIS)

    Shukla, Manju; Brahme, Nameeta; Kumar, Pankaj; Chand, Suresh; Kher, R S; Khokhar, M S K

    2008-01-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - t del ), where t del is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - t dec ), where t dec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated

  9. Efficient white organic light emitting devices with dual emitting layers

    International Nuclear Information System (INIS)

    Wu Yaoshan; Hwang Shiaowen; Chen Hsianhung; Lee Mengting; Shen Wenjian; Chen, C.H.

    2005-01-01

    In this paper, a new white organic light-emitting device (OLED) with the structure of indium tin oxide / CF x / 1,4-bis[N-(1-naphthyl)-N'-phenylamino]-biphenyl (NPB) (30 nm)/NPB: 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene (20 nm; 1.6 %) / 2-methyl-9,10-di(2-naphthyl) anthracene: p-bis(p-N,N-di-phenyl-aminostyryl)benzene (40 nm, 3%) / aluminum tris(8-hydroxyquinoline) (20 nm) / LiF (1 nm) / Al (200 nm) has been investigated. The device showed white emission with a high-luminous yield of 9.75 cd/A at 20 mA/cm 2 , but its Commission Internationale de l'Eclairage chromaticity coordinates appeared to change from (0.34, 0.42) at 6 mA/cm2 to (0.27, 0.37) at 200 mA/cm 2 due to the shift of recombination zone. The change of color with drive current was suppressed by introduction of an electron-blocking layer of NPB along with a hole-blocking layer of aluminum (III) bis(2-methyl-8-quinolinato)4-phenylphenolato to the white OLED which successfully confined the recombination site and achieved a luminous yield of 9.9 cd/A at 20 mA/cm 2

  10. White organic light-emitting diodes with fluorescent tube efficiency.

    Science.gov (United States)

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  11. Efficient white organic light emitting devices with dual emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yaoshan [Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, 30050 (China); Hwang Shiaowen [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan, 30050 (China)]. E-mail: jesse@faculty.nctu.edu.tw; Chen Hsianhung [Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, 30050 (China); Lee Mengting [Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, 30050 (China); Shen Wenjian [Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, 30050 (China); Chen, C.H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan, 30050 (China)

    2005-09-22

    In this paper, a new white organic light-emitting device (OLED) with the structure of indium tin oxide / CF {sub x} / 1,4-bis[N-(1-naphthyl)-N'-phenylamino]-biphenyl (NPB) (30 nm)/NPB: 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene (20 nm; 1.6 %) / 2-methyl-9,10-di(2-naphthyl) anthracene: p-bis(p-N,N-di-phenyl-aminostyryl)benzene (40 nm, 3%) / aluminum tris(8-hydroxyquinoline) (20 nm) / LiF (1 nm) / Al (200 nm) has been investigated. The device showed white emission with a high-luminous yield of 9.75 cd/A at 20 mA/cm{sup 2}, but its Commission Internationale de l'Eclairage chromaticity coordinates appeared to change from (0.34, 0.42) at 6 mA/cm2 to (0.27, 0.37) at 200 mA/cm{sup 2} due to the shift of recombination zone. The change of color with drive current was suppressed by introduction of an electron-blocking layer of NPB along with a hole-blocking layer of aluminum (III) bis(2-methyl-8-quinolinato)4-phenylphenolato to the white OLED which successfully confined the recombination site and achieved a luminous yield of 9.9 cd/A at 20 mA/cm{sup 2}.

  12. A white organic light emitting diode with improved stability

    International Nuclear Information System (INIS)

    Zhang Zhilin; Jiang Xueyin; Zhu Wenqing; Zhang Buxin; Xu Shaohong

    2001-01-01

    A white organic light emitting diode (OLED) has been constructed by employing a new blue material and a red dye directly doped in the blue emitting layer. For comparison, another white cell with a blocking layer has also been made. The configurations of the devices are ITO/CuPc/NPB/JBEM(P):DCJT/Alq/MgAg (device 1) and ITO/CuPc/NPB/TPBi:DCJT/Alq/MgAg (device 2) where copper phthalocyanine (CuPc) is the buffer layer, N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1.1'bipheny1-4-4'-diamine (NPB) is the hole transporting layer, 9,10-bis(3'5'-diaryl)phenyl anthracene doped with perylene (JBEM(P)) is the new blue emitting material, N,arylbenzimidazoles (TPBi) is the hole blocking layer, tris(8-quinolinolato)aluminium complex (Alq) is the electron transporting layer, and DCJT is a red dye. A stable and current independent white OLED has been obtained in device 1, which has a maximum luminance of 14 850 cd m -2 , an efficiency of 2.88 Lm W -1 , Commission Internationale de l'Eclairage coordinates of x=0.32, y=0.38 between 4-200 mA cm -2 , and a half lifetime of 2860 h at the starting luminance of 100 cd m -2 . Device 1 has a stability more than 50 times better than that of device 2. (author)

  13. Printable candlelight-style organic light-emitting diode

    Science.gov (United States)

    Jou, J. H.; Singh, M.; Song, W. C.; Liu, S. H.

    2017-06-01

    Candles or oil lamps are currently the most friendly lighting source to human eyes, physiology, ecosystems, artifacts, environment, and night skies due to their blue light-less emission. Candle light also exhibits high light-quality that provides visual comfort. However, they are relatively low in power efficacy (0.3 lm/W), making them energy-wasting, besides having problems like scorching hot, burning, catching fire, flickering, carbon blacking, oxygen consuming, and release of green house gas etc. In contrast, candlelight organic light-emitting diode (OLED) can be made blue-hazard free and energy-efficient. The remaining challenges are to maximize its light-quality and enable printing feasibility, the latter of which would pave a way to cost-effective manufacturing. We hence demonstrate herein the design and fabrication of a candlelight OLED via wet-process. From retina protection perspective, its emission is 13, 12 and 8 times better than those of the blue-enriched white CFL, LED and OLED. If used at night, it is 9, 6 and 4 times better from melatonin generation perspective.

  14. Organic light emitting diodes on ITO-free polymer anodes

    Energy Technology Data Exchange (ETDEWEB)

    Fehse, Karsten; Schwartz, Gregor; Walzer, Karsten; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden, D-01062 Dresden (Germany)

    2007-07-01

    The high material cost of indium, being the main component of the commonly used indium-tin-oxide anodes (ITO) in organic light emitting diodes (OLEDs), is an obstacle for the production of efficient low-cost OLEDs. Therefore, new anode materials are needed for large scale OLED production. Recently, we demonstrated that the polymer PEDOT:PSS can substitute ITO as anode. Another highly conductive polymer is polyaniline (PANI) that provides 200 S/cm with a work function of 4.8 eV. In this study, we use PANI as anode for OLEDs (without ITO layer underneath the polymer) with electrically doped hole- and electron transport layers and intrinsic materials in between. Fluorescent blue (Spiro-DPVBi) as well as phosphorescent green (Ir(ppy){sub 3}) and red emitters (Ir(MDQ){sub 2}(acac)) were used for single colour and white OLEDs. Green single and double emission OLEDs achieve device efficiencies of 34 lm/W and 40.7 lm/W, respectively. The white OLED shows a power efficiency of 8.9 lm/W at 1000 cd/m{sup 2} with CIE coordinates of (0.42/0.39).

  15. Near-field photometry for organic light-emitting diodes

    Science.gov (United States)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  16. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  17. White organic light-emitting diodes from three emitter layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Lim, J.T. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Jeong, C.H. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Lee, J.H. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Yeom, G.Y. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of)]. E-mail: gyyeom@skku.edu

    2006-11-23

    Three-wavelength white organic light-emitting diodes (WOLEDs) were fabricated using two doped layers, which were obtained by separating the recombination zones into three emitter layers. A sky blue emission originated from the 4,4'-bis(2,2'-diphenylethen-1-yl)biphenyl (DPVBi) layer. A green emission originated from a tris(8-quinolinolato)aluminum (III) (Alq{sub 3}) host doped with a green fluorescent 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benz opyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. An orange emission was obtained from the N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) host doped with a red fluorescent dye, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4 H-pyran (DCJTB). A white light resulted from the partial excitations of these three emitter layers by controlling the layer thickness and concentration of the fluorescent dyes in each emissive layer simultaneously. The electroluminescent spectrum of the device was not sensitive to the driving voltage of the device. The white light device showed a maximum luminance of approximately 53,000 cd/m{sup 2}. The external quantum and power efficiency at a luminance of approximately 100 cd/m{sup 2} were 2.62% and 3.04 lm/W, respectively.

  18. Simulations of charge transport in organic light emitting diodes

    International Nuclear Information System (INIS)

    Martin, Simon James

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for the observed temperature and electric field dependence of carrier mobilities in disordered organic semiconductors. A hopping transport model has been developed which accounts explicitly for the structure in highly ordered films of rigid rod liquid-crystalline conjugated polymers. Chapter 2 discusses the formation of metal-semiconductor contacts, and current injection processes in OLEDs. If the barrier to carrier injection at a metal-semiconductor contact is small, or the contact is Ohmic, then the current may be space charge limited; this second limiting regime of current flow for OLEDs is also described. The remainder of Chapter 2 describes the drift-diffusion model used in this work in some detail. Chapter 3 contains results obtained from modelling the J-V characteristics of single-layer OLEDs, which are compared to experimental data in order to validate the drift-diffusion model. Chapter 4 contains results of simulating bi-layer OLEDs; rather than examining J

  19. p-i-n Homojunction in Organic Light-Emitting Transistors

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Sawabe, Kosuke; Tsuda, Satoshi; Yomogidao, Yohei; Yamao, Takeshi; Hotta, Shu; Adachi, Chihaya; Iwasa, Yoshihiro

    2011-01-01

    A new method for investigating light-emitting property in organic devices is demonstrated. We apply the ambipolar light-emitting transistors (LETS) to directly observe the recombination zone, and find a strong link between the transistor performance and the zone size. This finding unambiguously

  20. Magnetic field effect in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Ulrich

    2009-12-14

    The discovery of a magnetic field dependent resistance change of organic light emitting diodes (OLEDs) in the year 2003 has attracted considerable scientific and industrial research interest. However, despite previous progress in the field of organic spin-electronics, the phenomenon of the ''organic magnetoresistance (OMR) effect'' is not yet completely understood. In order to improve the understanding of the microscopic mechanisms which ultimately cause the OMR effect, experimental investigations as well as theoretical considerations concerning the OMR are addressed in this thesis. In polymer-based OLED devices the functional dependencies of the OMR effect on relevant parameters like magnetic field, operating voltage, operating current and temperature are investigated. Based on these results, previously published models for potential OMR mechanisms are critically analyzed and evaluated. Finally, a concept for the OMR effect is favored which suggests magnetic field dependent changes of the spin state of electron-hole pairs as being responsible for changes in current flow and light emission in OLEDs. In the framework of this concept it is possible to explain all results from own measurements as well as results from literature. Another important finding made in this thesis is the fact that the value of the OMR signal in the investigated OLED devices can be enhanced by appropriate electrical and optical conditioning processes. In particular, electrical conditioning causes a significant enhancement of the OMR values, while at the same time it has a negative effect on charge carrier transport and optical device characteristics. These results can be explained by additional results from charge carrier extraction measurements which suggest that electrical conditioning leads to an increase in the number of electronic trap states inside the emission layer of the investigated OLED devices. The positive influence of trap states on the OMR effect is

  1. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  2. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes

    International Nuclear Information System (INIS)

    Coenen, Michiel J.J.; Slaats, Thijs M.W.L.; Eggenhuisen, Tamara M.; Groen, Pim

    2015-01-01

    Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications

  3. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  4. MOLED: Simulation of multilayer organic light emitting diodes

    Science.gov (United States)

    Houili, H.; Tutiš, E.; Lütjens, H.; Bussac, M. N.; Zuppiroli, L.

    2003-12-01

    MOLED solves the dynamics of electrons and holes in multilayer Organic Light Emitting Diodes (OLED). The carriers are injected on the positive and negative electrodes of the device by tunneling through a potential barrier. Thermal excitation processes across the barrier are also included. In the interior of the device the electron-hole recombination occurs when the two carriers are close enough, according to a model inspired from the one of Langevin. A fraction of these recombined pairs gives photons. The charge transport inside the organic material occurs through hopping. Several choices of mobility formulae are available in the code. MOLED can be used for OLEDs with an arbitrary number of layers. The output consists of numerous fields that describe the device performance. For example, there are the current, the recombination and the charge density distributions, the electric field distribution, the current-voltage characteristics and the device internal quantum efficiency. Program summaryTitle of program: MOLED Catalogue identifier: ADSG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems under which the program has been tested: Unix, Linux Programming language used: FORTRAN 90 Memory required to execute with typical data: 2 MB No. of bytes in distributed program: 26 942 No. of bits in a word: 64 Peripherals used: permanent disk storage No. of lines in distributed program, including test data, etc.: 3695 Distribution format: tar gzip file Nature of the physical problem: Injection of electrons and holes into an organic electroluminescent material occurs through tunneling from metal electrodes. The transport of carriers inside the molecular medium proceeds by hopping from one molecule to another. The emission of light is a result of their radiative Langevin recombination (for a review see [Scott et al., Synthetic Metals 111-112 (2000) 289; Friend et al

  5. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo; Agrawal, Mukul; Becerril, Héctor A.; Bao, Zhenan; Liu, Zunfeng; Chen, Yongsheng; Peumans, Peter

    2010-01-01

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We

  6. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Ilhwan Kim

    2018-04-01

    Full Text Available Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP by electrospinning for a gel polymer electrolyte (GPE for use in flexible Li-ion batteries (LIBs. As a solvent, we use N-methyl-2-pyrrolidone (NMP, which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED, demonstrating a fully flexible unit of LIB and OLED.

  7. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    DEFF Research Database (Denmark)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J

    2013-01-01

    we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile......In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here...

  8. Organic light-emitting devices with fullerene/aluminum composite anode

    International Nuclear Information System (INIS)

    Song, Q.L.; Li, C.M.; Wang, M.L.; Sun, X.Y.

    2008-01-01

    Our previous work demonstrates that fullerene/Aluminum (C 60 /Al) can be used as a composite anode in organic solar cells. In this work, we report that an organic light emitting devices (OLEDs) can be made with the C 60 /Al composite anode as well. The OLEDs show comparable current density and brightness to the traditional devices with the indium tin oxide anode

  9. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-01-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the

  10. Three-dimensional modeling of charge transport, injection and recombination in organic light-emitting diodes

    NARCIS (Netherlands)

    Holst, van der J.J.M.

    2010-01-01

    Organic light-emitting diodes (OLEDs) are ideally suited for lighting and display applications. Commercial OLED displays as well as OLED white-light sources are presently being introduced to the market. Essential electronic processes in OLEDs are the injection of electrons and holes into an organic

  11. Integrated Instrumentation for Light-Emitting Polymers Development

    National Research Council Canada - National Science Library

    Jen, Alex

    2000-01-01

    The major objective of this project is to develop an integrated instrumentation that combines the capability of performing spin coating of uniform polymer thin films under an oxygen and moisture free...

  12. Characteristics of organic light emitting diodes with copper iodide as injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Stakhira, P., E-mail: stakhira@polynet.lviv.u [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Hotra, Z. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Rzeszow University of Technology, W. Pola 2, Rzeszow, 35-959 (Poland); Tataryn, V. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Luka, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2010-09-30

    We have studied the use of a thin copper iodide (CuI) film as an efficient injection layer of holes from indium tin oxide (ITO) anode in a light-emitting diode structure based on tris-8-hydroxyquinoline aluminium (Alq3). The results of impedance analysis of two types of diode structures, ITO/CuI/Alq3/poly(ethylene glycol) dimethyl ether/Al and ITO/Alq3/poly(ethylene glycol) dimethyl ether/Al, are presented. Comparative analysis of their current density-voltage, luminance-voltage and impedance characteristics shows that presence of CuI layer facilitates injection of holes from ITO anode into the light-emitting layer Alq3 and increases electroluminescence efficiency of the organic light emitting diodes.

  13. Charge Injection and Current Flow in Organic Light Emitting Diodes

    Science.gov (United States)

    Smith, D. L.; Davids, P. S.; Heller, C. M.; Crone, B. K.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    We present a comparison between device model calculations and current-voltage measurements for a series of organic LED structures. The Schottky energy barrier of an injecting contact is systematically varied by changing the metal used to form that contact. The current-voltage characteristics of the structures are described using a device model that considers charge injection, transport and space charge effects in the low mobility organic material. Charge injection into the organic material is controlled by the Schottky energy barrier of the metal/organic contact. For Schottky energy barriers greater than about 0.4 eV injection into the organic material is the principal limitation to current flow. In this regime the net injected charge density is relatively small, the electric field in the structure is nearly uniform, and space charge effects are not important. For smaller energy barriers relatively large charge densities are injected into the organic material and space charge effects become the dominant limit to current flow. The measured current-voltage characteristics are quantitatively described by the device model using Schottky barrier values independently determined by internal photoemission and electroabsorption measurements.

  14. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    For optoelectronic applications, organic semiconductors have several advantages over their inorganic counterparts such as facile synthesis, tunability via synthetic chemistry, and low temperature processing. Self-assembled, molecular crystalline nanofibers are of particular interest as they could...... form ultra-small light-emitters in future nanophotonic applications. Such organic nanofibers exhibit many interesting optical properties including polarized photo- and electroluminescence, waveguiding, and emission color tunability. We here present a first step towards a multicolored, electrically...... driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  15. Studies and integration of Silicon-based light emitting systems

    OpenAIRE

    González Fernández, Alfredo A.

    2014-01-01

    [spa] Este proyecto aborda el estudio de dispositivos y materiales luminiscentes basados en silicio para su uso en la fabricación de un sistema óptico que integre emisor de luz, guía de ondas, y sensor en un solo chip obtenido mediante el uso de técnicas y materiales estándar para la fabricación CMOS. Las características atómicas y estructurales de los materiales son analizados y relacionados con su respuesta luminiscente. Considerando los resultados de la caracterización del material a...

  16. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    NARCIS (Netherlands)

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  17. A triphenylamine substituted quinacridone derivative for solution processed organic light emitting diodes

    NARCIS (Netherlands)

    Pilz da Cunha, M.; Do, T.T.; Yambem, S.D.; Pham, H.D.; Chang, S.; Manzhos, S.; Katoh, R.; Sonar, P.

    2018-01-01

    We report on a novel quinacridone derivative design, namely, 2,9-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-5,12-bis(2-ethylhexyl)-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione (TPA-QA-TPA) for possible use as a solution processable emissive layer in organic light emitting diodes (OLEDs). TPA-QA-TPA

  18. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  19. Tuning Optoelectronic Properties of Ambipolar Organic Light-Emitting Transistors Using a Bulk-Heterojunction Approach

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Rost-Bietsch, Constance; Murgia, Mauro; Karg, Siegfried; Riess, Walter; Muccini, Michele

    2006-01-01

    Bulk-heterojunction engineering is demonstrated as an approach to producing ambipolar organic light-emitting field-effect transistors with tunable electrical and optoelectronic characteristics. The electron and hole mobilities, as well as the electroluminescence intensity, can be tuned over a large

  20. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    Science.gov (United States)

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  1. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    International Nuclear Information System (INIS)

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Anye, V. C.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-01-01

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures

  2. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  3. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  4. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  5. Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode-Organic Interface

    Science.gov (United States)

    Saikia, Dhrubajyoti; Sarma, Ranjit

    2018-01-01

    The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density-voltages (J-V), luminance-voltages (L-V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV-visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N'-bis(3-methyl phenyl)- N,N'(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.

  6. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  7. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    International Nuclear Information System (INIS)

    Lijuan Zou

    2003-01-01

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm 2 , the optimal radiance R could reach 0.38 mW/cm 2 , and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be ∼ 10 -5 cm 2 /Vs and ∼ 10 -4 cm 2 /Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces

  8. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  9. Inkjet Printing of Organic Light-Emitting Diodes Based on Alcohol-Soluble Polyfluorenes

    Science.gov (United States)

    Odod, A. V.; Gadirov, R. M.; Solodova, T. A.; Kurtsevich, A. E.; Il'gach, D. M.; Yakimanskii, A. V.; Burtman, V.; Kopylova, T. N.

    2018-04-01

    Ink compositions for inkjet printing based on poly(9.9-dioctylfluorene) and its alcohol-soluble analog are created. Current-voltage, brightness-voltage, and spectral characteristics are compared for one- and twolayer polymer structures of organic light-emitting diodes. It is shown that the efficiency of the alcohol-soluble polyfluorene analog is higher compared to poly(9.9-dioctylfluorene), and the possibility of viscosity optimization is higher compared to aromatic chlorinated solvents.

  10. Improved light extraction from white organic light-emitting devices using a binary random phase array

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Yasuhisa, E-mail: inada.yasuhisa@jp.panasonic.com; Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki [R and D Division, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501 (Japan); Matsuzaki, Jumpei [Device Development Center, Eco Solutions Company, Panasonic Corporation, 1048 Kadoma, Osaka 571-8686 Japan (Japan)

    2014-02-10

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs.

  11. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G. [OSRAM OLED GmbH, Wernerwerkstrasse 2, 93049 Regensburg (Germany); Ciarnáin, Rossá Mac; Danz, Norbert [Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena (Germany)

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  12. Study of voltage decrease in organic light emitting diodes during the initial stage of lifetime

    Science.gov (United States)

    Cusumano, P.

    2016-02-01

    We report the results of lifetime DC testing at constant current of not-encapsulated organic light emitting diodes (OLEDs) based on Tris (8 idroxyquinoline) aluminum (Alq3) as emitting material. In particular, a voltage decrease during the initial stage of the lifetime test is observed. The cause of this behavior is also discussed, mainly linked to initial Joule self-heating of the device, rising its temperature above room temperature until thermal equilibrium is reached at steady state.

  13. Improved light extraction from white organic light-emitting devices using a binary random phase array

    International Nuclear Information System (INIS)

    Inada, Yasuhisa; Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki; Matsuzaki, Jumpei

    2014-01-01

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs

  14. Full color organic light-emitting devices with microcavity structure and color filter.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  15. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  16. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    Science.gov (United States)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative

  17. Influence of doping location and width of dimethylquinacridone on the performance of organic light emitting devices

    International Nuclear Information System (INIS)

    Li Jingze; Yahiro, Masayuki; Ishida, Kenji; Matsushige, Kazumi

    2005-01-01

    The influence of doping location and width of fluorescent dimethylquinacridone (DMQA) molecules on the performance of organic light emitting devices has been systematically investigated. While the doped zone is located at the interface of the hole transport layer (HTL) and the light emitting layer (EML), doping in the HTL leads to significant improvement of the external quantum efficiency relative to the undoped device, whereas the efficiency is lower than that of doping in the EML. This phenomenon is explained according to the electroluminescence (EL) process of the doped DMQA, which is dominated by Foerster energy transfer. Additionally, a device with dual doping in both HTL and EML exhibits the highest efficiency. The EL and photoluminescence spectra are also dependent on the doping sites

  18. Optimization of emission color and efficiency of organic light emitting diodes for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany)

    2008-07-01

    In recent years the performance of organic light emitting diodes (OLEDs) has reached a level where OLED lighting presents an interesting application target. Research activities therefore focus amongst other things on the development of high efficient and stable white light emitting devices. We demonstrate how the color coordinates can be adjusted to achieve a warm white emission spectrum, whereas the OLED stack contains phosphorescent red and green dyes combined with a fluorescent blue one. Detailed results are presented with respect to a variation of layer thicknesses and dopant concentrations of the emission layers. Furthermore the influence of various dye molecules and hence different energy level alignments between host and dopants on color and efficiency will be discussed.

  19. Recent advances in light outcoupling from white organic light-emitting diodes

    Science.gov (United States)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  20. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  1. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    International Nuclear Information System (INIS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Liao, Liangsheng; Sun, Baoquan; Zhang, Ke-Qin

    2015-01-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq −1 , a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A −1 , demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices. (paper)

  2. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  3. White organic light emitting diodes based on fluorene-carbazole dendrimers

    International Nuclear Information System (INIS)

    Usluer, Özlem; Demic, Serafettin; Kus, Mahmut; Özel, Faruk; Serdar Sariciftci, Niyazi

    2014-01-01

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m 2 and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films

  4. White organic light emitting diodes based on fluorene-carbazole dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Usluer, Özlem, E-mail: usluerozlem@yahoo.com.tr [Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla (Turkey); Demic, Serafettin [Department of Materials Science and Engineering, Izmir Katip Çelebi University, 35620 Çiğli, Izmir (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Özel, Faruk [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Serdar Sariciftci, Niyazi [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria)

    2014-02-15

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m{sup 2} and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films.

  5. Non-doped white organic light-emitting diodes based on aggregation-induced emission

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuming; Kwok, Hoi Sing [Center for Display Research, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhao Zujin; Tang, Ben Zhong, E-mail: eekwok@ust.h [Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-03-10

    Non-doped white organic light-emitting diodes (WOLEDs) based on newly synthesized bluish-green light-emitting material 1,3,6,8-tetrakis [4-(1,2,2-triphenylvinyl)phenyl]pyrene (TTPEPy) and red light-emitting material 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD) have been demonstrated. A maximum efficiency of 7.4 cd A{sup -1}, 4 lm W{sup -1} and brightness of 18 000 cd m{sup -2} have been achieved by employing 3 nm thick 4, 4'-bis [N-(1-naphthyl-1-)-N-phenyl-amino]- biphenyl (NPB) as an electron-blocking layer. The WOLEDs exhibit a high colour rendering index of 90 and moderate colour stability with 1931 Commision International de L'Eclairage coordinates changing from (0.41, 0.41) to (0.38, 0.40) over a wide range of driving voltages. Moreover, the non-doped WOLEDs enjoy a reduced efficiency roll-off due to their nature of aggregation-induced emission.

  6. Non-doped white organic light-emitting diodes based on aggregation-induced emission

    International Nuclear Information System (INIS)

    Chen Shuming; Kwok, Hoi Sing; Zhao Zujin; Tang, Ben Zhong

    2010-01-01

    Non-doped white organic light-emitting diodes (WOLEDs) based on newly synthesized bluish-green light-emitting material 1,3,6,8-tetrakis [4-(1,2,2-triphenylvinyl)phenyl]pyrene (TTPEPy) and red light-emitting material 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD) have been demonstrated. A maximum efficiency of 7.4 cd A -1 , 4 lm W -1 and brightness of 18 000 cd m -2 have been achieved by employing 3 nm thick 4, 4'-bis [N-(1-naphthyl-1-)-N-phenyl-amino]- biphenyl (NPB) as an electron-blocking layer. The WOLEDs exhibit a high colour rendering index of 90 and moderate colour stability with 1931 Commision International de L'Eclairage coordinates changing from (0.41, 0.41) to (0.38, 0.40) over a wide range of driving voltages. Moreover, the non-doped WOLEDs enjoy a reduced efficiency roll-off due to their nature of aggregation-induced emission.

  7. High-efficient and brightness white organic light-emitting diodes operated at low bias voltage

    Science.gov (United States)

    Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong

    2010-10-01

    White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.

  8. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  9. Towards developing a tandem of organic solar cell and light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHS, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-01-15

    It is proposed here to design a tandem of organic solar cell (OSC) and white organic light emitting diode (WOLED) which can generate power in the day time from the sun and provide lighting at night. With the advancement of chemical technology, such device is expected to be very-cost effective and reasonably efficient. A device thus fabricated has the potential of meeting the world's sustainable domestic and commercial power and lighting needs (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Study on scalable Coulombic degradation for estimating the lifetime of organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhang Wenwen; Hou Xun; Wu Zhaoxin; Liang Shixiong; Jiao Bo; Zhang Xinwen; Wang Dawei; Chen Zhijian; Gong Qihuang

    2011-01-01

    The luminance decays of organic light-emitting diodes (OLEDs) are investigated with initial luminance of 1000 to 20 000 cd m -2 through a scalable Coulombic degradation and a stretched exponential decay. We found that the estimated lifetime by scalable Coulombic degradation deviates from the experimental results when the OLEDs work with high initial luminance. By measuring the temperature of the device during degradation, we found that the higher device temperatures will lead to instabilities of organic materials in devices, which is expected to result in the difference between the experimental results and estimation using the scalable Coulombic degradation.

  11. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Guan Yunxia; Niu Lianbin [Key Laboratory of Optical Engineering, College of Physics and Information Technology, Chongqing Normal University, Chongqing 400047 (China)], E-mail: gyxybsy@126.com, E-mail: niulb03@126.com

    2009-03-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq{sub 3} /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  12. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    International Nuclear Information System (INIS)

    Guan Yunxia; Niu Lianbin

    2009-01-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq 3 /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  13. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes

    International Nuclear Information System (INIS)

    Baldo, M.; Segal, M.

    2004-01-01

    The development of highly efficient phosphorescent molecules has approximately quadrupled the quantum efficiency of organic light emitting devices (OLEDs). By harnessing triplet as well as singlet excitons, efficient molecular phosphorescence has also enabled novel studies of exciton physics in organic semiconductors. In this review, we will summarize recent progress in understanding exciton formation and energy transfer using phosphorescent molecular probes. Particular emphasis is given to two topics of current interest: energy transfer in blue phosphorescent OLEDs, and quantifying the formation ratio of singlet to triplet excitons in small-molecular weight materials and polymers. (orig.)

  14. White organic light-emitting devices incorporating nanoparticles of II-VI semiconductors

    International Nuclear Information System (INIS)

    Ahn, Jin H; Bertoni, Cristina; Dunn, Steve; Wang, Changsheng; Talapin, Dmitri V; Gaponik, Nikolai; Eychmueller, Alexander; Hua Yulin; Bryce, Martin R; Petty, Michael C

    2007-01-01

    A blue-green fluorescent organic dye and red-emitting nanoparticles, based on II-VI semiconductors, have been used together in the fabrication of white organic light-emitting devices. In this work, the materials were combined in two different ways: in the form of a blend, and as separate layers deposited on the opposite sides of the substrate. The blended-layer structure provided purer white emission. However, this device also exhibited a number of disadvantages, namely a high drive voltage, a low efficiency and some colour instability. These problems could be avoided by using a device structure that was fabricated using separate dye and nanoparticle layers

  15. Quantitative description of charge-carrier transport in a white organic light-emitting diode

    Science.gov (United States)

    Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.

    2011-10-01

    We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.

  16. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  17. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  18. Influence of ITO patterning on reliability of organic light emitting devices

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Naka, Shigeki; Okada, Hiroyuki

    2009-01-01

    Indium tin oxide (ITO) films are widely used for a transparent electrode of organic light emitting devices (OLEDs) because of its excellent conductivity and transparency. Two types of ITO substrates with different surface roughness were selected to use as anode of OLEDs. In addition, two types of etching process of ITO substrate, particularly the etching time, were also carried out. It was found that the surface roughness and/or the etching process of ITO substrate strongly influenced on an edge of ITO surface, further affected the operating characteristics and reliability of devices.

  19. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  20. STUDY OF DEGRADATION MECHANISM AND PACKAGING OF ORGANIC LIGHT EMITTING DEVICES

    Institute of Scientific and Technical Information of China (English)

    Gu Xu

    2003-01-01

    Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in future Flat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to their commercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fast degradation of OLEDs. In particular, we focus on the origin of the dark spots by "rebuilding" cathodes, which confirms that the growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from the search for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation and moisture resistance, in addition to electrical insulation.

  1. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  2. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui

    2011-01-18

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  3. Charge injection and transport properties of an organic light-emitting diode

    Directory of Open Access Journals (Sweden)

    Peter Juhasz

    2016-01-01

    Full Text Available The charge behavior of organic light emitting diode (OLED is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport.

  4. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    International Nuclear Information System (INIS)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-01-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  6. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui; Wu, Fang-Iy; Haverinen, Hanna; Li, Jian; Cheng, Chien-Hong; Jabbour, Ghassan E.

    2011-01-01

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  7. Organic light-emitting diodes with a spacer enhanced exciplex emission

    Science.gov (United States)

    Yan, Fei; Chen, Rui; Sun, Handong; Wei Sun, Xiao

    2014-04-01

    By introducing a spacer molecule into the blended exciplex emissive layer, the performance of the bulk heterojunction exciplex organic light-emitting diodes (OLEDs) was improved dramatically; the maximum luminous efficiency was enhanced by about 22% from 7.9 cd/A to 9.7 cd/A, and the luminous efficiency drop was reduced by 28% at 400 mA/cm2. Besides the suppressed annihilation of exciton, the time-resolved photoluminescence measurements indicated that the spacer enhanced the delayed fluorescence through increasing the backward intersystem crossing rate from the triplet to singlet exciplex state. This method is useful for developing high performance exciplex OLEDs.

  8. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    Science.gov (United States)

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  9. New fluorescent dipolar pyrazine derivatives for non-doped red organic light-emitting diodes

    International Nuclear Information System (INIS)

    Gao Baoxiang; Zhou Quanguo; Geng Yanhou; Cheng Yanxiang; Ma Dongge; Xie Zhiyuan; Wang Lixiang; Wang Fosong

    2006-01-01

    Dipolar fluorescent compounds containing electron-accepting pyrazine-2,3-dicarbonitrile and electron-donating arylamine moiety have been designed and synthesized. The optical and electrochemical properties of these compounds can be adjusted by changing π-bridge length and the donor (D) strength. Organic light-emitting devices based on these compounds are fabricated. Saturated red emission of (0.67, 0.33) and the external quantum efficiency as high as 1.41% have been demonstrated for one of these compounds

  10. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wong, Michael Y; Zysman-Colman, Eli

    2017-06-01

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    KAUST Repository

    Gutiérrez-Heredia, Gerardo

    2010-10-04

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/ parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 μA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 μA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O 3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas \\'parylene only\\' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented. © 2010 IOP Publishing Ltd.

  12. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    KAUST Repository

    Gutié rrez-Heredia, Gerardo; Gonzá lez, Luis A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/ parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 μA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 μA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O 3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented. © 2010 IOP Publishing Ltd.

  13. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    Science.gov (United States)

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V.

  14. Advances in phosphors based on organic materials for light emitting devices

    International Nuclear Information System (INIS)

    Sharma, Kashma; Kumar, Vijay; Kumar, Vinod; Swart, Hendrik C.

    2016-01-01

    A brief overview is presented in the light emitting diodes (LEDs) based on purely organic materials. Organic LEDs are of great interest to the research community because of their outstanding properties and flexibility. Comparison between devices made using different organic materials and their derivatives with respect to synthetic protocols, characterizations, quantum efficiencies, sensitivity, specificity and their applications in various fields have been discussed. This review also discusses the essential requirement and scientific issues that arise in synthesizing cost-effective and environmental friendly organic LEDs diodes based on purely organic materials. This mini review aims to capture and convey some of the key current developments in phosphors formed by purely organic materials and highlights some possible future applications. Hence, this study comes up with a widespread discussion on the various contents in a single platform. Also, it offers avenues for new researchers for futuristic development in the area.

  15. Numerical study of the light output intensity of the bilayer organic light-emitting diodes

    Science.gov (United States)

    Lu, Feiping

    2017-02-01

    The structure of organic light-emitting diodes (OLEDs) is one of most important issues that influence the light output intensity (LOI) of OLEDs. In this paper, based on a simple but accurate optical model, the influences of hole and electron transport layer thickness on the LOI of bilayer OLEDs, which with N,N0- bis(naphthalen-1-yl)-N,N0- bis(phenyl)- benzidine (NPB) or N,N'- diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine (TPD) as hole transport layer, with tris(8-hydroxyquinoline) aluminum (Alq3) as electron transport and light emitting layers, were investigated. The laws of LOI for OLEDs under different organic layer thickness values were obtained. The results show that the LOI of devices varies in accordance with damped cosine or sine function as the increasing of organic layer thickness, and the results show that the bilayer OLEDs with the structure of Glass/ITO/NPB (55 nm)/Alq3 (75 nm)/Al and Glass/ITO/TPB (60 nm)/Alq3 (75 nm)/Al have most largest LOI. When the thickness of Alq3 is less than 105 nm, the OLEDs with TPD as hole transport layer have larger LOI than that with NPB as hole transport layer. The results obtained in this paper can present an in-depth understanding of the working mechanism of OLEDs and help ones fabricate high efficiency OLEDs.

  16. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    Science.gov (United States)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  17. Origin of colour stability in blue/orange/blue stacked phosphorescent white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, Sung Hyun; Jang, Jyongsik; Yook, Kyoung Soo; Lee, Jun Yeob

    2009-01-01

    The origin of colour stability in phosphorescent white organic light-emitting diodes (PHWOLEDs) with a blue/orange/blue stacked emitting structure was studied by monitoring the change in a recombination zone. A balanced recombination zone shift between the blue and the orange light-emitting layers was found to be responsible for the colour stability in the blue/orange/blue stacked PHWOLEDs.

  18. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    Science.gov (United States)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  19. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  20. Highly efficient phosphorescent blue and white organic light-emitting devices with simplified architectures

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hao, E-mail: chc@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan 32003 (China); Ding, Yong-Shung; Hsieh, Po-Wei; Chang, Chien-Ping; Lin, Wei-Chieh [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan 32003 (China); Chang, Hsin-Hua, E-mail: hhua3@mail.vnu.edu.tw [Department of Electro-Optical Engineering, Vanung University, Chung-Li, Taiwan 32061 (China)

    2011-09-01

    Blue phosphorescent organic light-emitting devices (PhOLEDs) with quantum efficiency close to the theoretical maximum were achieved by utilizing a double-layer architecture. Two wide-triplet-gap materials, 1,3-bis(9-carbazolyl)benzene and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, were employed in the emitting and electron-transport layers respectively. The opposite carrier-transport characteristics of these two materials were leveraged to define the exciton formation zone and thus increase the probability of recombination. The efficiency at practical luminance (100 cd/m{sup 2}) was as high as 20.8%, 47.7 cd/A and 31.2 lm/W, respectively. Furthermore, based on the design concept of this simplified architecture, efficient warmish-white PhOLEDs were developed. Such two-component white organic light-emitting devices exhibited rather stable colors over a wide brightness range and yielded electroluminescence efficiencies of 15.3%, 33.3 cd/A, and 22.7 lm/W in the forward directions.

  1. Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Wen Liang; Li Fushan; Xie Jiangxing; Wu Chaoxing; Zheng Yong; Chen Dongling; Xu Sheng; Guo Tailiang; Qu Bo; Chen Zhijian; Gong Qihuang

    2011-01-01

    White organic light-emitting diode (WOLED) with a structure of ITO/poly(N-vinylcarbazole) (PVK)/4,7-diphenyl-1, 10-phenanthroline (Bphen)/tris(8-hydroxyquinoline)aluminum (Alq 3 )/LiF/Al has been fabricated via the thermal evaporation technique. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380 to 700 nm of the visible light region with a wide blue emission from PVK and an interesting new red emission. The red emission at 613 nm in EL spectra of the WOLED was attributed to electroplex emission at PVK/Bphen interface since it was not observed in photoluminescence spectra. The WOLED showed a Commission International De l'Eclairage coordinate of (0.31, 0.32), which is very close to the standard white coordinate (0.33, 0.33). - Highlights: → A white organic light-emitting diode was fabricated by vacuum deposition. → A new red emission at 613 nm was observed in the electroluminescence spectra. → Red emission comes from electroplex instead of exciplex at PVK/Bphen interface. → The device has a CIE coordinate of (0.31, 0.32).

  2. Highly efficient phosphorescent blue and white organic light-emitting devices with simplified architectures

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Ding, Yong-Shung; Hsieh, Po-Wei; Chang, Chien-Ping; Lin, Wei-Chieh; Chang, Hsin-Hua

    2011-01-01

    Blue phosphorescent organic light-emitting devices (PhOLEDs) with quantum efficiency close to the theoretical maximum were achieved by utilizing a double-layer architecture. Two wide-triplet-gap materials, 1,3-bis(9-carbazolyl)benzene and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, were employed in the emitting and electron-transport layers respectively. The opposite carrier-transport characteristics of these two materials were leveraged to define the exciton formation zone and thus increase the probability of recombination. The efficiency at practical luminance (100 cd/m 2 ) was as high as 20.8%, 47.7 cd/A and 31.2 lm/W, respectively. Furthermore, based on the design concept of this simplified architecture, efficient warmish-white PhOLEDs were developed. Such two-component white organic light-emitting devices exhibited rather stable colors over a wide brightness range and yielded electroluminescence efficiencies of 15.3%, 33.3 cd/A, and 22.7 lm/W in the forward directions.

  3. Investigation of organic light-emitting diodes with novel organic electron injection layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunae; Sethuraman, Kunjithapatham; An, Jongdeok; Im, Chan [Konkuk University, Seoul (Korea, Republic of); Hwang, Boseon [Jinwoong Industrial Co. Ltd., Seoul (Korea, Republic of)

    2012-03-15

    1-(diphenyl-phosphinoyl)-4-(2,2-diphenyl-vinyl)-benzene (DpDvB) and 4-(diphenyl-phosphinoyl)-4'-(2,2-diphenyl-vinyl)-biphenyl (DpDvBp) have been prepared and used as efficient electron injection layers (EILs) between aluminum cathode and tris (8-hydroxyquinoline) aluminum organic light emitting diodes (OLED). The performances of devices with different thicknesses of DpDvB and DpDvBp were investigated. Experimental results show that the turn-on voltage of the devices was decreased and the luminance of the devices was enhanced with increasing thickness of the EILs. Power efficiencies of 1.07 lm/W and 0.97 lm/W were obtained by inserting a 3-nm-thick EIL of DpDvB and a 5 nm thick EIL of DpDvBp, respectively. These efficiencies are comparable to that of the device using LiF as an EIL. The results prove that DpDvB and DpDvBp layers are also suitable for efficient EILs in OLEDs.

  4. Comparison of organic light emitting diodes with different mixed layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Y.Y.; Siew, W.O. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tou, T.Y., E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2014-11-03

    A mixed-source thermal evaporation method was used to fabricate organic light emitting diodes (OLEDs) with uniformly mixed (UM), continuously graded mixed (CGM) and step-wise graded, mixed (SGM) light-emitting layers. N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine and Tris-(8-hydroxyquinoline)aluminum were used, respectively, as the hole- and electron-transport materials. As compared to the conventional, heterojunction OLED, the maximum brightness of UM-, CGM- and SGM-OLEDs without charge injection layers were improved by 2.2, 3.8 and 2.1 times, respectively, while the maximum power efficiencies improved by 1.5, 3.2 and 1.9 times. These improvements were discussed in terms of more distributed recombination zone and removal of interfacial barrier. - Highlights: • Fabrication of OLEDs using a mixed-source evaporation technique • Three different types of mixed-host OLEDs with better brightness • Improved electroluminescence and power efficiencies as compared to conventional OLED.

  5. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    International Nuclear Information System (INIS)

    Fei-Peng, Chen; Bin, Xu; Wen-Jing, Tian; Zu-Jin, Zhao; Ping, Lü; Chan, Im

    2010-01-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq 3 )/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m 2 . The investigation reveals that the white light is composed of a blue–green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films

  6. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    Science.gov (United States)

    Chen, Fei-Peng; Xu, Bin; Zhao, Zu-Jin; Tian, Wen-Jing; Lü, Ping; Im, Chan

    2010-03-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m2. The investigation reveals that the white light is composed of a blue-green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.

  7. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.

    Science.gov (United States)

    Zhong, Z Y; Jiang, Y D

    2006-10-15

    In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.

  8. Study of electrical fatigue by defect engineering in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Gassmann, Andrea; Yampolskii, Sergey V.; Klein, Andreas; Albe, Karsten; Vilbrandt, Nicole; Pekkola, Oili; Genenko, Yuri A.; Rehahn, Matthias; Seggern, Heinz von

    2015-01-01

    Graphical abstract: - Highlights: • Electrical fatigue is investigated in PPV-based polymer light-emitting diodes. • Bromide defects remaining from Gilch synthesis limit PLED lifetime. • Electrical stress yields lower hole mobility and transition to dispersive transport. • Triplet excitons reduce lifetime and EL-emission-induced degradation observed. • Self-consistent drift-diffusion model for charge carrier injection and transport. - Abstract: In this work the current knowledge on the electrical degradation of polymer-based light-emitting diodes is reviewed focusing especially on derivatives of poly(p-phenylene-vinylene) (PPV). The electrical degradation will be referred to as electrical fatigue and is understood as mechanisms, phenomena and material properties that change during continuous operation of the device at constant current. The focus of this review lies especially on the effect of chemical synthesis on the transport properties of the organic semiconductor and the device lifetimes. In addition, the prominent transparent conductive oxide indium tin oxide as well as In 2 O 3 will be reviewed and how their properties can be altered by the processing conditions. The experiments are accompanied by theoretical modeling shining light on how the change of injection barriers, charge carrier mobility or trap density influence the current–voltage characteristics of the diodes and on how and which defects form in transparent conductive oxides used as anode

  9. Solution-processed white organic light-emitting devices based on small-molecule materials

    International Nuclear Information System (INIS)

    Wang Dongdong; Wu Zhaoxin; Zhang Xinwen; Wang Dawei; Hou Xun

    2010-01-01

    We investigated solution-processed films of 4,4'-bis(2,2-diphenylvinyl)-1,1'-bibenyl (DPVBi) and its blends with N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m 2 , a maximum luminance of 22500 cd/m 2 , and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.

  10. In silico evaluation of highly efficient organic light-emitting materials

    Science.gov (United States)

    Kwak, H. Shaun; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang; Gavartin, Jacob; Dixon, Steve; Halls, Mathew D.

    2016-09-01

    Design and development of highly efficient organic and organometallic dopants is one of the central challenges in the organic light-emitting diodes (OLEDs) technology. Recent advances in the computational materials science have made it possible to apply computer-aided evaluation and screening framework directly to the design space of organic lightemitting diodes (OLEDs). In this work, we will showcase two major components of the latest in silico framework for development of organometallic phosphorescent dopants - (1) rapid screening of dopants by machine-learned quantum mechanical models and (2) phosphorescence lifetime predictions with spin-orbit coupled calculations (SOC-TDDFT). The combined work of virtual screening and evaluation would significantly widen the design space for highly efficient phosphorescent dopants with unbiased measures to evaluate performance of the materials from first principles.

  11. Influence of evaporation conditions of Alq3 on the performance of organic light emitting diodes

    International Nuclear Information System (INIS)

    Zhang Fujun; Xu Zheng; Zhao Dewei; Zhao Suling; Jiang Weiwei; Yuan Guangcai; Song Dandan; Wang Yongsheng; Xu Xurong

    2007-01-01

    The influence of evaporation conditions of organic semiconductor material tris(8-hydroxyquinoline)aluminium (Alq 3 ) on the performance of organic light emitting diodes (OLEDs) is reported. In the process of organic material thermal evaporation, the chamber was dark or had white light from a 100 W filament lamp. The devices prepared in the dark show higher emission intensity and efficiency compared with the ones prepared in white light under the same driving voltage. Atomic force microscopy measurements show that surface morphology and phase of Alq 3 thin films are quite different for the previous cases. The different evaporation conditions are found to have direct effects on the electrical and luminance performance. The Alq 3 thin films prepared in the dark as active emission layers of OLEDs show higher intensity and efficiency

  12. Evaluation of inorganic and organic light-emitting diode displays for signage application

    Science.gov (United States)

    Sharma, Pratibha; Kwok, Harry

    2006-08-01

    High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the

  13. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  14. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

    Science.gov (United States)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  15. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Aziz, Hany

    2014-01-01

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10 5  cd/m 2 is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  16. Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping

    International Nuclear Information System (INIS)

    Li Dawen; Guo, L Jay

    2008-01-01

    To fully realize the advantages of organic flexible electronics, patterning is very important. In this paper we show that a purely additive patterning technique, termed polymer inking and stamping, can be used to pattern conductive polymer PEDOT and fabricate sub-micron channel length organic thin film transistors. In addition, we applied the technique to transfer a stack of metal/conjugated polymer in one step and fabricated working polymer light-emitting devices. Based on the polymer inking and stamping technique, a roll-to-roll printing for high throughput fabrication has been demonstrated. We investigated and explained the mechanism of this process based on the interfacial energy consideration and by using the finite element analysis. This technique can be further extended to transfer more complex stacked layer structures, which may benefit the research on patterning on flexible substrates

  17. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10{sup 5} cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  18. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  19. Numerical study on electronic and optical properties of organic light emitting diodes.

    Science.gov (United States)

    Kim, Kwangsik; Hwang, Youngwook; Won, Taeyoung

    2013-08-01

    In this paper, we present a finite element method (FEM) study of space charge effects in organic light emitting diodes. Our model includes a Gaussian density of states to account for the energetic disorder in organic semiconductors and the Fermi-Dirac statistics to account for the charge hopping process between uncorrelated sites. The physical model cover all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillating and thus embodied as excitons and embedded in a stack of multilayer. The out-coupled emission spectrum has been numerically calculated as a function of viewing angle, polarization, and dipole orientation. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution.

  20. Disentangling degradation and auto-recovery of luminescence in Alq3 based organic light emitting diodes

    International Nuclear Information System (INIS)

    Rao, K. Sudheendra; Mohapatra, Y.N.

    2014-01-01

    Organic semiconductor devices and materials have matured sufficiently to be limited by intrinsic degradation processes which are as yet not understood well. We use high quality Alq 3 based organic light emitting diodes to study the rate processes involved in degradation due to electrical stressing and its auto-recovery. The method involves interspersing degradation due to electrical pulsing with variable relaxation windows to monitor time evolution of loss and recovery of luminescence. The corresponding rate processes for permanent and auto-recoverable degradation is discussed on the basis of charging and discharging of traps, and a phenomenological model based on metastability in configuration-coordinate diagram is proposed. -- Highlights: • Luminescence degradation of high quality Alq 3 based OLED device. • Auto-recovery of luminance as function of relaxation time is exponential. • Individual rates of permanent, recoverable and relaxation process measured. • A Phenomenological model based on metastable state in configuration-coordinate

  1. Characteristic Evaluation of Organic Light-Emitting Diodes Prepared with Stamp Printing Technique

    Directory of Open Access Journals (Sweden)

    Apisit Chittawanij

    2017-01-01

    Full Text Available We have reported on a stamp printing technique that uses PET release film as a printing stamp to deposit TPBi thin film served as the electron transport layer of the organic light-emitting diodes. TPBi thin film was printed with a good uniformity and resolution. Effect of deposition conditions on optical and electrical properties and surface roughness of TPBi thin film have been studied under spectroscopy and atomic force microscopy, respectively. It is found that characteristic of TPBi thin film is improved via controlled stamp temperature and time. Since TPBi thin film exhibits the surface morphology comparable to that of conventional spin-coating thin film, our findings suggest that PET release film-based stamp printing approach is possible to use as an alternative deposition of the organic thin film as compared with a traditional one.

  2. Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes

    International Nuclear Information System (INIS)

    Shin, Hee Young; Suh, Min Chul

    2014-01-01

    Graphical abstract: - Highlights: • The TOF-SIMS analysis to investigate cathode diffusion during evaporation process. • Performance change of OLEDs prepared with different evaporation rate of Al cathode. • Change of electron transport behavior during thermal evaporation process. - Abstract: The relationship between the thermal evaporation rate of Al cathodes and the device performance of organic light-emitting diodes (OLEDs) was investigated to clarify the source of leakage current. Time-of-flight secondary ion mass spectrometry was applied to identify the diffusion of Li and Al fragments into the underlying organic layer during the thermal evaporation process. We prepared various OLEDs by varying the evaporation rates of the Al cathode to investigate different device performance. Interestingly, the leakage current level decreased when the evaporation rate reached ∼25 Å/s. In contrast, the best efficiency and operational lifetime was obtained when the evaporation rate was 5 Å/s

  3. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang Qi; Zhang Hao; Xu Tao; Wei Bin; Zhang Xiao-Wen

    2015-01-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. (paper)

  4. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    Science.gov (United States)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  5. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    Science.gov (United States)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  6. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    Science.gov (United States)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  7. Tandem white organic light-emitting diodes adopting a C60:rubrene charge generation layer

    International Nuclear Information System (INIS)

    Bi Wen-Tao; Wu Xiao-Ming; Hua Yu-Lin; Sun Jin-E; Xiao Zhi-Hui; Wang Li; Yin Shou-Gen

    2014-01-01

    Organic bulk heterojunction fullerence (C 60 ) doped 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) as the high quality charge generation layer (CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes (OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of (0.40, 0.35) at 100 cd/m 2 and (0.36, 0.34) at 1000 cd/m 2 have been demonstrated by employing the developed CGL, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  9. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  10. Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays.

    Science.gov (United States)

    Choi, Seungyeop; Kwon, Seonil; Kim, Hyuncheol; Kim, Woohyun; Kwon, Jung Hyun; Lim, Myung Sub; Lee, Ho Seung; Choi, Kyung Cheol

    2017-07-25

    Recently, the role of clothing has evolved from merely body protection, maintaining the body temperature, and fashion, to advanced functions such as various types of information delivery, communication, and even augmented reality. With a wireless internet connection, the integration of circuits and sensors, and a portable power supply, clothes become a novel electronic device. Currently, the information display is the most intuitive interface using visualized communication methods and the simultaneous concurrent processing of inputs and outputs between a wearer and functional clothes. The important aspect in this case is to maintain the characteristic softness of the fabrics even when electronic devices are added to the flexible clothes. Silicone-based light-emitting diode (LED) jackets, shirts, and stage costumes have started to appear, but the intrinsic stiffness of inorganic semiconductors causes wearers to feel discomfort; thus, it is difficult to use such devices for everyday purposes. To address this problem, a method of fabricating a thin and flexible emitting fabric utilizing organic light-emitting diodes (OLEDs) was developed in this work. Its flexibility was evaluated, and an analysis of its mechanical bending characteristics and tests of its long-term reliability were carried out.

  11. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    Science.gov (United States)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  12. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism

    NARCIS (Netherlands)

    Santato, C.; Capelli, R.; Loi, M.A.; Murgia, M.; Cicoira, F.; Roy, Arunesh; Stallinga, P; Zamboni, R.; Rost, C.; Karg, S.F.; Muccini, M.

    2004-01-01

    Optoelectronic properties of light-emitting field-effect transistors (LETs) fabricated on bottom-contact transistor structures using a tetracene film as charge-transport and light-emitting material are investigated. Electroluminescence generation and transistor current are correlated, and the bias

  13. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yong, Thian Khok; Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2010-01-01

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO 3 :HCl:H 2 O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq 3 )/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  14. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    Science.gov (United States)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  15. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  16. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  17. Evaluation of an organic light-emitting diode display for precise visual stimulation.

    Science.gov (United States)

    Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji

    2013-06-11

    A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception.

  18. Host-free, yellow phosphorescent material in white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng, E-mail: osolomio.ac89g@nctu.edu.t [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan 310 (China)

    2010-11-10

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W{sup -1} at a practical brightness of 1000 cd m{sup -2} with Commission Internationale d'Echariage coordinates (CIE{sub x,y}) of (0.37, 0.47) was achieved. (fast track communication)

  19. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  20. Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Shouzhen; Zhang, Shiming; Zhang, Zhensong; Wu, Yukun; Wang, Peng; Guo, Runda; Chen, Yu; Qu, Dalong; Wu, Qingyang; Zhao, Yi, E-mail: yizhao@jlu.edu.cn; Liu, Shiyong

    2013-11-15

    High power efficiency (PE) p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-ph) based fluorescent blue organic light-emitting diode (OLED) is demonstrated by utilizing intermixed host (IH) structure. The PE outperforms those devices based on single host (SH), mixed host (MH), and double emitting layers (DELs). By further optimizing the intermixed layer, peak PE of the IH device is increased up to 8.7 lm/W (1.7 times higher than conventional SH device), which is the highest value among the DSA-ph based blue device reported so far. -- Highlights: • DSA-ph based blue fluorescent OLEDs are fabricated. • The intermixed host structure is first introduced into the blue devices. • Blue device with the highest power efficiency based on DSA-ph is obtained.

  1. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

    KAUST Repository

    Zou, Jianping

    2015-06-29

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.

  2. Study of organic light emitting devices (OLEDs) with optimal emission efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple 12, Faculty of EHS, Charles Darwin University, Darwin, NT 0909 (Australia)

    2010-04-15

    The external emission efficiency of organic light emitting devices (OLEDs) is analysed by studying the rate of spontaneous emission of both singlet and triplet excitons and their corresponding radiative lifetimes. Rates of spontaneous emissions are calculated from the first order perturbation theory using the newly discovered time-dependent spin-orbit-exciton-photon interaction operator as the perturbation operator. It is clearly shown how the new interaction operator is responsible for attracting triplet excitons to a phosphor (heavy metal atom) and then it flips the spins to a singlet configuration. Thus, the spin forbidden transition becomes spin allowed. Calculated rates agree with the experimental results qualitatively. Results are of general interests for OLED studies. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Flexible organic light-emitting diodes consisting of a platinum doped indium tin oxide anode

    International Nuclear Information System (INIS)

    Hsu, C-M; Huang, C-Y; Cheng, H-E; Wu, W-T

    2009-01-01

    This paper demonstrates that a flexible organic light-emitting diode (OLED) with a platinum (Pt)-doped indium tin oxide (ITO) anode could show superior electro-optical characteristics to those of a conventional device. The threshold voltage and turn-on voltage of an OLED device consisting of an aluminium/lithium fluoride/tris(8-hydroxyquinoline) aluminium/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine/Pt-doped ITO/ITO structure were reduced by 1.2 V and 0.8 V, respectively. Current efficiency was found improved for a driving voltage of less than 6.5 V as a result of the enhanced hole-injection rate, attributed mainly to the elevated surface work function and partly reduced surface roughness of ITO by the incorporated Pt atoms in the ITO matrix.

  4. Efficient red phosphorescent organic light emitting diodes with double emission layers

    International Nuclear Information System (INIS)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G

    2008-01-01

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A -1 at 10 mA cm -2 is achieved in the D-EML device compared with 3.7 cd A -1 in the single-EML device

  5. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    International Nuclear Information System (INIS)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Chin, Byung Doo

    2007-01-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad(TM) of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O 3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process

  6. Study of thermal degradation of organic light emitting device structures by X-ray scattering

    International Nuclear Information System (INIS)

    Lee, Young-Joo; Lee, Heeju; Byun, Youngsuk; Song, Sanghoon; Kim, Je-Eun; Eom, Daeyong; Cha, Wonsuk; Park, Seong-Sik; Kim, Jinwoo; Kim, Hyunjung

    2007-01-01

    We report the process of thermal degradation of organic light emitting devices (OLEDs) having multilayered structure of [LiF/tris-(8-hydroxyquinoline) aluminum(Alq 3 )/N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB)/copper phthalocyanine (CuPc)/indium tin oxide (ITO)/SiO 2 on a glass] by synchrotron X-ray scattering. The results show that the thermally induced degradation process of OLED multilayers has undergone several evolutions due to thermal expansion of NPB, intermixing between NPB, Alq 3 , and LiF layers, dewetting of NPB on CuPc, and crystallization of NPB and Alq 3 depending on the annealing temperature. The crystallization of NPB appears at 180 deg. C, much higher temperature than the glass transition temperature (T g = 96 deg. C) of NPB. The results are also compared with the findings from the atomic force microscope (AFM) images

  7. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  8. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Martin, E-mail: martin.weis@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia); Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@ome.pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  9. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Directory of Open Access Journals (Sweden)

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  10. Cold welding of organic light emitting diode: Interfacial and contact models

    Directory of Open Access Journals (Sweden)

    J. Asare

    2016-06-01

    Full Text Available This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs. The effects of impurities (within the possible interfaces are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

  11. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  12. Enhancement and Quenching of Fluorescence by Silver Nanoparticles in Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2013-01-01

    Full Text Available The influence of silver nanoparticles (SNPs on the performance of organic light-emitting diodes (OLEDs is investigated in this study. The SNPs are introduced between the electron-transport layers by means of thermal evaporation. SNPs are found to have the surface plasmon resonance at wavelength 525 nm when the mean particle size of SNPs is 34 nm. The optimized OLED, in terms of the spacing between the emitting layer and SNPs, is found to have the maximum luminance 2.4 times higher than that in the OLED without SNPs. The energy transfer between exciton and surface plasmons with the different spacing distances has been studied.

  13. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    Science.gov (United States)

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.

  14. Hybrid Structure White Organic Light Emitting Diode for Enhanced Efficiency by Varied Doping Rate.

    Science.gov (United States)

    Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-03-01

    Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.

  15. Effects of doping parameters on the CIE value of flexible white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Juang Fuhshyang; Lin Mingyein; Yang Chanyi [Institute of Electro-Optical and Materials Science, National Huwei University of Science and Technology, Huwei, Yunlin (Taiwan); Tsai Yusheng [Department of Electro-Optics Engineering, National Huwei University of Science and Technology, Huwei, Yunlin (Taiwan); Lin, David [Windell Corporation, 1F, No. 9, Kung-Yen 7 Road, Industrial Zone, Taichung (Taiwan); Wang Wentunn; Shen Chaiyuan [Electronics Research and Service Organization, Industrial Technology Research Institute, 195 Chung Hsing Rd., Sec. 4 Chu Tung, Hsin Chu (Taiwan)

    2004-09-01

    Red dopants were doped in different emitters, blue and green, respectively, to fabricate white organic light emitting diodes on flexible substrates. The competitive emission between blue and red emitters with various doped-zones was studied. When the DCJT doped zone was located far away from the hole-injection layer, both the blue and red color can be emitted. An appropriate red-dopant position in the device enhanced the green emission from 8-hydroxyquinoline aluminum (Alq3) which was combined with the red and blue emission to generate a white light. Finally, a white emission with the CIE value, (0.30, 0.32), independent of the applied voltage, was obtained with the optimum doped width and location. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. [Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].

    Science.gov (United States)

    Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju

    2010-10-01

    The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.

  17. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    Energy Technology Data Exchange (ETDEWEB)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  18. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    Science.gov (United States)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  19. Organic Light Emitting Diodes with Opal Photonic Crystal Layer and Carbon Nanotube Anode

    Science.gov (United States)

    Ovalle Robles, Raquel; Del Rocio Nava, Maria; Williams, Christopher; Zhang, Mei; Fang, Shaoli; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2007-03-01

    We report electroluminescence intensity and spectral changes in light emission from organic light emitting diode (OLEDs) structures, which have thin transparent films of opal photonic crystal (PC). The anode in such PC-OLED is laminated on opal layer from free standing optically transparent multiwall carbon nanotubes (T-CNT) sheets made by dry spinning from CVD grown forests. Silica and polystyrene opal films were grown on glass substrates by vertical sedimentation in colloids in thermal baths and the particle size of opal spheres ranges from 300 nm to 450 nm. The use of T-CNTs, (coated by PEDOT-PSS to avoid shorting) as hole injector, allows to eliminate the use of vacuum deposition of metals and permits to achieve tunneling hole injection regime from CNT tips into Alq^3 emission layer

  20. Efficient red phosphorescent organic light emitting diodes with double emission layers

    Energy Technology Data Exchange (ETDEWEB)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G [NNL, National Nanotechnology Laboratory of CNR-INFM, Distretto tecnologico ISUFI, Universita del Salento, Italy, Via per Arnesano, Km.5, 73100 Lecce (Italy)], E-mail: mohamed.benkhalifa@unile.it

    2008-08-07

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A{sup -1} at 10 mA cm{sup -2} is achieved in the D-EML device compared with 3.7 cd A{sup -1} in the single-EML device.

  1. Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display

    KAUST Repository

    Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing

    2015-01-01

    Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.

  2. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Thian Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway)

    2010-12-15

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO{sub 3}:HCl:H{sub 2}O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq{sub 3})/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  3. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  4. White emission from organic light-emitting diodes with a super-thin BCP layer

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jingang [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng Zhenbo [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zbdeng@center.njtu.edu.cn; Yang Shengyi [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2007-01-15

    We report a method to achieve white emission from organic light-emitting diodes (OLEDs) in which a super-thin (3 nm) hole blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), was inserted between electron-transport layer 8-hydroxyquinoline aluminum (Alq{sub 3}) and 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) doped poly-vinlycarbazole (PVK) layer. The BCP layer can not only confine exciton in the emitting layer but also control energy transfer proportion from PVK to Alq{sub 3} and then from Alq{sub 3} to DCJTB through BCP layer. In this way, pure white emission with CIE coordinate of (0.32, 0.32) was obtained and it was voltage independent. The brightness reached 270 cd/m{sup 2} at 18 V with an efficiency of 0.166 cd/A.

  5. Improved efficiency of organic light-emitting diodes based on a europium complex by fluorescent dye

    Energy Technology Data Exchange (ETDEWEB)

    You Han [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Fang Junfeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Gao Jia [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: mdg1014@ciac.jl.cn

    2007-01-15

    Improved efficiency of organic light-emitting diodes (OLEDs) based on europium complexes have been realized by using a fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl))-4H-pyran (DCJTB) doping .The luminous efficiency of the devices with a fluorescent dye in the emissive layer was found to improve two times of that in devices without fluorescent dye. The devices showed pure red light, which is the characteristic emission of trivalent europium ion with a full-width at half-maximum of 3 nm.The maximum brightness and luminous efficiency reached 1200 cd/m{sup 2} at 23 V and 7.3 cd/A (2.0 lm/w), respectively, at a current density of 0.35 mA/cm{sup 2}.

  6. Improved outcoupling of light in organic light emitting devices, utilizing a holographic DFB-structure

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany)]. E-mail: nils.reinke@physik.uni-augsburg.de; Fuhrmann, Thomas [Macromolecular Chemistry and Molecular Materials, University of Kassel (Germany); Perschke, Alexandra [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany); Franke, Hilmar [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany)

    2004-12-10

    In this work organic light emitting devices (OLEDs) were fabricated implementing gratings, in order to extract waveguided electroluminescence (EL). The gratings were recorded by exposing thin films of the molecular azo glass N, N'-bis (4-phenyl)-N, N'-bis [(4-phenylazo)-phenyl] benzidine (AZOPD) to holographic light patterns. The photopatterned AZOPD serves as hole transport material for devices with aluminum-tris(8-hydroxyquinoline) doped with 1% of 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (Alq{sub 3}:DCM) as emissive/electron transport layer. The corrugated devices showed enhanced emission in the forward direction. The emitted light is polarized preferably parallel to the grating lines. In addition, we have found a doubling in the total luminance with respect to the unstructured device.

  7. An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo

    2017-11-01

    The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.

  8. Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts

    Science.gov (United States)

    Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany

    2014-10-01

    Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.

  9. Light emission mechanism of mixed host organic light-emitting diodes

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  10. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    Science.gov (United States)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  11. Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties

    Directory of Open Access Journals (Sweden)

    Frédéric Dumur

    2018-03-01

    Full Text Available In this study, a phthalimide-based fluorescent material has been examined as a green emitter for multilayered organic light-emitting diodes (OLEDs. By optimizing the device stacking, a maximum brightness of 28,450 cd/m2 at 11.0 V and a maximum external quantum efficiency of 3.11% could be obtained. Interestingly, OLEDs fabricated with Fluo-2 presented a 20-fold current efficiency improvement compared to the previous results reported in the literature, evidencing the crucial role of the device stacking in the electroluminescence (EL performance of a selected emitter. Device lifetime was also examined and an operational stability comparable to that reported for a standard triplet emitter i.e., bis(4-methyl-2,5-diphenyl-pyridineiridium(III acetylacetonate [(mdppy2Iracac] was evidenced.

  12. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    Science.gov (United States)

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  13. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    Science.gov (United States)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  14. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  15. Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications.

    Science.gov (United States)

    Page, Zachariah A; Narupai, Benjaporn; Pester, Christian W; Bou Zerdan, Raghida; Sokolov, Anatoliy; Laitar, David S; Mukhopadhyay, Sukrit; Sprague, Scott; McGrath, Alaina J; Kramer, John W; Trefonas, Peter; Hawker, Craig J

    2017-06-28

    A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure. The scope of the presented procedure enables the synthesis of a library of polymers with emissive colors spanning the visible spectrum where the dopant incorporation, position of brush growth, and brush thickness are readily controlled. The chain-ends of the polymer brushes remain intact, affording subsequent chain extension and formation of well-defined diblock architectures. This high level of structure and function control allows for the facile preparation of random ternary copolymers and red-green-blue arrays to yield white emission.

  16. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  17. White emission from organic light-emitting diodes with a super-thin BCP layer

    International Nuclear Information System (INIS)

    Hao Jingang; Deng Zhenbo; Yang Shengyi

    2007-01-01

    We report a method to achieve white emission from organic light-emitting diodes (OLEDs) in which a super-thin (3 nm) hole blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), was inserted between electron-transport layer 8-hydroxyquinoline aluminum (Alq 3 ) and 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) doped poly-vinlycarbazole (PVK) layer. The BCP layer can not only confine exciton in the emitting layer but also control energy transfer proportion from PVK to Alq 3 and then from Alq 3 to DCJTB through BCP layer. In this way, pure white emission with CIE coordinate of (0.32, 0.32) was obtained and it was voltage independent. The brightness reached 270 cd/m 2 at 18 V with an efficiency of 0.166 cd/A

  18. Cyclometalated Iridium(III) Carbene Phosphors for Highly Efficient Blue Organic Light-Emitting Diodes.

    Science.gov (United States)

    Chen, Zhao; Wang, Liqi; Su, Sikai; Zheng, Xingyu; Zhu, Nianyong; Ho, Cheuk-Lam; Chen, Shuming; Wong, Wai-Yeung

    2017-11-22

    Five deep blue carbene-based iridium(III) phosphors were synthesized and characterized. Interestingly, one of them can be fabricated into deep blue, sky blue and white organic light-emitting diodes (OLEDs) through changing the host materials and exciton blocking layers. These deep and sky blue devices exhibit Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.186) and (0.152, 0.277) with external quantum efficiency (EQE) of 15.2% and 9.6%, respectively. The EQE of the deep blue device can be further improved up to 19.0% by choosing a host with suitable energy level of its lowest unoccupied molecular orbital (LUMO).

  19. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    Science.gov (United States)

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  20. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    Science.gov (United States)

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence

    Directory of Open Access Journals (Sweden)

    Peng Xiao

    2018-02-01

    Full Text Available Recently, thermally activated delayed fluorescence (TADF organic light-emitting diodes (OLEDs have attracted both academic and industrial interest due to their extraordinary characteristics, such as high efficiency, low driving voltage, bright luminance, lower power consumption and potentially long lifetime. In this invited review, the fundamental concepts of TADF have been firstly introduced. Then, main approaches to realize WOLEDs based on TADF have been summarized. More specifically, the recent development of WOLEDs based on all TADF emitters, WOLEDs based on TADF and conventional fluorescence emitters, hybrid WOLEDs based on blue TADF and phosphorescence emitters and WOLEDs based on TADF exciplex host and phosphorescence dopants is highlighted. In particular, design strategies, device structures, working mechanisms and electroluminescent processes of the representative WOLEDs based on TADF are reviewed. Finally, challenges and opportunities for further enhancement of the performance of WOLEDs based on TADF are presented.

  2. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    Science.gov (United States)

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  3. Hybrid p-n junction light-emitting diodes based on sputtered ZnO and organic semiconductors

    International Nuclear Information System (INIS)

    Na, Jong H.; Kitamura, M.; Arita, M.; Arakawa, Y.

    2009-01-01

    We fabricated light-emitting hybrid p-n junction devices using low temperature deposited ZnO and organic films, in which the ZnO and the organic films served as the n- and p-type component, respectively. The devices have a rectification factor as high as ∼10 3 and a current density greater than 2 A/cm 2 . Electroluminescence of the hybrid device shows the mixture of the emission bands arising from radiative charge recombination in organic and ZnO. The substantial device properties could provide various opportunities for low cost and large area multicolor light-emitting sources.

  4. Three-peak standard white organic light-emitting devices for solid-state lighting

    Science.gov (United States)

    Guo, Kunping; Wei, Bin

    2014-12-01

    Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).

  5. An evaluation of organic light emitting diode monitors for medical applications: great timing, but luminance artifacts.

    Science.gov (United States)

    Elze, Tobias; Taylor, Christopher; Bex, Peter J

    2013-09-01

    In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors' main findings with another SONY OLED device (PVM2541). Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m(2), but in FS the luminance of white saturated at 162 cd/m(2). Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe perceptually relevant artifacts with

  6. Improvement of white organic light emitting diode performances by an annealing process

    International Nuclear Information System (INIS)

    Sepeai, Suhaila; Salleh, Muhamad Mat; Yahaya, Muhammad; Umar, Akrajas Ali

    2009-01-01

    White organic light emitting diode (OLED) devices with the structure ITO/PHF:rubrene/Al, in which PHF (poly(9,9-di-n-hexylfluorenyl-2,7-diyl)) is used as blue light emitting host and rubrene (5,6,11,12-tetraphenylnapthacene) as an orange dye dopant, have been fabricated. Indium tin oxide (ITO) coated-glass and aluminium were used as anode and cathode, respectively. The devices were fabricated with various rubrene-dopant to obtain a white light emission. The OLED device that composed of several concentrations of rubrene-doped PHF film was prepared in this study. It was found that the concentration of rubrene in the PHF-rubrene thin film matrix plays a key role in producing the white color emission. In a typical result, the device composed of 0.06 wt.% rubrene-dopant produced the white light emission with the Commission Internationale de L'Eclairage (CIE) coordinate of (0.30,0.33). The turn-on voltage and the brightness were found to be as low as 14.0 V and as high as 6540 cd/m 2 , respectively. The annealing technique at relatively low temperature (50 o C, 100 o C, and 150 o C) was then used to optimize the performance of the device. In a typical result, the turn-on voltage of the device could be successfully reduced and the brightness could be increased using the annealing technique. At an optimum condition, for example, annealed at 150 o C, the turn-on voltage as low as 8.0 V and the brightness as high as 9040 cd/m 2 were obtained. The mechanism for the improvement of the device performance upon annealing will be discussed.

  7. Improvement of white organic light emitting diode performances by an annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Sepeai, Suhaila, E-mail: suhaila_sepeai@yahoo.co [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor (Malaysia); Salleh, Muhamad Mat, E-mail: mms@pkrisc.cc.ukm.m [Institute Of Microengineering And Nanoelectronic, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor (Malaysia); Yahaya, Muhammad; Umar, Akrajas Ali [Institute Of Microengineering And Nanoelectronic, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor (Malaysia)

    2009-06-30

    White organic light emitting diode (OLED) devices with the structure ITO/PHF:rubrene/Al, in which PHF (poly(9,9-di-n-hexylfluorenyl-2,7-diyl)) is used as blue light emitting host and rubrene (5,6,11,12-tetraphenylnapthacene) as an orange dye dopant, have been fabricated. Indium tin oxide (ITO) coated-glass and aluminium were used as anode and cathode, respectively. The devices were fabricated with various rubrene-dopant to obtain a white light emission. The OLED device that composed of several concentrations of rubrene-doped PHF film was prepared in this study. It was found that the concentration of rubrene in the PHF-rubrene thin film matrix plays a key role in producing the white color emission. In a typical result, the device composed of 0.06 wt.% rubrene-dopant produced the white light emission with the Commission Internationale de L'Eclairage (CIE) coordinate of (0.30,0.33). The turn-on voltage and the brightness were found to be as low as 14.0 V and as high as 6540 cd/m{sup 2}, respectively. The annealing technique at relatively low temperature (50 {sup o}C, 100 {sup o}C, and 150 {sup o}C) was then used to optimize the performance of the device. In a typical result, the turn-on voltage of the device could be successfully reduced and the brightness could be increased using the annealing technique. At an optimum condition, for example, annealed at 150 {sup o}C, the turn-on voltage as low as 8.0 V and the brightness as high as 9040 cd/m{sup 2} were obtained. The mechanism for the improvement of the device performance upon annealing will be discussed.

  8. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  9. Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@dankook.ac.k

    2010-11-01

    The quantum efficiency of blue fluorescent organic light-emitting diodes was enhanced by 20% using a pyridine substituted spirofluorene-benzofluorene derivative as an electron transport material. 2',7'-Di(pyridin-3-yl)spiro[benzofluorene-7,9'-fluorene] (SPBP) was synthesized and it was used as the electron transport material to block the hole leakage from the emitting layer. The improvement of the quantum efficiency and power efficiency of the blue fluorescent organic light-emitting diodes using the SPBP was investigated.

  10. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    International Nuclear Information System (INIS)

    Bruckbauer, Jochen; Brasser, Catherine; Edwards, Paul R; Martin, Robert W; Findlay, Neil J; Skabara, Peter J; Wallis, David J

    2016-01-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs. (paper)

  11. Photolithography-free fabrication of organic light-emitting diodes for lighting applications

    International Nuclear Information System (INIS)

    Seo, I H; Shin, D C; Park, J W

    2013-01-01

    We investigate the photolithography-free fabrication of organic light-emitting diodes (OLEDs) for lighting applications with an attempt to embed the deposition and patterning process of an indium–tin–oxide (ITO) anode and insulating layer into an in-line-type organic evaporation system. This scheme inevitably brings in leakage current induced by the spike-like surface of ITO. To suppress it, we cover the ITO edges with three different insulation materials (i.e. sputter-deposited inorganic Al 2 O 3 thin film, monomer (polymer) thin film deposited by organic acrylate evaporation or thermally evaporated organic insulation layer (tris-(8-hydroxyquinoline) aluminum (Alq 3 ))). Although small-molecule organic insulation materials that can be thermally evaporated are the most suitable for such a cost-effective fabrication process, yet their insulation capability is low due to the carrier transporting property. In this paper, we demonstrate that it can be boosted to a great extent with an increase of their thickness. It is likely that pinholes existing on the Al 2 O 3 thin film act as leak channels, degrading the device performance. We also verify that the insulation capability of polymer fabricated by organic acrylate evaporation is just comparable with that of polyimide (PI) insulator patterned using a standard photolithography process. (paper)

  12. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes

    Science.gov (United States)

    Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo

    2017-11-01

    Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.

  13. Manipulating the Local Light Emission in Organic Light-Emitting Diodes by using Patterned Self-Assembled Monolayers

    NARCIS (Netherlands)

    Mathijssen, S.G.J.; Hal, P.A. van; Biggelaar, T.J.M. van den; Smits, E.C.P.; Boer, B. de; Kemerink, M.; Janssen, R.A.J.; Leeuw, D.M. de

    2008-01-01

    In organic light-emitting diodes (OLEDs), interface dipoles play an important role in the process of charge injection from the metallic electrode into the active organic layer.[1,2] An oriented dipole layer changes the effective work function of the electrode because of its internal electric field.

  14. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  15. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Energy Technology Data Exchange (ETDEWEB)

    He, Kongduo [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Liu, Yang [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Liang, Rongqing [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Ou, Qiongrong, E-mail: qrou@fudan.edu.cn [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China)

    2016-09-30

    Highlights: • Mixed acetylene and Ar plasma treatment makes the organic film surface cross-linked. • The plasma treatment for 30 s does not affect the performance of OLEDs. • Cross-linking surface can resist rinsing and corrosion of organic solvent. • The surface morphology is nearly unchanged after plasma treatment. • The plasma cross-linking method can realize solution processed multilayer OLEDs. - Abstract: Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  16. Systematic investigation of the effects of organic film structure on light emitting diode performance

    Science.gov (United States)

    Joswick, M. D.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1996-09-01

    We present a systematic investigation of the effects of organic film structure on light emitting diode (LED) performance. Metal/organic film/metal LEDs were fabricated using a five ring, poly(phenylene vinylene) related oligomer as the active layer. The structure of the vacuum evaporated oligomer films was varied from amorphous to polycrystalline by changing the substrate temperature during deposition. The intrinsic properties of the oligomer films and the LED performance were measured. The measured intrinsic film properties include: optical absorption, photoluminescence (PL) spectra, PL lifetime, PL efficiency, and effective carrier mobility. The measured device characteristics include current-voltage, capacitance-voltage, electroluminescence (EL) efficiency, and the contact metal/organic film Schottky barrier heights. The optical absorption and PL properties of the films are weakly dependent on film structure but the effective carrier mobility decreases with increasing crystallinity. The EL quantum efficiency decreases by more than one order of magnitude, the drive voltage at a fixed current increases, and the electron Schottky barrier height increases as the crystallinity of the film is increased. The diode current-voltage characteristic is determined by the dominant hole current and the electroluminescence efficiency is controlled by the contact limited electron injection. These results demonstrate significant effects of organic film structure on the performance of organic LEDs.

  17. Systematic investigation of the effects of organic film structure on light emitting diode performance

    Energy Technology Data Exchange (ETDEWEB)

    Joswick, M.D.; Campbell, I.H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1996-09-01

    We present a systematic investigation of the effects of organic film structure on light emitting diode (LED) performance. Metal/organic film/metal LEDs were fabricated using a five ring, poly(phenylene vinylene) related oligomer as the active layer. The structure of the vacuum evaporated oligomer films was varied from amorphous to polycrystalline by changing the substrate temperature during deposition. The intrinsic properties of the oligomer films and the LED performance were measured. The measured intrinsic film properties include: optical absorption, photoluminescence (PL) spectra, PL lifetime, PL efficiency, and effective carrier mobility. The measured device characteristics include current{endash}voltage, capacitance{endash}voltage, electroluminescence (EL) efficiency, and the contact metal/organic film Schottky barrier heights. The optical absorption and PL properties of the films are weakly dependent on film structure but the effective carrier mobility decreases with increasing crystallinity. The EL quantum efficiency decreases by more than one order of magnitude, the drive voltage at a fixed current increases, and the electron Schottky barrier height increases as the crystallinity of the film is increased. The diode current{endash}voltage characteristic is determined by the dominant hole current and the electroluminescence efficiency is controlled by the contact limited electron injection. These results demonstrate significant effects of organic film structure on the performance of organic LEDs. {copyright} {ital 1996 American Institute of Physics.}

  18. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating

    DEFF Research Database (Denmark)

    Sandstrom, Andreas; Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time-and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication...... of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-mu m-thick active material that is doped in situ during operation. It is notable...

  19. Simple assembling of organic light emitting diodes for teaching purposes in undergraduate labs

    Science.gov (United States)

    Vázquez-Córdova, Sergio; Ramos-Ortiz, Gabriel; Maldonado, José Luis; Meneses-Nava, Marco A.; Barbosa-García, Oracio

    2008-04-01

    Electroluminescent organic molecules and polymers have emerged as advanced materials used to fabricate organic light emitting diodes (OLED's) whose unique technological features could revolutionize the industry of flat panel displays. Although these novel organic materials combine low cost and ease of processing, the OLED's fabrication for educational purposes has been rarely reported. In this work, we report a simple and inexpensive method to fabricate OLED's devices intended for educational purposes in the undergraduate level of physics, chemistry and material sciences. For ease of fabrication the cathode in the diode structure was conformed by either an alloy of Bi-Pb-Cd-Sn or by a Ga-In alloy in liquid phase, or simply by silver paint, whereas we used ITO (Indium tin oxide) deposited on glass substrates as anode. Substrates of flexible plastic were also used. The OLED's were fabricated using the spin-coating technique with solutions of the fluorescent materials Alq3 and MEH:PPV, as well as the phosphorescent complex Ru(bpy)3. We report measurement data on current-voltage curves and luminescence obtained by students fabricating and testing the devices under normal room conditions.

  20. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    International Nuclear Information System (INIS)

    Kwang-Ohk Cheon

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either α-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance

  1. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Huang, Wei; Guo, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wang, Hua, E-mail: wanghua001@tyut.edu.cn [Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology (TYUT), Taiyuan 030024 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-04-15

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C{sub 60}) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C{sub 60}/CuPc, CuPc/C{sub 60} and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C{sub 60}/CuPc showed the highest efficiency. It is revealed that the photovoltaic C{sub 60}/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  2. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Kwang-Ohk [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either α-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  3. Experimental study of the organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Ma, G.L.; Xu, A.G.; Ran, G.Z.; Qiao, Y.P.; Zhang, B.R.; Chen, W.X.; Dai, L.; Qin, G.G.

    2006-01-01

    We have fabricated and studied an organic light emitting diode (OLED) with a p-type silicon anode and a SiO 2 buffer layer between the anode and the organic layers which emits light from a semitransparent top Yb/Au cathode. The luminance of the OLED is up to 5600 cd/m 2 at 17 V and 1800 mA/cm 2 , the current efficiency is 0.31 cd/A. Both its luminance and current efficiency are much higher than those of the OLEDs with silicon as the anodes reported previously. The enhancement of the luminance and efficiency can be attributed to an improved balance between the hole- and electron-injection through two efficient ways: 1) restraining the hole-injection by inserting an ultra-thin SiO 2 buffer layer between the Si anode and the organic layers; and 2) enhancing the electron-injection by using a low work function, low optical reflectance and absorption semitransparent Yb/Au cathode

  4. On the Properties and Design of Organic Light-Emitting Devices

    Science.gov (United States)

    Erickson, Nicholas C.

    Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.

  5. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  6. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    International Nuclear Information System (INIS)

    Zhao, Dan; Huang, Wei; Guo, Hao; Wang, Hua; Yu, Junsheng

    2017-01-01

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C_6_0) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C_6_0/CuPc, CuPc/C_6_0 and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C_6_0/CuPc showed the highest efficiency. It is revealed that the photovoltaic C_6_0/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  7. Similarities and differences of alkali metal chlorides applied in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lü, Zhaoyue; Deng, Zhenbo; Hou, Ying; Xu, Haisheng

    2012-01-01

    The similarities and differences of alkali metal chlorides (sodium chloride (NaCl), potassium chloride (KCl), rubidium chloride (RbCl) and cesium chloride (CsCl)) applied in organic light-emitting diodes (OLEDs) are investigated. The behavior is similar for the OLEDs with these four chlorides as electron injection layer (EIL). Their maximum luminance and efficiency at 100 mA/cm 2 are within the ranges of 18 550 ± 600 (cd/m 2 ) with an error of 3.23% and 4.09 ± 0.15 (cd/A) within an error of 3.67%, respectively. The similar performance is due to almost identical electron injection barrier for NaCl, KCl, RbCl and CsCl as EIL. Interestingly, the properties are different for devices with chlorides inserted inside tris (8-hydroxyquinoline) aluminum at the position of 20 nm away from aluminum cathode, labeled as NaCl-, KCl-, RbCl- and CsCl- devices. The relation of luminance is CsCl- > RbCl- = KCl- > NaCl-, where “>” and “=” mean “better than” and “the same as”, respectively. And the device efficiencies are decreased from CsCl to NaCl. That is, the sort order of the efficiencies is CsCl- > RbCl- > KCl- > NaCl-. The mechanism is explained by tunneling model in terms of various energy gaps estimated by optical electronegativity of NaCl, KCl, RbCl and CsCl. - Highlights: ► Effects of NaCl, KCl, RbCl and CsCl in organic light-emitting diodes are compared. ► The similar performance is due to almost identical electron injection barrier. ► The different behavior of chlorides inside Alq 3 is explained by tunneling model. ► The different behavior is attributed to various energy gaps of different chlorides. ► The efficiency of device with chlorides inside Alq 3 is decreased from CsCl to NaCl.

  8. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    International Nuclear Information System (INIS)

    Sam, F Laurent M; Dabera, G Dinesha M R; Lai, Khue T; Mills, Christopher A; Rozanski, Lynn J; Silva, S Ravi P

    2014-01-01

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m −2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m −2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed. (paper)

  9. Photoemission spectroscopy study on interfacial energy level alignments in tandem organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Qing-Dong; Li, Chi; Li, Yan-Qing, E-mail: yqli@suda.edu.cn; Tang, Jian-Xin, E-mail: jxtang@suda.edu.cn

    2015-10-01

    Highlights: • The interface energetics of tandem OLEDs is overviewed. • Energy level alignment in CGLs is addressed via photoemission spectroscopy. • The n-type doping effect with cesium compounds is discussed. • Hole injection barrier is dependent on oxygen vacancies in transition metal oxides. • Device lifetime of tandem OLEDs is sensitive to interfacial stability of CGLs. - Abstract: Organic light-emitting diodes (OLEDs) using a tandem structure offer a highly attractive option for the applications of next-generation flat panel displays and solid-state lighting due to the extremely high brightness and efficiency along with the long operational lifetime. In general, reliable information about interface energetics of the charge generation layers (CGLs), which plays the central role in charge generation and carrier injection into the stacked emission units, is highly desirable and advantageous for interface engineering and the performance optimization of tandem OLEDs. In this review, our recent studies on tandem OLEDs are overviewed, especially from interface energetics perspective via photoemission spectroscopy. The electronic structures of various transition metal oxide (TMO)-based CGLs and their role in charge generation process are reviewed, addressing the n-type doping impact of organic layers in CGLs, thermal annealing-induced oxygen vacancy in TMOs, and the interfacial stability of CGLs on the device operational lifetime. The resulting energy level alignments are summarized in correspondence with tandem OLED performance.

  10. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  11. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    International Nuclear Information System (INIS)

    Legnani, C.; Vilani, C.; Calil, V.L.; Barud, H.S.; Quirino, W.G.; Achete, C.A.; Ribeiro, S.J.L.; Cremona, M.

    2008-01-01

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10 -4 Ohm cm, 8.08 cm 2 /V-s and - 1.5 x 10 21 cm -3 , respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO 2 thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m 2 as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices

  12. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    Science.gov (United States)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  13. A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes

    Science.gov (United States)

    Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.

    In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.

  14. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    Science.gov (United States)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  15. Study of photophysical processes in organic light-emitting diodes based on light-emission profile reconstruction

    NARCIS (Netherlands)

    Carvelli, M.

    2012-01-01

    Organic light-emitting diodes (OLEDs) are emerging as a promising option for energy-efficient, flexible light sources. A key factor that needs to be measured and controlled is the shape of the emission profile, i.e. the spatial distribution of the emitting excitons across the active layer thickness.

  16. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes

    NARCIS (Netherlands)

    Coehoorn, R.; van Eersel, H.; Bobbert, P.A.; Janssen, R.A.J.

    2015-01-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an

  17. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    NARCIS (Netherlands)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P.A.

    2016-01-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance

  18. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Science.gov (United States)

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  19. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    International Nuclear Information System (INIS)

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  20. Enhancement of organic light-emitting device performances with Hf-doped indium tin oxide anodes

    International Nuclear Information System (INIS)

    Chen, T.-H.; Liou, Y.; Wu, T.J.; Chen, J.Y.

    2004-01-01

    We have enhanced the luminance and the power efficiency of organic light-emitting devices with Hf-doped indium tin oxide (ITO) anodes instead of a CuPc layer. The Hf-doped ITO layer with a thickness of 15 nm was deposited on top of the ITO anode. Less than 10 mol. % of Hf was doped in ITO films by adjusting the sputtering rates of both sources. The highest work function of the Hf-doped ITO layers was 5.4 eV at the Hf concentrations about 10 mol. %. The driving voltages of the device have been reduced by 1 V. A luminance of 1000 cd/m 2 at 7 mA/cm 2 , a current efficiency of 14 cd/A, and a power efficiency of 6 lm/W at 6 mA/cm 2 have been achieved in the device with a 4 mol. % Hf-doped ITO layer (work function=5.2 eV). In general, the performance was about 50% better than the device with a CuPc buffer layer

  1. Experimental analysis of dark frame growth mechanism in organic light-emitting diodes

    Science.gov (United States)

    Minagawa, Masahiro; Tanabe, Takuma; Kondo, Eiki; Kamimura, Kenji; Kimura, Munehiro

    2018-02-01

    Organic light-emitting diodes (OLEDs) were fabricated with heterojunction interfaces and layers that were prepared by cold isostatic pressing (CIP), and the growth characteristics of their non-emission areas, or dark frames (D/Fs), were investigated during storage. We fabricated an OLED with an indium-tin-oxide (ITO)/N,N‧-di(1-naphthyl)-N,N‧-diphenyl-(1,1‧-biphenyl)-4,4‧-diamine (α-NPD)/tris(8-hydroxylquinoline)aluminum (Alq3)/LiF/Al structure without CIP treatment (Device I), as well as OLEDs that were pressed after the deposition of α-NPD (Device II), Alq3 (Device III), and LiF/Al (Device IV) layers. Although Devices I, II, and III showed typical D/F growth characteristics, the D/F growth rate in Device IV was markedly mitigated, indicating that the Alq3/LiF/Al interfaces dominated the D/F growth. Moreover, we found that the electron injection characteristic was poorer in the electron-only device stored after the LiF layer deposition than in that stored before the LiF deposition. Therefore, the decreased electron injection due to storage at the interfaces was attributed to the D/F growth.

  2. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Xu Denghui; Deng Zhenbo; Xu Ying; Xiao Jing; Liang Chunjun; Pei Zhiliang; Sun Chao

    2005-01-01

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar o C in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10 -4 Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm 2

  3. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondragón, Margarita, E-mail: mmondragon@ipn.mx [Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, 02250 México D.F. (Mexico); Moggio, Ivana; León, Arxel de; Arias, Eduardo [Centro de Investigación en Química Aplicada, CIQA, Blvd. Enrique Reyna 140, 25253 Saltillo, Coahuila (Mexico)

    2013-12-15

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM.

  4. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    International Nuclear Information System (INIS)

    Mondragón, Margarita; Moggio, Ivana; León, Arxel de; Arias, Eduardo

    2013-01-01

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM

  5. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ya-Hui; Duan, Yu, E-mail: duanyu@jlu.edu.cn; Wang, Xiao; Yang, Dan; Yang, Yong-Qiang; Chen, Ping; Sun, Feng-Bo; Xue, Kai-Wen; Zhao, Yi

    2015-10-01

    Graphical abstract: - Highlights: • An ultra-smooth AgNW film on a flexible photopolymer substrate has been fabricated. • The AgNW film has a low sheet resistance with high transparency and flexibility. • OLEDs based on AgNW:NOA63 substrate can be bent at a radius of curvature of 2 mm. - Abstract: Materials to replace indium tin oxide (ITO) for high transmittance and electrical conductivity are urgently needed. In this paper, we adopted a silver nanowire (AgNW)-photopolymer (NOA63) film as a new platform for flexible optoelectronic devices. This design combined a transparent electrode and a flexible substrate. We utilized this application to obtain flexible organic light-emitting devices (FOLEDs). A peel-off process combined with a spin-coating process created an ultra-smooth silver nanowire anode on a photopolymer substrate. The performance of the device was achieved via the perfect morphology of the AgNW anode, the optimal 5 mg/ml concentration of AgNW solution, and the 45.7 Ω/□ sheet resistance of the AgNW film. The maximum current efficiency of the FOLED is 13 cd/A with stable mechanical flexibility even when bent to a radius of curvature of 2 mm. The outstanding performance of the FOLED with peeled off AgNW anode shows that this approach is a promising alternative to ITO for FOLEDs.

  6. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China)

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  7. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    International Nuclear Information System (INIS)

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong; Zhang Liying; Li Bin

    2009-01-01

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C 2' )iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C 2 )](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A -1 and a maximum luminance of 39 050 cd m -2 . The power efficiency is 8.7 lm W -1 at 100 cd m -2 . Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m -2 .

  8. The effect of C60 doping on the electroluminescent performance of organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Denghui; Deng Zhenbo; Xiao Jing; Guo Dong; Hao Jingang; Zhang Yuanyuan; Gao Yinhao; Liang Chunjun

    2007-01-01

    Organic light-emitting devices (OLEDs) with the PVK hole transport layer were fabricated. The effect of C 60 doping in the hole transport PVK layer on the performance of the devices was investigated by changing the C 60 content from 0 to 3.0 wt%. The OLEDs had a structure of ITO/PEDOT:PSS/PVK:C 60 (0, 0.5, 1.0, 2.0, 3.0 wt%)/AlQ/LiF/Al. The doping led to a higher conductivity in C 60 -doped PVK layer and the hole mobility of PVK was improved from 4.5x10 -7 to 2.6x10 -6 cm 2 /Vs with the doping concentration of C 60 changing from 0 to 3.0 wt%. Moreover, the doping led to a high density of equilibrium charges carriers, which facilitated hole injection and transport. Doping of C 60 in PVK resulted in efficient hole injection and low drive voltage at high luminance

  9. Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene

    International Nuclear Information System (INIS)

    Zhu, Peifen

    2016-01-01

    The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO 2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect. (paper)

  10. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  11. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  12. Nozzle Printed-PEDOT:PSS for Organic Light Emitting Diodes with Various Dilution Rates of Ethanol

    Directory of Open Access Journals (Sweden)

    Dai Geon Yoon

    2018-01-01

    Full Text Available In this study, we investigated the ink formulation of poly(3,4-ethylenedioxythiophene polystyrene sulfonate (PEDOT:PSS as the hole injection layer (HIL in an organic light emitting diode (OLED structure. Generally, in a PEDOT:PSS solution, water is incorporated in the solution for the solution process. However, the fabrication of thin film which contained the water, main solvent, could not easily form by using printing technology except spin-coating process because of the high surface tension of water. On the other hand, mixing PEDOT:PSS solution and ethanol (EtOH, a dilution solvent, could restrain the non-uniform layer that forms by the high surface tension and low volatility of water. Therefore, we printed a PEDOT:PSS solution with various concentrations of EtOH by using a nozzle printer and obtained a uniform pattern. The line width of PEDOT:PSS diluted with 90% (volume ratio ehtanol was measured as about 4 mm with good uniformity with a 0.1 mm nozzle. Also, imaging software and a scanning electron microscope (SEM were used to measure the uniformity of PEDOT:PSS coated on a substrate. Finally, we fabricated a green phosphorescent OLED device with printed-PEDOT:PSS with specific concentrations of EtOH and we achieved a current efficiency of 27 cd/A with uniform quality of luminance in the case of device containing 90% EtOH.

  13. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2012-06-01

    Full Text Available In this paper, we investigate the carrier injection and transport characteristics in iridium(IIIbis[4,6-(di-fluorophenyl-pyridinato-N,C2']picolinate (FIrpic doped phosphorescent organic light-emitting devices (OLEDs with oxadiazole (OXD as the bipolar host material of the emitting layer (EML. When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD.

  14. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Jäger, Lars; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, Augsburg (Germany); Noguchi, Yutaka [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki (Japan); Center of Frontier Science, Chiba University, Chiba (Japan); Ishii, Hisao [Center of Frontier Science, Chiba University, Chiba (Japan)

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  15. Improvement in Device Performance and Reliability of Organic Light-Emitting Diodes through Deposition Rate Control

    Directory of Open Access Journals (Sweden)

    Shun-Wei Liu

    2014-01-01

    Full Text Available We demonstrated a fabrication technique to reduce the driving voltage, increase the current efficiency, and extend the operating lifetime of an organic light-emitting diode (OLED by simply controlling the deposition rate of bis(10-hydroxybenzo[h]qinolinato beryllium (Bebq2 used as the emitting layer and the electron-transport layer. In our optimized device, 55 nm of Bebq2 was first deposited at a faster deposition rate of 1.3 nm/s, followed by the deposition of a thin Bebq2 (5 nm layer at a slower rate of 0.03 nm/s. The Bebq2 layer with the faster deposition rate exhibited higher photoluminescence efficiency and was suitable for use in light emission. The thin Bebq2 layer with the slower deposition rate was used to modify the interface between the Bebq2 and cathode and hence improve the injection efficiency and lower the driving voltage. The operating lifetime of such a two-step deposition OLED was 1.92 and 4.6 times longer than that of devices with a single deposition rate, that is, 1.3 and 0.03 nm/s cases, respectively.

  16. Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying; Shi, Xiao-Bo; Gao, Chun-Hong; Cai, Shi-Duan; Jin, Yue; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn

    2014-09-30

    Graphical abstract: - Highlights: • A combination of scattering layer and roughened substrate is used for light extraction from OLEDs. • The scattering layer is readily achieved by spin-coating the TiO{sub 2} sol. • The enhancement relying scattering depends on the size of TiO{sub 2} nano particles. • With the light extraction techniques the uniform emission is achieved. - Abstract: A combination of a scattering medium layer and a roughened substrate was proposed to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Comparing with a reference OLED without any scattering layer, 65% improvement in the forward emission has been achieved with a scattering layer formed on an intentionally roughened external substrate surface of the OLED by spin-coating a sol–gel fabricated matrix containing well dispersed titania (TiO{sub 2}) particles. Such a combination method not only demonstrated efficient extraction of the light trapped in the glass substrate but also achieved homogenous emission from the OLED panel. The proposed technique, convenient and inexpensive, is believed to be suitable for the large area OLED production in lighting applications.

  17. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, A. R., E-mail: angus.gentle@uts.edu.au; Smith, G. B. [School of Mathematical and Physical Sciences and Institute of Nanoscale Technology, University of Technology Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia); Yambem, S. D.; Burn, P. L.; Meredith, P. [Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences and School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072 (Australia)

    2016-06-28

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  18. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    Science.gov (United States)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  19. Lifetime improvement mechanism in organic light-emitting diodes with mixed materials at a heterojunction interface

    Science.gov (United States)

    Minagawa, Masahiro; Takahashi, Noriko

    2016-02-01

    To investigate the lifetime improvement mechanism caused by mixing at the heterojunction interface, organic light-emitting diodes (OLEDs) with stacked and mixed 4,4‧-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (α-NPD)/tris(8-hydroxyquinoline)aluminum (Alq3) interfaces were fabricated, and changes in their displacement current due to continuous operation were measured. A decrease in accumulated holes at the α-NPD/Alq3 interface was observed in the stacked configuration devices over longer operations. These results indicate that the injected hole density was reduced during continuous operation, implying that the carrier balance became uneven in the emission region. However, few accumulated holes and changes in the displacement current due to continuous operation were observed in the devices having the mixed layer. Therefore, it was deduced that the number of holes concentrated between the α-NPD and Alq3 layers was decreased by mixing at the heterojunction interface, and that the change in the number of holes was smaller during continuous operation, resulting in less degradation.

  20. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Directory of Open Access Journals (Sweden)

    Lars Jäger

    2016-09-01

    Full Text Available Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl-N-phenylamino]-biphenyl (NPB with the polar electron transporting material tris-(8-hydroxyquinolate aluminum (Alq3. Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  1. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  2. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping

    Science.gov (United States)

    Jäger, Lars; Schmidt, Tobias D.; Brütting, Wolfgang

    2016-09-01

    Most of the commonly used electron transporting materials in organic light-emitting diodes exhibit interfacial polarization resulting from partially aligned permanent dipole moments of the molecules. This property modifies the internal electric field distribution of the device and therefore enables an earlier flat band condition for the hole transporting side, leading to improved charge carrier injection. Recently, this phenomenon was studied with regard to different materials and degradation effects, however, so far the influence of dilution has not been investigated. In this paper we focus on dipolar doping of the hole transporting material 4,4-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) with the polar electron transporting material tris-(8-hydroxyquinolate) aluminum (Alq3). Impedance spectroscopy reveals that changes of the hole injection voltage do not scale in a simple linear fashion with the effective thickness of the doped layer. In fact, the measured interfacial polarization reaches a maximum value for a 1:1 blend. Taking the permanent dipole moment of Alq3 into account, an increasing degree of dipole alignment is found for decreasing Alq3 concentration. This observation can be explained by the competition between dipole-dipole interactions leading to dimerization and the driving force for vertical orientation of Alq3 dipoles at the surface of the NPB layer.

  3. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  4. Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS

    Science.gov (United States)

    Zheng, Yan-Qiong; Yu, Jun-Le; Wang, Chao; Yang, Fang; Wei, Bin; Zhang, Jian-Hua; Zeng, Cheng-Hui; Yang, Yang

    2018-06-01

    This work shows a promising approach to improve device performance by optimizing the electron transport and hole injection layers for tetraphenyldibenzoperiflanthene (DBP):rubrene-based red fluorescent organic light-emitting diodes (OLEDs). We compared the effect of two electron transport layers (ETLs), and found that the rubrene/bathophenanthroline (Bphen) ETL-based OLED showed a much higher external quantum efficiency (EQE) (4.67%) than the Alq3 ETL-based OLED (EQE of 3.08%). The doping ratio of DBP in rubrene was tuned from 1.0 wt% to 4.5 wt%, and the 1.5 wt%-DBP:rubrene-based OLED demonstrated the highest EQE of 5.24% and lowest turn-on voltage of 2.2 V. Atomic force microscopy images indicated that 1.5 wt% DBP-doped rubrene film exhibited a regular strip shape, and this regular surface was favorable to the hole and electron recombination in the emitting layer. Finally, the sorbitol-doped poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was used to further improve the EQE; doping with 6 wt% sorbitol achieved the highest current efficiency of 7.03 cd A‑1 and an EQE of 7.50%. The significantly enhanced performance implies that the hole injection is a limiting factor for DBP:rubrene-based red fluorescent OLEDs.

  5. New cyclometalated iridium(III) complex as a phosphorescent dopant in organic light emitting devices

    Science.gov (United States)

    Ivanov, P.; Tomova, R.; Petrova, P.; Stanimirov, S.; Petkov, I.

    2014-05-01

    A new cyclometalated iridium (III) bis[2-(4-chlorophenyl)benzothiazolato-N,C2]-acetylacetonate, (Cl-bt)2Ir(acac), was synthesized and identified by 1H NMR and elemental analysis. The application was studied of the new compound as a dopant in the hole transporting layer (HTL) of the following organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) or N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), incorporated in a poly(N-vinylcarbazole) (PVK) matrix; EL was an electroluminescent layer of bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy) aluminum (BAlq); and ETL was an electron-transporting layer of bis[2-(2-benzothiazoly) phenolato]zinc(II) (Zn(btz)2). We established that the electroluminescence spectra of the OLEDs at different dopant concentrations were basically the sum of the greenish-blue emission of BAlq and the yellowish-green emission of the Ir complex. It was also found that increasing the dopant concentration resulted in an increase in the relative electroluminescent intensity of the Ir complex emission, while that of BAlq decreased, thus a fine tuning of the OLED color was observed.

  6. Electroabsorption in triphenylamine-based hole-transporting materials for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Stampor, Waldemar; Mroz, Wojciech

    2007-01-01

    Electric-field modulated absorption (EA) spectra have been studied in solid films of triphenylamine (TPA)-based compounds, commonly used as hole-transporting materials in organic light-emitting diodes. The electroabsorption spectra of triphenyldiamine derivatives (TPD and TAPC) and a starburst amine dendrimer m-MTDATA are compared with those of TPA which is the building block of the molecules. The EA results indicate that properties of excited states of m-MTDATA and TAPC can be qualitatively rationalized in the terms of exciton interaction between TPA constituents. The lowest energy electronic excitations of m-MTDATA dendrimer are strongly delocalized within the area of the whole molecule. In contrast to m-MTDATA and TAPC, the TPD behavior in the electric field shows individual features that can not be derived from the optical properties of TPA monomers alone. The influence of excited state degeneracy on EA spectra is discussed. The consistent qualitative interpretation of EA spectra for compounds under investigation has been reached assuming that the second derivative lineshapes of EA signal originate from degenerate (in TPA and m-MTDATA) and possible quasi-degenerate states (in TAPC and TPD)

  7. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    Science.gov (United States)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  8. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  9. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  10. Steady full colour white organic light-emitting devices consisting of an ultrathin red fluorescent layer

    International Nuclear Information System (INIS)

    Wen Wen; Yu Junsheng; Li Lu; Wang Jun; Jiang Yadong

    2009-01-01

    White organic light-emitting devices were fabricated using an ultrathin red fluorescent dye of 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene inserted in tris(8-quinolinolato) aluminium layer as a red and green emitting layer (EML) and a thin 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-diphenyl (DPVBi) layer as blue EML. A maximum power efficiency of 2.4 lm W -1 at 5.5 V and a maximum luminance of 16 690 cd m -2 at 18.5 V were obtained. Pure white emission with a good colour rendering index of 80 was achieved as low as 5 V. The Commission Internationale de l'Eclairage (CIE) coordinates near (0.330, 0.300) show a slight variation of (-0.020, +0.002) in a wide range of voltages. The achievement of full colour white emission at low-operation voltages and high-colour stability is attributed to the confining emission zone function of the thin EML and direct carrier trapping in the ultrathin layer.

  11. Steady full colour white organic light-emitting devices consisting of an ultrathin red fluorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen Wen; Yu Junsheng; Li Lu; Wang Jun; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn

    2009-01-07

    White organic light-emitting devices were fabricated using an ultrathin red fluorescent dye of 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene inserted in tris(8-quinolinolato) aluminium layer as a red and green emitting layer (EML) and a thin 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-diphenyl (DPVBi) layer as blue EML. A maximum power efficiency of 2.4 lm W{sup -1} at 5.5 V and a maximum luminance of 16 690 cd m{sup -2} at 18.5 V were obtained. Pure white emission with a good colour rendering index of 80 was achieved as low as 5 V. The Commission Internationale de l'Eclairage (CIE) coordinates near (0.330, 0.300) show a slight variation of (-0.020, +0.002) in a wide range of voltages. The achievement of full colour white emission at low-operation voltages and high-colour stability is attributed to the confining emission zone function of the thin EML and direct carrier trapping in the ultrathin layer.

  12. Study on electroluminescence processes in dye-doped organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Weizhi [State Key Laboratory of Electronic Thin Films and Integrated devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: leewz@uestc.edu.cn; Jiang Yadong; Wang Tao [State Key Laboratory of Electronic Thin Films and Integrated devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-07-15

    Electroluminescence (EL) mechanism of dye-doped organic light-emitting diodes (OLEDs) was investigated by using three familiar fluorescent dyes, i.e., 5,12-Dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA), 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran(DCJTB), and 5,6,11,12-tetraphenylnaphthacene (Rubrene). EL spectra of the doped devices with structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'- diamine (NPB) (40 nm)/tris-(8-hydroxyquinolate)-aluminum (Alq{sub 3}) (x nm, x=0-40 nm)/dye: Alq{sub 3} (weight ratio{approx}1%, 2 nm)/Alq{sub 3} (48-x nm)/MgAg indicated that direct carrier trapping (DCT) process dominated light emission of devices. As a result, investigation of carrier-recombination site via doping, which is conventionally applied in OLEDs, is questionable since the doping site and the dopant itself may significantly influence the carrier-recombination process in the doped devices.

  13. Non-doped-type white organic light-emitting diodes for lighting purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jianzhuo [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Li Wenlian, E-mail: wllioel@yahoo.com.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Chu Bei, E-mail: beichu@163.co [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Yan Fei; Yang Dongfang; Liu Huihui; Wang Junbo [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2010-05-15

    We demonstrate a non-doped white organic light-emitting diode (WOLED) in which the blue-, green- and red-emissions are generated from 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl, tris(8-hydroxyquinoline)aluminum (Alq) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyl-julolidyl 9-enyl)-4H-pyran (DCJTB), which is used as an ultrathin layer. The DCJTB ultrathin layer plays the chromaticity tuning role in optimizing the white spectral band by modulating the location of the DCJTB ultrathin layer in the green emissive Alq layer. The optimized WOLED gives the Commission Internationale de l'Eclairage-1931 xy coordinates of (0.319, 0.335), a color rendering index of 91.2 at 10 V, a maximum brightness of 21010 cd/m{sup 2} at 12 V and a maximum current efficiency of 5.17 cd/A at 6.6 V. The electroluminescence mechanism of the white device is also discussed.

  14. Electroluminescence of organic light-emitting diodes with an ultra-thin layer of dopant

    Energy Technology Data Exchange (ETDEWEB)

    Li Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn; Wang, Tao [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Jiang, Yadong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jiangyd@uestc.edu.cn; Wei, Bangxiong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-03-15

    Conventional fluorescent dyes, i.e., 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), 5,12-dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene), were used to investigate the performance of organic light-emitting diodes (OLEDs) based on indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/tris-(8-hydroxyquinolate)-aluminum (Alq{sub 3})/MgAg. The dyes were either inserted into devices as an ultra-thin film at the NPB/Alq{sub 3} interface by sequential evaporation, or doped into the Alq{sub 3} emission layer by co-evaporation with the doping ratio about 2%. Electroluminescence (EL) spectra of devices indicated that concentration quenching effect (CQE) of the dye-dopant was slightly bigger in the former than in the latter, while the degrees of CQE for three dopants are in the order of DMQA > DCJTB > Rubrene suggested by the difference in EL spectra and performances of devices. In addition, EL process of device with an ultra-thin layer of dopant is dominated by direct carrier trapping (DCT) process due to almost no holes recombine with electrons in Alq{sub 3}-host layer.

  15. Trap effect of an ultrathin DCJTB layer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanmin [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: advanced9898@126.com; Xu Zheng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Yang Shengyi [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)

    2005-08-15

    An improved performance of organic light-emitting diodes has been obtained by using 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4Hpyran (DCJTB) as an ultrathin emitting layer. When 0.1 nm DCJTB was inserted between the hole-transporting layer and electron-transporting layer, for an unoptimized device indium-tin oxide (ITO)/naphtylphenyliphenyl diamine (NPB)/DCJTB (0.1 nm)/8-hydroxyquinoline aluminum (Alq{sub 3})/Al, the maximum brightness was 1531 cd m{sup -2} at 15 V. Compared with doped devices ITO/NPB/Alq{sub 3}:DCJTB (1%)/Alq{sub 3}/LiF/Al, a higher efficiency has been achieved. Compared with the conventional device ITO/NPB/Alq{sub 3}/Al, the inserted device has a slightly higher current efficiency and lower turn-on voltage. We suggest the ultrathin DCJTB layer acts as trap for carriers, and the accumulated holes at the hole-transport layer/electron-transport layer interface have enhanced the electric field in the electron-transport layer and improved the electron injection at the cathode.

  16. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  17. Optoelectronic properties of a novel fluorene derivative for organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Junsheng; Lou, Shuangling; Qian, Jincheng; Jiang, Yadong [University of Electronic Science and Technology of China (UESTC), State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu (China); Zhang, Qing [Shanghai Jiaotong University, Department of Polymer Science, School of Chemistry and Chemical Technology, Shanghai (China)

    2009-03-15

    We report the optoelectronic properties of a novel fluorene derivative of 6,6'-(9H-fluoren-9,9-diyl)bis(2,3-bis (9,9-dihexyl-9H-fluoren-2-yl)quinoxaline) (BFLBBFLYQ) used for organic light-emitting diode. UV-Vis absorption, photoluminescence (PL) and electroluminescence (EL) spectra of BFLBBFLYQ and the blend doped with N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-1,1'-biphenyl-4,4'-di- amine (TPD) in solid state and in solution were investigated. The results showed that BFLBBFLYQ had a PL peak at 451 nm in solid and solution states and an EL peak at 483 nm with a broad emission band, resulting from fluorenone defects. Exciplex emission was observed in BFLBBFLYQ-TPD blend solid state with a green emission peaking at 530 nm. Also the blend in solution showed solvatochromism in polarity solvent upon UV irradiation. A new absorption band appeared at around 470 nm of BFLBBFLYQ-TPD blend in chloroform solution, and disappeared when diluted in absorption spectrum. Meanwhile, a low energy emission band from 530 to 580 nm appeared and increased with material concentration and UV irradiation time. (orig.)

  18. Influence of heterojunction interface on exciplex emission from organic light-emitting diodes under electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shengyi; Zhang, Xiulong; Lou, Zhidong; Hou, Yanbing [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing (China)

    2008-03-15

    In this paper, electroluminescence from organic light-emitting diodes based on 2-(4'-biphenyl)-5-(4{sup ''}-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) is reported. Based on the exciplex emission from the TPD/PBD interface under high electric fields, the influence of the TPD/PBD interface on exciplex emission was investigated by increasing the number of TPD/PBD interfaces while keeping both the total thickness of the TPD layer and the PBD layer constant in the multiple quantum-wells (MQW) device ITO/TPD/[PBD/TPD]{sub n}/PBD/Al (n is the well number that was varied from 0 to 3). Our experimental data shows that exciplex emission can be enhanced by suitably increasing the well number of this kind of MQW-like device. (orig.)

  19. High-performance organic light-emitting diodes comprising ultrastable glass layers

    Science.gov (United States)

    Rodríguez-Viejo, Javier

    2018-01-01

    Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029

  20. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    Science.gov (United States)

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  1. Decoupling degradation in exciton formation and recombination during lifetime testing of organic light-emitting devices

    Science.gov (United States)

    Hershey, Kyle W.; Suddard-Bangsund, John; Qian, Gang; Holmes, Russell J.

    2017-09-01

    The analysis of organic light-emitting device degradation is typically restricted to fitting the overall luminance loss as a function of time or the characterization of fully degraded devices. To develop a more complete understanding of degradation, additional specific data are needed as a function of luminance loss. The overall degradation in luminance during testing can be decoupled into a loss in emitter photoluminescence efficiency and a reduction in the exciton formation efficiency. Here, we demonstrate a method that permits separation of these component efficiencies, yielding the time evolution of two additional specific device parameters that can be used in interpreting and modeling degradation without modification to the device architecture or introduction of any additional post-degradation characterization steps. Here, devices based on the phosphor tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) are characterized as a function of initial luminance and emissive layer thickness. The overall loss in device luminance is found to originate primarily from a reduction in the exciton formation efficiency which is exacerbated in devices with thinner emissive layers. Interestingly, the contribution to overall degradation from a reduction in the efficiency of exciton recombination (i.e., photoluminescence) is unaffected by thickness, suggesting a fixed exciton recombination zone width and degradation at an interface.

  2. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  3. Top-Emission Organic Light Emitting Diode Fabrication Using High Dissipation Graphite Substrate

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Tsai

    2014-01-01

    Full Text Available This study uses a synthetic graphite fiber as the heat dissipation substrate for top-emission organic light emitting diode (TEOLED to reduce the impact from joule heat. UV glue (YCD91 was spin coated onto the substrate as the insulation layer. The TEOLED structure is (glass; copper; graphite substrate/YCD91 glue/Al/Au/EHI608/TAPC/Alq3/LiF/Al/Ag. The proposed graphite fiber substrate presents better luminous performance compared with glass and copper substrate devices with luminance of 3055 cd/m2 and current efficiency of 6.11 cd/A at 50 mA/cm2. When lighting period of different substrates TEOLED, the substrate case back temperature was observed using different lighting periods. A glass substrate element operating from 5 to 25 seconds at 3000 cd/m2 luminance produced a temperature rate of 1.207°C/sec. Under 4000 cd/m2 luminance the copper and graphite substrate temperature rates were 0.125°C/sec and 0.088°C/sec. Graphite component lifetime was determined to be 1.875 times higher than the glass components and 1.125 times higher than that of copper.

  4. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    Science.gov (United States)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  5. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    Science.gov (United States)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  6. Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

    International Nuclear Information System (INIS)

    Liu Xiang; Wei Fuxiang; Liu Hui

    2009-01-01

    Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated. TBADN:3%DSAPh and Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 were used as emitting materials of microcavity OLEDs. On a patterned glass substrate, silver was deposited as reflective anode, and copper phthalocyanine (CuPc) layer as HIL and 4'-bis[N-(1-Naphthyl)- N-phenyl-amino]biphenyl (NPB) layer as HTL were made. Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%. By changing the thickness of indium tin oxide ITO, deep blue with Commission Internationale de L'Eclairage chromaticity coordinates (CIEx, y) of (0.141, 0.049) was obtained on TBADN:3%DSAPh devices, and different color (red, blue and green) was obtained on Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 devices, full width at half maxima (FWHM) was only 17 nm. The spectral intensity and FWHM of emission in cavity devices have also been studied.

  7. [The role of BCP in electroluminescence of multilayer organic light-emitting devices].

    Science.gov (United States)

    Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan

    2009-03-01

    As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.

  8. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    International Nuclear Information System (INIS)

    Baek, H I; Lee, C H

    2008-01-01

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp 2 Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{4-(N,N-diphenylamino) phenyl}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A -1 (an external quantum efficiency of 8.5%) at 100 cd m -2 and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested

  9. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    International Nuclear Information System (INIS)

    Miao Yan-Qin; Zhang Ai-Qin; Li Yuan-Hao; Wang Hua; Jia Hu-Sheng; Liu Xu-Guang; Gao Zhi-Xiang; Tsuboi Taijuf

    2015-01-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7, 7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. (paper)

  10. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    Science.gov (United States)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  11. A white organic light emitting diode based on anthracene-triphenylamine derivatives

    Science.gov (United States)

    Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong

    2010-10-01

    White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).

  12. Low-voltage and high-efficiency white organic light emitting devices with carrier balance

    International Nuclear Information System (INIS)

    Wei Fuxiang; Huang, Y.; Fang, L.

    2010-01-01

    White organic light emitting devices with the structure of ITO/m-MTDATA:x%4F-TCNQ/NPB/TBADN:EBDP:DCJTB/Bphen:Liq/LiF/Al have been demonstrated in this paper. High-mobility m-MTDATA:4F-TCNQ is added into the region between ITO and NBP to increase hole injection and transport. The high-mobility Bphen:Liq layer is added into the region between cathode and emission layers to lower cathode barrier and facilitate carrier injection. In the meanwhile, an effective carrier balance (number of holes is equal to number of electrons) between holes and electrons is considered to be one of the most important factors for improving OLEDs. During the experiment, by modulating the doping concentration of 4F-TCNQ, we can control hole injection and transport to make the carriers reach a high-level balance. The maximum current efficiency and power efficiency of devices were 9.3 cd/A and 4.6 lm/A, respectively.

  13. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    International Nuclear Information System (INIS)

    Wu, Qingyang; Zhang, Shiming; Yue, Shouzhen; Zhang, Zhensong; Xie, Guohua; Zhao, Yi; Liu, Shiyong

    2013-01-01

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C 2′ )acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C 2− ] (FIrpic) and PO-01 into the same wide band-gap host of N,N ′ -dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices

  14. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H I; Lee, C H [School of Electrical Engineering and Computer Science and Inter-University Semiconductor Research Center, Seoul National University, Seoul 151-744 (Korea, Republic of)], E-mail: hibaek75@snu.ac.kr

    2008-05-21

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp{sub 2}Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{l_brace}4-(N,N-diphenylamino) phenyl{r_brace}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A{sup -1} (an external quantum efficiency of 8.5%) at 100 cd m{sup -2} and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested.

  15. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    Science.gov (United States)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  16. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingyang, E-mail: wqy1527@163.com [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Shiming [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Département of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada H3C3J7 (Canada); Yue, Shouzhen; Zhang, Zhensong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Guohua [Institut für Angewandte Photophysik, Technische Universtität Dresden, Dresden 01062 (Germany); Zhao, Yi; Liu, Shiyong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2013-11-15

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C{sup 2′})acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2−}] (FIrpic) and PO-01 into the same wide band-gap host of N,N{sup ′}-dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices.

  17. Synthesis and Electroluminescent Property of New Orange Iridium Compounds for Flexible White Organic Light Emitting Diodes.

    Science.gov (United States)

    Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung

    2015-10-01

    Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.

  18. Study of different roles phosphorescent material played in different positions of organic light emitting diodes

    Science.gov (United States)

    Keke, Gu; Jian, Zhong; Jiule, Chen; Yucheng, Chen; Ming, Deng

    2013-09-01

    Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4- tert-butylphenyl)benzothiazolato- N,C2'] iridium(acetylacetonate) [( t-bt)2Ir(acac)] in different positions. The results showed ( t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without ( t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and ( t-bt)2Ir(acac), and got devices with stable white color.

  19. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    International Nuclear Information System (INIS)

    Li, Xiang-Long; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian; Ouyang, Xinhua; Ge, Ziyi

    2016-01-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A"−"1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1′:4′, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A"−"1 and a maximum power efficiency of 38.6 lm W"−"1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers. (paper)

  20. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    Science.gov (United States)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  1. [The spectrogram characteristics of organic blue-emissive light-emitting excitated YAG : Ce phosphor].

    Science.gov (United States)

    Xi, Jian-Fei; Zhang, Fang-Hui; Mu, Qiang; Zhang, Mai-Li

    2011-09-01

    It is demonstrated that the panchromatic luminescence devices with organic blue-emissive light-emitting was fabricated. This technique used down conversion, which was already popular in inorganic power LEDs to obtain white light emission. A blue OLED device with a configuration of ITO/2T-NATA (30 nm)/AND : TBPe (50 Wt%, 40 nm)/Alq3 (100 nm)/LiF(1 nm)/Al(100 nm) was prepared via vacuum deposition process, and then coated with YAG : Ce phosphor layers of different thicknesses to obtain a controllable and uniform shape while the CIE coordinates were fine tuned. This development not only decreased steps of technics and degree of difficulty, but also applied the mature technology of phosphor. The results showed that steady spectrogram was obtained in the devices with phosphor, with a best performance of a maximum luminance of 13 840 cd x m(-2) which was about 2 times of that of the devices without phosphor; a maximum current efficiency of 17.3 cd x A(-1) was increased more two times more than the devices without phosphor. The emission spectrum could be adjusted by varying the concentration and thickness of the phosphor layers. Absoulte spectrogram of devices was in direct proportion with different driving current corresponding.

  2. Simulations of emission from microcavity tandem organic light-emitting diodes

    International Nuclear Information System (INIS)

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq 3 ) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) (α-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  3. Microwave assisted transformation of N,N-diphenylamine as precursors of organic light emitting diodes (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Jefri,; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id [Organic Chemistry Research Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    In this research, study on the transformation of N,N-diphenylamine (DPA) using iodine (I2) utilizing solid state Microwave Assisted Organic Synthesis (MAOS) method has been carried out. The reaction was performed by variations of three parameters namely the mole of reagents, the amount and type of solid support (alumina/Al2O3), and the reaction conditions. Experimental results showed that neutral-alumina was a better solid support than basic-alumina. The optimum temperature for the reaction was approximately at 125-133 °C with reaction time of 15 minutes and microwave reactor power at 500-600 W. The separation of the yellowish green product solution with preparative Thin Layer Chromatography (TLC) method using n-hexane:ethyl acetate = 4:1 (v/v) as eluent yielded two fractions (I and II) and both fractions can undergo fluorescence under 365 nm UV light. Based on the LC chromatogram with methanol:water = 95:5 (v/v) as eluent and its corresponding mass spectra (ESI+), fraction I contained three compounds, which were tetracarbazole A, triphenylamine, and impurities in the form of plasticizer such as bis(2-ethylhexyl) phthalate. Fraction II also contained three compounds, which were tetracarbazole C, tetraphenylhydrazine, and plasticizer such as bis(2-ethylhexyl) phthalate. Both FT-IR (KBr disks) and NMR (500 MHz, CDCl{sub 3}) spectra of fraction I and II confirmed the aromatic amine groups in those compounds. The observed fluorescence colors of fraction I and II were violet and violet-blue, respectively. Based on their structures and fluorescence characters, the compounds in fraction I and II have the potential to be used as Organic Light Emitting Diode (OLED) compound precursors.

  4. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2014-01-01

    Full Text Available This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The voltage programming method of the proposed pixel circuit comprises three periods: reset, compensation with data input, and emission periods. The simulated results reflected excellent performance. For instance, when ΔVTH=±0.33 V, the average error rate of the OLED current variation was low (<0.8%, and when ΔVTH_OLED=+0.33 V, the error rate of the OLED current variation was 4.7%. Moreover, when the I×R (current × resistance drop voltage of a power line was 0.3 V, the error rate of the OLED current variation was 5.8%. The simulated results indicated that the proposed pixel circuit exhibits high immunity to the threshold voltage deviation of both the driving poly-Si TFTs and OLEDs, and simultaneously compensates for the I×R drop voltage of a power line.

  5. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer

    International Nuclear Information System (INIS)

    Liu, Baiquan; Xu, Miao; Tao, Hong; Ying, Lei; Zou, Jianhua; Wu, Hongbin; Peng, Junbiao

    2013-01-01

    Highly efficient red phosphorescent organic polymer light-emitting diodes (PhOLEDs) were fabricated based on a solution-processed small-molecule host 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) by doping an iridium complex, tris(1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine)iridium (III) (Ir(MPCPPZ) 3 ). A hole blocking layer 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI) with a function of electron transport was thermally deposited onto the top of CBP layer. The diode with the structure of ITO/PEDOT:PSS (50 nm)/CBP:Ir(MPCPPZ) 3 (55 nm)/TPBI (30 nm)/Ba (4 nm)/Al (120 nm) showed an external quantum efficiency (QE ext ) of 19.3% and luminous efficiency (LE) of 18.3 cd/A at a current density of 0.16 mA/cm 2 , and Commission International de I'Eclairage (CIE) coordinates of (0.607, 0.375). It was suggested that the diodes using TPBI layer exhibited nearly 100% internal quantum efficiency and one order magnitude enhanced LE or QE ext efficiencies. -- Highlights: • Efficient red PhOLEDs based on a solution-processed small-molecule host were fabricated. • By altering volume ratio of chloroform/chlorobenzene solvent, we got best film quality of CBP. • EQE of the diode was 19.3%, indicating nearly 100% internal quantum yield was achieved

  6. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  7. The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes

    Science.gov (United States)

    Züfle, Simon; Altazin, Stéphane; Hofmann, Alexander; Jäger, Lars; Neukom, Martin T.; Schmidt, Tobias D.; Brütting, Wolfgang; Ruhstaller, Beat

    2017-05-01

    We demonstrate the application of the CELIV (charge carrier extraction by linearly increasing voltage) technique to bilayer organic light-emitting devices (OLEDs) in order to selectively determine the hole mobility in N,N0-bis(1-naphthyl)-N,N0-diphenyl-1,10-biphenyl-4,40-diamine (α-NPD). In the CELIV technique, mobile charges in the active layer are extracted by applying a negative voltage ramp, leading to a peak superimposed to the measured displacement current whose temporal position is related to the charge carrier mobility. In fully operating devices, however, bipolar carrier transport and recombination complicate the analysis of CELIV transients as well as the assignment of the extracted mobility value to one charge carrier species. This has motivated a new approach of fabricating dedicated metal-insulator-semiconductor (MIS) devices, where the extraction current contains signatures of only one charge carrier type. In this work, we show that the MIS-CELIV concept can be employed in bilayer polar OLEDs as well, which are easy to fabricate using most common electron transport layers (ETLs), like Tris-(8-hydroxyquinoline)aluminum (Alq3). Due to the macroscopic polarization of the ETL, holes are already injected into the hole transport layer below the built-in voltage and accumulate at the internal interface with the ETL. This way, by a standard CELIV experiment only holes will be extracted, allowing us to determine their mobility. The approach can be established as a powerful way of selectively measuring charge mobilities in new materials in a standard device configuration.

  8. Organic light-emitting devices based on solution-processible quinolato-complex supramolecules

    International Nuclear Information System (INIS)

    Cheng, J.-A.; Chen, Chin H.; Shieh, H.-P.D.

    2009-01-01

    This paper discusses a new type of supramolecular material tris{5-N-[3-(9H-carbazol-9-yl)propyl]-N-(4-methylphenyl) aminesulfonyl-8-hydroxyquinolato} aluminum(III), Al(SCarq) 3 , which we synthesized using three 5-N-[3-(9H-carbazol-9-yl)propyl]-N-(4-methylphenyl) aminesulfonyl-8-hydroxyquinoline as bidentate ligands. The peak photoluminescence in the solid phase appears at 488 nm. In cyclic voltammetric measurement, two oxidation peaks, which were obtained at -5.6 and -5.9 eV, correspond to HOMO sites of carbazoyl and aluminum quinolates, respectively. In the investigation of solid morphological thin film, the flat surface was investigated using an atomic force microscope. The root mean square (rms) and mean roughness (R a ) were respectively measured to be 0.427 and 0.343 nm. For the fabrication of organic light-emitting devices (OLEDs) using spin-coating techniques, the turn-on voltage and maximum luminescence of the optimized electroluminescence device, glass/ITO (20 nm)/PEDOT:PSS (75 nm)/Al(SCarq) 3 (85 nm)/BCP (8 nm)/LiF (1 nm)/Al (200 nm), were respectively 9.6 V and 35.0 cd m -2 . Due to the electroplex formation between the carbazole (electron-donor) and the aluminum quinolates (electron-acceptor) moieties under an applied DC bias, the chromaticity of electroluminescence shifted to green-yellow with 1931 CIE x,y (0.40, 0.47)

  9. Organic light-emitting devices based on solution-processible quinolato-complex supramolecules

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-A. [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan (China)], E-mail: jacheng.ac89g@nctu.edu.tw; Chen, Chin H. [Microelectronics and Information System Research Center, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Shieh, H.-P.D. [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2009-02-15

    This paper discusses a new type of supramolecular material tris{l_brace}5-N-[3-(9H-carbazol-9-yl)propyl]-N-(4-methylphenyl) aminesulfonyl-8-hydroxyquinolato{r_brace} aluminum(III), Al(SCarq){sub 3}, which we synthesized using three 5-N-[3-(9H-carbazol-9-yl)propyl]-N-(4-methylphenyl) aminesulfonyl-8-hydroxyquinoline as bidentate ligands. The peak photoluminescence in the solid phase appears at 488 nm. In cyclic voltammetric measurement, two oxidation peaks, which were obtained at -5.6 and -5.9 eV, correspond to HOMO sites of carbazoyl and aluminum quinolates, respectively. In the investigation of solid morphological thin film, the flat surface was investigated using an atomic force microscope. The root mean square (rms) and mean roughness (R{sub a}) were respectively measured to be 0.427 and 0.343 nm. For the fabrication of organic light-emitting devices (OLEDs) using spin-coating techniques, the turn-on voltage and maximum luminescence of the optimized electroluminescence device, glass/ITO (20 nm)/PEDOT:PSS (75 nm)/Al(SCarq){sub 3} (85 nm)/BCP (8 nm)/LiF (1 nm)/Al (200 nm), were respectively 9.6 V and 35.0 cd m{sup -2}. Due to the electroplex formation between the carbazole (electron-donor) and the aluminum quinolates (electron-acceptor) moieties under an applied DC bias, the chromaticity of electroluminescence shifted to green-yellow with 1931 CIE{sub x,y} (0.40, 0.47)

  10. Luminescence of Rubrene and DCJTB molecules in organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Department of Display Engineering, Hoseo University, Sechul-Ri 160, Baebang, Asan, Chung-Nam 336-795 (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7 (Canada); Song, Wook; Meng, Mei; Kim, Nam Ho; Yoon, Ju-An [Department of Display Engineering, Hoseo University, Sechul-Ri 160, Baebang, Asan, Chung-Nam 336-795 (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Display Engineering, Hoseo University, Sechul-Ri 160, Baebang, Asan, Chung-Nam 336-795 (Korea, Republic of); Wood, Richard; Mascher, Peter [Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7 (Canada)

    2014-02-15

    We investigated the optical properties of light emission based on the resonance energy transfer mechanism between two molecules in the host–dopant systems. For this purpose, we fabricated the organic light-emitting devices with the different doped emissive layers. The host matrices were made of 4,4′,4″-tris(carbasol-l-nyl)triphenylamine (TCTA) and 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) molecules and the doped molecules were 5,6,11,12-tetraphenylnaphtacene (Rubrene) and 4-(Dicyanomethylene)-2-tert-butyl-6- (1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB). The concentrations of the doped molecules were 0.1%, 0.3%, 0.5%, and 0.8%. Through spectroscopic analysis using multi-peak fits with a Gaussian function to the emission spectra, we obtained the relative light intensity of the two dopants according to the doping concentrations and examined the relations between the molecular excited energy states and the nature of energy transfer in the host and dopant systems. We show that the luminous efficiency of the devices has a strong correlation between the energy transfer owing to the individual molecular intrinsic properties and the electrical characteristics associated with the bulky properties in the devices. -- Highlights: • Fabrication and characterization of the OLEDs with a host–dopant system in the emissive layer. • Investigation of the optical properties of light emission based on the resonance energy transfer mechanism between the dopant molecules. • EL and PL spectroscopic study for the structure of the molecular energy levels in the dopant molecules.

  11. Efficient red organic light-emitting diode sensitized by a phosphorescent Ir compound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.R. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); You, H. [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Tang, H. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China); Ding, G.H. [Institute of Advanced Materials and Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Ma, D.G. [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Tian, H. [Institute of Advanced Materials and Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Sun, R.G. [School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800 (China)], E-mail: runguangsun@126.com

    2008-01-15

    The efficiencies of red organic light-emitting diode (OLED) using tris-(8-hydroxy-quinoline)aluminum (Alq{sub 3}) as host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyra n (DCJTB) as dopant were greatly increased by adding a small amount (0.3 wt%) of Ir compound, iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N',C{sup 4}) (acetyl acetonate) (Ir(C6){sub 2}(acac)), as a sensitizer. The device has a sandwiched structure of indium tin oxide (ITO)/4,4',4''-tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine (T-NATA) (40 nm)/N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4' diamine (NPB) (40 nm)/Alq{sub 3}:DCJTB (0.7 wt%):Ir(C6){sub 2}(acac) (0.3 wt%) (40 nm)/Alq{sub 3} (40 nm)/LiF (1 nm)/Al (120 nm). It can be seen that the current efficiencies of this device remained almost (13.8{+-}1) cd/A from 0.1 to 20,000 cd/m{sup 2} and the Commission International d'Eclairage (CIE) coordinates at (0.60, 0.37) in the range of wide brightness. The significant improvement was attributed to the sensitization effect of the doped Ir(C6){sub 2}(acac), thus the energy of singlet and triplet excitons is simultaneously transferred to the DCJTB.

  12. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  13. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei; Wang, Ching-Chiun; Juang, Fuh-Shyang; Lai, Shih-Hsiang; Lin, Yang-Ching

    2016-01-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm"2, luminance of 1062 cd/m"2, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  14. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    Science.gov (United States)

    Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf

    2015-05-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).

  15. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    Science.gov (United States)

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.

  16. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan, E-mail: hcmu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Rao, Lu [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Weiling; Wei, Bin [Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechanics Engineering and Automation, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Wang, Keke; Xie, Haifen [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2015-12-01

    Highlights: • In-situ thermal treating the organic tri-layer (CBP/CBP:Ir(ppy){sub 3}/TPBi) of the green light PHOLED under various temperatures during the organic materials evaporation. • Investigating the effect of in situ thermal treatment on the electroluminescence (EL) performance of the green light PHOLED with tri-layer structures. • Provide an easy and practical way to improve the EL performance of the OLEDs without major modification of the organic materials and OLEDs structures required. - Abstract: Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO{sub 3}(1 nm)/CBP(20 nm)/CBP:Ir(ppy){sub 3} (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m{sup 2}, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy){sub 3}/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy){sub 3} emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The

  17. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyeon Soo; Cho, Sang Hee [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Seo, Jaewon; Park, Yongsup [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Suh, Min Chul, E-mail: mcsuh@khu.ac.kr [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-11-01

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer.

  18. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  19. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate

    International Nuclear Information System (INIS)

    Wong, F.L.; Fung, M.K.; Tong, S.W.; Lee, C.S.; Lee, S.T.

    2004-01-01

    A radio-frequency sputtering deposition method was applied to prepare indium tin oxide (ITO) on a plastic substrate, polyethylene terephthalate (PET). The correlation of deposition conditions and ITO film properties was systematically investigated and characterized. The optimal ITO films had a transmittance of over 90% in the visible range (400-700 nm) and a resistivity of 5.0x10 -4 Ω-cm. Sequentially α-napthylphenylbiphenyl diamine, tris-(8-hydroxyquinoline) aluminium, and magnesium-silver were thermally deposited on the ITO-coated PET substrate to fabricate flexible organic light-emitting diodes (FOLEDs). The fabricated devices had a maximum current efficiency of ∼4.1 cd/A and a luminance of nearly 4100 cd/m 2 at 100 mA/cm 2 . These values showed that the FOLEDs had comparable performance characteristics with the conventional organic light-emitting diodes made on ITO-coated glasses with the same device configuration

  20. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  1. [Influence of MnO3 on Photoelectric Performance in Organic Light Emitting Diodes].

    Science.gov (United States)

    Guan, Yun-xia; Chen, Li-jia; Chen, Ping; Fu, Xiao-qiang; Niu, Lian-bin

    2016-03-01

    Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2

  2. New Materials and Device Designs for Organic Light-Emitting Diodes

    Science.gov (United States)

    O'Brien, Barry Patrick

    Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red

  3. Charge transport in organic light-emitting diodes. Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Matthias

    2012-11-01

    This thesis is about the development and validation of a numerical model for the simulation of the current-voltage characteristics of organic thin-film devices. The focus is on the analysis of a white organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emitters. The simulation model describes the charge transport as a one-dimensional drift-diffusion current and is developed on the basis of the Scharfetter-Gummel method. It incorporates modern theories for the charge transport in disordered organic materials, which are considered by means of special functions for the diffusion coefficient and the charge-carrier mobility. The algorithm is designed such that it can switch between different models for mobility and calculates both transient and steady-state solutions. In the analysis of the OLED, electron and hole transport are investigated separately in series of single-carrier devices. These test devices incorporate parts of the layers in the OLED between symmetrically arranged injection layers that are electrically doped. Thereby, the OLED layer sequence is reconstructed step by step. The analysis of the test devices allows to obtain the numerous parameters which are required for the simulation of the complete OLED and reveals many interesting features of the OLED. For instance, it is shown how the accumulation of charge carriers in front of an interface barrier increases the mobility and the transfer rate across the interface. Furthermore, it is demonstrated how to identify charge-trapping states. This leads to the detection of deep trap states in the emission zone of the OLED -- an interesting aspect, since these states can function as recombination centers and may cause non-radiative losses. Moreover, various other effects such as interface dipoles and a slight freeze-out of active electric dopants in the injection layers are observed. In the simulations of the numerous test devices, the parameters are consistently applied

  4. Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency

    OpenAIRE

    Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang

    2015-01-01

    To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4?, 4? -...

  5. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Chen, Miao; Liu, Wei; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-03-25

    Nearly 100% triplet harvesting in conventional fluorophor-based organic light-emitting devices is realized through energy transfer from exciplex. The best C545T-doped device using the exciplex host exhibits a maximum current efficiency of 44.0 cd A(-1) , a maximum power efficiency of 46.1 lm W(-1) , and a maximum external quantum efficiency of 14.5%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    Science.gov (United States)

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Time-of-flight Measurement Of Hole-tunneling Properties And Emission Color Control In Organic Light-emitting Diodes

    Science.gov (United States)

    Kurata, K.; Kashiwabara, K.; Nakajima, K.; Mizoguchi, Y.; Ohtani, N.

    2011-12-01

    Hole transport properties of organic light-emitting diodes (OLEDs) with a thin hole-blocking layer (HBL) were evaluated by time-of-flight measurement. Electroluminescence (EL) spectra of OLEDs with various HBL thicknesses were also evaluated. The results clearly show that the time-resolved photocurrent response and the emission color strongly depend on HBL thickness. This can be attributed to hole-tunneling through the thin HBL. We successfully fabricated a white OLED by controlling the thickness of HBL.

  8. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  9. [White organic light emitting device with dyestuff DCJTB blended in polymer].

    Science.gov (United States)

    Zhang, Yan-Fei; Xu, Zheng; Zhang, Fu-Jun; Wang, Yong; Zhao, Su-Ling

    2008-04-01

    The Alq3 and DCJTB were blended with poly (N-vinylcarbazole) (PVK) in different weight ratios and spin coated into films. Multilayer devices with the light emitting layer PVK : Alq3 : DCJTB were fabricated, and their structure was ITO/ PVK : Alq3 : DCJTB/ BCP/Alq3/LiF/Al in which BCP and Alq3 were employed as the hole-blocking and electron-transporting layers respectively, PVK is the blue light-emitting as well as hole-transporting layer. The mass proportion of PVK relative to Alq3 was tuned while the quality ratio of PVK to DCJTB remained (100 : 1). Finally, fairly pure and stabile white emission was achieved when PVK : Alq3 : DCJTB was 100 : 5 : 1. The CIE coordinate was (0.33, 0.36) at 14 V, which is very stable at various biases (10-14 V).

  10. Degradation of phosphorescent blue organic light-emitting diodes (OLED); Degradation der phosphoreszenten blauen organischen Leuchtdioden

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu

    2011-07-01

    Phosphorescent organic materials harvest singlet and triplet excitons through inter-system crossing and improve the efficiency of organic light-emitting diodes (OLEDs). This improvement increases the potential of OLEDs, particularly white phosphorescent OLEDs (PHOLEDs), for lighting application. Although much progress has been made in the development of white PHOLEDs, the lifetime of phosphorescent emitters, especially the blue emitter, still needs to be improved. This thesis discusses the developments of blue PHOLEDs and investigations of degradation mechanisms. For development of blue PHOLEDs, two phosphorescent blue emitters were investigated: commercially available FIrpic and B1 provided by BASF. By varying the matrix and blocker materials, diode efficiency and lifetime have been investigated and improved. Blue PHOLEDs with emitter B1 show better efficiency and lifetime than devices with FIrpic. From lifetime measurement with constant DC current density, intrinsic degradation including luminance loss and voltage increase on both FIrpic and B1 PHOLEDs was observed. Photoluminescence measurement shows degradation in the emitting layers. To investigate the degradation of emitter layers, single-carrier devices with emitter systems or pure matrix materials were fabricated. Degradation on these devices was investigated by applying constant DC current, UV-irradiation and combination of both. We found that due to excited states (excitons), FIrpic molecules become unstable and polarons would enhance the degradation of FIrpic during DC operation and UV-excitation. To investigate the impact the exciton formation and exciton decay have on the degradation of FIrpic molecules, red phosphorescent emitter Ir(MDQ){sub 2}(acac) was doped in blue emitter layer TCTA:20% FIrpic. The doping concentration of Ir(MDQ){sub 2}(acac) was much lower than FIrpic to ensure that most of the exciton formation occurred on FIrpic molecules. Lower triplet energy of Ir(MDQ){sub 2}(acac) molecules

  11. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    Science.gov (United States)

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Moisture exposure to different layers in organic light-emitting diodes and the effect on electroluminescence characteristics

    International Nuclear Information System (INIS)

    Liao, L. S.; Tang, C. W.

    2008-01-01

    Moisture effect on electroluminescence characteristics, including current density versus voltage, luminance versus voltage, luminous efficiency versus current density, dark spot formation, and operational stability of organic light-emitting diodes, has been systematically investigated by exposing each layer of the devices to moisture at room temperature. Moisture has a different effect on each of the interfaces or surfaces, and the influence increases as exposure time increases. There is a slight effect on the electroluminescence characteristics after the anode surface has been exposed to moisture. However, severe luminance decrease, dark spot formation, and operational stability degradation take place after the light-emitting layer or the electron-transporting layer is exposed to moisture. It is also demonstrated that the effect of moisture can be substantially reduced if the exposure to moisture is in a dark environment

  13. Nickel doped indium tin oxide anode and effect on dark spot development of organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.M. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)], E-mail: tedhsu@mail.stut.edu.tw; Kuo, C.S.; Hsu, W.C.; Wu, W.T. [Southern Taiwan University, Department of Electro-Optical Engineering, 1 Nan-Tai St, Yung-Kang City, Tainan County 710, Taiwan (China)

    2009-01-01

    This article demonstrated that introducing nickel (Ni) atoms into an indium tin oxide (ITO) anode could considerably decrease ITO surface roughness and eliminate the formation of dark spots of an organic light-emitting device (OLED). A dramatic drop in surface roughness from 6.52 nm of an conventional ITO to 0.46 nm of an 50 nm Ni(50 W)-doped ITO anode was observed, and this led to an improved lifetime performance of an Alq3 based OLED device attributed to reduced dark spots. Reducing thickness of Ni-doped ITO anode was found to worsen surface roughness. Meanwhile, the existence of Ni atoms showed little effect on deteriorating the light-emitting mechanism of OLED devices.

  14. Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons

    Science.gov (United States)

    Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo

    2005-06-01

    We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.

  15. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jesuraj, P. Justin; Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India); Kanthasamy, K.; Koch, J. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Pfnür, H. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Laboratorium für Nano- und Quantene$ngineering, Schneiderberg 30, D-30167, Hannover (Germany); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India)

    2017-03-01

    Graphical abstract: Plasma treated Graphene oxide for hole injection enhancement in OLEDs. - Highlights: • Oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma exposed graphene oxide (GO) sheets have been demonstrated as hole buffer layers in OLEDs. • O{sub 2} plasma exposure induces assimilation of oxygen contents in GO lattice resulting in improved work function that reduced the hole injection barrier further. Whereas, H{sub 2} plasma contrastingly reduced the GO by excluding oxygen which ensuing lower work function. • X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigations reveal the capricious amount of oxygen in GO lattice and its corresponding work function variations. • GO and O{sub 2} plasma treated GO significantly improves the current efficiency of OLEDs more than one order with notable reduction in turn on voltage. - Abstract: The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O{sub 2}-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of C−O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H{sub 2}-GO) layers as the WF is lowered by the contraction of C−O bond. By employing active O{sub 2}-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O{sub 2}-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of

  16. White organic light-emitting devices with high color purity and stability

    International Nuclear Information System (INIS)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-01-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq 3 (20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm −2  at the applied voltage of 13.4 V and Commission International de 1′Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIE x, y = 0.0171, 0.0167; corresponding Δu′v′ = 0.0119) when the current density increases from 10 to 100 mA cm −2 . It reveals that the emissive dopant Rb acts as charge traps to improve electron–hole balance, provides sites for electron–hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates. (paper)

  17. White organic light-emitting devices with high color purity and stability

    Science.gov (United States)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  18. High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used in vacuum processes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Hyong-Jun, E-mail: hkim@kongju.ac.kr [Department of Chemical Engineering, Kongju National University, Cheonan, 330-717 (Korea, Republic of)

    2012-09-30

    High efficiency phosphorescent organic light emitting diodes (OLEDs) are realized by inkjet printing based on small molecules commonly used in vacuum processes in spite of the limitation of the limited solubility. The OLEDs used the inkjet printed 5 wt.% tris(2-phenylpyridine)iridium(III) (Ir(ppy){sub 3}) doped in 4,4 Prime -Bis(carbazol-9-yl)biphenyl (CBP) as the light emitting layer on various small molecule based hole transporting layers, which are widely used in the fabrication of OLEDs by vacuum processes. The OLEDs resulted in the high power and the external quantum efficiencies of 29.9 lm/W and 11.7%, respectively, by inkjet printing the CBP:Ir(ppy){sub 3} on a 40 nm thick 4,4 Prime ,4 Double-Prime -tris(carbazol-9-yl)triphenylamine layer. The performance was very close to a vacuum deposited device with a similar structure. - Highlights: Black-Right-Pointing-Pointer Effective inkjet printed organic light emitting diode (OLED) technique is explored. Black-Right-Pointing-Pointer Solution process on commonly used hole transporting material (HTM) is demonstrated. Black-Right-Pointing-Pointer Triplet energy overlap of HTM and emitting material is the key to the performance. Black-Right-Pointing-Pointer Simple inkjet printed OLED provides the high current efficiency of 40 cd/A.

  19. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high

  20. Fabrication of Photonic Crystal Structures on Flexible Organic Light-Emitting Diodes by Using Nano-Imprint and PDMS Mold

    Directory of Open Access Journals (Sweden)

    Ho Ting-Lin

    2016-01-01

    Full Text Available In this paper, nanoimprint lithography was used to create a photonic crystals structure film in organic light-emitting diode (OLED component, and then compare the efficiency of components whether with nanostructure or not. By using two different kinds of mold, such as silicon mold and PDMS mold, the nano structures in PMMA (molecular weight of 350K were fabricated. Nanostructures in period of 403.53nm with silicon mold and nano structures in period of 385.64nm with PDMS mold as photonic crystal films were fabricated and were integrated into OLED. In experimental results, the OLED without photonic crystal films (with packing behaves 193.3cd/m2 for luminous intensity, 3.481cd/A for lightening efficiency (ηL and 0.781 lm/W for lightening power (ηP where V is 14V and I is 5.5537mA; the OLED with photonic crystal films (with packing behaves 241.6cd/m2 for luminous intensity, 4.173cd/A for lightening efficiency (ηL and 0.936 lm/W for lightening power (ηP where voltage of 14V and current (I of 5.7891mA, which shows that the latter perform is well.

  1. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    International Nuclear Information System (INIS)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-01-01

    A fabrication process, compatible with an industrial bipolar+complementary metal - oxide - semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n + /p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. [copyright] 2001 American Institute of Physics

  2. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    Science.gov (United States)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  3. Improved performances of organic light-emitting diodes with mixed layer and metal oxide as anode buffer

    Science.gov (United States)

    Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong

    2013-01-01

    We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.

  4. Modeling of transient electroluminescence overshoot in bilayer organic light-emitting diodes using rate equations

    International Nuclear Information System (INIS)

    Chandra, V.K.; Chandra, B.P.; Tiwari, M.; Baghel, R.N.; Ramrakhiani, M.

    2012-01-01

    When a voltage pulse is applied under forward biased condition to a spin-coated bilayer organic light-emitting diode (OLED), then initially the electroluminescence (EL) intensity appearing after a delay time, increases with time and later on it attains a saturation value. At the end of the voltage pulse, the EL intensity decreases with time, attains a minimum intensity and then it again increases with time, attains a peak value and later on it decreases with time. For the OLEDs, in which the lifetime of trapped carriers is less than the decay time of the EL occurring prior to the onset of overshoot, the EL overshoot begins just after the end of voltage pulse. The overshoot in spin-coated bilayer OLEDs is caused by the presence of an interfacial layer of finite thickness between hole and electron transporting layers in which both transport molecules coexist, whereby the interfacial energy barrier impedes both hole and electron passage. When a voltage pulse is applied to a bilayer OLED, positive and negative space charges are established at the opposite faces of the interfacial layer. Subsequently, the charge recombination occurs with the incoming flux of injected carriers of opposite polarity. When the voltage is turned off, the interfacial charges recombine under the action of their mutual electric field. Thus, after switching off the external voltage the electrons stored in the interface next to the anode cell compartment experience an electric field directed from cathode to anode, and therefore, the electrons move towards the cathode, that is, towards the positive space charge, whereby electron–hole recombination gives rise to luminescence. The EL prior to onset of overshoot is caused by the movement of electrons in the electron transporting states, however, the EL in the overshoot region is caused by the movement of detrapped electrons. On the basis of the rate equations for the detrapping and recombination of charge carriers accumulated at the interface

  5. Ultrafast photophysics of pi-conjugated polymers for organic light emitting diode applications

    Science.gov (United States)

    Olejnik, Ella

    the main exciton photoinduced absorption band (PA1) show a variety of decay kinetics that result from various photoexcitations that contribute to the spectrum. Comparing the transient PM spectrum at 1 ns time delay to the CW PM shows the formation of triplet excitons, which is possible due to singlet fission of mAg (at 2.9 eV) into two triplets (2 X 1.4 eV). In the last part of this thesis we summarize our studies of organic light emitting diodes (OLED) devices based on a host/guest blend of Polyfluorene polymer that is mixed with various percentages of Ir(btp)2acac molecules. In this mixture the PFO (host) shows blue fluorescence, whereas the Ir-complex (guest) has red phosphorescence emission; thus OLED based on this mixture can serve as a `white OLED'. Since the PFO emission spectrum perfectly matches the absorption band of the Ir-complex, it induces an efficient energy transfer from the PFO host to the Ir-complex guest molecules, which we tried to time resolve by the transient PM method.

  6. A review on organic spintronic materials and devices: I. Magnetic field effect on organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-06-01

    Full Text Available Organic spintronics is an emerging and potential platform for future electronics and display due to the intriguing properties of organic semiconductors (OSCs. For the past decade, studies have focused on three types of organic spintronic phenomena: (i magnetic field effect (MFE in organic light emitting diodes (OLEDs, where spin mixing between singlet and triplet polaron pairs (PP can be influenced by an external magnetic field leading to organic magnetoresistive effect (OMAR; (ii magnetoresistance (MR in organic spin valves (OSVs, where spin injection, transport, manipulation, and detection have been demonstrated; and (iii magnetoelectroluminescence (MEL bipolar OSVs or spin-OLEDs, where spin polarized electrons and holes are simultaneously injected into the OSC layer, leading to the dependence of electroluminescence intensity on relative magnetization of the electrodes. In this first of two review papers, we present major experimental results on OMAR studies and current understanding of OMAR using several spin dependent processes in organic semiconductors. During the discussion, we highlight some of the outstanding challenges in this promising research field. Finally, we provide an outlook on the future of organic spintronics.

  7. Enhanced Emission by Accumulated Charges at Organic/Metal Interfaces Generated during the Reverse Bias of Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Soichiro Nozoe

    2017-10-01

    Full Text Available A high frequency rectangular alternating voltage was applied to organic light emitting diodes (OLEDs with the structure ITO/TPD/Alq3/Al and ITO/CoPc/Alq3/Al, where ITO is indium-tin-oxide, TPD is 4,4′-bis[N-phenyl-N-(m-tolylamino]biphenyl, CoPc is cobalt phthalocyanine, and Alq3 is Tris(8-quinolinolatoaluminum, and the effect on emission of the reverse bias was examined. The results reveal that the emission intensity under an alternating reverse-forward bias is greater than that under an alternating zero-forward bias. The difference in the emission intensity (∆I increased both for decreasing frequency and increasing voltage level of the reverse bias. In particular, the change in emission intensity was proportional to the voltage level of the reverse bias given the same frequency. To understand ΔI, this paper proposes a model in which an OLED works as a capacitor under reverse bias, where positive and negative charges accumulate on the metal/organic interfaces. In this model, the emission enhancement that occurs during the alternating reverse-forward bias is rationalized as a result of the charge accumulation at the organic/metal interfaces during the reverse bias, which possibly modulates the vacuum level shifts at the organic/metal interfaces to reduce both the hole injection barrier at the organic/ITO interface and the electron injection barrier at the organic/Al interface under forward bias.

  8. Efficient textured colour conversion layer of a down-converted white organic light-emitting diode by transfer imprinting

    International Nuclear Information System (INIS)

    Zhu, Wenqing; Xiao, Teng; Qian, Bingjie; Sun, Liangliang

    2015-01-01

    In this paper, we demonstrated an efficient textured colour conversion layer (CCL) of a down-converted white organic light-emitting diode (WOLED), which was fabricated by a very simple transfer imprinting method based on silicon wafer. The textured CCL not only helped to extract wave-guided light in the device, but also had an outstanding performance in enhancing the colour conversion rate, which was 1.75 times greater than that of flat CCL. Compared to flat CCL, the lower-doped textured CCL produced better white emission and higher efficiency simultaneously. Moreover, the WOLED with textured CCL also exhibited good colour stability at various voltages. (paper)

  9. An optical and electrical study of full thermally activated delayed fluorescent white organic light-emitting diodes

    OpenAIRE

    Pereira, Daniel de Sa; dos Santos, Paloma L.; Ward, Jonathan S.; Data, Przemyslaw; Okazaki, Masato; Takeda, Youhei; Minakata, Satoshi; Bryce, Martin R.; Monkman, Andrew P.

    2017-01-01

    We report on the engineering of full thermally activated delayed fluorescence – based white organic light emitting diodes (W-OLEDs) composed of three emitters (2,7-bis(9,9-dimethyl-acridin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DDMA-TXO2), 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPO-TXO2) and 3,11-di(10H-phenoxazin-10-yl)dibenzo[a,j]phenazine (POZ-DBPHZ) in two different hosts. By controlling the device design through the study of the emission of DDMA-TXO2 and DP...

  10. Fabrication and Measurement of Electroluminescence and Electrical Properties of Organic Light-Emitting Diodes Containing Mott Insulator Nanocrystals.

    Science.gov (United States)

    Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki

    2016-04-01

    By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.

  11. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Hirai, Hiroki; Nakajima, Kiichi; Nakatsuka, Soichiro; Shiren, Kazushi; Ni, Jingping; Nomura, Shintaro; Ikuta, Toshiaki; Hatakeyama, Takuji

    2015-11-09

    The development of a one-step borylation of 1,3-diaryloxybenzenes, yielding novel boron-containing polycyclic aromatic compounds, is reported. The resulting boron-containing compounds possess high singlet-triplet excitation energies as a result of localized frontier molecular orbitals induced by boron and oxygen. Using these compounds as a host material, we successfully prepared phosphorescent organic light-emitting diodes exhibiting high efficiency and adequate lifetimes. Moreover, using the present one-step borylation, we succeeded in the synthesis of an efficient, thermally activated delayed fluorescence emitter and boron-fused benzo[6]helicene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    Science.gov (United States)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  13. Efficient single light-emitting layer pure blue phosphorescent organic light-emitting devices with wide gap host and matched interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunlong; Zhou, Liang, E-mail: zhoul@ciac.ac.cn; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2015-12-15

    In this work, we report the highly efficient pure blue electroluminescent (EL) device based on bis[(3,5-difluoro-4-cyanophenyl)pyridine]picolinate iridium(III) (FCNIrpic) doped 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi) film. The matched energy levels of FCNIrpic and CzSi are helpful in facilitating the trapping of carriers, while the high triplet energy of CzSi can well avoid the undesired reverse energy transfer. More importantly, the injection of holes was further accelerated by inserting 5 nm 4,4′,4″-Tri(9-carbazoyl)triphenylamine (TcTa) film between hole transport layer and lighting-emitting layer (EML) as interlayer. Consequently, EL performances were significantly enhanced attributed to wider recombination zone and better balance of holes and electrons. Interestingly, single-EML device displayed higher performances than those of double-EMLs device. Finally, pure blue EL device with the structure of ITO/MoO{sub 3} (3 nm)/TAPC (40 nm)/TcTa (5 nm)/FCNIrpic (20%): CzSi (30 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (100 nm) realized the maximum brightness, current efficiency, power efficiency and external quantum efficiency up to 12,505 cd/m{sup 2}, 36.20 cd/A, 28.42 lm/W and 16.9%, respectively. Even at the high brightness of 1000 cd/m{sup 2}, current efficiency and external quantum efficiency up to 17.40 cd/A and 8.1%, respectively, can be retained by the same device.

  14. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  15. Hybrid white organic light-emitting devices based on phosphorescent iridium–benzotriazole orange–red and fluorescent blue emitters

    International Nuclear Information System (INIS)

    Xia, Zhen-Yuan; Su, Jian-Hua; Chang, Chi-Sheng; Chen, Chin H.

    2013-01-01

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange–red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N 1 ,C 3 ] iridium acetylacetonate, Ir(TBT) 2 (acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1′;4′,1″]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT) 2 (acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N′-(4,4′-(1E,1′E)-2,2′-(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange–red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: ► An iridium-based orange–red phosphor Ir(TBT) 2 (acac) was applied in hybrid white OLEDs. ► Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. ► Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  16. Purely organic thermally activated delayed fluorescence (TADF) materials for organic light-emitting diodes (OLEDs)

    OpenAIRE

    Wong, Michael Y.; Zysman-Colman, Eli

    2017-01-01

    We thank the University of St Andrews for support. EZ-C thanks the Leverhulme Trust for financial support (RPG-2016-047). and the EPSRC (EP/P010482/1) for financial support. The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shif...

  17. Modeling of transient electroluminescence overshoot in bilayer organic light-emitting diodes using rate equations

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001 (C.G.) (India); Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [Department of Applied Physics, Ashoka Institute of Technology and Management, Rajnandgaon 491441 (C.G.) (India); Tiwari, M. [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati University, Jabalpur 482001 (M.P.) (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010 (C.G.) (India); Ramrakhiani, M. [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati University, Jabalpur 482001 (M.P.) (India)

    2012-06-15

    When a voltage pulse is applied under forward biased condition to a spin-coated bilayer organic light-emitting diode (OLED), then initially the electroluminescence (EL) intensity appearing after a delay time, increases with time and later on it attains a saturation value. At the end of the voltage pulse, the EL intensity decreases with time, attains a minimum intensity and then it again increases with time, attains a peak value and later on it decreases with time. For the OLEDs, in which the lifetime of trapped carriers is less than the decay time of the EL occurring prior to the onset of overshoot, the EL overshoot begins just after the end of voltage pulse. The overshoot in spin-coated bilayer OLEDs is caused by the presence of an interfacial layer of finite thickness between hole and electron transporting layers in which both transport molecules coexist, whereby the interfacial energy barrier impedes both hole and electron passage. When a voltage pulse is applied to a bilayer OLED, positive and negative space charges are established at the opposite faces of the interfacial layer. Subsequently, the charge recombination occurs with the incoming flux of injected carriers of opposite polarity. When the voltage is turned off, the interfacial charges recombine under the action of their mutual electric field. Thus, after switching off the external voltage the electrons stored in the interface next to the anode cell compartment experience an electric field directed from cathode to anode, and therefore, the electrons move towards the cathode, that is, towards the positive space charge, whereby electron-hole recombination gives rise to luminescence. The EL prior to onset of overshoot is caused by the movement of electrons in the electron transporting states, however, the EL in the overshoot region is caused by the movement of detrapped electrons. On the basis of the rate equations for the detrapping and recombination of charge carriers accumulated at the interface

  18. Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education

    Science.gov (United States)

    Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang

    2006-02-01

    Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.

  19. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoxiao; Li, Fushan, E-mail: fushanli@hotmail.com; Wu, Wei; Guo, Tailiang, E-mail: gtl_fzu@hotmail.com

    2014-03-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm.

  20. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    International Nuclear Information System (INIS)

    Wu, Xiaoxiao; Li, Fushan; Wu, Wei; Guo, Tailiang

    2014-01-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm

  1. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shunliang; Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(tbpbt){sub 2}Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt){sub 2}Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt){sub 2}Ir(acac) as a self-host orange emitter, indicating that (tbpbt){sub 2}Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized.

  2. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    International Nuclear Information System (INIS)

    Zhou, Shunliang; Wang, Qi; Li, Ming; Lu, Zhiyun; Yu, Junsheng

    2014-01-01

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C 2' ]iridium(III) (acetylacetonate) [(tbpbt) 2 Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt) 2 Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt) 2 Ir(acac) as a self-host orange emitter, indicating that (tbpbt) 2 Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized

  3. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  4. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    Science.gov (United States)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  5. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    Science.gov (United States)

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  6. Influence of indium tin oxide electrodes deposited at room temperature on the properties of organic light-emitting devices

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Taga, Yasunori

    2005-01-01

    The influence of indium tin oxide (ITO) electrodes deposited at room temperature (ITO-RT) on the properties of organic light-emitting devices (OLEDs) has been studied. The OLED on the ITO-RT showed an obvious shorter lifetime and higher operating voltage than that on the conventional ITO electrode deposited at 573 K. The result of an in situ x-ray photoelectron spectroscopy analysis of the ITO electrode and the organic layer suggested that many of the hydroxyl groups that originate in the amorphous structure of the ITO-RT electrode oxidize the organic layer. The performance of the OLED on the ITO-RT is able to be explained by the oxidation of the organic layer

  7. Organic light-emitting diodes with F16CuPC as an efficient hole-injection layer

    International Nuclear Information System (INIS)

    Lee, H. K.; Shin, Y. C.; Kwon, D. S.; Lee, C. H.

    2006-01-01

    We report a new hole-injection material, copper hexadecafluorophthalocyanine (F 16 CuPC) for organic light-emitting diodes (OLEDs) consisting of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) as a hole-transport layer and 8-tris-hydroxyquinoline aluminum (Alq 3 ) as a light-emitting and electron-transport layer. The insertion of the F 16 CuPC between indium-tin oxide (ITO) and α-NPD reduces the operating voltage significantly and thereby increases the luminous efficiency. By measuring the device characteristics for various F 16 CuPC thicknesses, we find that an optimum F 16 CuPC thickness is about 15 nm. At a luminance of 1000 cd/m 2 , the device with 15-nm-thick F 16 CuPC shows a luminous efficiency of 1.5 lm/W and a device operating voltage of 7.2 V while the device without the F 16 CuPC layer shows 1.1 lm/W and 10.4 V. The significant decrease in a driving voltage and increase in the luminous efficiency can be attributed to the high hole-injection efficiency when F 16 CuPC is inserted between ITO and α-NPD.

  8. Highly efficient and stable white organic light emitting diode base on double recombination zones of phosphorescent blue/orange emitters.

    Science.gov (United States)

    Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung

    2011-08-01

    We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.

  9. Improved stability of organic light-emitting diode with aluminum cathodes prepared by ion beam assisted deposition

    Directory of Open Access Journals (Sweden)

    Soon Moon Jeong, Deuk Yeon Lee, Won Hoe Koo, Sang Hun Choi, Hong Koo Baik, Se-Jong Lee and Kie Moon Song

    2005-01-01

    Full Text Available We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, I–V–L characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED has been extended effectively by dense Al film through ion beam assisted deposition process.

  10. Simple process of hybrid white quantum dot/organic light-emitting diodes by using quantum dot plate and fluorescence

    Science.gov (United States)

    Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan

    2015-02-01

    In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.

  11. Improvement of carrier transport and luminous efficiency of organic light emitting diodes by introducing a co-deposited active layer

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Naoki; Murata, Masaya; Kashiwabara, Keiichiro; Kurata, Kazunori, E-mail: ohtani@mail.doshisha.ac.j [Department of Electronics, Doshisha University, 3-1 Tatara-Miyakodani, Kyotanabe-shi, Kyoto 610-0321 (Japan)

    2009-11-15

    We evaluated carrier transport and luminous efficiency of organic light-emitting diodes (OLEDs) whose active regions consist of a single co-deposited layer. One organic material is a hole transport material N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), while the other is an electron transport/emissive material Tris(8-hydroxyquinolinato)-aluminum (Alq3). It was found that the luminous efficiency strongly depends on the thickness and the ratio of the TPD:Alq3 co-deposited layer. This indicates that the carrier balance in the active region can be improved by changing the co-deposited layers. In addition, we performed the dye-doping method to clarify the recombination region. As a result, we found that the radiative recombination is caused in the whole TPD:Alq3 co-deposited layer.

  12. Efficiency improvement of flexible fluorescent and phosphorescent organic light emitting diodes by inserting a spin-coating buffer layer

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Shen-Yaur; Su, Shin-Yuan; Juang, Fuh-Shyang

    2009-01-01

    We dissolved hole transport materials α-NPD and NPB in THF solvent, and spin-coated the α-NPD + THF or NPB + THF solution onto ITO anode surface to improve the luminance efficiency and lifetime of flexible fluorescent and phosphorescent organic light emitting diodes. Then the BCP and TPBi were employed as hole blocking layer (HBL) of phosphorescent device and its thickness was optimized. From the experimental results, the maximum luminance efficiency is 4.4 cd/A at 9 V of fluorescent device and 24.4 cd/A of phosphorescent device, respectively. Such an improvement in the device performance was attributed to the smoother surface and good contact between the interface of spin-coated HTL/ITO, the hole were effectively injected from the anode into the organic layer. And the deposited HTL can block excitons from diffusing into the anode to quench, thus improving the luminance efficiency and lifetime greatly.

  13. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    Science.gov (United States)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  14. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghee, E-mail: jonghee.lee@etri.re.kr [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Koh, Tae-Wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Cho, Hyunsu [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Schwab, Tobias [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jae-Hyun [Department School of Global Convergence Studies, Hanbat National University, San 16-1, Duckmyoung-dong, Daejeon 305-719 (Korea, Republic of); Hofmann, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jeong-Ik [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Yoo, Seunghyup [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); and others

    2015-06-15

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m{sup −2}. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage.

  15. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    International Nuclear Information System (INIS)

    Lee, Jonghee; Koh, Tae-Wook; Cho, Hyunsu; Schwab, Tobias; Lee, Jae-Hyun; Hofmann, Simone; Lee, Jeong-Ik; Yoo, Seunghyup

    2015-01-01

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m −2 . At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage

  16. White organic light-emitting diodes based on doped and ultrathin Rubrene layer

    Science.gov (United States)

    Li, Yi; Jiang, Yadong; Wen, Wen; Yu, Junsheng

    2010-10-01

    Based on a yellow fluorescent dye of 5, 6, 11, 12-tetraphenylnaphthacene (Rubrene), WOLEDs were fabricated, with doping structure and ultrathin layer structure utilized in the devices. By doping Rubrene into blue-emitting N,N'-bis-(1- naphthyl)-N,N'-biphenyl-1,1'-biphenyl-4,4'-diamine (NPB), the device with a structure of indium-tin-oxide (ITO)/NPB (40 nm)/NPB:Rubrene (0.25 wt%, 7 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (30 nm)/Mg:Ag exhibited a warm white light with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.38, 0.41) at 12 V. The electroluminescent spectrum of the OLED consisted of blue and yellow fluorescent emissions, the intensity of blue emission increased gradually relative to the orange emission with increasing voltage. This is mainly due to the recombination zone shifted towards the anode side as the transmission rate of electrons grows faster than that of holes under higher bias voltage. A maximum luminance of 7300 cd/m2 and a maximum power efficiency of 0.57 lm/W were achieved. Comparatively, by utilizing ultrathin dopant layer, the device with a structure of ITO/NPB (40 nm)/Rubrene (0.3 nm)/NPB (7 nm)/BCP (30 nm)/Mg:Ag achieved a low turn-on voltage of 3 V and a more stable white light. The peaks of EL spectra located at 430 and 560 nm corresponding to the CIE coordinates of (0.32, 0.32) under bias voltage ranging from 5 to 15 V. A maximum luminance of 5630 cd/m2 and a maximum power efficiency of 0.6 lm/W were achieved. The balanced spectra were attributed to the stable confining of charge carriers and exciton by the thin emitting layers. Hence, with simple device structure and fabricating process, the device with ultrathin layer achieved low turn-on voltage, stable white light emitting and higher power efficiency.

  17. Characteristics of ITO electrode grown by linear facing target sputtering with ladder type magnetic arrangement for organic light emitting diodes

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Kim, Han-Ki; Lee, Jae-Young; Lee, Jung-Hwan; Bae, Hyo-Dae; Tak, Yoon-Heung

    2009-01-01

    The preparation and characteristics of indium tin oxide (ITO) electrodes grown using a specially designed linear facing target sputtering (LFTS) system with a ladder type magnet arrangement for organic light emitting diodes (OLED) are described. It was found that the electrical and optical properties of the ITO electrode were critically dependent on the Ar/O 2 flow ratio, while its structural and surface properties remained fairly constant regardless of the Ar/O 2 flow ratio, due to the low substrate temperature during the plasma damage-free sputtering. Under the optimized conditions, we obtained an ITO electrode with the lowest sheet resistance of 39.4 Ω/sq and high transmittance of 90.1% (550 nm wavelength) at room temperature. This suggests that LFTS is a promising low temperature and plasma damage free sputtering technology for preparing high-quality ITO electrodes for OLEDs and flexible OLEDs at room temperature.

  18. Effect of trapped electrons on the transient current density and luminance of organic light-emitting diode

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng

    2018-04-01

    Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.

  19. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    Science.gov (United States)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  20. Tetra-methyl substituted copper (II phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2015-10-01

    Full Text Available We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  1. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup −} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2 eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91 cd/A, 102 lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  2. Effect of gold nanorods and nanocubes on electroluminescent performances in organic light-emitting diodes and its working mechanism

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2015-06-01

    Full Text Available In this manuscript we investigated the influence of Au nanoparticles on electrical and electroluminescent (EL performances in organic light-emitting diodes (OLEDs via doping as-synthesized Au nanorods (NRs or nanocubes (NCs into hole transport layer (HTL. Through accurately controlling the distance between the Au NRs and the emitting layer, altering the guest emitter’s lifetime, and replacing Au NRs with Au NCs to satisfy a better spectrum overlap with the emission guest, we got a conclusion that doping Au NRs or NCs into HTL has no significant influence on the device’s electrical and EL performances, although we observed an increase in the spontaneous emission rate in a fluorescent material by the exciton-surface plasmon-coupling. Our results suggest that a further research on emission mechanism in surface plasmon-enhanced OLEDs is still in process.

  3. White Organic Light-Emitting Diodes Using Two Phosphorescence Materials in a Starburst Hole-Transporting Layer

    Directory of Open Access Journals (Sweden)

    Tomoya Inden

    2012-01-01

    Full Text Available We fabricated two kinds of white organic light-emitting diodes (WOLEDs; one consisted of two emissive materials of red and blue, and the other of three emissive materials of red, green, and blue. The red and blue emissive materials were phosphorescent. We evaluated the thickness dependence of the CIE coordinate, the external quantum efficiency (EQE, and the luminance by changing the thicknesses of the Ir(btp2acac and FIrpic layers. Samples consisting of three emissive materials revealed the best CIE coordinate and the best EQE in the same sample structure. On the other hand, the samples consisting of two emissive materials revealed the best CIE coordinate and the best EQE in different structures. The best CIE coordinate of (0.33, 0.36 was observed by changing the thicknesses of the stacked active layers. The best EQE was 9.73%, which was observed in the sample consisting of different thickness of stacked active layers.

  4. Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.J., E-mail: chien@nuk.edu.t [Department of Applied Physics, National University of Kaohsiung, 700 Kaohsiung University Road, Nan-Tzu, Kaohsiung, Taiwan (China); Kang, C.C. [Department of Electro-Optical Engineering, Southern Taiwan University of Technology, 1 Nan-Tai St., Yung-Kang City, Tainan, Taiwan (China); Lee, T.C. [Department of Electrical Engineering, Southern Taiwan University of Technology, 1 Nan-Tai St., Yung-Kang City, Tainan, Taiwan (China); Chen, W.R.; Meen, T.H. [Department of Electronic Engineering, National Formosa University, 64 Wen-Hwa Road, Hu-Wei, Yunlin, Taiwan (China)

    2009-11-15

    This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m{sup 2} when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m{sup 2} is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied.

  5. Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer

    International Nuclear Information System (INIS)

    Huang, C.J.; Kang, C.C.; Lee, T.C.; Chen, W.R.; Meen, T.H.

    2009-01-01

    This work demonstrates the fabrication of a bright blue organic light-emitting diode (BOLED) with good color purity using 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi) and bathocuproine (BCP) as the emitting layer (EML) and the hole-blocking layer (HBL), respectively. Devices were prepared by vacuum deposition on indium tin oxide (ITO)-glass substrates. The thickness of DPVBi used in the OLED has an important effect on color and efficiency. The blue luminescence is maximal at 7670 cd/m 2 when 13 V is applied and the BCP thickness is 2 nm. The CIE coordinate at a luminance of 7670 cd/m 2 is (0.165, 0.173). Furthermore, the current efficiency is maximum at 4.25 cd/A when 9 V is applied.

  6. Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances

    Directory of Open Access Journals (Sweden)

    Thanh-Tuân Bui

    2018-03-01

    Full Text Available Organic light-emitting diodes offer attractive perspectives for the next generation display and lighting technologies. The potential is huge and the list of potential applications is almost endless. So far, blue emitters still suffer from noticeably inferior electroluminescence performances in terms of efficiency, lifespan, color quality, and charge injection/transport when compared to that of the other colors. Emitting materials matching the NTSC standard blue of coordinates (0.14, 0.08 are extremely rare and still constitutes the focus of numerous academic and industrial researches. In this context, we review herein the recent developments on highly emissive deep-blue thermally activated delayed fluorescence emitters that constitute the third-generation electroluminescent materials.

  7. Enabling Lambertian-Like Warm White Organic Light-Emitting Diodes with a Yellow Phosphor Embedded Flexible Film

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Chen

    2014-01-01

    Full Text Available We demonstrate in this report a new constructive method of fabricating white organic light-emitting devices (OLEDs with a flexible plastic film embedded with yellow phosphor. The flexible film is composed of polydimethylsiloxane (PDMS and fabricated by using spin coating followed by peeling technology. From the results, the resultant electroluminescent spectrum shows the white OLED to have chromatic coordinates of 0.38 and 0.54 and correlated color temperature of 4200 K. The warm white OLED exhibits the yield of 10.3 cd/A and the luminous power efficiency of 5.4 lm/W at a luminance of 1000 cd/m2. A desirable Lambertian-like far-field pattern is detected from the white OLEDs with the yellow phosphor containing PDMS film. This method is simple, reproducible, and cost-effective, proving to be a highly feasible approach to realize white OLED.

  8. The Effect of Anisotropy on Light Extraction of Organic Light-Emitting Diodes with Photonic Crystal Structure

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available The light extraction efficiency of organic light-emitting diodes (OLED is greatly limited due to the difference in refractive indexes between materials of OLED. We fabricated OLED with photonic crystal microstructures in the interface between the glass substrate and the ITO anode. The light extraction efficiency can be improved by utilizing photonic crystals; however, the anisotropy effect of light extraction was clearly observed in experiment. To optimize the device performance, the effect of photonic crystal on both light extraction and angular distribution was investigated using finite-difference time domain (FDTD method. We simulated the photonic crystals with the structure of square lattice and triangle lattice. We analyzed the improvement of these structures in the light extraction efficiency of the OLED and the influence of arrangement, depth, period, and diameter on anisotropy. The optimized geometric parameters were provided, which will provide the theoretical support for designing the high performance OLED.

  9. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Xu, Zong-Xiang, E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, P. R. China, 518055 (China); Yan, Yan; Roy, V. A. L., E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (Hong Kong)

    2015-10-15

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  10. Magneto-electroluminescence effects in the single-layer organic light-emitting devices with macrocyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    S.-T. Pham

    2018-02-01

    Full Text Available Magneto-electroluminescence (MEL effects are observed in single-layer organic light-emitting devices (OLEDs comprising only macrocyclic aromatic hydrocarbons (MAHs. The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6. The MEL ratio of the resulting OLED is 1%–2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (−1.5% to −2% in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.

  11. Surface morphology and interdiffusion of LiF in Alq3-based organic light-emitting devices.

    Science.gov (United States)

    Lee, Young Joo; Li, Xiaolong; Kang, Da-Yeon; Park, Seong-Sik; Kim, Jinwoo; Choi, Jeong-Woo; Kim, Hyunjung

    2008-09-01

    Highly efficient organic light-emitting devices (OLEDs) have been realized by insertion of a thin insulating lithium fluoride (LiF) layer between aluminum (Al) cathode and an electron transport layer, tris-(8-hydroxyquinoline) aluminum (Alq(3)). In this paper, we study the surface morphology of LiF on Alq(3) by synchrotron X-ray scattering and atomic force microscopy (AFM) as a function of thickness of LiF. We also study the interdiffusion of LiF into Al cathode as well as into Alq(3) layer as a function of temperature. Initially, LiF molecules are distributed randomly as clusters on the Alq(3) layer and then gradually form a layer as increasing LiF thickness. The interdiffusion of LiF into Al occurs more actively than into Alq(3) in annealing process. LiF on Alq(3) induces the ordering of Al to (111) direction strongly with increasing LiF thickness.

  12. A numerical study on the charge transport in TPD/Alq3-based organic light emitting diodes.

    Science.gov (United States)

    Kim, K S; Hwang, Y W; Lee, H G; Won, T Y

    2014-08-01

    We report our simulation study on the charge transport characteristic of the multi-layer structure for organic light emitting diodes (OLEDs). We performed a numerical simulation on a multilayer structure comprising a hole transport layer (HTL), an emission layer (EML), and an electron transport layer (ETL) between both electrodes. The material of the HTL is TPD (N,N'-Bis (3-methylphenyl)-N,N'-bis(phenyl) benzidine), and the ETL includes Alq3 (Tris (8-hyroxyquinolinato) aluminium). Here, we investigated the parameters such as recombination rates which influence the efficiency of the charge transport between layers in bilayer OLEDs. We also analyzed a transient response during the turn on/off period and the carrier transport in accordance with the variation of the injection barrier and applied voltage. In addition, our numerical simulation revealed that the insertion of the EML affects the photonic characteristics in bilayer structure and also the efficiency due to the difference in the internal barrier height.

  13. Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil

    International Nuclear Information System (INIS)

    Bocksrocker, Tobias; Hülsmann, Neele; Eschenbaum, Carsten; Pargner, Andreas; Höfle, Stefan; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    We present a simple method for the fabrication of highly conductive and fully flexible metal/polymer hybrid anodes for efficient organic light emitting diodes (OLEDs). By incorporating ultra-thin metal grids into a conductive polymer, we fabricated anodes with very low sheet resistances and high transparency. After optimizing the metallic grid, OLEDs with these hybrid anodes are superior to OLEDs with standard indium tin oxide (ITO) anodes in luminous efficacy by a factor of ∼ 2. Furthermore, the sheet resistance can be reduced by up to an order of magnitude compared to ITO on polyethylene terephthalate (PET). The devices show a very low turn-on voltage and the hybrid anodes do not change the emissive spectra of the OLEDs. In addition, we fabricated the anodes directly on a barrier foil, making the double sided encapsulation of a typically used PET-substrate unnecessary

  14. Magneto-electroluminescence effects in the single-layer organic light-emitting devices with macrocyclic aromatic hydrocarbons

    Science.gov (United States)

    Pham, S.-T.; Ikemoto, K.; Suzuki, K. Z.; Izumi, T.; Taka, H.; Kita, H.; Sato, S.; Isobe, H.; Mizukami, S.

    2018-02-01

    Magneto-electroluminescence (MEL) effects are observed in single-layer organic light-emitting devices (OLEDs) comprising only macrocyclic aromatic hydrocarbons (MAHs). The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6). The MEL ratio of the resulting OLED is 1%-2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (-1.5% to -2%) in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.

  15. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode

    International Nuclear Information System (INIS)

    Mu Ye; Zhang Zhen-Song; Wang Hong-Bo; Qu Da-Long; Wu Yu-Kun; Yan Ping-Rui; Li Chuan-Nan; Zhao Yi

    2015-01-01

    It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m 2 at low voltage of 4 V. (paper)

  16. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  17. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  18. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    Science.gov (United States)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  19. Determination of an optimized Alq3 layer thickness in organic light-emitting diodes by using microcavity effects

    International Nuclear Information System (INIS)

    Jung, Boo-Young; Hwangbo, Chang-Kwon

    2006-01-01

    In this paper, an optical model of an organic light-emitting diode (OLED) based on the optical thin film theory is derived to calculate the output intensity of a small-molecule OLED. Two types of Alq 3 -based OLEDs are designed using the optical model and deposited to compare with the designed OLEDs. The optical model shows that the radiance of the OLED can be affected by the Fabry-Perot multiple beam interference effect, the two-beam interference effect, and the spontaneous emission spectrum of the emitting material. The measured spectral characteristics for the two types of OLEDs are found to be in good agreement with the simulation. The result suggests that the proposed optical model can be used for optimizing the architecture of small-molecule OLEDs.

  20. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    International Nuclear Information System (INIS)

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young

    2014-01-01

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  1. Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation

    Science.gov (United States)

    Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang

    2008-07-01

    This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.

  2. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    International Nuclear Information System (INIS)

    Hong, Lin-Ann; Vu, Hoang-Tuan; Juang, Fuh-Shyang; Lai, Yun-Jr; Yeh, Pei-Hsun; Tsai, Yu-Sheng

    2013-01-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm 2 , and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  3. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    Science.gov (United States)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  4. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  5. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    Science.gov (United States)

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  6. Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode.

    Science.gov (United States)

    Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung

    2017-05-01

    In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

  7. Color-tunable and high-efficiency organic light-emitting diode by adjusting exciton bilateral migration zone

    Science.gov (United States)

    Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng

    2013-09-01

    A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.

  8. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    Science.gov (United States)

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  9. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Lin-Ann; Vu, Hoang-Tuan [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Juang, Fuh-Shyang, E-mail: fsjuang@seed.net.tw [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Lai, Yun-Jr [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Yeh, Pei-Hsun [Raystar Optronics, Inc., 5F No. 25, Keya Rd. Daya Township, Taichung County, Taiwan (China); Tsai, Yu-Sheng [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China)

    2013-10-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm{sup 2}, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  10. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  11. High-efficiency white organic light-emitting devices with a non-doped yellow phosphorescent emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Juan; Yu Junsheng, E-mail: jsyu@uestc.edu.cn; Hu Xiao; Hou Menghan; Jiang Yadong

    2012-03-30

    Highly efficient phosphorescent white organic light-emitting devices (PHWOLEDs) with a simple structure of ITO/TAPC (40 nm)/mCP:FIrpic (20 nm, x wt.%)/bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2} Prime ] iridium (acetylacetonate) (tbt){sub 2}Ir(acac) (y nm)/Bphen (30 nm)/Mg:Ag (200 nm) have been developed, by inserting a thin layer of non-doped yellow phosphorescent (tbt){sub 2}Ir(acac) between doped blue emitting layer (EML) and electron transporting layer. By changing the doping concentration of the blue EML and the thickness of the non-doped yellow EML, a PHWOLED comprised of higher blue doping concentration and thinner yellow EML achieves a high current efficiency of 31.7 cd/A and Commission Internationale de l'Eclairage coordinates of (0.33, 0.41) at a luminance of 3000 cd/m{sup 2} could be observed. - Highlights: Black-Right-Pointing-Pointer We introduce a simplified architecture for phosphorescent white organic light-emitting device. Black-Right-Pointing-Pointer The key concept of device fabrication is combination of doped blue emissive layer (EML) with non-doped ultra-thin yellow EML. Black-Right-Pointing-Pointer Doping concentration of the blue EML and thickness of the yellow EML are sequentially adjusted. Black-Right-Pointing-Pointer High device performance is achieved due to improved charge carrier balance as well as two parallel emission mechanisms in the EMLs.

  12. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Min [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  13. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2018-02-01

    A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light-emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light-emitting diodes.

  14. Device characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer.

    Science.gov (United States)

    Lim, Jong Tae; Kim, Kyung Nam; Yeom, Geun Young

    2009-12-01

    Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)/Ba-doped Alq3 (20 nm, x%: x = 0, 10, 25, and 50)/Al (100 nm), the device with the Alq3 layer doped with 10% Ba showed the highest light out-coupling characteristic. However, as the Ba dopant concentration was increased from 25% to 50%, this device characteristic was largely reduced. The characteristics of these devices were interpreted on the basis of the chemical reaction between Ba and Alq3 and the electron injection property by analyzing the electronic structure of the Ba-doped Alq3 layer. At a low Ba doping of 10%, mainly the Alq3 radical anion species was formed. In addition, the barrier height for electron injection in this layer was decreased to 0.6 eV, when compared to the pristine Alq3 layer. At a high Ba doping of 50%, the Alq3 molecules were severely decomposed. When the Ba dopant concentration was changed, the light-emitting characteristics of the devices were well coincided with the formation mechanism of Alq3 radical anion and Alq3 decomposition species.

  15. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Efficient fluorescent red, green, and blue organic light-emitting devices with a blue host of spirobifluorene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.-H. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China)], E-mail: lerongho@yuntech.edu.tw; Huang, Y.-W.; Wang, Y.-Y. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Chang, H.-Y. [EChem Hightech CO., LTD, Hsin-Chu Industrial Park, Hu-Kou, Hsin-Chu, Taiwan (China)

    2008-06-02

    Efficient fluorescent blue, green, and red (RGB) organic light-emitting devices (OLEDs) were fabricated using a blue host material of pyrimidine-containing spirobifluorene derivative 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl]-9,9'-spirobifluorene (TBPSF) doped with blue dye perylene, green dye 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l] pyrano[6,7,8-ij] quinolizin-11-one (C545T), and red dye 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB), respectively. The brightness and current efficiency of the perylene doped blue device reached 10117 cd/m{sup 2} and 2.97 cd/A. Green emission of the C545T doped device reached 8500 cd/m{sup 2} and 13.0 cd/A. Red emission of the DCJTB doped device can be as high as 9000 cd/m{sup 2} and 2.0 cd/A, respectively. High color purity of the blue (Commission Internationale de L'Eclairage (CIE{sub x,y}) coordinates (CIE, x = 0.27, y = 0.24)), green (CIE, x = 0.19, y = 0.63) and red (CIE, x = 0.62, y = 0.37) emissions were achieved for RGB dyes doped TBPSF OLEDs. High brightness, large current efficiency, and good color purity of TBPSF-based RGB OLEDs were obtained by the configuration optimization device, such as inserting the hole and electron-injection materials, and suitable dopant content and light emitting layer thickness.

  17. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode

    International Nuclear Information System (INIS)

    Zhang Yan-Fei; Zhao Su-Ling; Xu Zheng; Kong Chao

    2012-01-01

    In order to take advantage of organic and inorganic materials, we chose the polymer MEH-PPV as the luminous layer and ZnS as the electron transporting layer to prepare hybrid organic-inorganic light-emitting diodes (HOILEDs): ITO/MEH-PPV(∼70 nm)/ZnS(20 nm)/Al by thermal evaporation and spin coating. Compared with the single-layer device ITO/MEH-PPV(∼70 nm)/Al, spectral broadening and a slightly red shift are observed. Compared with the pure organic device ITO/MEH-PPV(∼70 nm)/BCP (20 nm)/Al and combined with the energy level structure diagram, it is concluded that the spectral broadening and red shift are due to the exciplex luminescence at the interface between MEH-PPV and ZnS or BCP. In addition, the hybrid inorganic-organic device shows a lower turn-on voltage, but the current efficiency is lower than that of the pure organic device with the same structure

  19. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  20. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  2. Efficient white organic light-emitting devices using a thin 4,4'-bis(2,2'-diphenylvinyl)-1,1'-diphenyl layer

    International Nuclear Information System (INIS)

    Wang Jun; Yu Junsheng; Li Lu; Tang Xiaoqing; Jiang Yadong

    2008-01-01

    White organic light-emitting devices (OLEDs) were fabricated using phosphorescent material bis[2-(4-tert-butylphenyl)benzothiazolato-N,C 2' ]iridium (acetylacetonate) [(t-bt) 2 Ir(acac)] doped in 4,4'-bis(carbazol-9-yl) biphenyl (CBP) matrix as a yellow light-emitting layer and a thin layer 4,4'-bis(2,2'-diphenylvinyl)-1,1'-diphenyl (DPVBi) as the blue light-emitting layer. The light colour of the OLEDs can be adjusted by changing doped concentration and the thickness of the DPVBi thin layer. The maximum luminance and power efficiency of 5% doped device reached 15 460 cd m -2 and 8.1 lm W -1 , respectively. The 3% doped device showed the CIE coordinates of (0.344, 0.322) at 8 V and a maximum power efficiency of 5.7 lm W -1 at 4.5 V

  3. Highly Efficient p-i-n Type Organic Light-emitting Diodes Using ...

    African Journals Online (AJOL)

    operating voltage of 3.0 V. In addition, impressive characteristics of white .... low voltage drops in the transport layers due to their ... thermal evaporation in high vacuum or organic vapor ... the calibrated silicon photodiode above the OLEDs.

  4. Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell

    Science.gov (United States)

    Chen, Chun-Yu; Chang, Hao-Wen; Chang, Yu-Fan; Chang, Bo-Jie; Lin, Yuan-Sheng; Jian, Pei-Siou; Yeh, Han-Cheng; Chien, Hung-Ta; Chen, En-Chen; Chao, Yu-Chiang; Meng, Hsin-Fei; Zan, Hsiao-Wen; Lin, Hao-Wu; Horng, Sheng-Fu; Cheng, Yen-Ju; Yen, Feng-Wen; Lin, I.-Feng; Yang, Hsiu-Yuan; Huang, Kuo-Jui; Tseng, Mei-Rurng

    2011-11-01

    A continuous roll-to-roll compatible blade-coating method for multi-layers of general organic semiconductors is developed. Dissolution of the underlying film during coating is prevented by simultaneously applying heating from the bottom and gentle hot wind from the top. The solvent is immediately expelled and reflow inhibited. This method succeeds for polymers and small molecules. Uniformity is within 10% for 5 cm by 5 cm area with a mean value of tens of nanometers for both organic light-emitting diode (OLED) and solar cell structure with little material waste. For phosphorescent OLED 25 cd/A is achieved for green, 15 cd/A for orange, and 8 cd/A for blue. For fluorescent OLED 4.3 cd/A is achieved for blue, 9 cd/A for orange, and 6.9 cd/A for white. For OLED with 2 cm by 3 cm active area, the luminance variation is within 10%. Power conversion efficiency of 4.1% is achieved for polymer solar cell, similar to spin coating using the same materials. Very-low-cost and high-throughput fabrication of efficient organic devices is realized by the continuous blade-only method.

  5. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.

    Science.gov (United States)

    Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-05-28

    An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    Science.gov (United States)

    2014-11-24

    onto the glass/ITO substrates and baked at 120uC for 15 min before depositing organic and metal (electrode) layers in a molecular beam deposition...PLEDs by using salmon DNA as an electron blocking layer. J. of Lumin. 130, 331–333, doi:10.1016/j.jlumin.2009.09.012 (2010). 13. Gupta, R. B., Nagpal

  7. Interference phenomenon determines the color in an organic light emitting diode

    Science.gov (United States)

    Granlund, Thomas; Pettersson, Leif A. A.; Anderson, Mats R.; Inganäs, Olle

    1997-06-01

    We report on electroluminescence from two-layer organic diodes made of poly(3-methyl-4-octylthiophene) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole films between electrodes of indium tin oxide and Ca/Al. The diodes emitted light in the green-blue range; the electroluminescence spectra varied between diodes with different thicknesses of the polymer and molecular layers. The optical phenomena were simulated with a model accounting for interference effects; simulated results showed that the electroluminescence from the organic diode can be due neither to luminescence of the polymer nor of the molecular layer. These model simulations, together with electrochemical measurements, can be interpreted as evidence for an indirect optical transition at the polymer/molecule interface that only occurs in a strong electric field. We label this transition an electroplex.

  8. Nanoscale investigation of moisture-induced degradation mechanisms of tris(8-hydroxyquinoline) aluminium-based organic light-emitting diodes

    International Nuclear Information System (INIS)

    Xu, M S; Xu, J B; Chen, H Z; Wang, M

    2004-01-01

    By exploiting tapping mode atomic force microscopy, the moisture-induced degradation mechanisms of ITO (indium tin oxide)-coated glass/CuPc (copper phthalocyanine)/NPB (N, N'-di(naphthalene-1-yl)-N, N'-diphthalbenzidine)/Alq 3 (tris(8-hydroxyquinoline) aluminium)-based organic light-emitting diodes without cathode were investigated. It is found that three types of degradation mechanisms are associated with moisture-exposed Alq 3 films, when the device is exposed to moisture, namely, hydration of Alq 3 , crystallization of Alq 3 and reaction of the Alq 3 complex with H 2 O. Crystallization of the NPB layer of ITO/CuPc/NPB was observed on exposure to moisture, and de-wetting simultaneously takes place at the interface of CuPc/NPB. Indium and/or oxygen may diffuse from ITO into the organic layers. These observations provide a clear picture of the moisture-induced degradation mechanisms of the ITO/CuPc/NPB/Alq 3 -based OLEDs

  9. Facile solution-processed aqueous MoOx for feasible application in organic light-emitting diode

    Science.gov (United States)

    Zheng, Qinghong; Qu, Disui; Zhang, Yan; Li, Wanshu; Xiong, Jian; Cai, Ping; Xue, Xiaogang; Liu, Liming; Wang, Honghang; Zhang, Xiaowen

    2018-05-01

    Solution-processed techniques attract increasing attentions in organic electronics for their low-cost and scalable manufacturing. We demonstrate the favorite hole injection material of solution-processed aqueous MoOx (s-MoOx) with facile fabrication process and cast successful application to constructing efficient organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray photoelectron spectroscopy analysis show that s-MoOx behaves superior film morphology and non-stoichiometry with slight oxygen deficiency. With tris(8-hydroxy-quinolinato)aluminium as emitting layer, s-MoOx based OLED shows maximum luminous efficiency of 7.9 cd/A and power efficiency of 5.9 lm/W, which have been enhanced by 43.6% and 73.5%, respectively, in comparison with the counterpart using conventional vacuum thermal evaporation MoOx. Current-voltage, impedance-voltage, phase-voltage and capacitance-voltage characteristics of hole-only devices indicate that s-MoOx with two processes of "spin-coating/annealing" shows mostly enhanced hole injection capacity and thus promoting device performance. Our experiments provide an alternative approach for constructing efficient OLED with solution process.

  10. Experimental and Theoretical Demonstration on the Transport Properties of Fused Ring Host Materials for Organic Light-Emitting Diodes

    Science.gov (United States)

    Tse, S. C.; So, S. K.; Yeung, M. Y.; Lo, C. F.; Wen, S. W.; Chen, C. H.

    2006-01-01

    The charge transport properties of three tertiary-butyl (t-Bu) substituted anthracene derivatives (ADN), critical blue host materials for organic light-emitting diodes (OLEDs), have been investigated experimentally and computationally. From time-of-flight (TOF) measurements, all ADN compounds exhibit ambipolar characters. The hole and electron mobilities are in the range (1--5)× 10-7 cm2 V-1 s-1 under an external applied field of about 1 MV cm-1. Un-substituted ADN has the highest carrier mobilities while heavily t-Bu substituted ADN has the least. The electron and hole conducting properties of are consistent with ab initio calculation, which indicates that the frontier orbitals are localized mainly on the anthracene moiety. t-Bu substitutions in ADN increase the hopping path lengths among the molecules and hence reduce the electron and hole mobilities. The results demonstrate that t-Bu substitution is an effective means of engineering the conductivity of organic charge transporter for OLED applications.

  11. Influence of co-deposited active layers on carrier transport and luminescent properties in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Masaya; Yamamoto, Takayuki; Haishi, Motoki; Ohtani, Naoki [Department of Electronics, Doshisha University, Tatara-Miyakodani, Kyotanabe-shi, Kyoto (Japan); Ando, Taro [Central Research Laboratory, Hamamatsu Photonics, Hirakuchi, Hamakita-ku, Hamamatsu-shi, Shizuoka (Japan)

    2009-01-15

    We have investigated the influence of a co-deposited active layer in organic light-emitting diodes (OLEDs) on carrier transport and optical properties to improve radiative characteristics of OLEDs. The co-deposited layer consists of two organic materials; one is a hole transport material (TPD) and the other is an electron transport/emissive material (Alq3). We evaluated current-voltage characteristics and electroluminescence (EL) properties of various samples in which the thicknesses and compound ratios of the co-deposited layers are different. The results indicate that the devices consisting of TPD:Alq3 co-deposited layer sandwiched between TPD and Alq3 layers exhibit lower starting voltages for the light emission than the sample of simple TPD/Alq3 heterojunction structure. In addition, the starting voltage is independent of the thickness of TPD:Alq3 co-deposited layer. These samples have two interfaces at both surfaces of TPD:Alq3 co-deposited layer. Thus, we estimated the radiative recombination occurs at the interfaces. Nevertheless, we found that the radiative recombination occurs only at the interface of TPD:Alq3 co-deposited layer and Alq3 layer. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    Science.gov (United States)

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  13. Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

    Science.gov (United States)

    Ciobotaru, Constantin Claudiu; Polosan, Silviu; Ciobotaru, Iulia Corina

    2018-02-01

    This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host-guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet-triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4'-bis( N-carbazolyl)-1,1'-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet-triplet exothermic charge transfer. The higher charge carrier mobility in the case of N, N'-bis(3-methylphenyl)- N, N'-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet-triplet harvesting in the host-guest system. The excitation is transferred to the guest molecules by triplet-triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

  14. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shinar, Joseph [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth [Microelectronics Research Center, Iowa State University, Ames, IA 50011 (United States)

    2008-07-07

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of {approx}2 x 10{sup 5} h ({approx}23 yr) at {approx}150 Cd m{sup -2} (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m{sup -2}). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  15. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    Shinar, Joseph; Shinar, Ruth

    2008-01-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 10 5 h (∼23 yr) at ∼150 Cd m -2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m -2 ). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  16. Blue-light-emitting organic electroluminescence via exciplex emission based on a fluorene derivative

    International Nuclear Information System (INIS)

    Li Fushan; Chen Zhijian; Wei Wei; Cao Huayu; Gong Qihuang; Teng Feng; Qian Lei; Wang Yuanmin

    2004-01-01

    The synthesis of a high photoluminescence efficiency (88%, compared with tris(8-hydroxyquinoline)(Alq 3 )) organic material 9,9-Dibutyl-N,N,N,N-tetraphenyl-9H-fluorene-2,7-diamine (DTFD) via Ullmann condensation was reported. Exiciplex emission of the ITO/DTFD/2,2-[1,2-phenylenebis(oxy)]bis(N,N-diphenylacetamide)/Alq 3 /LiF/Al device was observed and the peak wavelength of the emission was measured to be 480 nm, which belongs to the blue region. A turn-on voltage as low as 4 V and maximal brightness as large as 400 cd m -2 were measured. The electroluminescence spectrum was observed to be blue-shifted with increase in applied voltage

  17. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Science.gov (United States)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-07-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %-50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  18. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    International Nuclear Information System (INIS)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-01-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis

  19. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong, E-mail: zhxiong@swu.edu.cn [School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715 (China)

    2015-07-13

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  20. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Davids, P.S.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas75083 (United States)

    1998-04-01

    We present device model calculations of the current{endash}voltage (I{endash}V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I{endash}V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I{endash}V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited. {copyright} {ital 1998 American Institute of Physics.}

  1. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Science.gov (United States)

    Campbell, I. H.; Davids, P. S.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1998-04-01

    We present device model calculations of the current-voltage (I-V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I-V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I-V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited.

  2. Blue-light-emitting organic electroluminescence via exciplex emission based on a fluorene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Li Fushan [Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, 100871 (China); Chen Zhijian [Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, 100871 (China); Wei Wei [Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, 100871 (China); Cao Huayu [Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, 100871 (China); Gong Qihuang [Department of Physics, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, 100871 (China); Teng Feng [Institute of Optoelectronic Technology, Northern Jiaotong University, Beijing 100044 (China); Qian Lei [Institute of Optoelectronic Technology, Northern Jiaotong University, Beijing 100044 (China); Wang Yuanmin [Institute of Optoelectronic Technology, Northern Jiaotong University, Beijing 100044 (China)

    2004-06-21

    The synthesis of a high photoluminescence efficiency (88%, compared with tris(8-hydroxyquinoline)(Alq{sub 3})) organic material 9,9-Dibutyl-N,N,N,N-tetraphenyl-9H-fluorene-2,7-diamine (DTFD) via Ullmann condensation was reported. Exiciplex emission of the ITO/DTFD/2,2-[1,2-phenylenebis(oxy)]bis(N,N-diphenylacetamide)/Alq{sub 3}/LiF/Al device was observed and the peak wavelength of the emission was measured to be 480 nm, which belongs to the blue region. A turn-on voltage as low as 4 V and maximal brightness as large as 400 cd m{sup -2} were measured. The electroluminescence spectrum was observed to be blue-shifted with increase in applied voltage.

  3. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    Science.gov (United States)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  4. Studies of solution-processed organic light-emitting diodes and their materials

    Energy Technology Data Exchange (ETDEWEB)

    Hellerich, Emily [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin

  5. White organic light emitting diodes based on DCM dye sandwiched in 2-methyl-8-hydroxyquinolinolatolithium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit [Center for Organic Electronics, Polymeric and Soft Materials Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Chemistry, M.D. University, Rohtak, Haryana 124001 (India); Srivastava, Ritu, E-mail: ritu@mail.nplindia.ernet.i [Center for Organic Electronics, Polymeric and Soft Materials Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Bawa, Sukhwant S. [Center for Organic Electronics, Polymeric and Soft Materials Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Devender; Singh, Kapoor [Department of Chemistry, M.D. University, Rohtak, Haryana 124001 (India); Chauhan, Gayatri [Center for Organic Electronics, Polymeric and Soft Materials Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Ishwar [Department of Chemistry, M.D. University, Rohtak, Haryana 124001 (India); Kamalasanan, Modeeparampil N. [Center for Organic Electronics, Polymeric and Soft Materials Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2010-08-15

    Stable white electroluminescence (EL) has been achieved from organic LED, in which an ultrathin 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM) dye layer has been inserted in between two 2-methyl-8-hydroxyquinolinolatolithium [LiMeq] emitter layer and by optimizing the position of the DCM dye layer from the {alpha}-NPD/LiMeq interface. Electroluminescence spectra, current-voltage-luminescence (I-V-L) characteristics of the devices have been studied by changing the position of the dye layer. As the distance of DCM layer from {alpha}-NPD/LiMeq interface is increased, the intensity of host emission enhances rapidly. Introduction of thin layer of DCM in emissive layer increases the turn on voltage. The best Commission International de L' Eclairage (CIE) coordinates i.e. (0.32, 0.33) were obtained with device structure ITO/{alpha}-NPD(30 nm) /LiMeq(10 nm)/DCM(1 nm)/LiMeq(25 nm)/BCP(6 nm)/Alq{sub 3}(28 nm)/LiF(1 nm)/Al(100 nm). The EL spectrum covers the whole visible spectra range 400-700 nm. The color rendering index (CRI) for our best white light (Device 4) is 47.4. The device shows very good color stability in terms of CIE coordinates with voltages. The maximum luminescence 1240 cd/m{sup -2} has been achieved at 19 V.

  6. High efficiency rubrene based inverted top-emission organic light emitting devices with a mixed single layer

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Lou, Yanhui; Naka, Shigeki; Okada, Hiroyuki

    2010-01-01

    Inverted top-emission organic light emitting devices (TEOLEDs) with a mixed single layer by mixing of electron transport materials (PyPySPyPy and Alq 3 ), hole transport material (α-NPD) and dope material (rubrene) were investigated. Maximum power efficiency of 3.5 lm/W and maximum luminance of 7000 cd/m 2 were obtained by optimizing the mixing ratio of PyPySPyPy:Alq 3 :α-NPD:rubrene=25:50:25:1. Luminance and power efficiency of mixed single layer device were two times improved compared to bi-layer heterojunction device and tri-layer heterojunction device. Lifetime test also shows that the mixed single layer device exhibits longer operational lifetimes of 343 h, which is three times longer than the 109 h for tri-layer device, and two times longer than the 158 h for bi-layer device. In addition, the maximum luminance and power efficiency were obtained at 20,000 cd/m 2 and 7.5 lm/W, respectively, when a TPD layer of 45 nm was capped onto the top metal electrode.

  7. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  8. Preparation of indium tin oxide anodes using energy filtrating technique for top-emitting organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhaoyong, Wang [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036 (China); Ning, Yao, E-mail: yaoning@zzu.edu.cn [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Changbao, Han; Xing, Hu [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2014-01-01

    Indium tin oxide (ITO) anodes were deposited by an improved magnetron sputtering technique (energy filtrating magnetron sputtering technique, EFMS) for top-emitting organic light-emitting diodes (TOLEDs). The phases, surface morphologies and optical properties were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer. The sheet resistances were measured by the sheet resistance meter. The electrical properties were tested by the Hall measurement system. The electro-optic characteristics were examined by a special home-made measurement system. Results indicated that ITO anode deposited by EFMS had a more uniform and smoother surface with smaller grains. ITO film was prepared with the electrical property of the lowest resistivity (4.56 × 10{sup −4} Ω cm), highest carrier density (6.48 × 10{sup 20} cm{sup −3}) and highest carrier mobility (21.1 cm{sup 2}/V/s). The average transmissivity of the ITO film was 87.0% in the wavelength range of 400–800 nm. The TOLEDs based on this ITO anode had a lower turn-on voltage of 2 V (>0.02 mA/cm{sup 2}), higher current density of 58.4 mA/cm{sup 2} at 30 V, higher current efficiency of 1.374 cd/A and higher luminous efficiency of 0.175 lm/W. The possible mechanism of the technique was discussed in detail.

  9. High-efficiency and heavily doped organic light-emitting devices based on quench-resistant red iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao, Juan; Wang, Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2013-02-15

    Highly efficient red phosphorescent organic light-emitting devices had been fabricated using a new iridium complex, bis[2-(9,9-dimethyl-9H-fluoren-2-yl) benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(fbt){sub 2}Ir(acac)] as phosphor. With a high doping concentration of 15 wt%, the device exhibited a maximum luminance efficiency, power efficiency and external quantum efficiency (EQE) of 35.2 cd/A, 21.3 lm/W, 18.2%, respectively, indicating an excellent quench-resistant property of (fbt){sub 2}Ir(acac). The results are appealing towards the development of 'easy-to-make' OLEDs. It has been demonstrated that the high efficiency arises from more balanced charge carriers in the emissive layer. - Highlight: Black-Right-Pointing-Pointer We obtained efficient OLEDs based on newly synthesized quench-resistant phosphor. Black-Right-Pointing-Pointer Peak performance was obtained with 15 wt% (fbt){sub 2}Ir(acac) doped device. Black-Right-Pointing-Pointer Our devices gave one of the best performance among heavily-doped red devices. Black-Right-Pointing-Pointer Balanced carrier transport is crucial for the high performance of our devices.

  10. Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated Iridium (III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Marc [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Dumur, Frédéric, E-mail: frederic.dumur@univ-amu.fr [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Wantz, Guillaume, E-mail: guillaume.wantz@ims-bordeaux.fr [University of Bordeaux, IMS, UMR 5218, F-33400 Talence (France); CNRS, IMS, UMR 5218, F-33400 Talence (France); Vila, Neus; Mbomekallé, Israel [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Bertin, Denis; Gigmes, Didier [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Mayer, Cédric R., E-mail: cmayer@lisv.uvsq.fr [Laboratoire d’Ingénierie des Systèmes de Versailles LISV – EA 4048, Université de Versailles Saint Quentin en Yvelines, 10/12 avenue de l’Europe, 78140 Vélizy (France)

    2013-11-15

    Highly efficient red-emitting Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) based on a neutral vacuum-sublimatable heteroleptic iridium (III) complex have been designed and studied. Heteroleptic complex Ir(piq){sub 2}(acac) was prepared in one step with acetylacetone (acac) as the ancillary ligand. Electronic and spectroscopic properties of Ir(piq){sub 2}(acac) were investigated by UV–visible absorption, fluorescence spectroscopy and cyclic voltammetry. Electrophosphorescent devices comprising Ir(piq){sub 2}(acac) as dopant of TCTA exhibited outstanding electroluminescence performance with a current efficiency of 10.0 cd A{sup −1}, a maximum power efficiency of 7.2 lm W{sup −1} and a maximal brightness of 3540 cd m{sup −2} was reached at 8.0 V. CIE coordinates close to the standard red of the national television system committee were obtained (0.67, 0.33). -- Highlights: • A saturated red OLED has been prepared. • High power efficiency and brightness were obtained. • Thickness of the device was determined as a parameter determining the overall performance. • CIE coordinates close to the standard red of the national television system committee were obtained.

  11. Bi-layer non-doped small-molecular white organic light-emitting diodes with high colour stability

    International Nuclear Information System (INIS)

    Chen Shuming; Kwok, Hoi-Sing; Zhao Zujin; Tang Benzhong; Wang Zhiming; Lu Ping; Gao Zhao; Ma Yuguang

    2011-01-01

    Bi-layer non-doped white organic light-emitting diodes (WOLEDs) with hole-transporting layer 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl)phenyl) thiophen-2yl)benzo[c][1,2,5]thiadiazole (BTPETTD) as a red emitter and electron-transporting layer 4,4'-bis(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)biphenyl (DDPi) as a blue emitter are demonstrated. The blue emission is due to direct recombination of excitons in DPPi, while the red emission originates not only from the direct recombination of excitons in BTPETTD but also from a colour down-conversion process by absorbing blue emission and re-emitting red photons. The combination of blue emission and red emission yields an efficient and extremely stable white colour, regardless of driving voltages. In our demonstration, a bi-layer WOLED with an efficiency of 4.2 cd A -1 at 1000 cd m -2 , 1931 Commision International de L'Eclairage coordinates of (0.31, 0.31) and a high colour rendering index of 92 over a wide range of driving voltages is obtained.

  12. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Jianhua; Yang Yajie; Yu Junsheng; Jiang Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  13. Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Liu, Lihui; Shang, Wenjuan; Han, Chao; Zhang, Qing; Yao, Yao; Ma, Xiaoqian; Wang, Minghao; Yu, Hongtao; Duan, Yu; Sun, Jie; Chen, Shufen; Huang, Wei

    2018-02-28

    Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.

  14. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  15. Improving Light Extraction of Organic Light-Emitting Devices by Attaching Nanostructures with Self-Assembled Photonic Crystal Patterns

    Directory of Open Access Journals (Sweden)

    Kai-Yu Peng

    2014-01-01

    Full Text Available A single-monolayered hexagonal self-assembled photonic crystal (PC pattern fabricated onto polyethylene terephthalate (PET films by using simple nanosphere lithography (NSL method has been demonstrated in this research work. The patterned nanostructures acted as a scattering medium to extract the trapped photons from substrate mode of optical-electronic device for improving the overall external quantum efficiency of the organic light-emitting diodes (OLEDs. With an optimum latex concentration, the distribution of self-assembled polystyrene (PS nanosphere patterns on PET films can be easily controlled by adjusting the rotation speed of spin-coater. After attaching the PS nanosphere array brightness enhancement film (BEF sheet as a photonic crystal pattern onto the device, the luminous intensity of OLEDs in the normal viewing direction is 161% higher than the one without any BEF attachment. The electroluminescent (EL spectrum of OLEDs with PS patterned BEF attachment also showed minor color offset and superior color stabilization characteristics, and thus it possessed the potential applications in all kinds of display technology and solid-state optical-electronic devices.

  16. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A. [Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  17. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  18. Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Kuwae, Hiroyuki; Kasahara, Takashi [Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Nitta, Atsushi; Yoshida, Kou; Inoue, Munetomo [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Matsushima, Toshinori; Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Shoji, Shuichi [Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Mizuno, Jun [JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku, Tokyo 162-0041 (Japan)

    2015-10-21

    We developed organic light-emitting diodes (OLEDs) with nanopatterned current flow regions using electron-beam lithography with the aim of suppressing singlet–polaron annihilation (SPA). Nanopatterns composed of lines and circles were used in the current flow regions of nano-line and nano-dot OLEDs, respectively. Excitons partially escape from the current flow regions where SPA takes place. As such, current densities where external quantum efficiencies were half of their initial values (J{sub 0}) increased as line width and circle diameter were decreased to close to the exciton diffusion length. Circles were more efficient at enhancing exciton escape and increasing J{sub 0} than lines. The J{sub 0} increase in the nano-dot OLEDs containing nanopatterned circles with a diameter of 50 nm was approximately 41-fold that of a conventional OLED with a current flow region of 4 mm{sup 2}. The dependence of J{sub 0} on the size and shape of the nanopatterns was well explained by an SPA model that considered exciton diffusion. Nanopatterning of OLEDs is a feasible method of obtaining large J{sub 0}.

  19. The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Siboni, Hossein Zamani; Wang, Qi; Aziz, Hany, E-mail: lsliao@suda.edu.cn, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn, E-mail: h2aziz@uwaterloo.ca [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2014-12-14

    Charge generation in a typical intermediate connector, composed of “n-type doped layer/transition metal oxide (TMO)/hole transporting layer (HTL),” of a tandem organic light-emitting device (OLED) has recently been found to arise from charge transfer at the TMO/HTL interfaces. In this paper, we investigate the effect of hole injection barriers from intermediate connectors on the performance of tandem OLEDs. The hole injection barriers are caused by the offset of the highest occupied molecular orbital (HOMO) energy levels between HTLs contained in the intermediate connector and the top electroluminescence (EL) unit. We also find that although charge generation can occur at the interfaces between the TMO and a wide variety of HTLs of different HOMO values, an increase in the hole injection barrier however limits the electroluminescence efficiency of the top EL units. In the case of large hole injection barriers, significant charge accumulation in the HTLs makes the intermediate connector lose its functionality gradually over operating time, and limits device stability.

  20. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  1. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-01-01

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In 2 O 3 (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 Ω/□, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit (Φ=T 10 /R sheet ) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices

  2. Effect of Li2O/Al cathode in Alq3 based organic light-emitting diodes.

    Science.gov (United States)

    Shin, Eun Chul; Ahn, Hui Chul; Han, Wone Keun; Kim, Tae Wan; Lee, Won Jae; Hong, Jin Woong; Chung, Dong Hoe; Song, Min Jong

    2008-09-01

    An effect of bilayer cathode Li20/Al was studied in Alq3 based organic light-emitting diodes with a variation of Li2O layer thickness. The current-luminance-voltage characteristics of ITO/TPD/Alq3/Li2O/Al device were measured at ambient condition to investigate the effect of Li2O/Al. It was found that when the thickness of Li2O layer is in the range of 0.5-1 nm, there are improvements in luminance, efficiency, and turn-on voltage of the device. A current density and a luminance are increased by about 100 times, a turn-on voltage is lowered from 6 V to 3 V, a maximum current efficiency is improved by a factor of 2.3, and a maximum power efficiency is improved by a factor of 3.2 for a device with a use of thin Li2O layer compared to those of the one without the Li2Otron-barrier height for electron injection from the cathode to the emissive layer.

  3. New cyclometalated Iridium(III) beta-dicetone complex as phosphorescent dopant in Organic light emitting devices

    Science.gov (United States)

    Ivanov, P.; Petrova, P.; Stanimirov, S.; Tomova, R.

    2017-01-01

    A new Bis[4-(benzothiazolato-N,C2‧-2-yl)-N,N-dimethylaniline]Iridium(III) acetylacetonate (Me2N-bt) 2Ir(acac) was synthesized and identified by 1H NMR and elemental analysis. The application of the new compound as a dopant in the hole transporting layer (HTL) of Organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine (TPD), incorporated in Poly(N-vinylcarbazole) (PVK) matrix, EL - electroluminescent layer of Bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy)aluminum (BAlq) and ETL - electron-transporting layer of Tris-(8-hydroxyquinoline) aluminum (Alq3) or Bis[2-(2-benzothiazoly) phenolato]zinc (Zn(btz)2). We established that the electroluminescent spectra of OLEDs at different concentrations of the dopant were basically the sum of the greenish-blue emission of BAlq and yellowish-green emission of Ir complex. It was found that with increasing of the dopant concentration the relative electroluminescent intensity of Iridium complex emission increased and this of BAlq decreased and as a result the fine tuning of OLED color was observed.

  4. Carbazole/triarylamine based polymers as a hole injection/transport layer in organic light emitting devices.

    Science.gov (United States)

    Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan

    2012-05-01

    This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.

  5. Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes.

    Science.gov (United States)

    Ding, Lei; Tang, Xun; Xu, Mei-Feng; Shi, Xiao-Bo; Wang, Zhao-Kui; Liao, Liang-Sheng

    2014-10-22

    Lithium hydride (LiH) is employed as a novel n-dopant in the intermediate connector for tandem organic light-emitting diodes (OLEDs) because of its easy coevaporation with other electron transporting materials. The tandem OLEDs with two and three electroluminescent (EL) units connected by a combination of LiH doped 8-hydroxyquinoline aluminum (Alq3) and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) demonstrate approximately 2-fold and 3-fold enhancement in current efficiency, respectively. In addition, no extra voltage drop across the intermediate connector is observed. Particularly, the lifetime (T75%) in the tandem OLED with two and three EL units is substantially improved by 3.8 times and 7.4 times, respectively. The doping effect of LiH into Alq3, the charge injection, and transport characteristics of LiH-doped Alq3 are further investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

  6. Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer

    Science.gov (United States)

    Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan

    2016-09-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  7. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    Science.gov (United States)

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  8. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  9. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    International Nuclear Information System (INIS)

    Pereira, D.; Pinto, A.; Califórnia, A.; Gomes, J.; Pereira, L.

    2016-01-01

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  10. Acceptor thickness effect of exciplex and electroplex emission at heterojunction interface in organic light-emitting diodes

    Science.gov (United States)

    Zhang, Wei; Yu, Junsheng; Yuan, Kai; Jiang, Yadong; Zhang, Qing; Cao, Kangli

    2010-10-01

    Organic light-emitting diodes (OLEDs) consisted of a novel fluorene derivative of 5,6-bis(9,9-dihexyl-9H-fluoren-2-yl)- 2,3-diisocyano-2,3-dihydropyrazine (BDHFLCNPy) and a hole transporting material of N,N'-Di-[(1-naphthalenyl)- N,N'-diphenyl](1,1'-biphenyl)-4,4'-diamine (NPB) were fabricated, and electroluminescence (EL) spectrum of devices were investigated. It was found that light emission around 650 nm observed in devices came from exciplex generated at heterojunction interface by NPB molecules worked as electron donor and BDHFLCNPy molecules worked as electron acceptor. Moreover, a shoulder peak around 500 nm ascribed to BDHFLCNPy exciton was observed. To systemically study the effect of heterojunction structure in exciplex formation, OLEDs with different thickness of acceptor were fabricated. The results illustrated that a shoulder peak around 600 nm occurred in EL when acceptor thickness increases, and BDHFLCNPy exciton emitting strength is relatively altered. The emission band around 600 nm is due to electroplex. The L-V-J properties of OLEDs show that device with the thinnest acceptor layer has the highest luminance and current density. On the contrary, OLEDs with thicker acceptor layer have higher luminance efficiency. The different recombination mechanism of exciton, exciplex and electroplex in heterojunction were studied. Furthermore, the acceptor thickness effect of exciplex and electroplex generating mechanism and energy transferring mechanism between them was also discussed.

  11. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  12. Red organic light emitting devices with reduced efficiency roll-off behavior by using hybrid fluorescent/phosphorescent emission structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Tianhang; Choy, Wallace C.H., E-mail: chchoy@eee.hku.h

    2010-11-01

    Organic light emitting device (OLED) with a fluorescence-interlayer-phosphorescence emissive structure (FIP EML) is proposed to solve efficiency roll-off issue effectively. By doping fluorescent emitter of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) and phosphorescent emitter of tris(1-phenylisoquinolinolato-C2,N)iridium(III) (Ir(piq){sub 3}) into the different regions of emission zone to form FIP EML in red OLED, an improvement of more than 20% in luminance efficiency roll-off compared with that of typical phosphorescent OLED with single EML in 10-500 mA/cm{sup 2} range has been obtained. Detailed mechanisms have been studied. Such improvement should be attributed to the distinct roles of the two emitters, where DCJTB mainly used to influence the carrier transport leading to an improved balance of charge carriers while Ir(piq){sub 3} functions as the radiative decay sites for most generated excitons. Meanwhile, with the help of the formation of FIP EML, the redistribution of excitons in recombination zone, the suppression of non-radiative exciton quenching processes and the elimination of energy transfer loss also contribute to the enhancement of efficiency roll-off. The method proposed here may provide a route to develop efficient OLED for high luminance applications.

  13. White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Jeong, C.H.; Lim, J.T. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Yeom, G.Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); The National Program for Tera-level Devices, Hawolgok-dong, Sungbuk-gu, Seoul, 136-791 (Korea, Republic of)], E-mail: gyyeom@skku.edu

    2008-04-01

    White top-emitting organic light-emitting diodes (TEOLEDs) composed of one doped emissive layer which emits two-wavelength light though the radiative recombination were fabricated. As the emissive layer, 4,4-bis(2,2-diphenylethen-1-yl)biphenyl (DPVBi) was used as the host material and 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) was added as the dopant material. By optimizing the DCJTB concentration (1.2%) and the thickness of the DPVBi layer (30 nm), the intensity ratio of the two wavelengths could be adjusted for balanced white light emission. By using the device composed of glass/Ag (100 nm)/ITO (90 nm)/2-TNATA (60 nm)/NPB (15 nm)/DPVBi:DCJTB (1.2%, 30 nm)/Alq{sub 3} (20 nm)/Li (1.0 nm)/Al (2.0 nm)/Ag (20 nm)/ITO (63 nm)/SiO{sub 2} (42 nm), the Commission Internationale d'Eclairage (CIE) chromaticity coordinate of (0.32, 0.34) close to the ideal white color CIE coordinate could be obtained at 100 cd/m{sup 2}.

  14. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  15. White organic light-emitting devices with tunable color emission fabricated utilizing exciplex formation at heterointerfaces including m-MDATA

    International Nuclear Information System (INIS)

    Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan

    2011-01-01

    The electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated utilizing a 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA) were investigated to clarify the effect of exciplex on their color stabilization and color purity. The electrons combined with the holes at heterointerfaces between the m-MTDATA layer and the 9,10-di(2-naphthyl)anthracene (MADN) and the 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostyryl)-4H-pyran (DCM1) emitting layer (EML) resulted in the formation of the exciplex. The emission peak of the electroluminescence spectra for the OLEDs fabricated utilizing the m-MTDATA layer shifted to a lower energy side in comparison with that of the EML. This was due to the interaction of the holes in the m-MTDATA layer and the electrons in the MADN EML. Carriers in white OLEDs (WOLEDs) with exciplex emissions existed at the heterointerfaces between the m-MTDATA and the EML because the DCM1 EML was too thin to affect the EL peak related to the m-MTDATA layer. The Commission Internationale de l'Eclairage coordinates of WOLEDs at 9.5 V were (0.33, 0.36), and their maximum current efficiency at 46 mA/cm 2 was 2.03 cd/A.

  16. White organic light-emitting devices with tunable color emission fabricated utilizing exciplex formation at heterointerfaces including m-MDATA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2011-05-31

    The electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated utilizing a 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA) were investigated to clarify the effect of exciplex on their color stabilization and color purity. The electrons combined with the holes at heterointerfaces between the m-MTDATA layer and the 9,10-di(2-naphthyl)anthracene (MADN) and the 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostyryl)-4H-pyran (DCM1) emitting layer (EML) resulted in the formation of the exciplex. The emission peak of the electroluminescence spectra for the OLEDs fabricated utilizing the m-MTDATA layer shifted to a lower energy side in comparison with that of the EML. This was due to the interaction of the holes in the m-MTDATA layer and the electrons in the MADN EML. Carriers in white OLEDs (WOLEDs) with exciplex emissions existed at the heterointerfaces between the m-MTDATA and the EML because the DCM1 EML was too thin to affect the EL peak related to the m-MTDATA layer. The Commission Internationale de l'Eclairage coordinates of WOLEDs at 9.5 V were (0.33, 0.36), and their maximum current efficiency at 46 mA/cm{sup 2} was 2.03 cd/A.

  17. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    International Nuclear Information System (INIS)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang; Hu, Nan; Wang, Xiao; Sun, Fengbo; Duan, Yu

    2015-01-01

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C 2' ) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors

  18. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  19. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m{sup 2} corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m{sup 2} and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  20. Effects of electron transport material on blue organ light-emitting diode with fluorescent dopant of BCzVBi.

    Science.gov (United States)

    Meng, Mei; Song, Wook; Kim, You-Hyun; Lee, Sang-Youn; Jhun, Chul-Gyu; Zhu, Fu Rong; Ryu, Dae Hyun; Kim, Woo-Young

    2013-01-01

    High efficiency blue organic light emitting diodes (OLEDs), based on 2-me-thyl-9,10-di(2-naphthyl) anthracene (MADN) doped with 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl (BCzVBi), were fabricated using two different electron transport layers (ETLs) of tris(8-hydroxyquinolino)-aluminum (Alq3) and 4,7-di-phenyl-1,10-phenanthroline (Bphen). Bphen ETL layers favored the efficient hole-electron recombination in the emissive layer of the BCzVBi-doped blue OLEDs, leading to high luminous efficiency and quantum efficiency of 8.34 cd/A at 100 mA/cm2 and 5.73% at 100 cd/m2, respectively. Maximum luminance of blue OLED with Bphen ETL and Alq3 ETL were 10670 cd/m2, and CIExy coordinates of blue OLEDs were (0.180, 0279) and (0.155, 0.212) at 100 cd/m2.