WorldWideScience

Sample records for integrated optoacoustic transducer

  1. Non-contact optoacoustic imaging with focused air-coupled transducers

    Energy Technology Data Exchange (ETDEWEB)

    Deán-Ben, X. Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); School of Medicine, Technische Universität München (TUM), Munich (Germany); Montero de Espinosa, Francisco [CSIC, Institute of Physics and Communication Technologies, Madrid (Spain)

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  2. Optoacoustic theranostics

    Science.gov (United States)

    Petrov, Irene Y.; Micci, Maria-Adelaide; Prough, Donald S.; Petrov, Yuriy; Guptarak, Jutatip; Grant, Auston C.; Parsley, Margaret A.; Bolding, Ian J.; Esenaliev, Rinat O.

    2018-03-01

    Optoacoustic diagnostics is based on detection and analysis of optoacoustic waves induced in tissues. It may find a number of important clinical applications in large populations of patients such as diagnostics of cerebral hypoxia, circulatory shock, etc. Recently, we proposed Nano-Pulse Laser Therapy (NPLT) which utilizes short optical pulses (typically, shorter than hundreds of nanoseconds) to generate optoacoustic waves in tissues upon stress-confined irradiation. It is well known that continuous wave low-level near-infrared light can be used for therapy/photobiomodulation to stimulate, repair, regenerate, and protect injured tissue. In the past few years, new works emerged on therapeutic effects of low-intensity ultrasound waves. The NPLT consists of irradiating tissue by both lowlevel light and optoacoustic waves/ultrasound that combines merits of low-level light and ultrasound therapies. In this work we propose optoacoustic theranostics that can be used for diagnostics, optoacoustic therapy/NPLT, and monitoring of therapeutic response during and after therapy. We developed and built pulsed, tunable, near infrared (680-1064 nm), fiber-coupled systems for optoacoustic theranostics and tested them in rats with traumatic brain injury (TBI). Low energy pulses were used for optoacoustic monitoring of cerebral blood oxygenation, while higher energy pulses were used for the NPLT. Our studies show that TBI results in cerebral hypoxia, while a 5-minute transcranial application of NPLT significantly reduces negative effects of TBI as assessed by vestibulomotor, cognitive, and immunofluorescence tests. The obtained results suggest that the optoacoustic theranostics may be used for diagnostics and management of TBI and other disorders.

  3. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  4. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius; Kodzius, Rimantas; Vanagas, Galius

    2013-01-01

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here

  5. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  6. Even nanomechanical modes transduced by integrated photonics

    Energy Technology Data Exchange (ETDEWEB)

    Westwood-Bachman, J. N.; Diao, Z.; Sauer, V. T. K.; Hiebert, W. K., E-mail: wayne.hiebert@nrc-cnrc.gc.ca [Department of Physics, University of Alberta, Edmonton T6G 2E1 (Canada); National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada); Bachman, D. [Department of Electrical Engineering, University of Alberta, Edmonton T6G 2V4 (Canada)

    2016-02-08

    We demonstrate the actuation and detection of even flexural vibrational modes of a doubly clamped nanomechanical resonator using an integrated photonics transduction scheme. The doubly clamped beam is formed by releasing a straight section of an optical racetrack resonator from the underlying silicon dioxide layer, and a step is fabricated in the substrate beneath the beam. The step causes uneven force and responsivity distribution along the device length, permitting excitation and detection of even modes of vibration. This is achieved while retaining transduction capability for odd modes. The devices are actuated via optical force applied with a pump laser. The displacement sensitivities of the first through third modes, as obtained from the thermomechanical noise floor, are 228 fm Hz{sup −1/2}, 153 fm Hz{sup −1/2}, and 112 fm Hz{sup −1/2}, respectively. The excitation efficiency for these modes is compared and modeled based on integration of the uneven forces over the mode shapes. While the excitation efficiency for the first three modes is approximately the same when the step occurs at about 38% of the beam length, the ability to tune the modal efficiency of transduction by choosing the step position is discussed. The overall optical force on each mode is approximately 0.4 pN μm{sup −1} mW{sup −1}, for an applied optical power of 0.07 mW. We show a potential application that uses the resonant frequencies of the first two vibrational modes of a buckled beam to measure the stress in the silicon device layer, estimated to be 106 MPa. We anticipate that the observation of the second mode of vibration using our integrated photonics approach will be useful in future mass sensing experiments.

  7. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  8. Development of transducers for integrated garter spring repositioning system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B S.V.G.; Shyam, T V; Shrivastava, A K; Rupani, B B; Sinha, R K [Bhabha Atomic Research Centre, Bombay (India). Reactor Engineering Div.

    1994-12-31

    In order to reposition the dislocated garter springs in active channels of 235 MW Pressurised Heavy Water Reactors (PHWRs), a tool named as Integrated Garter Spring Repositioning System (INGRES) has been developed. The tool consists of transducers to detect the concentricity between the Pressure Tube (P/T) and Calandria Tube (C/T) and also to detect garter springs in the channel besides different modules for correcting the eccentricity between P/T and C/T and garter spring repositioning. The transducers used in the system namely Concentricity Detection Probe (CDP) and Garter Spring Detection Probe (GSDP) are based on the eddy current techniques. The CDP makes use of four eddy current bobbin probes separated 90 degrees apart in cross sectional plane of channel assembly. The transducer gives output signal in proportional to the air gap between P/T and C/T in two axes (X and Y) which are designed for the purpose. The output of the unit is obtained on the Cathode Ray Oscilloscope (CRO) screen in the form of illuminated dot. The dot position on the CRO screen gives the information about mismatch in concentricity between P/T and C/T of the channel. The GSDP meant for detecting garter springs in PHWR channel uses two sets of primary and secondary coils connected in differential mode. The output signals from the transducers are processed through a signal processing unit devised for the purpose to obtain output from it as a horizontal beam on the CRO screen. The garter spring presence in the channel is indicated by a change in the voltage level of beam and also by audio-visual indication in the form of buzzer and LED illumination on the processing unit. This paper gives general design and development aspects of the CDP and GSDP transducers of the INGRES tool. (author). 3 figs.

  9. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods.

    Science.gov (United States)

    Conversano, Francesco; Soloperto, Giulia; Greco, Antonio; Ragusa, Andrea; Casciaro, Ernesto; Chiriacò, Fernanda; Demitri, Christian; Gigli, Giuseppe; Maffezzoli, Alfonso; Casciaro, Sergio

    2012-01-01

    To evaluate the diagnostic performance of gold nanorod (GNR)-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety. The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25-200 pM) and different sample volumes (50-200 μL) were exposed to pulsed laser irradiation. GNR-emitted optoacoustic signals were acquired either by a couple of single-element ultrasound probes or by an echographic transducer. Off-line analysis included: (a) quantitative evaluation of the relationships between GNR concentration, sample volume, phantom geometry, and amplitude of optoacoustic signals propagating along different directions; (b) echographic detection of "optoacoustic spots," analyzing their intensity, spatial distribution, and clinical exploitability. MTT measurements performed on two different cell lines were also used to quantify biocompatibility of the synthesized GNRs in the adopted doses. Laser irradiation at 30 mJ/cm(2) for 20 seconds resulted in the best compromise among the requirements of effectiveness, safety, and nanoparticle stability. Amplitude of GNR-emitted optoacoustic pulses was proportional to both sample volume and concentration along each considered propagation direction for all the tested boundary conditions, providing an experimental confirmation of isotropic optoacoustic emission. Average intensity of echographically detected spots showed similar behavior, emphasizing the presence of an "ideal" GNR concentration (100 pM) that optimized optoacoustic effectiveness. The tested GNRs also exhibited high biocompatibility over the entire considered

  10. All-optical optoacoustic microscope based on wideband pulse interferometry.

    Science.gov (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis

    2016-05-01

    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.

  11. Integration of biomolecular logic gates with field-effect transducers

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A., E-mail: a.poghossian@fz-juelich.de [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Malzahn, K. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Abouzar, M.H. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Mehndiratta, P. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Katz, E. [Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, NY 13699-5810 (United States); Schoening, M.J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany)

    2011-11-01

    Highlights: > Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. > The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. > Logic gates were activated by different combinations of chemical inputs (analytes). > The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta{sub 2}O{sub 5}) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  12. Integration of biomolecular logic gates with field-effect transducers

    International Nuclear Information System (INIS)

    Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schoening, M.J.

    2011-01-01

    Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO 2 -Ta 2 O 5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta 2 O 5 ) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  13. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  14. Optoacoustic detection of thermal lesions

    Science.gov (United States)

    Arsenault, Michel G.; Kolios, Michael C.; Whelan, William M.

    2009-02-01

    Minimally invasive thermal therapy is being investigated as an alternative cancer treatment. It involves heating tissues to greater than 55°C over a period of a few minutes, which results in tissue coagulation. Optoacoustic (OA) imaging is a new imaging technique that involves exposing tissues to pulsed light and detecting the acoustic waves that are generated. In this study, adult bovine liver tissue samples were heated using continuous wave laser energy for various times, then scanned using an optoacoustic imaging system. Large optoacoustic signal variability was observed in the native tissue prior to heating. OA signal amplitude increased with maximum tissue temperature achieved, characterized by a correlation coefficient of 0.63. In this study we show that there are detectable changes in optoacoustic signal strength that arise from tissue coagulation, which demonstrates the potential of optoacoustic technology for the monitoring of thermal therapy delivery.

  15. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods

    Directory of Open Access Journals (Sweden)

    Conversano F

    2012-08-01

    Full Text Available Francesco Conversano,1 Giulia Soloperto,1 Antonio Greco,1 Andrea Ragusa,1,2 Ernesto Casciaro,1 Fernanda Chiriacò,1 Christian Demitri,3 Giuseppe Gigli,2–5 Alfonso Maffezzoli,3 Sergio Casciaro11National Research Council, Institute of Clinical Physiology, Lecce, Italy; 2National Nanotechnology Laboratory of CNR-NANO, Lecce, Italy; 3University of Salento, Department of Engineering for Innovation, Lecce, Italy; 4Italian Institute of Technology – Center for Biomolecular Nanotechnology (CBN-IIT, Arnesano, Italy; 5University of Salento, Department of Mathematics and Physics ‘Ennio De Giorgi’, Lecce, ItalyPurpose: To evaluate the diagnostic performance of gold nanorod (GNR-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety.Methods: The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25–200 pM and different sample volumes (50–200 µL were exposed to pulsed laser irradiation. GNR-emitted optoacoustic signals were acquired either by a couple of single-element ultrasound probes or by an echographic transducer. Off-line analysis included: (a quantitative evaluation of the relationships between GNR concentration, sample volume, phantom geometry, and amplitude of optoacoustic signals propagating along different directions; (b echographic detection of “optoacoustic spots,” analyzing their intensity, spatial distribution, and clinical exploitability. MTT measurements performed on two different cell lines were also used to quantify biocompatibility of the synthesized GNRs in the adopted doses.Results: Laser irradiation at

  16. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  17. In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer

    Science.gov (United States)

    Petrova, E. V.; Brecht, H. P.; Motamedi, M.; Oraevsky, A. A.; Ermilov, S. A.

    2018-03-01

    The objective of this study is to demonstrate in vivo the feasibility of optoacoustic temperature imaging during cryotherapy of prostate cancer. We developed a preclinical prototype optoacoustic temperature imager that included pulsed optical excitation at a wavelength of 805 nm, a modified clinical transrectal ultrasound probe, a parallel data acquisition system, image processing and visualization software. Cryotherapy of a canine prostate was performed in vivo using a commercial clinical system, Cryocare® CS, with an integrated ultrasound imaging. The universal temperature-dependent optoacoustic response of blood was employed to convert reconstructed optoacoustic images to temperature maps. Optoacoustic imaging of temperature during prostate cryotherapy was performed in the longitudinal view over a region of 30 mm (long)  ×  10 mm (deep) that covered the rectum, the Denonvilliers fascia, and the posterior portion of the treated gland. The transrectal optoacoustic images showed high-contrast vascularized regions, which were used for quantitative estimation of local temperature profiles. The constructed temperature maps and their temporal dynamics were consistent with the arrangement of the cryoprobe and readouts of the thermal needle sensors. The temporal profiles of the readouts from the thermal needle sensors and the temporal profile estimated from the normalized optoacoustic intensity of the selected vascularized region showed significant resemblance, except for the initial overshoot, that may be explained as a result of the physiological thermoregulatory compensation. The temperature was mapped with errors not exceeding  ±2 °C (standard deviation) consistent with the clinical requirements for monitoring cryotherapy of the prostate. In vivo results showed that the optoacoustic temperature imaging is a promising non-invasive technique for real-time imaging of tissue temperature during cryotherapy of prostate cancer, which can be combined

  18. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals.

    Science.gov (United States)

    Gateau, Jerome; Caballero, Miguel Angel Araque; Dima, Alexander; Ntziachristos, Vasilis

    2013-01-01

    Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. The detection geometry was tested using a 128-element linear array (5.0∕7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation∕translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms and ex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. The resolution of the optoacoustic tomography system was measured to be better than 130 μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.

  19. Performance evaluation of eddy current transducers and associated instrumentation of integrated garter spring repositioning system

    International Nuclear Information System (INIS)

    Sharma, B.S.V.G.; Shyam, T.V.; Shrivastava, A.K.; Sinha, R.K.

    1997-01-01

    To extend the life of coolant channels of operating Indian Pressurised Heavy Water Reactors (PHWRs) of an early generation, repositioning of dislocated Garter Spring (GS) spacers is necessary. For this purpose a remotely operated system named INtegrated Garter spring REpositioning System (INGRES) has been developed. As a part of this system, eddy current transducers namely Garter Spring Detection Probe (GSDP) and Concentricity Detection Probe (CDP) along with respective signal processor units have been designed and developed. These devices detect GS spacers and eccentricity between Pressure Tube (PT) and Calandria Tube (CT) of the channel respectively. During a recent campaign of INGRES at Madras Atomic Power Station unit-2 (MAPS-2), these transducer systems have fulfilled intended design and operational objectives besides providing additional information regarding channel. These aspects are discussed. (author). 6 figs

  20. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Directory of Open Access Journals (Sweden)

    Stefan Stein

    Full Text Available The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]. Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6] due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et

  1. All-optical optoacoustic microscopy based on probe beam deflection technique

    OpenAIRE

    Maswadi, Saher M.; Ibey, Bennett L.; Roth, Caleb C.; Tsyboulski, Dmitri A.; Beier, Hope T.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2016-01-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separa...

  2. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  3. Fully integrated monolithic opoelectronic transducer for real.time protein and DNA detection

    DEFF Research Database (Denmark)

    Misiakos, Konstatinos; S. Petrou, Panagiota; E. Kakabakos, Sotirios

    2010-01-01

    The development and testing of a portable bioanalytical device which was capable for real-time monitoring of binding assays was demonstrated. The device was based on arrays of nine optoelectronic transducers monolithically integrated on silicon chips. The optocouplers consisted of nine silicon av...... by exploiting wavelength filtering on photonic crystal engineered waveguides. The proposed miniaturized sensing device with proper packaging and accompanied by a portable instrument can find wide application as a platform for reliable and cost effective point-of-care diagnosis....

  4. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  5. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  6. Monitoring the integrity of massive aluminum structures using PZT transducers and the technique of impedance

    Science.gov (United States)

    da Costa, Rosalba; Maia, Joaquim M.; Assef, Amauri A.; Pichorim, Sergio F.; Costa, Eduardo T.; L. S. N. Button, Vera

    2015-04-01

    Safety, performance, economy and durability are essential items to qualify materials for the manufacturing of structures used in different areas. Generally, the materials used for this purpose are formed by composites and sometimes they can present failure during the manufacturing process. Such failures can also occur during use due to fatigue and wear, causing damage often difficult to be visually detected. In these cases, the use of non destructive testing (NDT) has proven to be a good choice for assessing the materials quality. The objective of this work was the electromechanical impedance evaluation of massive aluminum structures using ultrasonic transducers to detect discontinuities in the material. The tests have been done using an impedance analyzer (Agilent 4294A), an ultrasound transducer (1.6 MHz of central frequency), two types of PZT ceramics (0.267 mm and 1 mm thickness) and four aluminum samples (250 x 50 x 50 mm) with the transducer placed at three different regions. One sample was kept intact (reference) and the others were drilled in three positions with different sizes of holes (5 mm. 8 mm and 11 mm). The electromechanical impedance was recorded for each sample. The root mean square deviation index (RMSD) between the impedance magnitude of the reference and damaged samples was calculated and it was observed an increase in the RMSD due to the increase of the diameter of the holes (failures) in the samples completely drilled. The results show that the proposed methodology is suitable for monitoring the integrity of aluminum samples. The technique may be evaluated in characterizing other materials to be used in the construction of prostheses and orthoses.

  7. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    Science.gov (United States)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  8. Noninvasive optoacoustic system for rapid diagnosis and management of circulatory shock

    Science.gov (United States)

    Petrov, Irene Y.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. N.; Seeton, Roger; Esenaliev, Rinat O.; Prough, Donald S.

    2013-03-01

    Circulatory shock can lead to death or severe complications, if not promptly diagnosed and effectively treated. Typically, diagnosis and management of circulatory shock are guided by blood pressure and heart rate. However, these variables have poor specificity, sensitivity, and predictive value. Early goal-directed therapy in septic shock patients, using central venous catheterization (CVC), reduced mortality from 46.5% to 30%. However, CVC is invasive and complication-prone. We proposed to use an optoacoustic technique for noninvasive, rapid assessment of peripheral and central venous oxygenation. In this work we used a medical grade optoacoustic system for noninvasive, ultrasound image-guided measurement of central and peripheral venous oxygenation. Venous oxygenation during shock declines more rapidly in the periphery than centrally. Ultrasound imaging of the axillary [peripheral] and internal jugular vein [central] was performed using the Vivid e (GE Healthcare). We built an optoacoustic interface incorporating an optoacoustic transducer and a standard ultrasound imaging probe. Central and peripheral venous oxygenations were measured continuously in healthy volunteers. To simulate shock-induced changes in central and peripheral oxygenation, we induced peripheral vasoconstriction in the upper extremity by using a cooling blanket. Central and peripheral venous oxygenations were measured before (baseline) and after cooling and after rewarming. During the entire experiment, central venous oxygenation was relatively stable, while peripheral venous oxygenation decreased by 5-10% due to cooling and recovered after rewarming. The obtained data indicate that noninvasive, optoacoustic measurements of central and peripheral venous oxygenation may be used for diagnosis and management of circulatory shock with high sensitivity and specificity.

  9. Mesoscopic and Macroscopic Optoacoustic Imaging of Cancer

    NARCIS (Netherlands)

    Taruttis, Adrian; van Dam, Gooitzen M.; Ntziachristos, Vasilis

    2015-01-01

    Optoacoustic imaging combines the rich contrast of optical methods with the resolution of ultrasound imaging. It can therefore deliver optical visualization of cancer far deeper in tissue than optical microscopy and other conventional optical imaging methods. Technological progress and novel

  10. Role of buffer gases in optoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Thomas III, L.J.; Kelly, M.J.; Amer, N.M.

    1978-01-01

    The dependence of an acoustically resonant optoacoustic signal on the molecular weight and thermodynamic and transport properpties of the buffer gas is reported. Our results show that careful selection of such gases can significantly increase the sensitivity and flexibility of optoacoustic spectroscopy. We also demonstrate that such thermodynamic quantities as γ (equivalentC/sub p//C/sub v/) and sound velocity can now be measured readily and accurately. Other potential applications are suggested

  11. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  12. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xia Chen

    Full Text Available We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG, but not undifferentiated neuronal progenitor cells (NPCs from ventral subventricular zone (SVZ, results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2. NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control. By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+, whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+. At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative. Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78% expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

  13. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers

    International Nuclear Information System (INIS)

    Liu, Q; Wu, K-T; Kobayashi, M; Jen, C-K; Mrad, N

    2008-01-01

    Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol–gel spray technique for aircraft environments and for temperatures ranging from −80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented

  14. Utilizing an open-microcavity optoacoustic sensor for spectroscopic determination of methemoglobin concentration

    Science.gov (United States)

    Peterson, Ralph W.; Kadugodinandareddy, Kavya; Karunakaran, Vinitha; Whitney, Casey; Ling, Jian; Ye, Jing Yong

    2015-03-01

    We present a simple, non-destructive photoacoustic spectroscopy method utilizing a unique open-microcavity optoacoustic sensor to measure the concentration ratio of Methemoglobin (MetHb) in an optically scattering medium. Elevated levels of MetHb, present for example in the blood disorder Methemeglobinemia, cannot be detected by conventional pulse oximetry, and may result in inaccurate arterial oxygen saturation measurements. Samples with different ratios of Oxygenated Hemoglobin (HbO2), Deoxygenated Hemoglobin (HHb), and MetHb were obtained and mixed with nanoscale latex beads to present an optical scattering effect. Polymer encapsulated hemoglobin (PEH) samples were also studied. A sample chamber containing 20 μL of each sample was positioned directly underneath our patented optoacoustic sensor. Unlike a piezoelectric transducer, our optoacoustic sensor allows an excitation laser beam from an OPO laser to pass through and be absorbed by the sample to produce a photoacoustic signal. The cavity layer of the optoacoustic sensor is exposed directly to the resulting ultrasound signal, which causes an intensity modulation of a HeNe laser that is used to monitor the resonance condition of the sensor. A probe laser beam is total internally reflected off of the sensor and detected with a fiber-coupled APD detector. Three wavelengths are chosen for our excitation laser based on the absorption peaks and isobestic points of HHb, HbO2, and MetHb. Using established values of the molar extinction coefficients of HbO2, HHb, and MetHb a set of three simultaneous equations can be solved to accurately determine the concentration ratio of MetHb.

  15. Monitoring of composite structures using a network of integrated PVDF film transducers

    International Nuclear Information System (INIS)

    Guzmán, Enrique; Cugnoni, Joël; Gmür, Thomas

    2015-01-01

    Aiming to reduce costs, polyvinylidene difluoride (PVDF) film patches are an emerging alternative to more classic piezoelectric technologies, like ceramic patches, as transducers to measure local deformation in many structural applications. This choice is supported by advantages such as the low weight and mechanical flexibility of PVDF, making this polymer suitable for embedding inside full scale polymer based composite structures. Piezoelectric transducer patches can be used as actuators to dynamically excite full-scale composite structures, and as sensors to measure the strain. The main objective of this paper is to verify that the PVDF transducers can provide exploitable signals in the context of structural health monitoring. In order to do so, two aspects of the design of transducer network are investigated: the optimization of the sensor network, for which the effective independence method is proposed, and the use of operational modal analysis (OMA), since it is a simple method to extract the natural frequencies of a structure from a time series. The results of the analysis are compared to a reference set issued from experimental modal analysis (EMA), a simple, well-known, classic method, which is carried out using accelerometers and an impact hammer. By statistical means, it is shown that there is no significant difference between the two methods, and an optimized PVDF transducer network combined with OMA can perform the dynamic analysis of a structure as well as a classic EMA setup would do. This leads the way to the use of low-cost PVDF embedded transducer networks for robust composite material characterization. (paper)

  16. A Prototype PZT Matrix Transducer With Low-Power Integrated Receive ASIC for 3-D Transesophageal Echocardiography.

    Science.gov (United States)

    Chen, Chao; Raghunathan, Shreyas B; Yu, Zili; Shabanimotlagh, Maysam; Chen, Zhao; Chang, Zu-yao; Blaak, Sandra; Prins, Christian; Ponte, Jacco; Noothout, Emile; Vos, Hendrik J; Bosch, Johan G; Verweij, Martin D; de Jong, Nico; Pertijs, Michiel A P

    2016-01-01

    This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 ×12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and micro-beamformer circuits that locally process and combine echo signals received by the elements of each 3 ×3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques.

  17. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  18. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  19. Optoacoustic temperature determination and automatic coagulation control in rabbits

    Science.gov (United States)

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Luft, Susanne; Baade, Alex; Bever, Marco; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2011-03-01

    Retinal laser photocoagulation is an established treatment method for many retinal diseases like macula edema or diabetic retinopathy. The selection of the laser parameters is so far based on post treatment evaluation of the lesion size and strength. Due to local pigment variations in the fundus and individual transmission the same laser parameters often lead to an overtreatment. Optoacoustic allows a non invasive monitoring of the retinal temperature increase during retinal laser irradiation by measuring the temperature dependent pressure amplitudes, which are induced by short probe laser pulses. A 75 ns/ 523 nm Nd:YLF was used as a probe laser at a repetition rate of 1 kHz, and a cw / 532 nm treatment laser for heating. A contact lens was modified with a ring-shaped ultrasonic transducer to detect the pressure waves at the cornea. Temperatures were collected for irradiations leading to soft or invisible lesions. Based on this data the threshold for denaturation was found. By analyzing the initial temperature increase, the further temperature development during irradiation could be predicted. An algorithm was found to calculate the irradiation time, which is needed for a soft lesion formation, from the temperature curve. By this it was possible to provide a real-time dosimetry by automatically switching off the treatment laser after the calculated irradiation time. Automatically controlled coagulations appear softer and more uniformly.

  20. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. The REFT model exhibits a root mean square (RMS) error relative to Field II predictions of 0.41 % at 3400 MHz, and 1.......37 % at 100MHz. The CREFT model exhibits a RMS deviation of 0.01 % relative to the exact numerical solution on a CREFT transducer. A convex non-elevation focused, a REFT, and a linear flat transducer are shown to be covered with the CREFT model as well. Pressure pulses calculated with a one...

  1. Pressure transducers

    International Nuclear Information System (INIS)

    Gomes, A.V.

    1975-01-01

    Strain gauges pressure transducers types are presented. Models, characteristics and calibration procedures were also analysed. Initially, a theoretical study was accomplished to evaluate metallic alloys behavior on sensing elements manufacturing, and diaphragm was used as deflecting elements. Electrical models for potenciometric transducers were proposed at the beginning and subsequently comproved according our experiments. Concerning bridge transducers, existing models confirmed the conditions of linearity and sensitivity related to the electrical signal. All the work done was of help on the calibration field and pressure measurements employing unbounded strain gauge pressure transducers

  2. A Front-End ASIC with Receive Sub-array Beamforming Integrated with a 32 × 32 PZT Matrix Transducer for 3-D Transesophageal Echocardiography

    NARCIS (Netherlands)

    Chen, C.; Chen, Z.; Bera, Deep; Raghunathan, S.B.; ShabaniMotlagh, M.; Noothout, E.C.; Chang, Z.Y.; Ponte, Jacco; Prins, Christian; Vos, H.J.; Bosch, Johan G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P.

    2017-01-01

    This paper presents a power-and area-efficient front-end application-specific integrated circuit (ASIC) that is directly integrated with an array of 32 × 32 piezoelectric transducer elements to enable next-generation miniature ultrasound probes for real-time 3-D transesophageal echocardiography.

  3. Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study

    Science.gov (United States)

    Petrova, Irina Y.; Esenaliev, Rinat O.; Petrov, Yuriy Y.; Brecht, Hans-Peter F.; Svensen, Christer H.; Olsson, Joel; Deyo, Donald J.; Prough, Donald S.

    2005-07-01

    The optoacoustic technique is noninvasive, has high spatial resolution, and potentially can be used to measure the total hemoglobin concentration ([THb]) continuously and accurately. We performed in vitro measurements in blood and in vivo tests in healthy volunteers. Our clinical protocol included rapid infusion of intravenous saline to simulate rapid change in the [THb] during fluid therapy or surgery. Optoacoustic measurements were made from the wrist area overlying the radial artery for more than 1 h. The amplitude of the optoacoustic signal generated in the radial artery closely followed the [THb] measured directly in concurrently collected blood samples.

  4. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  5. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Nurmikko, Arto; Humphrey, Maris

    2014-07-10

    The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide

  6. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  7. Coaxial Transducer

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2008-01-01

    The invention as disclosed is of a coaxial transducer that uses lead zirconate titanate ceramic or other suitable material as an isolator between the conductors in a coaxial cable to transmit acoustic...

  8. Opto-acoustic technique to evaluate adhesion strength of thin-film systems

    Directory of Open Access Journals (Sweden)

    S. Yoshida

    2012-06-01

    Full Text Available An opto-acoustic technique is proposed to evaluate the adhesion strength of thin film systems at the film-substrate interface. The thin-film system to be examined is configured as an end-mirror of a Michelson interferometer, and driven from the rear with an acoustic transducer at audible frequencies. The amplitude of the resultant oscillation of the film is quantified as the variation in the contrast of the interferometric fringe pattern observed with a digital camera at 30 frames/s. As a proof of concept, experiment has been conducted with the use of a pair of strongly and weakly adhered Au-coated Si-wafer specimens. The technique successfully differentiates the adhesion strength of the specimens.

  9. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    International Nuclear Information System (INIS)

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated

  10. 4-D ICE: A 2-D Array Transducer With Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D Intracardiac Echocardiography.

    Science.gov (United States)

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David M; Yetter, Christopher; Hart, Patrick H; Haun, Christopher R; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-12-01

    We developed a 2.5 ×6.6 mm 2 2 -D array transducer with integrated transmit/receive application-specific integrated circuit (ASIC) for real-time 3-D intracardiac echocardiography (4-D ICE) applications. The ASIC and transducer design were optimized so that the high-voltage transmit, low-voltage time-gain control and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019-mm 2 area of the element. The transducer assembly was deployed in a 10-Fr (3.3-mm diameter) catheter, integrated with a GE Vivid E9 ultrasound imaging system, and evaluated in three preclinical studies. The 2-D image quality and imaging modes were comparable to commercial 2-D ICE catheters. The 4-D field of view was at least 90 ° ×60 ° ×8 cm and could be imaged at 30 vol/s, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4-D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology ablation procedures. 4-D ICE may be able to replace transesophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  11. Non-invasive optoacoustic probing of the density and stiffness of single biological cells

    Science.gov (United States)

    Dehoux, T.; Audoin, B.

    2012-12-01

    Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.

  12. Volumetric optoacoustic monitoring of endovenous laser treatments

    Science.gov (United States)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  13. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  14. A Novel Algorithm of Surface Eliminating in Undersurface Optoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Zhulina Yulia V

    2004-01-01

    Full Text Available This paper analyzes the task of optoacoustic imaging of the objects located under the surface covering them. In this paper, we suggest the algorithm of the surface eliminating based on the fact that the intensity of the image as a function of the spatial point should change slowly inside the local objects, and will suffer a discontinuity of the spatial gradients on their boundaries. The algorithm forms the 2-dimensional curves along which the discontinuity of the signal derivatives is detected. Then, the algorithm divides the signal space into the areas along these curves. The signals inside the areas with the maximum level of the signal amplitudes and the maximal gradient absolute values on their edges are put equal to zero. The rest of the signals are used for the image restoration. This method permits to reconstruct the picture of the surface boundaries with a higher contrast than that of the surface detection technique based on the maximums of the received signals. This algorithm does not require any prior knowledge of the signals' statistics inside and outside the local objects. It may be used for reconstructing any images with the help of the signals representing the integral over the object's volume. Simulation and real data are also provided to validate the proposed method.

  15. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    Science.gov (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  16. Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue.

    Science.gov (United States)

    Page, Leland; Maswadi, Saher; Glickman, Randolph D

    2013-01-01

    Optoacoustic imaging is an emerging medical technology that uniquely combines the absorption contrast of optical imaging and the penetration depth of ultrasound. While it is not currently employed as a clinical imaging modality, the results of current research strongly support the use of optoacoustic-based methods in medical imaging. One such application is the diagnosis of the presence of soft tissue foreign bodies. Because many radiolucent foreign bodies have sufficient contrast for imaging in the optical domain, laser-induced optoacoustic imaging could be advantageous for the detection of such objects. Common foreign bodies have been scanned over a range of visible and near infrared wavelengths by using an optoacoustic method to obtain the spectroscopic properties of the materials commonly associated with these foreign bodies. The derived optical absorption spectra compared quite closely to the absorption spectra generated when using a conventional spectrophotometer. By using the probe-beam deflection technique, a novel, pressure-wave detection method, we successfully generated optoacoustic spectroscopic plots of a wooden foreign body embedded in a tissue phantom, which closely resembled the spectrum of the same object obtained in isolation. A practical application of such spectra is to assemble a library of spectroscopic data for radiolucent materials, from which specific characteristic wavelengths can be selected for use in optimizing imaging instrumentation and provide a basis for the identification of the material properties of particular foreign bodies.

  17. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  18. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  19. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  20. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  1. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  2. All-optical optoacoustic microscopy based on probe beam deflection technique.

    Science.gov (United States)

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  3. Effects of the murine skull in optoacoustic brain microscopy.

    Science.gov (United States)

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  5. An enzyme logic bioprotonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Takeo; Keene, Scott; Deng, Yingxin; Rolandi, Marco, E-mail: rolandi@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120 (United States); Josberger, Erik E. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States)

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdH{sub x} electrode as a bioprotonic transducer that connects H{sup +} currents in solution into an electronic signal. This transducer exploits the reversible formation of PdH{sub x} in solution according to PdH↔Pd + H{sup +} + e{sup −}, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic AND gate for glucose and NAD{sup +}. PdH{sub x} formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  6. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  7. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373

  8. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    Science.gov (United States)

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  9. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vieira, M.M.F.

    1985-01-01

    Vibrational-rotational overtones absorption solid hydrogens (H 2 , D 2 , HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H 2 and D 2 , showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H 2 and D 2 , which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*10 5 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author) [pt

  10. Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, M; Preisser, S; Kitz, M; Frenz, M [Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Ferrara, D; Senegas, S; Schweizer, D, E-mail: frenz@iap.unibe.ch [Fukuda Denshi Switzerland AG, Reinacherstrasse 131, CH-4002 Basel (Switzerland)

    2011-09-21

    For real-time optoacoustic (OA) imaging of the human body, a linear array transducer and reflection mode optical irradiation is usually preferred. Such a setup, however, results in significant image background, which prevents imaging structures at the ultimate depth determined by the light distribution and the signal noise level. Therefore, we previously proposed a method for image background reduction, based on displacement-compensated averaging (DCA) of image series obtained when the tissue sample under investigation is gradually deformed. OA signals and background signals are differently affected by the deformation and can thus be distinguished. The proposed method is now experimentally applied to image artificial tumours embedded inside breast phantoms. OA images are acquired alternately with pulse-echo images using a combined OA/echo-ultrasound device. Tissue deformation is accessed via speckle tracking in pulse echo images, and used to compensate in the OA images for the local tissue displacement. In that way, OA sources are highly correlated between subsequent images, while background is decorrelated and can therefore be reduced by averaging. We show that image contrast in breast phantoms is strongly improved and detectability of embedded tumours significantly increased, using the DCA method.

  11. Opto-Acoustic Method for the Characterization of Thin-Film Adhesion

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-05-01

    Full Text Available The elastic property of the film-substrate interface of thin-film systems is characterized with an opto-acoustic method. The thin-film specimens are oscillated with an acoustic transducer at audible frequencies, and the resultant harmonic response of the film surface is analyzed with optical interferometry. Polystyrene, Ti, Ti-Au and Ti-Pt films coated on the same silicon substrate are tested. For each film material, a pair of specimens is prepared; one is coated on a silicon substrate after the surface is treated with plasma bombardment, and the other is coated on an identical silicon substrate without a treatment. Experiments indicate that both the surface-treated and untreated specimens of all film materials have resonance in the audible frequency range tested. The elastic constant of the interface corresponding to the observed resonance is found to be orders of magnitude lower than that of the film or substrate material. Observations of these resonance-like behaviors and the associated stiffness of the interface are discussed.

  12. Transducer-Mounting Fixture

    Science.gov (United States)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  13. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  14. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection.

    Science.gov (United States)

    Bourquin, Yannyk; Reboud, Julien; Wilson, Rab; Zhang, Yi; Cooper, Jonathan M

    2011-08-21

    The diagnosis of infectious diseases in the Developing World is technologically challenging requiring complex biological assays with a high analytical performance, at minimal cost. By using an opto-acoustic immunoassay technology, integrating components commonly used in mobile phone technologies, including surface acoustic wave (SAW) transducers to provide pressure driven flow and a CMOS camera to enable lensfree detection technique, we demonstrate the potential to produce such an assay. To achieve this, antibody functionalised microparticles were manipulated on a low-cost disposable cartridge using the surface acoustic waves and were then detected optically. Our results show that the biomarker, interferon-γ, used for the diagnosis of diseases such as latent tuberculosis, can be detected at pM concentrations, within a few minutes (giving high sensitivity at a minimal cost). This journal is © The Royal Society of Chemistry 2011

  15. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  16. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  17. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  18. Coalgebraising subsequential transducers

    NARCIS (Netherlands)

    H.H. Hansen (Helle); J. Adamek; C.A. Kupke (Clemens)

    2008-01-01

    htmlabstractSubsequential transducers generalise both classic deterministic automata and Mealy/Moore type state machines by combining (input) language recognition with transduction. In this paper we show that normalisation and taking differentials of subsequential transducers and their underlying

  19. Coalgebraising Subsequential Transducers

    NARCIS (Netherlands)

    Hansen, H.H.

    2008-01-01

    Subsequential transducers generalise both classic deterministic automata and Mealy/Moore type state machines by combining (input) language recognition with transduction. In this paper we show that normalisation and taking differentials of subsequential transducers and their underlying structures can

  20. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  1. A new catheter design for combined radiofrequency ablation and optoacoustic treatment monitoring using copper-coated light-guides

    Science.gov (United States)

    Rebling, Johannes; Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luis; Razansky, Daniel

    2018-02-01

    Electrosurgery, i.e. the application of radiofrequency current for tissue ablation, is a frequently used treatment for many cardiac arrhythmias. Electrophysiological and anatomic mapping, as well as careful radiofrequency power control typically guide the radiofrequency ablation procedure. Despite its widespread application, accurate monitoring of the lesion formation with sufficient spatio-temporal resolution remains challenging with the existing imaging techniques. We present a novel integrated catheter for simultaneous radiofrequency ablation and optoacoustic monitoring of the lesion formation in real time and 3D. The design combines the delivery of both electric current and optoacoustic excitation beam in a single catheter consisting of copper-coated multimode light-guides and its manufacturing is described in detail. The electrical current causes coagulation and desiccation while the excitation light is locally absorbed, generating OA responses from the entire treated volume. The combined ablation-monitoring capabilities were verified using ex-vivo bovine tissue. The formed ablation lesions showed a homogenous coagulation while the ablation was monitored in realtime with a volumetric frame rate of 10 Hz over 150 seconds.

  2. Transducer handbook user's directory of electrical transducers

    CERN Document Server

    Boyle, H B

    2013-01-01

    When selecting or using a particular type of transducer or sensor, there are a number of factors which must be considered. The question is not only for what kind of measurement, but under what physical conditions, constraints of accuracy, and to meet which service requirements, is a transducer needed? This handbook is designed to meet the selection needs of anyone specifying or using transducers with an electrical output. Each transducer is described in an easy-to-use tabular format, giving all of the necessary data including operating principles, applications, range limits, errors, over-range protection, supply voltage requirements, sensitivities, cross sensitivities, temperature ranges and sensitivities and signal conditioning needs. The author has added notes that reflect his broad practical experience. Added to this is an extensive worldwide suppliers directory.

  3. Imaging the distribution of photoswitchable probes with temporally-unmixed multispectral optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Stiel, Andre C.; Jiang, Yuanyuan; Ntziachristos, Vasilis; Westmeyer, Gil G.; Razansky, Daniel

    2016-03-01

    Synthetic and genetically encoded chromo- and fluorophores have become indispensable tools for biomedical research enabling a myriad of applications in imaging modalities based on biomedical optics. The versatility offered by the optoacoustic (photoacoustic) contrast mechanism enables to detect signals from any substance absorbing light, and hence these probes can be used as optoacoustic contrast agents. While contrast versatility generally represents an advantage of optoacoustics, the strong background signal generated by light absorption in endogeneous chromophores hampers the optoacoustic capacity to detect a photo-absorbing agent of interest. Increasing the optoacoustic sensitivity is then determined by the capability to differentiate specific features of such agent. For example, multispectral optoacoustic tomography (MSOT) exploits illuminating the tissue at multiple optical wavelengths to spectrally resolve (unmix) the contribution of different chromophores. Herein, we present an alternative approach to enhance the sensitivity and specificity in the detection of optoacoustic contrast agents. This is achieved with photoswitchable probes that change optical absorption upon illumination with specific optical wavelengths. Thereby, temporally unmixed MSOT (tuMSOT) is based on photoswitching the compounds according to defined schedules to elicit specific time-varying optoacoustic signals, and then use temporal unmixing algorithms to locate the contrast agent based on their particular temporal profile. The photoswitching kinetics is further affected by light intensity, so that tuMSOT can be employed to estimate the light fluence distribution in a biological sample. The performance of the method is demonstrated herein with the reversibly switchable fluorescent protein Dronpa and its fast-switching fatigue resistant variant Dronpa-M159T.

  4. Noninvasive optoacoustic system for rapid diagnostics and management of circulatory shock

    Science.gov (United States)

    Esenaliev, Rinat O.; Petrov, Irene Y.; Petrov, Yuriy; Kinsky, Michael; Prough, Donald S.

    2012-02-01

    Circulatory shock is lethal, if not promptly diagnosed and effectively treated. Typically, circulatory shock resuscitation is guided by blood pressure, heart rate, and mental status, which have poor predictive value. In patients, in whom early goaldirected therapy was applied using central venous oxygenation measurement, a substantial reduction of mortality was reported (from 46.5% to 30%). However, central venous catheterization is invasive, time-consuming and often results in complications. We proposed to use the optoacoustic technique for noninvasive, rapid assessment of central venous oxygenation. In our previous works we demonstrated that the optoacoustic technique can provide measurement of blood oxygenation in veins and arteries due to high contrast and high resolution. In this work we developed a novel optoacoustic system for noninvasive, automatic, real-time, and continuous measurement of central venous oxygenation. We performed pilot clinical tests of the system in human subjects with different oxygenation in the internal jugular vein and subclavian vein. A novel optoacoustic interface incorporating highly-sensitive optoacoustic probes and standard ultrasound imaging probes were developed and built for the study. Ultrasound imaging systems Vivid i and hand-held Vscan (GE Healthcare) as well as Site-Rite 5 (C.R. Bard) were used in the study. We developed a special algorithm for oxygenation monitoring with minimal influence of overlying tissue. The data demonstrate that the system provides precise measurement of venous oxygenation continuously and in real time. Both current value of the venous oxygenation and trend (in absolute values and for specified time intervals) are displayed in the system. The data indicate that: 1) the optoacoustic system developed by our group is capable of noninvasive measurement of blood oxygenation in specific veins; 2) clinical ultrasound imaging systems can facilitate optoacoustic probing of specific blood vessels; 3) the

  5. Cerebral blood oxygenation measurements in neonates with optoacoustic technique

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.

    2017-03-01

    Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.

  6. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    Science.gov (United States)

    Esenaliev, Rinat O.

    2017-09-01

    Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.

  7. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  8. Design and characterization of a laterally mounted phased-array transducer breast-specific MRgHIFU device with integrated 11-channel receiver array.

    Science.gov (United States)

    Payne, A; Merrill, R; Minalga, E; Vyas, U; de Bever, J; Todd, N; Hadley, R; Dumont, E; Neumayer, L; Christensen, D; Roemer, R; Parker, D

    2012-03-01

    This work presents the design and preliminary evaluation of a new laterally mounted phased-array MRI-guided high-intensity focused ultrasound (MRgHIFU) system with an integrated 11-channel phased-array radio frequency (RF) coil intended for breast cancer treatment. The design goals for the system included the ability to treat the majority of tumor locations, to increase the MR image's signal-to-noise ratio (SNR) throughout the treatment volume and to provide adequate comfort for the patient. In order to treat the majority of the breast volume, the device was designed such that the treated breast is suspended in a 17-cm diameter treatment cylinder. A laterally shooting 1-MHz, 256-element phased-array ultrasound transducer with flexible positioning is mounted outside the treatment cylinder. This configuration achieves a reduced water volume to minimize RF coil loading effects, to position the coils closer to the breast for increased signal sensitivity, and to reduce the MR image noise associated with using water as the coupling fluid. This design uses an 11-channel phased-array RF coil that is placed on the outer surface of the cylinder surrounding the breast. Mechanical positioning of the transducer and electronic steering of the focal spot enable placement of the ultrasound focus at arbitrary locations throughout the suspended breast. The treatment platform allows the patient to lie prone in a face-down position. The system was tested for comfort with 18 normal volunteers and SNR capabilities in one normal volunteer and for heating accuracy and stability in homogeneous phantom and inhomogeneous ex vivo porcine tissue. There was a 61% increase in mean relative SNR achieved in a homogeneous phantom using the 11-channel RF coil when compared to using only a single-loop coil around the chest wall. The repeatability of the system's energy delivery in a single location was excellent, with less than 3% variability between repeated temperature measurements at the same

  9. Microhydraulic transducer technology for actuation and power generation

    Science.gov (United States)

    Hagood, Nesbitt W.; Roberts, David C.; Saggere, Laxminarayana; Breuer, Kenneth S.; Chen, Kuo-Shen; Carretero, Jorge A.; Li, Hanqing; Mlcak, Richard; Pulitzer, Seward W.; Schmidt, Martin A.; Spearing, S. Mark; Su, Yu-Hsuan

    2000-06-01

    The paper introduces a novel transducer technology, called the solid-state micro-hydraulic transducer, currently under development at MIT. The new technology is enabled through integration of micromachining technology, piezoelectrics, and microhydraulic concepts. These micro-hydraulic transducers are capable of bi-directional electromechanical energy conversion, i.e., they can operate as both an actuator that supplies high mechanical force in response to electrical input and an energy generator that transduces electrical energy from mechanical energy in the environment. These transducers are capable of transducing energy at very high specific power output in the order of 1 kW/kg, and thus, they have the potential to enable many novel applications. The concept, the design, and the potential applications of the transducers are presented. Present efforts towards the development of these transducers, and the challenges involved therein, are also discussed.

  10. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...

  11. Crossflow force transducer

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related

  12. Noninvasive, optoacoustic detection and characterization of intra- and extracranial hematomas and cerebral hypoxia

    Science.gov (United States)

    Petrov, Andrey; Prough, Donald S.; Petrov, Yuriy; Petrov, Irene Y.; Robertson, Claudia S.; Asokan, Vasantha; Agbor, Adaeze; Esenaliev, Rinat O.

    2015-03-01

    Early diagnosis of intracranial hematomas is necessary to improve outcome in patients with traumatic brain injury (TBI). CT and MRI can diagnose intracranial hematomas, but cannot be used until the patient arrives at a major healthcare facility, resulting in delayed diagnosis. Near infrared spectroscopy may suggest the presence of unilateral intracranial hematomas, but provides minimal information on hematoma type and location due to limitations associated with strong light scattering. We have used optoacoustics (which combines high endogenous optical contrast with the resolution of ultrasound) to diagnose hematomas and monitor cerebral oxygenation. We performed animal and clinical studies on detection and characterization of hematomas and on monitoring cerebral hypoxia by probing the superior sagittal sinus (SSS). Recently, we built a medical grade, multi-wavelength, OPO-based optoacoustic system tunable in the near infrared spectral range. We developed new patient interfaces for noninvasive, transcranial measurements in the transmission mode in the presence of dense hair and used it in patients with TBI. The optoacoustic system was capable of detecting and characterizing intra- and extracranial hematomas. SSS blood oxygenation was measured as well with the new interface. The obtained results indicate that the optoacoustic system in the transmission mode provides detection and characterization of hematomas in TBI patients, as well as cerebral venous blood oxygenation monitoring. The transmission mode approach can be used for optoacoustic brain imaging, tomography, and mapping in humans.

  13. Smart transducer with radiomodem

    Science.gov (United States)

    Pugach, V. N.; Voronin, E. L.

    2018-04-01

    Systems for measuring different parameters enabling metering and wireless data transmission are an urgent problem in the industry. One of the most promising solutions is the developments of metering instruments enabling radio-link and GSM data transmission. The article describes a transducer operating with temperature sensors of different types as well as with the sensors of other physical values with the output signal represented as current or voltage with subsequent measurement data transmission from the transducer to the computer via radio-link. The article provides transducer measurement accuracy check. The work confirmed the claimed temperature measurement accuracy, noted a stable data transmission via radio link and convenience of work with the transducer and software.

  14. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  15. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  16. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    International Nuclear Information System (INIS)

    Kramb, V.A.

    2005-01-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy

  17. In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging

    Science.gov (United States)

    Petrova, Elena V.; Motamedi, Massoud; Oraevsky, Alexander A.; Ermilov, Sergey A.

    2016-03-01

    Cryoablation of prostate cancer is an FDA approved clinical procedure, which involves repetitive rapid cooling of a lesion to lethal temperatures of -40°C and below. The major drawback of the technique is the insufficient control over the fast thermal processes that may result in severe complications (impotence, incontinence, perforation of the rectal wall) and morbidity. The developed optoacoustic imaging technique provides non-invasive real-time temperature mapping of tissue adjacent to prostate and enables more efficient control over the procedure, which is necessary to reduce side effects and accelerate the physician's learning curve. In these studies we successfully demonstrated real-time transrectal optoacoustic imaging during prostate cryoablation in live canine model focused on optoacoustic thermography of the rectal wall within the depth of 1cm. Our method utilized previously discovered universal thermal dependence of the normalized optoacoustic response of blood. Nanosecond-pulse radiation of Ti-Sapphire laser tuned to the isosbestic point of hemoglobin (802+/-3 nm) was delivered via fiberoptic illuminators assembled on both sides of the linear array of the 128-channel transrectal ultrasound probe. Temperature readouts at discrete locations inside and nearby prostate were also performed using standard transperineal needle sensors. The effect of homeostasis on optoacoustic imaging in live tissue was examined during cooling and shown to be significant only within the range of +/-1.5°C in respect to the body temperature. Accuracy of in vivo optoacoustic temperature measurements was determined as +/-2°C for the range of temperature from +35 to -15°C, which is more than sufficient for tracking the essential isotherms in the course of clinical procedures.

  18. Toward functional imaging using the optoacoustic 3D whole-body tomography system

    Science.gov (United States)

    Su, R.; Brecht, H.-P.; Ermilov, S. A.; Nadvoretsky, V.; Conjusteau, A.; Oraevsky, A. A.

    2010-02-01

    In this report we demonstrate improved three-dimensional optoacoustic tomography in test samples. High quality tomographic data and images were obtained from phantom of mice being 2.5 cm in diameter. Capillaries filled with cupric sulfate, ferrous sulfate and nickel sulfate solutions, and immersed in a scattering medium were used for these tests. The brightness of reconstructed phantom images was found to match accurately the absorption profiles of test solutions. Hence, optoacoustic imaging can be applied in preclinical research to perform in vivo absorptivity measurements to deduce functional information on blood oxygen levels or concentration of contrast agents.

  19. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  20. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  1. Evaluation of an optoacoustic based gas analysing device

    Science.gov (United States)

    Markmann, Janine; Lange, Birgit; Theisen-Kunde, Dirk; Danicke, Veit; Mayorov, Fedor; Eckert, Sebastian; Kettmann, Pascal; Brinkmann, Ralf

    2017-07-01

    The relative occurrence of volatile organic compounds in the human respiratory gas is disease-specific (ppb range). A prototype of a gas analysing device using two tuneable laser systems, an OPO-laser (2.5 to 10 μm) and a CO2-laser (9 to 11 μm), and an optoacoustic measurement cell was developed to detect concentrations in the ppb range. The sensitivity and resolution of the system was determined by test gas measurements, measuring ethylene and sulfur hexafluoride with the CO2-laser and butane with the OPO-laser. System sensitivity found to be 13 ppb for sulfur hexafluoride, 17 ppb for ethylene and Respiratory gas samples of 8 healthy volunteers were investigated by irradiation with 17 laser lines of the CO2-laser. Several of those lines overlap with strong absorption bands of ammonia. As it is known that ammonia concentration increases by age a separation of people 35 was striven for. To evaluate the data the first seven gas samples were used to train a discriminant analysis algorithm. The eighth subject was then assigned correctly to the group >35 years with the age of 49 years.

  2. NMR signal transducer

    International Nuclear Information System (INIS)

    Kucheryaev, A.G.; Oliferchuk, N.L.

    1975-01-01

    A signal transducer of nuclear magnetic resonance for simultaneously measuring frequency and intensitivity of two various isotope signals, which are in one specimen is described. The transducer represents radiofrequency circuit with two resonance frequences, which is common for two autodyne generators. To decrease measuring time and to increase recording diagram stability the radiofrequency circuit has LC netork, in the inductivity of which investigated specimen is located; a circuit variable capacity is connected in parallel with one of the autodyne generators. Besides the radiofrequency circuit has an inductance coil in series with a standard specimen inside as well as a variable capacitor connected in parallel with the second autodyne generator. An amplitude of oscillation of each resonance frequency is controlled and adjusted separately. The transducer described can be used for the measurement of a nuclei concentration, isotope concentration and for the spin determination

  3. Extended Near-Infrared Optoacoustic Spectrometry for Sensing Physiological Concentrations of Glucose

    Directory of Open Access Journals (Sweden)

    Ara Ghazaryan

    2018-03-01

    Full Text Available Glucose sensing is pursued extensively in biomedical research and clinical practice for assessment of the carbohydrate and fat metabolism as well as in the context of an array of disorders, including diabetes, morbid obesity, and cancer. Currently used methods for real-time glucose measurements are invasive and require access to body fluids, with novel tools and methods for non-invasive sensing of the glucose levels highly desired. In this study, we introduce a near-infrared (NIR optoacoustic spectrometer for sensing physiological concentrations of glucose within aqueous media and describe the glucose spectra within 850–1,900 nm and various concentration ranges. We apply the ratiometric and dictionary learning methods with a training set of data and validate their utility for glucose concentration measurements with optoacoustics in the probe dataset. We demonstrate the superior signal-to-noise ratio (factor of ~3.9 achieved with dictionary learning over the ratiometric approach across the wide glucose concentration range. Our data show a linear relationship between the optoacoustic signal intensity and physiological glucose concentration, in line with the results of optical spectroscopy. Thus, the feasibility of detecting physiological glucose concentrations using NIR optoacoustic spectroscopy is demonstrated, enabling the sensing glucose with ±10 mg/dl precision.

  4. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    Science.gov (United States)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  5. Improving visibility in limited-view scenarios with dynamic particle-enhanced optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Ding, Lu; Razansky, Daniel

    2017-03-01

    Limited-view artefacts affect most optoacoustic (photoacoustic) imaging systems due to geometrical constraints that impede achieving full tomographic coverage as well as limited light penetration into scattering and absorbing objects. Indeed, it has been theoretically established and experimentally verified that accurate optoacoustic images can only be obtained if the imaged sample is fully enclosed (orientations is hampered. These effects are of particular relevance in the case of hand-held scanners with the imaged volume only accessible from one side. Herein, a new approach termed dynamic particle-enhanced optoacoustic tomography (DPOT) is described for accurate structural imaging in limited-view scenarios. The method is based on the non-linear combination of a sequence of tomographic reconstructions representing sparsely distributed moving particles. Good performance of the method is demonstrated in experiments consisting of dynamic visualization of flow of suspended microspheres in three-dimensions. The method is expected to be applicable for improving accuracy of angiographic optoacoustic imaging in living organisms.

  6. Optoacoustic monitoring of central and peripheral venous oxygenation during simulated hemorrhage

    Science.gov (United States)

    Petrov, Andrey; Kinsky, Michael; Prough, Donald S.; Petrov, Yuriy; Petrov, Irene Y.; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Khan, Muzna N.; Esenaliev, Rinat O.

    2014-03-01

    Circulatory shock may be fatal unless promptly recognized and treated. The most commonly used indicators of shock (hypotension and tachycardia) lack sensitivity and specificity. In the initial stages of shock, the body compensates by reducing blood flow to the peripheral (skin, muscle, etc.) circulation in order to preserve vital organ (brain, heart, liver) perfusion. Characteristically, this can be observed by a greater reduction in peripheral venous oxygenation (for instance, the axillary vein) compared to central venous oxygenation (the internal jugular vein). While invasive measurements of oxygenation are accurate, they lack practicality and are not without complications. We have developed a novel optoacoustic system that noninvasively determines oxygenation in specific veins. In order to test this application, we used lower body negative pressure (LBNP) system, which simulates hemorrhage by exerting a variable amount of suction on the lower body, thereby reducing the volume of blood available for central circulation. Restoration of normal blood flow occurs promptly upon cessation of LBNP. Using two optoacoustic probes, guided by ultrasound imaging, we simultaneously monitored oxygenation in the axillary and internal jugular veins (IJV). LBNP began at -20 mmHg, thereafter was reduced in a step-wise fashion (up to 30 min). The optoacoustically measured axillary oxygenation decreased with LBNP, whereas IJV oxygenation remained relatively constant. These results indicate that our optoacoustic system may provide safe and rapid measurement of peripheral and central venous oxygenation and diagnosis of shock with high specificity and sensitivity.

  7. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  8. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  9. High Temperature Ultrasonic Transducer for Real-time Inspection

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  10. Optoacoustic detection and monitoring of blast-induced intracranial hematomas in rats

    Science.gov (United States)

    Petrov, Andrey; Wynne, Karon E.; Prough, Donald S.; Dewitt, Douglas S.; Petrov, Yuriy; Petrov, Irene Y.; Parsley, Margaret A.; Esenaliev, Rinat O.

    2014-03-01

    Patients with acute intracranial hematomas often require surgical drainage within the first four hours after traumatic brain injury (TBI) to avoid death or severe neurologic disability. CT and MRI permit rapid, noninvasive diagnosis of hematomas, but can be used only at a major health-care facility. At present, there is no device for noninvasive detection and characterization of hematomas in pre-hospital settings. We proposed to use an optoacoustic technique for rapid, noninvasive diagnosis and monitoring of hematomas, including intracranial hematomas. Unlike bulky CT and MR equipment, an optoacoustic system can be small and easily transported in an emergency vehicle. In this study we used a specially-designed blast device to inflict TBI in rats. A near-infrared OPO-based optoacoustic system developed for hematoma diagnosis and for blood oxygenation monitoring in the superior sagittal sinus (SSS) in small animals was used in the study. Optoacoustic signals recorded simultaneously from the SSS and hematomas allowed for measurements of their oxygenations. The presence of hematomas was confirmed after the experiment in gross pictures of the exposed brains. After blast the hematoma signal and oxygenation increased, while SSS oxygenation decreased due to the blastinduced TBI. The increase of the oxygenation in fresh hematomas may be explained by the leakage of blood from arteries which have higher blood pressure compared to that of veins. These results indicate that the optoacoustic technique can be used for early diagnosis of hematomas and may provide important information for improving outcomes in patients with TBI or stroke (both hemorrhagic and ischemic).

  11. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  12. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  13. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  14. Cooling Acoustic Transducer with Heat Pipes

    Science.gov (United States)

    2009-07-29

    a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an integral...heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft includes...Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the build

  15. Steerable Doppler transducer probes

    International Nuclear Information System (INIS)

    Fidel, H.F.; Greenwood, D.L.

    1986-01-01

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis

  16. Quantitative imaging of tumor vasculature using multispectral optoacoustic tomography (MSOT)

    Science.gov (United States)

    Tomaszewski, Michal R.; Quiros-Gonzalez, Isabel; Joseph, James; Bohndiek, Sarah E.

    2017-03-01

    The ability to evaluate tumor oxygenation in the clinic could indicate prognosis and enable treatment monitoring, since oxygen deficient cancer cells are often more resistant to chemotherapy and radiotherapy. MultiSpectral Optoacoustic Tomography (MSOT) is a hybrid technique combining the high contrast of optical imaging with spatial resolution and penetration depth similar to ultrasound. We hypothesized that MSOT could reveal both tumor vascular density and function based on modulation of blood oxygenation. We performed MSOT on nude mice (n=8) bearing subcutaneous xenograft PC3 tumors using an inVision 256 (iThera Medical). The mice were maintained under inhalation anesthesia during imaging and respired oxygen content was modified from 21% to 100% and back. After imaging, Hoechst 33348 was injected to indicate vascular perfusion and permeability. Tumors were then extracted for histopathological analysis and fluorescence microscopy. The acquired data was analyzed to extract a bulk measurement of blood oxygenation (SO2MSOT) from the whole tumor using different approaches. The tumors were also automatically segmented into 5 regions to investigate the effect of depth on SO2MSOT. Baseline SO2MSOT values at 21% and 100% oxygen breathing showed no relationship with ex vivo measures of vascular density or function, while the change in SO2MSOT showed a strong negative correlation to Hoechst intensity (r=- 0.92, p=0.0016). Tumor voxels responding to oxygen challenge were spatially heterogeneous. We observed a significant drop in SO2 MSOT value with tumor depth following a switch of respiratory gas from air to oxygen (0.323+/-0.017 vs. 0.11+/-0.05, p=0.009 between 0 and 1.5mm depth), but no such effect for air breathing (0.265+/-0.013 vs. 0.19+/-0.04, p=0.14 between 0 and 1.5mm depth). Our results indicate that in subcutaneous prostate tumors, baseline SO2MSOT levels do not correlate to tumor vascular density or function while the magnitude of the response to oxygen

  17. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.

  18. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....

  19. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  20. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  1. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    Science.gov (United States)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  3. Four-dimensional optoacoustic temperature mapping in laser-induced thermotherapy

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2018-02-01

    Photoablative laser therapy is in common use for selective destruction of malignant masses, vascular and brain abnormalities. Tissue ablation and coagulation are irreversible processes occurring shortly after crossing a certain thermal exposure threshold. As a result, accurate mapping of the temperature field is essential for optimizing the outcome of these clinical interventions. Here we demonstrate four-dimensional optoacoustic temperature mapping of the entire photoablated region. Accuracy of the method is investigated in tissue-mimicking phantom experiments. Deviations of the volumetric optoacoustic temperature readings provided at 40ms intervals remained below 10% for temperature elevations above 3°C, as validated by simultaneous thermocouple measurements. The excellent spatio-temporal resolution of the new temperature monitoring approach aims at improving safety and efficacy of laser-based photothermal procedures.

  4. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  5. Effects of small variations of speed of sound in optoacoustic tomographic imaging

    International Nuclear Information System (INIS)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel

    2014-01-01

    Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtained with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media

  6. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  7. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography

    Directory of Open Access Journals (Sweden)

    Xosé Luís Deán-Ben

    2016-12-01

    Full Text Available Similar to pulse-echo ultrasound, optoacoustic imaging encodes the location of optical absorbers by the time-of-flight of ultrasound waves. Yet, signal generation mechanisms are fundamentally different for the two modalities, leading to significant distinction between the optimum image formation strategies. While interference of back-scattered ultrasound waves with random phases causes speckle noise in ultrasound images, speckle formation is hindered by the strong correlation between the optoacoustic responses corresponding to individual sources. However, visibility of structures is severely hampered when attempting to acquire optoacoustic images under limited-view tomographic geometries. In this tutorial article, we systematically describe the basic principles of optoacoustic signal generation and image formation for objects ranging from individual sub-resolution absorbers to a continuous absorption distribution. The results are of relevance for the proper interpretation of optoacoustic images acquired under limited-view scenarios and may also serve as a basis for optimal design of tomographic acquisition geometries and image formation strategies.

  8. ACT listening test[Active transducers

    Energy Technology Data Exchange (ETDEWEB)

    Agerkvist, F. [Oersted, DTU, Kgs. Lyngby (Denmark); Fenger, L.M. [Bang and Olufsen ICEPower a/s, Kgs. Lyngby (Denmark)

    2004-07-01

    This report describes the series of subjective listening that was performed in order to test the subjective quality of the integration of amplifier and loudspeaker developed in the Active transducer project. The project is a fundamental study of the loss mechanisms in loudspeakers and amplifiers. The project has resulted in new switch mode amplifier topologies with very high audio performance at a very low cost. (BA)

  9. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  10. Cymbal and BB underwater transducers and arrays

    Energy Technology Data Exchange (ETDEWEB)

    Newnham, R.E.; Zhang, J.; Alkoy, S.; Meyer, R.; Hughes, W.J.; Hladky-Hennion, A.C.; Cochran, J.; Markley, D. [Materials Research Laboratory, Penn State University, University Park, PA 16802 (United States)

    2002-09-01

    The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI).Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. (orig.)

  11. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet

    2015-01-01

    in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared...... and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions...

  12. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  13. Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells

    International Nuclear Information System (INIS)

    Pérez-Cota, F; Smith, R J; Clark, M; Moradi, E; Webb, K

    2016-01-01

    Mechanical imaging and characterisation of biological cells has been a subject of interest for the last twenty years. Ultrasonic imaging based on the scanning acoustic microscope (SAM) and mechanical probing have been extensively reported. Large acoustic attenuation at high frequencies and the use of conventional piezo-electric transducers limit the operational frequency of a SAM. This limitation results in lower resolution compared to an optical microscope. Direct mechanical probing in the form of applied stress by contacting probes causes stress to cells and exhibits poor depth resolution. More recently, laser ultrasound has been reported to detect ultrasound in the GHz range via Brillouin oscillations on biological cells. This technique offers a promising new high resolution acoustic cell imaging technique. In this work, we propose, design and apply a thin-film based opto-acoustic transducer for the detection in transmission of Brillouin oscillations on cells. The transducer is used to generate acoustic waves, protect the cells from laser radiation and enhance signal-to-noise ratio (SNR). Experimental traces are presented in water films as well as images of the Brillouin frequency of phantom and fixed 3T3 fibroblast cells. (paper)

  14. Planar integrated optical waveguide used as a transducer to yield chemical information: detection of the activity of proteolytic enzymes e.g. serine-proteases

    Science.gov (United States)

    Zhylyak, Gleb; Ramoz-Perez, Victor; Linnhoff, Michael; Hug, Thomas; Citterio, Daniel; Spichiger-Keller, Ursula E.

    2005-03-01

    The paper shows the very first results of a feasibility study where the activity of proteolytic enzymes towards dye-labelled artificial substrates immobilized on the surface of planar optical Ta2O5 waveguide was investigated. Within this project, a chromophore label was developed, synthesized and attached to the carboxy-terminus of specific tripeptides. The goal was to develop a highly sensitive optical assay in order to monitor the activity of serine-proteases by cleavage of the amide bond between peptide and chromophore. On the one hand, a strategy was developed to immobilize the labeled tripeptide unto integrated planar waveguides. On the other hand, an instrument, the so-called "chip-reader" was developed to detect the biological process on the surface of the integrated planar optical waveguide. Surface characteristics were analyzed by XPS, TOF-SIMS and contact angle measurements. A comparison between the effectivity of ATR-photometry on chip using TE0 mode and photometry in transmission mode is discussed.

  15. Turbine transducer developed for adverse conditions

    International Nuclear Information System (INIS)

    Cooper, D.R.; Edson, J.L.

    1982-01-01

    This paper reviews the latest developments that the Idaho National Engineering Laboratory (INEL) has made on a turbine transducer used in measurement of two-phase flow. It is operated in a modular configuration with a drag transducer to provide mass flow data. Current configurations allow its use in single modules or in multiples to provide flow profile information. The turbine can also provide mass flow data when used with associated instrumentation such as a densitometer. The transducer, which is the product of long investigations and test series, is subject to high vibration loading and high temperatures as well as a borated liquid environment; flow conditions range from all liquid to all steam and from ambient temperatures to over 600 0 F at pressures up to 2200 psi. Graphite bearing and carbide shaft materials were selected to provide corrosion resistance along with mechanical integrity, and resistance to wear. The new turbine design has met all operational requirements in actual use and in extended lifetime tests

  16. Optoacoustic measurement of central venous oxygenation for assessment of circulatory shock: clinical study in cardiac surgery patients

    Science.gov (United States)

    Petrov, Irene Y.; Prough, Donald S.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Esenaliev, Rinat O.

    2014-03-01

    Circulatory shock is a dangerous medical condition, in which blood flow cannot provide the necessary amount of oxygen to organs and tissues. Currently, its diagnosis and therapy decisions are based on hemodynamic parameters (heart rate, blood pressure, blood gases) and mental status of a patient, which all have low specificity. Measurement of mixed or central venous blood oxygenation via catheters is more reliable, but highly invasive and associated with complications. Our previous studies in healthy volunteers demonstrated that optoacoustic systems provide non-invasive measurement of blood oxygenation in specific vessels, including central veins. Here we report our first results of a clinical study in coronary artery bypass graft (CABG) surgery patients. We used a medical-grade OPO-based optoacoustic system developed in our laboratory to measure in real time blood oxygenation in the internal jugular vein (IJV) of these patients. A clinical ultrasound imaging system (GE Vivid e) was used for IJV localization. Catheters were placed in the IJV as part of routine care and blood samples taken via the catheters were processed with a CO-oximeter. The optoacoustic oxygenation data were compared to the CO-oximeter readings. Good correlation between the noninvasive and invasive measurements was obtained. The results of these studies suggest that the optoacoustic system can provide accurate, noninvasive measurements of central venous oxygenation that can be used for patients with circulatory shock.

  17. Characterization of Dielectric Electroactive Polymer transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  18. Optimizing wavelength choice for quantitative optoacoustic imaging using the Cramer-Rao lower bound

    International Nuclear Information System (INIS)

    Modgil, Dimple; La Riviere, Patrick J

    2010-01-01

    Several papers have recently addressed the issue of estimating chromophore concentration in optoacoustic imaging (OAI) using multiple wavelengths. The choice of wavelengths obviously affects the accuracy and precision of the estimates. One might assume that the wavelengths that maximize the extinction coefficients of the chromophores would be the most suitable. However, this may not always be the case since the distribution of light intensity in the medium is also wavelength dependent. In this paper, we explore a method for optimizing the choice of wavelengths based on the Cramer-Rao lower bound (CRLB) on the variance of the chromophore concentration. This lower bound on variance can be evaluated numerically for different wavelengths using the variation of the extinction coefficients and scattering coefficients with wavelength. The wavelengths that give the smallest variance will be considered optimal for multi-wavelength OAI to estimate the chromophore concentrations. The expression for the CRLB has been derived analytically for estimating the concentration of multiple chromophores for several simple phantom models for the case when the optoacoustic signal is proportional to the product of the optical absorption and the illumination function. This approach could be easily extended to other geometries.

  19. Optimizing wavelength choice for quantitative optoacoustic imaging using the Cramer-Rao lower bound.

    Science.gov (United States)

    Modgil, Dimple; La Riviére, Patrick J

    2010-12-07

    Several papers have recently addressed the issue of estimating chromophore concentration in optoacoustic imaging (OAI) using multiple wavelengths. The choice of wavelengths obviously affects the accuracy and precision of the estimates. One might assume that the wavelengths that maximize the extinction coefficients of the chromophores would be the most suitable. However, this may not always be the case since the distribution of light intensity in the medium is also wavelength dependent. In this paper, we explore a method for optimizing the choice of wavelengths based on the Cramer-Rao lower bound (CRLB) on the variance of the chromophore concentration. This lower bound on variance can be evaluated numerically for different wavelengths using the variation of the extinction coefficients and scattering coefficients with wavelength. The wavelengths that give the smallest variance will be considered optimal for multi-wavelength OAI to estimate the chromophore concentrations. The expression for the CRLB has been derived analytically for estimating the concentration of multiple chromophores for several simple phantom models for the case when the optoacoustic signal is proportional to the product of the optical absorption and the illumination function. This approach could be easily extended to other geometries.

  20. Research on the optoacoustic communication system for speech transmission by variable laser-pulse repetition rates

    Science.gov (United States)

    Jiang, Hongyan; Qiu, Hongbing; He, Ning; Liao, Xin

    2018-06-01

    For the optoacoustic communication from in-air platforms to submerged apparatus, a method based on speech recognition and variable laser-pulse repetition rates is proposed, which realizes character encoding and transmission for speech. Firstly, the theories and spectrum characteristics of the laser-generated underwater sound are analyzed; and moreover character conversion and encoding for speech as well as the pattern of codes for laser modulation is studied; lastly experiments to verify the system design are carried out. Results show that the optoacoustic system, where laser modulation is controlled by speech-to-character baseband codes, is beneficial to improve flexibility in receiving location for underwater targets as well as real-time performance in information transmission. In the overwater transmitter, a pulse laser is controlled to radiate by speech signals with several repetition rates randomly selected in the range of one to fifty Hz, and then in the underwater receiver laser pulse repetition rate and data can be acquired by the preamble and information codes of the corresponding laser-generated sound. When the energy of the laser pulse is appropriate, real-time transmission for speaker-independent speech can be realized in that way, which solves the problem of underwater bandwidth resource and provides a technical approach for the air-sea communication.

  1. Efficient non-negative constrained model-based inversion in optoacoustic tomography

    International Nuclear Information System (INIS)

    Ding, Lu; Luís Deán-Ben, X; Lutzweiler, Christian; Razansky, Daniel; Ntziachristos, Vasilis

    2015-01-01

    The inversion accuracy in optoacoustic tomography depends on a number of parameters, including the number of detectors employed, discrete sampling issues or imperfectness of the forward model. These parameters result in ambiguities on the reconstructed image. A common ambiguity is the appearance of negative values, which have no physical meaning since optical absorption can only be higher or equal than zero. We investigate herein algorithms that impose non-negative constraints in model-based optoacoustic inversion. Several state-of-the-art non-negative constrained algorithms are analyzed. Furthermore, an algorithm based on the conjugate gradient method is introduced in this work. We are particularly interested in investigating whether positive restrictions lead to accurate solutions or drive the appearance of errors and artifacts. It is shown that the computational performance of non-negative constrained inversion is higher for the introduced algorithm than for the other algorithms, while yielding equivalent results. The experimental performance of this inversion procedure is then tested in phantoms and small animals, showing an improvement in image quality and quantitativeness with respect to the unconstrained approach. The study performed validates the use of non-negative constraints for improving image accuracy compared to unconstrained methods, while maintaining computational efficiency. (paper)

  2. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  3. High-frame-rate imaging of biological samples with optoacoustic micro-tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel

    2018-02-01

    Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.

  4. Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice.

    Directory of Open Access Journals (Sweden)

    Moritz Kneipp

    Full Text Available BACKGROUND AND PURPOSE: Longitudinal functional imaging studies of stroke are key in identifying the disease progression and possible therapeutic interventions. Here we investigate the applicability of real-time functional optoacoustic imaging for monitoring of stroke progression in the whole brain of living animals. MATERIALS AND METHODS: The middle cerebral artery occlusion (MCAO was used to model stroke in mice, which were imaged preoperatively and the occlusion was kept in place for 60 minutes, after which optoacoustic scans were taken at several time points. RESULTS: Post ischemia an asymmetry of deoxygenated hemoglobin in the brain was observed as a region of hypoxia in the hemisphere affected by the ischemic event. Furthermore, we were able to visualize the penumbra in-vivo as a localized hemodynamically-compromised area adjacent to the region of stroke-induced perfusion deficit. CONCLUSION: The intrinsic sensitivity of the new imaging approach to functional blood parameters, in combination with real time operation and high spatial resolution in deep living tissues, may see it become a valuable and unique tool in the development and monitoring of treatments aimed at suspending the spread of an infarct area.

  5. Auto-positioning ultrasonic transducer system

    Science.gov (United States)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  6. Home Automation System Based on Intelligent Transducer Enablers

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel

    2016-01-01

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031

  7. Home Automation System Based on Intelligent Transducer Enablers.

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel

    2016-09-28

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  8. Home Automation System Based on Intelligent Transducer Enablers

    Directory of Open Access Journals (Sweden)

    Manuel Suárez-Albela

    2016-09-01

    Full Text Available This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers, which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  9. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Bozkurt, Ayhan; Yaralioglu, G Goksenin

    2016-11-01

    This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.

  10. Model of a Piezoelectric Transducer

    Science.gov (United States)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  11. Towards Active Transducers

    DEFF Research Database (Denmark)

    Poulsen, Søren

    audio reproduction many product generations ago, but the biggest disadvantages are still left untouched; power efficiency, size and cost. With today’s technology, high efficient switch mode, or class D audio amplifiers based on pulse width modulation, PWM, are realizable. With the class D technology...... and loudspeakers into one single unit using the voice coil of the loudspeaker as output filter for the amplifier, with a perspective of highly reduced system power losses, system size and cost. Standard switch mode audio amplifiers and loudspeakers on the market are designed for use in traditional audio systems......, consumer audio systems can benefit significantly from the highly increased power efficiency of class D amplifiers as well as their reduced size without need for bulky heat sinks, and also very important, low cost. The topic of this project is a total integration of switch mode audio amplifiers...

  12. DEVELOPMENTAL STUDIES OF NUCLEAR DIGITAL TRANSDUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, James L.

    1963-09-15

    A pressure transducer based on mechanical modulation of a beam of alpha particles is described. This type of transducer is capable of direct digital pressure measurexnent with corresponding telemetry advantages. Any variable that is sensed through a mechanical displacement is measurable by means of a corresponding member of this transducer family. Preliminary tests of an experimental pressure transducer show an overall accuracy within a few tenths of one percent, with promise of substantial improvement. General characteristics of nuclear digital transducers include exceptional long-term calibration stability and accuracy, independent of ambient environmental effects. Three concepts of systems enipioying these transducers are discussed. (auth)

  13. Acoustic Levitation With One Transducer

    Science.gov (United States)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  14. Proceedings of transducer 84 conference

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In the broad and varied field of sensors this conference reviews thermal sensors for temperature measurements, gas sensors for gas analysis (for example analysis of exhaust gases from vehicles), optical fiber sensors, applications for optics, mechanics, robotics and signal processing. In particular one of the applications concerns acoustical transducers operating in liquid sodium for LMFBR reactors.

  15. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...

  16. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  17. The research on high power transducer

    International Nuclear Information System (INIS)

    Zhao Wuling; Li Yubin; Peng Shuwen

    2014-01-01

    This paper introduces the transducer structure used double PWM mode, the control system design of hardware and software. The transducer has been applied in factory. From the real experiment, it shows that the system has a high reliability. (authors)

  18. Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions.

    Science.gov (United States)

    Wang, Kun; Schoonover, Robert W; Su, Richard; Oraevsky, Alexander; Anastasio, Mark A

    2014-05-01

    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT.

  19. Numerical prediction and measurement of optoacoustic signals generated in PVA-H tissue phantoms

    Science.gov (United States)

    Melchert, Oliver; Blumenröther, Elias; Wollweber, Merve; Roth, Bernhard

    2018-01-01

    We present numerical simulations of optoacoustic (OA) signals, complementing laboratory experiments on melanin doped polyvinyl alcohol hydrogel (PVA-H) tissue phantoms. We review the computational approach to model the underlying mechanisms, i.e. optical absorption of laser energy and acoustic propagation of mechanical stress, geared toward experiments that involve absorbing media with homogeneous acoustic properties. We apply the numerical procedure to predict signals observed in the acoustic near- and farfield in both, forward and backward detection mode, in PVA-H tissue phantoms (i.e. an elastic solid). Further, we report on verification tests of our research code based on OA experiments on dye solution (i.e. a liquid) detailed in the literature and benchmark our 3D procedure via limiting cases described in terms of effectively 1D theoretical approaches.

  20. An optimised instrument to measure thermal diffusivities of gases with opto-acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soldner, J.; Stephan, K. [Institute of Technical Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70550, Stuttgart (Germany)

    2004-11-01

    The paper describes the theory and application of opto-acoustics to determine thermal diffusivities of gases. An experimental device, already described in previous papers of the authors [Internat. J. Thermophys. 19 (1998) 1099; Proc. 2. European Thermal Science and 14. UIT National Heat Transfer Conf., 1996, pp. 1071-1078] permitted the detection of thermal diffusivities of gases at moderate pressures with an experimental uncertainty of about {+-}1.25%.Based on the experience gained with this device, a comprehensive error analysis is presented in this paper. It shows how the experimental uncertainties can be considerably reduced to about -0.45 to +0.35%. The parameters for optical cell design are dealt with, as well as the appropriate characteristics, such as frequencies of the modulated laser beam, and the microphone used in the experiment. (authors)

  1. Enhancement and suppression of opto-acoustic parametric interactions using optical feedback

    International Nuclear Information System (INIS)

    Zhang Zhongyang; Zhao Chunnong; Ju, L.; Blair, D. G.

    2010-01-01

    A three mode opto-acoustic parametric amplifier (OAPA) is created when two orthogonal optical modes in a high finesse optical cavity are coupled via an acoustic mode of the cavity mirror. Such interactions are predicted to occur in advanced long baseline gravitational wave detectors. They can have high positive gain, which leads to strong parametric instability. Here we show that an optical feedback scheme can enhance or suppress the parametric gain of an OAPA, allowing exploration of three-mode parametric interactions, especially in cavity systems that have insufficient optical power to achieve spontaneous instability. We derive analytical equations and show that optical feedback is capable of controlling predicted instabilities in advanced gravitational wave detectors within a time scale of 13∼10 s.

  2. A Direct Driver for Electrostatic Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes a power stage suitable for driving an electrostatic transducer under biasing. Measurement results of a ±400 V prototype amplifier are shown. THD below 1% is reported....

  3. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teaghee; Choi, Jong Woon [Department of Information and Communication, Honam University, Seobong-dong 59-1, Gwansan-gu, Gwangju 506-714 (Korea, Republic of); Kim, Yong Pyung [College of Electronics and Information, Kyunghee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  4. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  5. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  6. Calculations for piezoelectric ultrasonic transducers

    International Nuclear Information System (INIS)

    Jensen, H.

    1986-05-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a body which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation losses as well as internal losses may be important. Due to the complexity of the problem, a closed form solution is the exception rather than the rule. For this reason, it is necessary to use approximate methods for the analysis. Equivalent circuits, the Rayleigh-Ritz method, Mindlin plate theory and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacement and electric potential is given. The influence of a fluid half-space is also given, in the form of a complex stiffness matrix. A special stacking procedure, for analysis of the backing has been developed. This procedure gives a saving, which is similar to that of the fast fourier transform algorithm, and is also wellsuited for analysis of finite and infinite waveguides. Results obtained by the finite element method are shown and compared with measurements and exact solutions. Good agreement is obtained. It is concluded that the finite element method can be a valueable tool in analysis and design of ultrasonic transducers. (author)

  7. Transducers

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B

    stream_size 27 stream_content_type text/plain stream_name Encycl_Microcomputers_18_335.pdf.txt stream_source_info Encycl_Microcomputers_18_335.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  8. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  9. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  10. Radiation-resistant pressure transducers

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.; Kerimova, T.I.

    2005-01-01

    Full text : The sensitive element of vibrofrequency tensor converter (VTC) is an electromechanical resonator of string type with electrostatic excitation of longitudinal mechanical vibrations. The string is made from tensosensitive thread-like monocrystal n-Ge1-x Six (length 1-5 mm, diameter 8-12 mcm) with current outlet and strictly fixed by ends at plate or deformable surface (in elastic element) at 50 mcm apartheid. With increasing Si atomic percent in n-Ge1-x Six the converter tens sensitivity increases. There has been shown the scheme of pressure transducer which contains monocrystalline silicon membrane and string tens converter from thread-like monocrystal Ge-Si. Using method, when crystal position on membrane while it deforms by pressure, corresponds to free (uptight) state, allowed to obtain the maximum sensitivity in measurement of pressure fluctuation. The transducers of absolute and pressure differential of this type can be used in automated systems of life activity. The high sensitivity of string transducers to pressure exceeding 100 hertz/mm (water column) permits to use them in devices for measuring gas concentration. The combination of optical and deformation methods of measurements forms the basis of their operation. The pressure change occurs due to the fact that gas molecules absorbing the quanta of incident light, become at excited state and then excitation energy of their vibrational-rotatory degrees of freedom converts to the energy of translational motion of molecules, i.e. to heat appropriate to pressure increase. Using these tens converters of high pressure one can prevent the possible accidents on oil pipe-like Baku-Tibilisi-Ceyhan

  11. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  12. Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies

    Science.gov (United States)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep Babu; Dadrasnia, Ehsan; Sánchez, Miguel; Rodríguez, Sergio; González, Marta; Carpintero, Guillermo; Osiński, Marek; Lamela, Horacio

    2016-03-01

    During the last two decades, optoacoustic imaging has been developed as a novel biomedical imaging technique based on the generation of ultrasound waves by means of laser light. In this work, we investigate the optoacoustic response from graphene-based solutions by using a compact and cost-effective system based on an assembly of several 905-nm pulsed high-power diode lasers coupled to a bundle of 200-μm diameter- core optical fibers. The coupled light is conveyed into a lens system and focused on an absorber consisting of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and reduced graphene-oxide/gold-nanoparticle hybrid, respectively) diluted in ethanol and hosted in slightly scattering optical phantoms. The high absorption of these graphene-based solutions suggests their potential future use in optoacoustic applications as contrast agents.

  13. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce...... such transducer arrays, capacitive micromachined ultrasonic transducer (CMUT) technology is chosen for this project. Properties such as high bandwidth and high design flexibility makes this an attractive transducer technology, which is under continuous development in the research community. A theoretical...... treatment of CMUTs is presented, including investigations of the anisotropic plate behaviour and modal radiation patterns of such devices. Several new CMUT fabrication approaches are developed and investigated in terms of oxide quality and surface protrusions, culminating in a simple four-mask process...

  14. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  15. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  16. Optoacoustic Spectroscopy.

    Science.gov (United States)

    1984-06-15

    cosmic ray muons or neutrinos) in deep oceans. To cause acoustic generation, the incident beam can be pulsed, or modulated at close to 50% duty...the case in most OA studies) or in other spectral regions from RF to X- rays ; it can also be a particle beam of electron, proton, muon , neutrino, 0. etc...discovered by A. G. Bell in 1880, who observed that audible sound is produced when chopped sunlight is absorbed at a surface . Although the OA effect

  17. Standards for dielectric elastomer transducers

    International Nuclear Information System (INIS)

    Carpi, Federico; Frediani, Gabriele; Anderson, Iain; Bauer, Siegfried; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Pelrine, Ron; Lassen, Benny; Rechenbach, Björn; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O’Brien, Benjamin; Pei, Qibing

    2015-01-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation. (paper)

  18. Standards for dielectric elastomer transducers

    Science.gov (United States)

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  19. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    Science.gov (United States)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  20. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units.

    Science.gov (United States)

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A

    2013-02-01

    Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.

  1. Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering (Conference Presentation)

    Science.gov (United States)

    Subochev, Pavel V.; Orlova, Anna G.; Turchin, Ilya V.

    2017-03-01

    We will present reflection-mode bioimaging system providing complementary optical, photoacsoutic and acoustic measurements by acoustic detector after each laser pulse with 2kHz repetition rate. The photons absorbed within the biological tissue provide optoacoustic (OA) signals, the photons absorbed by the external electrode of a detector provide the measurable diffuse reflectance (DR) from the sample and the probing ultrasonic (US) pulse. To demonstrate the in vivo capabilities of the system we performed complementary DR/OA/US imaging of small laboratory animals and human palm with 3.5mm/50μm/35μm lateral resolution at up to 3 mm diagnostic depth. Functional OA and DR imaging demonstrated the levels of tissue vascularization and blood supply. Structural US imaging was essential for understanding the position of vessels and zones with different perfusion. Before BiOS-2017 we plan to accomplish more in vivo experiments validating the developed triple-modality system as diagnostic tool to detect vascularization as well as mechanisms of vascular changes when monitoring response to therapy.

  2. Optoacoustic tomography in preclinical research: in vivo distribution of highly purified PEG-coated gold nanorods

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Brecht, Hans-Peter; Ermilov, Sergey; Larin, Kirill; Oraevsky, Alexander A.

    2011-07-01

    We report on the optoacoustic (OA) imaging of the whole mouse body using a biocompatible contrast agent - highly purified, pegylated gold nanorods (GNR) - which has strong optical absorption in the near-infrared region and low level of toxicity. In vitro toxicity studies showed no significant change in survival rates of the cultured normal epithelium IEC-6 cells when incubated for 24 hours with up to 1 nM of GNR. In vivo toxicity studies in nude mice showed no pathological changes in liver 1 month after the IV injection of GNR with intra-body concentration around 0.25-0.50 nM. In order to study the enhancement of the OA contrast and accumulation of GNR in different tissues, we performed 3D OA imaging of live nude mice with IV-injected GNR. The enhancement of the OA contrast in comparison with the images of the untreated mice was visible starting 1 hour after the GNR injection. The OA contrast of kidneys, liver, and spleen peaked at about 2-3 days after the administration of the GNR, and then was gradually reducing.

  3. Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography.

    Science.gov (United States)

    Berninger, Markus T; Mohajerani, Pouyan; Wildgruber, Moritz; Beziere, Nicolas; Kimm, Melanie A; Ma, Xiaopeng; Haller, Bernhard; Fleming, Megan J; Vogt, Stephan; Anton, Martina; Imhoff, Andreas B; Ntziachristos, Vasilis; Meier, Reinhard; Henning, Tobias D

    2017-06-01

    The distribution of intramyocardially injected rabbit MSCs, labeled with the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo-cyanine-iodide (DiR) using hybrid Fluorescence Molecular Tomography-X-ray Computed Tomography (FMT-XCT) and Multispectral Optoacoustic Tomography (MSOT) imaging technologies, was investigated. Viability and induction of apoptosis of DiR labeled MSCs were assessed by XTT- and Caspase-3/-7-testing in vitro . 2 × 10 6 , 2 × 10 5 and 2 × 10 4 MSCs labeled with 5 and 10 μg DiR/ml were injected into fresh frozen rabbit hearts. FMT-XCT, MSOT and fluorescence cryosection imaging were performed. Concentrations up to 10 μg DiR/ml did not cause apoptosis in vitro (p > 0.05). FMT and MSOT imaging of labeled MSCs led to a strong signal. The imaging modalities highlighted a difference in cell distribution and concentration correlated to the number of injected cells. Ex-vivo cryosectioning confirmed the molecular fluorescence signal. FMT and MSOT are sensitive imaging techniques offering high-anatomic resolution in terms of detection and distribution of intramyocardially injected stem cells in a rabbit model.

  4. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  5. Trace gas sensing using quantum cascade lasers and a fiber-coupled optoacoustic sensor: Application to formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Elia, A; Lugara, P M; Scamarcio, G [CNR-INFM Regional Laboratory LIT and Dipartimento Interateneo di Fisica, Universita di Bari, via Amendola 173, 70126 Bari (Italy); Spagnolo, V [CNR-INFM Regional Laboratory LIT and Dipartimento Interateneo di Fisica, Politecnico di Bari, via Amendola 173, 70126 Bari (Italy); Di Franco, C, E-mail: spagnolo@fisica.uniba.i [CNR-INFM Regional Laboratory LIT, via Amendola 173, 70126 Bari (Italy)

    2010-03-01

    We will report here on the design and realization of an optoacoustic sensor for the detection of formaldehyde. The sensor consists of a commercial QCL and a resonant PA cell. Two different cell configurations have been investigated: a 'standard' H cell and an innovative T-cell with an optical fiber directly inserted into. Two different type of sound detector have been employed: electret microphones and optical MEMS-based microphone. As possible applications, we will describe the results obtained in the detection of formaldehyde (CH{sub 2}O), a gas of great interest for industrial processes and environmental monitoring.

  6. Using Portable Transducers to Measure Tremor Severity

    Directory of Open Access Journals (Sweden)

    Rodger Elble

    2016-05-01

    Full Text Available Background: Portable motion transducers, suitable for measuring tremor, are now available at a reasonable cost. The use of these transducers requires knowledge of their limitations and data analysis. The purpose of this review is to provide a practical overview and example software for using portable motion transducers in the quantification of tremor. Methods: Medline was searched via PubMed.gov in December 2015 using the Boolean expression “tremor AND (accelerometer OR accelerometry OR gyroscope OR inertial measurement unit OR digitizing tablet OR transducer.” Abstracts of 419 papers dating back to 1964 were reviewed for relevant portable transducers and methods of tremor analysis, and 105 papers written in English were reviewed in detail. Results: Accelerometers, gyroscopes, and digitizing tablets are used most commonly, but few are sold for the purpose of measuring tremor. Consequently, most software for tremor analysis is developed by the user. Wearable transducers are capable of recording tremor continuously, in the absence of a clinician. Tremor amplitude, frequency, and occurrence (percentage of time with tremor can be computed. Tremor amplitude and occurrence correlate strongly with clinical ratings of tremor severity. Discussion: Transducers provide measurements of tremor amplitude that are objective, precise, and valid, but the precision and accuracy of transducers are mitigated by natural variability in tremor amplitude. This variability is so great that the minimum detectable change in amplitude, exceeding random variability, is comparable for scales and transducers. Research is needed to determine the feasibility of detecting smaller change using averaged data from continuous long-term recordings with wearable transducers.

  7. Imaging melanin cancer growth in-vivo using raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz and 100 MHz

    Science.gov (United States)

    Omar, Murad; Schwarz, Mathias; Soliman, Dominik; Symvoulidis, Panagiotis; Ntziachristos, Vasilis

    2016-03-01

    We used raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz, and at 100 MHz, to monitor tumor growth, and tumor angiogenesis, which is a central hallmark of cancer, in-vivo. In this study we compared the performance, and the effect of the 50 MHz, and the 100 MHz frequencies on the quality of the final image. The system is based on a reflection-mode implementation of RSOM. The detectors used are custom made, ultrawideband, and spherically focused. The use of such detectors enables light coupling from the same side as the detector, thus reflection-mode. Light is in turn coupled using a fiber bundle, and the detector is raster scanned in the xy-plane. Subsequently, to retrieve small features, the raw data are reconstructed using a multi-bandwidth, beamforming reconstruction algorithm. Comparison of the system performance at the different frequencies shows as expected a higher resolution in case of the 100 MHz detector compared to the 50 MHz. On the other hand the 50 MHz has a better SNR, can detect features from deeper layers, and has higher angular acceptance. Based on these characteristics the 50 MHz detector was mostly used. After comparing the performance we monitored the growth of B16F10 cells, melanin tumor, over the course of 9 days. We see correspondence between the optoacoustic measurements and the cryoslice validations. Additionally, in areas close to the tumor we see sprouting of new vessels, starting at day 4-5, which corresponds to tumor angiogenesis.

  8. Capacitance high temperature strain transducer by Interatom

    International Nuclear Information System (INIS)

    Fortmann, M.

    1987-01-01

    Special strain transducers are necessary to perform structure mechanical experiments on real components under creep-fatigue load. The new development of the transducer was able to solve the problem. In the meantime, different characteristics of the transducer have been examined and many successful applications have been effected. Some important aspects are given in this report. Up to now the longest operation period has been 24000 h on a pipe at 630 0 C service temperature in a conventional power station. (orig./DG) [de

  9. Evaluation of multispectral optoacoustic tomography (MSOT) performance in phantoms and in vivo

    Science.gov (United States)

    Joseph, James; Tomaszewski, Michal; Morgan, Fiona J. E.; Bohndiek, Sarah E.

    2015-03-01

    MultiSpectral optoacoustic tomography (MSOT) is an emerging modality that combines the high contrast of optical imaging with the spatial resolution and penetration depth of ultrasound, to provide detailed images of hemoglobin concentration and oxygenation. To facilitate accurate determination of changes in the vascularity and oxygenation of a biological tissue over time, a tumor in response to cancer therapy for example, an extensive study of stability and reproducibility of a small animal MSOT system has been performed. Investigations were first made with a stable phantom imaged repeatedly over time scales of hours, days and months to evaluate the reproducibility of the system over time. We found that the small animal MSOT system exhibited excellent reproducibility with a coefficient of variation (COV) in the measured MSOT signals of less than 8% over the course of 30 days and within 1.5% over a single day. Experiments performed in vivo demonstrated the potential for measurement of oxyhemoglobin over time in a realistic experimental setting. The effect of breathing medical air or oxygen under conditions of fixed respiration rate and body temperature within normal organs, including the spleen and kidneys, were investigated. The COV for oxyhemoglobin signals retrieved from spectral unmixing was assessed within both biological (different mouse) and imaging (different scan) replicates. As expected, biological replicates produced a large COV (up to 40% within the spleen) compared to imaging replicates within a single mouse (up to 10% within the spleen). Furthermore, no significant difference was found between data acquired by different operators. The data presented here suggest that MSOT is highly reproducible for both phantom and in vivo imaging, hence could reliably detect changes in oxygenation occurring in living subjects.

  10. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  11. Active acoustical impedance using distributed electrodynamical transducers.

    Science.gov (United States)

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  12. Transducers and microprocessors in oceanographic applications

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.

    Transducers used for the sensing of the ten most measured marine parameters have been described in this paper. The ten parameters have been classed under 5 sensor types, namely temperature, pressure, salinity, currents and waves. For each sensor...

  13. Performance of Honeywell silicon pressure transducers

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Nagvekar, S.; Prabhudesai, S.; Damodaran, V.

    pressure. The precision pressure transducer – ruggedized (PPTR) manufactured by Honeywell is provided with a special “Hastelloy” material isolation-diaphragm to protect the transducer port against corrosive effects during its prolonged exposure...-scale output (an intelligent technique anufacturers to hide the non-linearity of the product at all data points below ore realistic estimate of linearity is obtained by ean of a few samples) based on the corresponding true ethod employed by performance...

  14. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis.

    Science.gov (United States)

    Kim, Jinwook; Lindsey, Brooks D; Chang, Wei-Yi; Dai, Xuming; Stavas, Joseph M; Dayton, Paul A; Jiang, Xiaoning

    2017-06-14

    Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.

  15. Review of piezoelectric micromachined ultrasonic transducers and their applications

    International Nuclear Information System (INIS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Choi, Hongsoo; Ryu, Jungho

    2017-01-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient ( e 31 ) can be increased by controlling the crystal texture (seed layer of γ -Al 2 O 3 ), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO 2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size. (topical review)

  16. Review of piezoelectric micromachined ultrasonic transducers and their applications

    Science.gov (United States)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Ryu, Jungho; Choi, Hongsoo

    2017-11-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient (e 31) can be increased by controlling the crystal texture (seed layer of γ-Al2O3), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size.

  17. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Science.gov (United States)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  18. Three-dimensional micro electromechanical system piezoelectric ultrasound transducer

    Science.gov (United States)

    Hajati, Arman; Latev, Dimitre; Gardner, Deane; Hajati, Azadeh; Imai, Darren; Torrey, Marc; Schoeppler, Martin

    2012-12-01

    Here we present the design and experimental acoustic test data for an ultrasound transducer technology based on a combination of micromachined dome-shaped piezoelectric resonators arranged in a flexible architecture. Our high performance niobium-doped lead zirconate titanate film is implemented in three-dimensional dome-shaped structures, which form the basic resonating cells. Adjustable frequency response is realized by mixing these basic cells and modifying their dimensions by lithography. Improved characteristics such as high sensitivity, adjustable wide-bandwidth frequency response, low transmit voltage compatible with ordinary integrated circuitry, low electrical impedance well matched to coaxial cabling, and intrinsic acoustic impedance match to water are demonstrated.

  19. Detecting failed elements on phased array ultrasound transducers using the Edinburgh Pipe Phantom

    Science.gov (United States)

    Inglis, Scott; Pye, Stephen D

    2016-01-01

    Aims Imaging faults with ultrasound transducers are common. Failed elements on linear and curvilinear array transducers can usually be detected with a simple image uniformity or ‘paperclip’ test. However, this method is less effective for phased array transducers, commonly used in cardiac imaging. The aim of this study was to assess whether the presence of failed elements could be detected through measurement of the resolution integral (R) using the Edinburgh Pipe Phantom. Methods A 128-element paediatric phased array transducer was studied. Failed elements were simulated using layered polyvinyl chloride (PVC) tape as an attenuator and measurements of resolution integral were carried out for several widths of attenuator. Results All widths of attenuator greater than 0.5 mm resulted in a significant reduction in resolution integral and low contrast penetration measurements compared to baseline (p tests to detect failed elements on phased array transducers. Particularly encouraging is the result for low contrast penetration as this is a quick and simple measurement to make and can be performed with many different test objects, thus enabling ‘in-the-field’ checks. PMID:27482276

  20. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  1. A computerized check-out system for transducers in nuclear power plants

    International Nuclear Information System (INIS)

    Brandt, A.

    1984-01-01

    A computerized system for the acquisition, administration and recording of test data of about 1000 pressure meters (transducers) being collected annually in nuclear power stations is described. The Mobile System is set up by three components - the control pressure device, the intelligent interface and the microcomputer (PDP 11/23, 256 kB) - the whole being assembled on a moveable wagon which allows on site measurement of the transducers. The PDP 11/23, fully integrated in a VT 103 video terminal, connects to the interface via an IEEE-488 bus system. Its keyboard is equipped with operation keys to handle and control the different test phases - uncoupling the transducer from plant operation, linking the transducer to the Mobile System, testing for leaks in the pipe system, recording and correcting the characteristic curve, reinstallation of the transducer in plant operation. Filling and emptying of the pipelines for high pressure measuring is computer controlled as well. As each Mobile System is a stand-alone test device, the number of systems is freely selectable according to environmental conditions (radiative and non-radiative zones, accessability etc.), failure resp. availability considerations and other boundary conditions. Data transport to and from the Stationary System is done via magnetic tape cartridges (256 KB), which may pick-up data of 150 transducers, or online via twisted pair cable connections between the measuring points and the Stationary System. (orig./GL) [de

  2. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    Science.gov (United States)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  3. Mechano-electric optoisolator transducer with hysteresis

    International Nuclear Information System (INIS)

    Ciurus, I M; Dimian, M; Graur, A

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  4. Immune Algorithm Complex Method for Transducer Calibration

    Directory of Open Access Journals (Sweden)

    YU Jiangming

    2014-08-01

    Full Text Available As a key link in engineering test tasks, the transducer calibration has significant influence on accuracy and reliability of test results. Because of unknown and complex nonlinear characteristics, conventional method can’t achieve satisfactory accuracy. An Immune algorithm complex modeling approach is proposed, and the simulated studies on the calibration of third multiple output transducers is made respectively by use of the developed complex modeling. The simulated and experimental results show that the Immune algorithm complex modeling approach can improve significantly calibration precision comparison with traditional calibration methods.

  5. Initial Design and Quick Analysis of SAW Ultra–Wideband HFM Transducers

    Directory of Open Access Journals (Sweden)

    A. Janeliauskas

    2017-09-01

    Full Text Available This paper presents techniques for initial design and quick fundamental and harmonic operation analysis of surface acoustic waves ultra–wideband hyperbolically frequency modulated (HFM interdigital transducer (IDT. The primary analysis is based on the quasi–static method. Quasi–electrostatic charge's density distribution was approximated by Chebyshev polynomials and the method of Green’s function. It assesses the non uniform charge distribution of electrodes, electric field interaction and the end effects of a whole transducer. It was found that numerical integration (e.g. Romberg, Gauss–Chebyshev requires a lot of machine time for calculation of the Chebyshev polynomial and the Green’s function convolution when integration includes coordinates of a large number of neighboring electrodes. In order to accelerate the charge density calculation, the analytic expressions are derived. Evaluation of HFM transducer fundamental and harmonics' operation amplitude response with simulation single–dispersive interdigital chirp filter structure is presented. Elapsed time of HFM IDT with 589 electrodes simulations and 2000 frequency response point is only 54 seconds (0.027 s/point on PC with CPU Intel Core I7–4770S. Amplitude response is compared with linear frequency modulated (LFM IDT response. It was determined that the HFM transducer characteristic is less distorted in comparison with LFM transducer.

  6. Fiber-optic coupled pressure transducer

    International Nuclear Information System (INIS)

    Tallman, C.R.; Wingate, F.P.; Ballard, E.O.

    1979-01-01

    A fiber-optic coupled pressure transducer was developed for measurement of pressure transients produced by fast electrical discharges in laser cavities. A detailed description of the design and performance will be given. Shock tube performance and measurements in direct electrical discharge regions will be presented

  7. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    This paper investigates the in uence of nonlinear components that contaminate the linear response of acoustic transducer, and presents a method for eliminating the in uence of nonlinearities in acoustic measurements. The method is evaluated on simulated as well as experimental data, and is shown...

  8. Ferroelectret non-contact ultrasonic transducers

    Czech Academy of Sciences Publication Activity Database

    Bovtun, Viktor; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-01-01

    Roč. 88, č. 4 (2007), s. 737-743 ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrets * polymers * ultrasonic transducers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.857, year: 2007

  9. Linearization of resistance thermometers and other transducers

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1970-01-01

    deflection output or to null balance output. The application to the common temperature transducers is considered. It is shown that thermistors, linear metals (e.g., copper), and nickel can be linearized in terms of temperature, but platinum cannot be. If linearization is desired in terms of the reciprocal...

  10. Characterisation and Modelling of MEMS Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Teng, M F; Hariz, A J

    2006-01-01

    Silicon ultrasonic transducer micro arrays based on micro-electro-mechanicalsystem (MEMS) technologies are gaining popularity for applications in sonar sensing and excitation. A current challenge for many researchers is modelling the dynamic performance of these and other micro-mechanical devices to ascertain their performance and explain experimental observations reported. In this work, the performance simulation of a MEMS ultrasonic transducer array made from silicon nitride has been successfully carried out using CoventorWare package. The dynamic response of the entire transducer array was characterised, and the results were compared with theoretical predictions. Individual elements were found to vibrate with Bessel-like displacement patterns, and they were resonant at approximately 3 MHz, depending on thickness and lateral dimensions. The frequency shows a linear dependence around the common thickness of 2 μm. Peak displacement levels were examined as a function of frequency, DC bias voltage, and AC drive voltage. Accounting for fabrication variations, and uniformity variations across the wafer, the full array showed minimal variations in peak out-of-plane displacement levels across the device, and isolated elements that were over-responsive and under-responsive. Presently, the effect of observed variations across the array on the performance of the transducers and their radiated fields are being examined

  11. Features calibration of the dynamic force transducers

    Science.gov (United States)

    Sc., M. Yu Prilepko D.; Lysenko, V. G.

    2018-04-01

    The article discusses calibration methods of dynamic forces measuring instruments. The relevance of work is dictated by need to valid definition of the dynamic forces transducers metrological characteristics taking into account their intended application. The aim of this work is choice justification of calibration method, which provides the definition dynamic forces transducers metrological characteristics under simulation operating conditions for determining suitability for using in accordance with its purpose. The following tasks are solved: the mathematical model and the main measurements equation of calibration dynamic forces transducers by load weight, the main budget uncertainty components of calibration are defined. The new method of dynamic forces transducers calibration with use the reference converter “force-deformation” based on the calibrated elastic element and measurement of his deformation by a laser interferometer is offered. The mathematical model and the main measurements equation of the offered method is constructed. It is shown that use of calibration method based on measurements by the laser interferometer of calibrated elastic element deformations allows to exclude or to considerably reduce the uncertainty budget components inherent to method of load weight.

  12. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    to be affected by the inductive link. Neural stimulators are affected to a lesser degree, but still benefit from the partitioning. As a test case, we have designed a transceiver and a sensor chip which implement this partitioning policy. The transceiver is designed to operate in the 6.78 MHz ISM band......Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...... to these problems by partitioning the RF transceiver and sensor/actuator functions onto separate integrated circuits. By amplifying measured neural signals directly at the measurements site and converting them into the digital domain before passing them to the transceiver the signal integrity is less likely...

  13. Data quality assurance in pressure transducer-based automatic water level monitoring

    Science.gov (United States)

    Submersible pressure transducers integrated with data loggers have become relatively common water-level measuring devices used in flow or well water elevation measurements. However, drift, linearity, hysteresis and other problems can lead to erroneous data. Researchers at the USDA-ARS in Watkinsvill...

  14. In situ optoacoustic measurement of the pointing stability of femtosecond laser beams

    Science.gov (United States)

    Pushkarev, D.; Mitina, E.; Uryupina, D.; Volkov, R.; Karabytov, A.; Savel'ev, A.

    2018-02-01

    A new method for the in situ acoustic measurement of the beam pointing stability (BPS) of powerful pulsed lasers is tested. A broadband (~6 MHz) piezoelectric transducer placed a few millimeters from the laser spark produces an electric pulse. We show that variation in time of the position of this pulse can be used to assess the BPS down to 1 µrad in a few hundred laser shots. The estimated value coincides well with the BPS estimated using standard measurement in the far field.

  15. Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2009-01-01

    A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... ultrasound imaging transducer (Bæk et al. ICU 2009). The model benefits from its 1D simplicity and hasshown to give an amplitude error around 1.7‐2 dB. However, any prediction of amplitude, phase, and attenuation of pulses relies on the accuracy of manufacturer supplied material characteristics, which may...... is a quantitative calibrated model for a complete ultrasound system. This includes a sensitivity study aspresented here.Statement of Contribution/MethodsThe study alters 35 different model parameters which describe a 128 element convex transducer from BK Medical Aps. The changes are within ±20 % of the values...

  16. Capacitive pressure transducer using flexible films. Junan film wo mochiita seiden yoryoshiki atsukaku transducer

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Tsuchida, N.; Imai, K. (Toyota Technological Institute, Aichi (Japan)); Fujita, K. (Nitto Denko Corp., Osaka (Japan)): Tsuboi, O. (Fujitsu Corp., Tokyo (Japan))

    1992-12-20

    This paper describes the design, manufacture, and evaluation of a capacitive pressure transducer made of polyimide films. The structure of a pressure transducer cell was first determined, and then, the deflection-stress and capacitance-load characteristics of the surface film were analyzed using finite element methods. For the practical stage of manufacture, a polyimide film was emboss processed and electrodes were deposited on the film to construct a pressure transducer cell to which a Schmidt-trigger detecting circuit was connected. As a consequence of the examination of operational characteristics of the cell, it was found that the actual relation between the deflection and load approximately agreed with the linear analyses, and that the capacitance depended with little hysteresis on the gap regardless of the native visco-elasticity of the film. Furthermore, small stick-slip vibration of a contact rubber surface was detected by the transducer to verify its high sensitivity. 17 refs., 18 figs.

  17. Energy harvesting for wireless sensors by using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Duerager, Christian [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)

    2012-07-01

    Wireless sensor technology, which integrates transducers, measurement electronics and wireless communication, has become increasingly vital in structural health monitoring (SHM) applications. Compared to traditional wired systems, wireless solutions reduce the installation time and costs and are not subjected to breakage caused by harsh weather conditions or other extreme events. Because of the low installation costs, wireless sensor networks allow the deployment of a big number of wireless sensor nodes on the structures. Moreover, the nodes can be placed on particularly critical components of the structure difficult to reach by wires. In most of the cases the power supply are conventional batteries, which could be a problem because of their finite life span. Furthermore, in the case of wireless sensor nodes located on structures, it is often advantageous to embed them, which makes an access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. In this paper we first discuss the research that has been performed in the area of energy harvesting for wireless sensor technologies by using the ambient vibration energy. In many cases the energy produced by the ambient vibrations is far too small to directly power a wireless sensor node. Therefore, in a second step we discuss the development process for an electronic energy harvesting circuit optimized for piezoelectric transducers. In the last part of this paper an experiment with different piezoelectric transducers and their applicability for energy harvesting applications on vibrating structures will be discussed. (orig.)

  18. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    OpenAIRE

    Perfetto, Sara; Rohlfing, Jens; Infante, Francesco; Mayer, Dirk; Herold, Sven

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are...

  19. Design and fabrication of a double-sided piezoelectric transducer for harvesting vibration power

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Tsai; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Kao, Kuo-Sheng [Department of Computer and Communication, Shu-Te University, Kaohsiung, Taiwan, ROC (China); Chu, Yu-Hsien [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Cheng, Chien-Chuan, E-mail: chengccc@dlit.edu.tw [Department of Electronic Engineering, De Lin Institute of Technology, Taipei, Taiwan, ROC (China)

    2013-02-01

    This investigation examines a means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer for vibration-energy harvesting applications. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of the SUS304 substrate. The titanium and platinum layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. The scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and a highly c-axis-preferring orientation. To fabricate a transducer with a low resonant frequency, a tip-mass of 0.5 g and a vibration-area of 1 cm{sup 2} are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.31 μW/cm{sup 2} is obtained from the transducers with a load resistance of 6 MΩ. The variation of the power output of ± 0.001% is obtained after 24-hour continuous test. - Highlights: ► A double-sided piezoelectric transducer is fabricated with the ZnO thin films. ► Vibrated frequency of a double-sided transducer is designed and presented. ► A maximum output power of 3.23 μW/cm{sup 2} is obtained under turbulent vibration.

  20. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  1. Application of a long-period fibre grating-based transducer in the fuel industry

    International Nuclear Information System (INIS)

    Possetti, G R C; De Arruda, L V R; Muller, M; Fabris, J L; Côcco, L C; Yamamoto, C I; Falate, R

    2009-01-01

    This work shows prospects of long-period fibre grating applications as transducers for fuel conformity analysis. The proposed long-period grating transducer was employed to assess the gasoline conformity in commercial gas stations. Grating responses were used to train and validate a radial base function topology of an artificial neural network. The obtained results show that fibre optic sensors supervised by artificial neural networks can integrate systems for smart sensing with high applicability in the petrochemical field. The radial base function had reached a correct classification probability of approximately 94%. The device applicability in the analysis of hydrated ethanol fuel was also investigated by measuring the concentration of ethanol in ethanol–water mixtures. The results showed that the developed transducer can be used to infer the ethanol–water concentration with a resolution of up to 0.23%

  2. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Da-Chen Pang

    2017-06-01

    Full Text Available This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics.

  3. Sensitivity analysis for improving nanomechanical photonic transducers biosensors

    International Nuclear Information System (INIS)

    Fariña, D; Álvarez, M; Márquez, S; Lechuga, L M; Dominguez, C

    2015-01-01

    The achievement of high sensitivity and highly integrated transducers is one of the main challenges in the development of high-throughput biosensors. The aim of this study is to improve the final sensitivity of an opto-mechanical device to be used as a reliable biosensor. We report the analysis of the mechanical and optical properties of optical waveguide microcantilever transducers, and their dependency on device design and dimensions. The selected layout (geometry) based on two butt-coupled misaligned waveguides displays better sensitivities than an aligned one. With this configuration, we find that an optimal microcantilever thickness range between 150 nm and 400 nm would increase both microcantilever bending during the biorecognition process and increase optical sensitivity to 4.8   ×   10 −2  nm −1 , an order of magnitude higher than other similar opto-mechanical devices. Moreover, the analysis shows that a single mode behaviour of the propagating radiation is required to avoid modal interference that could misinterpret the readout signal. (paper)

  4. Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.

    Science.gov (United States)

    Ciampa, Francesco; Mankar, Akash; Marini, Andrea

    2017-11-07

    Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.

  5. Dissipation in vibrating superleak second sound transducers

    International Nuclear Information System (INIS)

    Giordano, N.

    1985-01-01

    We have performed an experimental study of the generation and detection of second sound in 4 He using vibrating superleak second sound transducers. At temperatures well below T/sub lambda/ and for low driving amplitudes, the magnitude of the generated second sound wave is proportional to the drive amplitude. However, near T/sub lambda/ and for high drive amplitudes this is no longer the case--instead, the second sound amplitude saturates. In this regime we also find that overtones of the drive frequency are generated. Our results suggest that this behavior is due to critical velocity effects in the pores of the superleak in the generator transducer. This type of measurement may prove to be a useful way in which to study critical velocity effects in confined geometries

  6. Ultrasonic transducer design for uniform insonation

    International Nuclear Information System (INIS)

    Harrison, G.H.; Balcer-Kubiczek, E.K.; McCulloch, D.

    1984-01-01

    Techniques used in transducer development for acoustical imaging have been evaluated for the purpose of producing broad, uniform ultrasonic fields from planar radiators. Such fields should be useful in hyperthermia, physical therapy, and ultrasonic bioeffects studies. Fourier inversion of the circ function yielded a source velocity distribution proportional to (P/r) exp ((-ik/2Z) (2Z/sup 2/+r/sup 2/)) J/sub 1/(krP/Z), where r is the radial source coordinate, k is the wave number, and P is the desired radius of uniform insonation at a depth Z in water. This source distribution can be truncated without significantly degrading the solution. A simpler solution consists of exponentially shading the edge of an otherwise uniformly excited disk transducer. This approach was successfully approximated experimentally

  7. Transducer Analysis and ATILA++ Model Development

    Science.gov (United States)

    2016-10-10

    the behavior of single crystal piezoelectric devices. OBJECTIVES To carry out this effort, a team consisting of ISEN...recording the vibration displacements on the opposite surface of the sample with a second receiving transducer. A software program is used to curve-fit the ...analysis in a loop until the desired quality of fit is achieved. 12 The technique has, in the past, been successfully used to determine

  8. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  9. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    Acoustical transducer arrays can reflect a sound signal in reverse to the sender which can be used for echo location devices. [0008] In Jiang...States Patent No. 8,494,187) a sound wave generator is disclosed which includes a carbon nanotube structure and an insulating reinforcement structure... acoustic device that includes an electrode layer and a sound wave generator. The sound wave generator is disposed on a surface of the electrode

  10. Thermoelectric Transducer Using Bio Nano Process

    Science.gov (United States)

    2015-08-01

    Ferritin; Thermal Transducer; Nanoparticle; Ammonium acetate; Separation distance; Debye length . ABSTRACT: As an application to thermos...condition of 10 mM concentration, the Debye length of ferritin is shorter than 3 nm 40 . Comparing it with the DLS results (Fig. 3), the Debye length is...modified PEGs will obstruct additional modification. This effect should strengthen when PEG length becomes longer which means the utilization of

  11. Stress Sensors and Signal Transducers in Cyanobacteria

    Science.gov (United States)

    Los, Dmitry A.; Zorina, Anna; Sinetova, Maria; Kryazhov, Sergey; Mironov, Kirill; Zinchenko, Vladislav V.

    2010-01-01

    In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress. PMID:22294932

  12. Ultrasonic properties of all-printed piezoelectric polymer transducers

    Science.gov (United States)

    Wagle, Sanat; Decharat, Adit; Bodö, Peter; Melandsø, Frank

    2013-12-01

    The ability of producing ultrasonic transducers from screen-printing has been explored experimentally, through printing and characterization of a large number of transducers. In an all-printed test design, 124 transducers with four different electrode sizes ranging from 1 to 4.9 mm2, were printed layer-by-layer on a high performance polyethyleneimine polymer. Inks from ferroelectric and conductive polymers were applied to the active part of a transducer, to provide a good acoustical match between the individual layers. Ultrasonic characterizations of the transducers done by two independent methods provided a broad-banded frequency response with a maximum response around 100 MHz.

  13. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall.

    Science.gov (United States)

    Hu, Hongping; Hu, Yuantai; Chen, Chuanyao; Wang, Ji

    2008-10-01

    A system to wirelessly convey electric energy through a thin metal wall is proposed in the paper, where 2 piezoelectric transducers are used to realize energy transformation between electric and mechanical, and a rechargeable battery is employed to store the transmitted energy. To integrate them as a whole, an interface of a modulating circuit is applied between the transducer system and the storage battery. In addition, a synchronized switch harvesting on inductor in parallel with the transducer system is introduced to artificially extend the closed interval of the modulating circuit. The process of transmitting energy is computed, and the performance of the transducer system is optimized in detail for a prescribed external electric source. The results obtained are useful for understanding and designing wireless energy supply systems.

  14. Towards a visual modeling approach to designing microelectromechanical system transducers

    Science.gov (United States)

    Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim

    1999-12-01

    In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).

  15. On-chip RF-to-optical transducer

    DEFF Research Database (Denmark)

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick

    2016-01-01

    these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical...... noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled...... electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low...

  16. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  17. Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm.

    Science.gov (United States)

    Leggio, L; Gawali, S; Gallego, D; Rodríguez, S; Sánchez, M; Carpintero, G; Lamela, H

    2017-03-01

    In the present paper we show the optoacoustic (OA) response of two solutions of gold nanorods dispersed in distilled water (0.8 mg/ml) and hosted in tissue-like phantoms by using small arrays of HPDLs at 870 and 905 nm as excitation sources. The HPDLs are coupled to a 7-to-1 optical fiber bundle with output diameter of 675 μm. Each solution of gold nanorods exhibits an absorption peak close to the operating wavelength, i.e. ~860 nm and ~900 nm, respectively, to optimize the generation of OA signals. The phantoms are made of agar, intralipid and hemoglobin to simulate a soft biological tissue with reduced properties of scattering. Three 3-mm diameter tubes done in the phantoms at different depths (0.9 cm, 1.8 cm, and 2.7 cm) have been filled with gold nanorods. In this way, OA signals with appreciable SNR are generated at different depths in the phantoms. The high OA response exhibited by gold nanorods suggests their application in OA spectroscopy as exogenous contrast agents to detect and monitor emerging diseases like metastasis and arteriosclerotic plaques.

  18. Noninvasive measurement of cerebral venous oxygenation in neonates with a multi-wavelength, fiber-coupled laser diode optoacoustic system

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Fonseca, Rafael A.; Richardson, C. Joan; Shanina, Ekaterina; Prough, Donald S.; Esenaliev, Rinat O.

    2018-03-01

    Noninvasive measurement of cerebral venous oxygenation in neonates could provide critical information for clinicians such as cerebral hypoxia without the risks involved with invasive catheterization. Evaluation of cerebral hypoxia is important in many clinical settings such as hypoxic-ischemic encephalopathy, perfusion monitoring in cardiovascular surgery or in traumatic brain injury. By probing the superior sagittal sinus (SSS), a large central cerebral vein, we can obtain stable signals with our recently developed multi-wavelength, fiber-coupled laser diode optoacoustic system for measurement of SSS blood oxygenation. The neonatal SSS oxygenation was measured in the reflection mode through open anterior and posterior fontanelles without obscuration by the overlying calvarium. In the transmission mode it was measured through the skull in the occipital area. Our device is lightweight, easily maneuverable, and user friendly for physicians. We monitored the SSS oxygenation in neonates admitted to the Neonatal Intensive Care Unit (NICU) of UTMB with varying gestation, birth weight and clinical histories to identify normal range and difference between neonates with and without risk factors for cerebral hypoxia.

  19. CMOS circuits for electromagnetic vibration transducers interfaces for ultra-low voltage energy harvesting

    CERN Document Server

    Maurath, Dominic

    2015-01-01

    Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100µW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over...

  20. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    Science.gov (United States)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  1. Na, K-ATPase as signaling transducer

    OpenAIRE

    Li, Juan

    2007-01-01

    It is now generally agreed that Na,K-ATPase (NKA), in addition to its role in the maintenance of Na+ and K+ gradients across the cell membrane, is a signal transducer. Our group has identified a novel signaling pathway where NKA interact with IP3R to form a signaling microdomain. Ouabain, a specific ligand of NKA, activates this pathway, triggers slow Ca2+ oscillations and activates NF-κB. In current study, the molecular mechanisms and some important downstream effects of NK...

  2. Integrating data converters for picoampere currents from electrochemical transducers

    DEFF Research Database (Denmark)

    Breten, Madalina; Lehmann, Torsten; Bruun, Erik

    2000-01-01

    . A prototype chip using the dual slope conversion method has been fabricated in a 0.7 μm CMOS process. Experimental results from this converter are reported. Design problems and limitations of the converter are discussed and a new conversion technique providing a larger dynamic range and easy calibration...

  3. On-chip RF-to-optical transducer (Conference Presentation)

    Science.gov (United States)

    Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.

    2016-04-01

    Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication

  4. Manufacturing technologies for ultrasonic transducers in a broad frequency range

    OpenAIRE

    Gebhardt, Sylvia; Hohlfeld, Kai; Günther, Paul; Neubert, Holger

    2018-01-01

    According to the application field, working frequency of ultrasonic transducers needs to be tailored to a certain value. Low frequency ultrasonic transducers with working frequencies of 1 kHz to 1 MHz are especially interesting for sonar applications, whereas high frequency ultrasonic transducers with working frequencies higher than 15 MHz are favorable for high-resolution imaging in biomedical and non-destructive evaluation. Conventional non-destructive testing devices and clinical ultrasoun...

  5. Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery

    Science.gov (United States)

    Ameri, Golafsoun; Son, Jungik; Liang, Jingwei; Foster, F. Stuart; Ganapathy, Sugantha; Peters, Terry M.

    2017-03-01

    Epidural anesthesia is one of the most commonly used and yet challenging techniques employed for pain management and anesthesia delivery. The major complications of this procedure are due to accidental dural puncture, with an incidence of 1-3%, which could lead to both temporary and irreversible permanent neurological complications. Needle placement under ultrasound (US) guidance has received increasing interest for improving needle placement accuracy. However, poor needle visibility in US, difficulties in displaying relevant anatomical structure such as dura mater due to attenuation and bone shadowing, and image interpretation variability among users pose significant hurdles for any US guidance system. As a result, US guidance for epidural injections has not been widely adopted for everyday use for the performance of neuraxial blocks. The difficulties in localizing the ligamentum flavum and dura with respect to the needle tip can be addressed by integrating A-mode US, provided by a single-element transducer at the needle tip, into the B-mode US guidance system. We have taken the first steps towards providing such a guidance system. Our goal is to improve the safety of this procedure with minimal changes to the clinical workflow. This work presents the design and development of a 20 MHz single-element US transducer housed at the tip of a 19 G needle hypodermic tube, which can fit inside an epidural introducer needle. In addition, the results from initial transducer characterization tests and performance evaluation of the transducer in a euthanized porcine model are provided.

  6. Smooth driving of Moessbauer electromechanical transducers

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, A., E-mail: veiga@fisica.unlp.edu.ar; Mayosky, M. A. [Universidad Nacional de La Plata, Facultad de Ingenieria (Argentina); Martinez, N.; Mendoza Zelis, P.; Pasquevich, G. A.; Sanchez, F. H. [Instituto de Fisica La Plata, CONICET (Argentina)

    2011-11-15

    Quality of Moessbauer spectra is strongly related to the performance of source velocity modulator. Traditional electromechanical driving techniques demand hard-edged square or triangular velocity waveforms that introduce long settling times and demand careful driver tuning. For this work, the behavior of commercial velocity transducers and drive units was studied under different working conditions. Different velocity reference waveforms in constant-acceleration, constant-velocity and programmable-velocity techniques were tested. Significant improvement in spectrometer efficiency and accuracy was achieved by replacing triangular and square hard edges with continuous smooth-shaped transitions. A criterion for best waveform selection and synchronization is presented and attainable enhancements are evaluated. In order to fully exploit this driving technique, a compact microprocessor-based architecture is proposed and a suitable data acquisition system implementation is presented. System linearity and efficiency characterization are also shown.

  7. Modeling piezoelectric ultrasonic transducers for physiotherapy

    International Nuclear Information System (INIS)

    Iglesias, E.; Frutos, J. de; Montero de Espinosa, F.

    2015-01-01

    Applications of ultrasound are well known in medical and aesthetic skin and subcutaneous fatty tissue mobilization treatments. The basic transducer used consists of a piezoelectric disk adhered to a metal delay line in capsule shape. The capsule design is critical since the two bonded elements have vibration modes which can cause very inefficient designs and vibration distributions very irregular if they are not properly studied and utilized. This must be known to avoid distributions of heat and sound pressure that could be ineffective or harmful. In this paper, using Finite Element Method and laser interferometric vibrational analysis, it has reached a piston-type solution that allows properly implement sound pressure vibration dose. (Author)

  8. Development of piezoelectric composites for transducers

    Science.gov (United States)

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  9. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Acoustic cavity transducers for the manipulation of cells and biomolecules

    Science.gov (United States)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  11. A method for determining losses in magnetostrictive transducers

    Science.gov (United States)

    Krysin, V. N.; Ketlerov, A. S.

    A method for estimating energy losses in magnetostrictive transducers is described. It is shown that domain remagnetization is responsible for the greatest energy loss in magnetostrictive transducers. Energy losses associated with Foucault currents and Joule heat are an order of magnitude less.

  12. Resonant acoustic transducer system for a well drilling string

    Science.gov (United States)

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  13. Resonant transducers for solid-state plasma density modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hallock, Gary A., E-mail: hallock@ece.utexas.edu [The University of Texas at Austin, Austin, Texas 78701 (United States); Meier, Mark A., E-mail: mark.a.meier@exxonmobil.com [ExxonMobil Upstream Research Company, Houston, Texas 77389 (United States)

    2016-04-15

    We have developed transducers capable of modulating the plasma density and plasma density gradients in indium antimonide. These transducers make use of piezoelectric drivers to excite acoustic pressure resonance at 3λ/2, generating large amplitude standing waves and plasma density modulations. The plasma density has been directly measured using a laser diagnostic. A layered media model shows good agreement with the experimental measurements.

  14. Optimization of ultrasonic tube testing with concentric transducers

    International Nuclear Information System (INIS)

    Dufayet, J.-P.; Gambin, Raymond.

    1978-01-01

    In order to test tubes by ultrasonics without rotation, concentric transducers can be used with conical mirrors to detect transverse defects and with helical shaped mirrors to detect longitudinal defects. Further optimization studies have been carried out in order to bring the system highly operational. The respective advantages brought by the rotating screen or by our especially designed sectorial transducers are discussed [fr

  15. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  16. Design and performance of the drag-disc turbine transducer

    International Nuclear Information System (INIS)

    Averill, R.H.; Goodrich, L.D.; Ford, R.E.

    1979-01-01

    Mass flow rates at the Loss-of-Fluid Test (LOFT) facility, EG and G Idaho, Inc., at the Idaho National Engineering Laboratory, are measured with the drag-disc turbine transducer (DTT). Operational description of the DTT and the developmental effort are discussed. Performance data and experiences with this transducer have been evaluated and are presented in this paper

  17. A mathematical model for transducer working at high temperature

    International Nuclear Information System (INIS)

    Fabre, J.P.

    1974-01-01

    A mathematical model is proposed for a lithium niobate piezoelectric transducer working at high temperature in liquid sodium. The model proposed suitably described the operation of the high temperature transducer presented; it allows the optimization of the efficiency and band-pass [fr

  18. A Force Transducer from a Junk Electronic Balance

    Science.gov (United States)

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  19. Transducer hygiene: comparison of procedures for decontamination of ultrasound transducers and their use in clinical practice.

    Science.gov (United States)

    Häggström, Mikael; Spira, Jack; Edelstam, Greta

    2015-02-01

    To determine whether current hygiene practices are appropriate during sonographic examinations. Five major hospitals in Sweden were investigated with a survey. At each hospital, the departments corresponding to the main types of sonographic examination were chosen. Personnel who were responsible for or acquainted with the local hygiene procedures completed a standardardized questionnaire. The surveys were completed by 25 departments, where the total number of sonographic examinations was approximately 20,000 per month. For transvaginal and transrectal sonographic examinations, the most common method for decontamination of the transducer was barrier protection during the procedure followed by cleansing with alcohol. Latex was the predominant cover material, but one department used polyethylene gloves, and another department used nitrile gloves. Both of these involved transvaginal ultrasonography. In transcutaneous examinations, all hospitals were using alcohol and paper or cloth for decontamination at a minimum. Transesophageal examinations were carried out without barrier protection, and decontamination was performed with an alkylating substance. The hygiene practices appear to be appropriate at most hospitals, but there is a prevalence of transducer cover materials of unacceptable permeability, as well as use of gloves on transducers despite insufficient evidence of safety. © 2015 Wiley Periodicals, Inc.

  20. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  1. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    Design of transducers for measurement of vibration (piezoelectric accelerometers) and sound (condenser microphones) is a very labour intensive work. The design work is mostly based on experience and on simple analogies to electrical circuit design. Often a time consuming itterative loop is used......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...... for methods that can reduce the design time consumption and the number of itterations. The present work proposes to use finite element based programs for simulating the behaviour of a transducer with a given set of specifications. A simulation program for accelerometers was developed and has been tested...

  2. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  3. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  4. A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS.

    Science.gov (United States)

    Lemmerhirt, David F; Cheng, Xiaoyang; White, Robert; Rich, Collin A; Zhang, Man; Fowlkes, J Brian; Kripfgans, Oliver D

    2012-07-01

    As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process. This process typically yields better than 99% working elements per array, with less than ±1.5 dB variation in receive sensitivity among the 1024 individually addressable elements. The CMUT pulseecho frequency response is typically centered at 2.1 MHz with a -6 dB fractional bandwidth of 60%, and elements are arranged on a 250 μm hexagonal grid (less than half-wavelength pitch). Multiplexers and CMOS buffers within the array are used to make on-chip routing manageable, reduce the number of physical output leads, and drive the transducer cable. The array has been interfaced to a commercial imager as well as a set of custom transmit and receive electronics, and volumetric images of nylon fishing line targets have been produced.

  5. Motion Sensors and Transducers to Navigate an Intelligent Mechatronic Platform for Outdoor Applications

    Directory of Open Access Journals (Sweden)

    Michail G. PAPOUTSIDAKIS

    2016-03-01

    Full Text Available The initial goal of this project is to investigate if different sensor types and their attached transducers can support everyday human needs. Nowadays, there is a constant need to automate many time consuming applications not only in industrial environments but also in smaller scale applications, therefore robotics is a field that continuously tracks research interest. The area of human assistance by machines in everyday needs, continues to grow and to keep users interest very high. "Mechatronics" differ from Robotics in terms of integrated electronics, the advantage of being easily re-programmable and more over the versatility of hosting all kind of sensor types, sensor networks, transducers and actuators. In this research project, such an integrated autonomous device will be presented, focusing around the use of sensors and their feedback signals for proximity, position, motion, distance, placement and finally navigation. The ultimate sensor type choice for the task as well as all transducers signals management will also be highlighted. An up-to-date technology microcontroller will host all the above information and moreover move the mechatronic platform via motor actuators. The control algorithm which will be designed for the application is responsible for receiving all feedback signals, processing them and safely navigate the system in order to undertake its mission. The project scenario, the necessary electronic equipment and the controller design method will be highlighted in the following paragraphs of this document. Conclusions and results of sensor usage, platform's performance and problems solutions, forms the rest of this paper body.

  6. Numerical comparison of patch and sandwich piezoelectric transducers for transmitting ultrasonic waves

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-03-01

    Full Text Available in the waveguide. Piezoelectric patch transducers are frequently employed, by researchers, for exciting waves in beam like structures. Sonar systems frequently make use of resonant transducers, such as sandwich transducers, for acoustic wave generation...

  7. Optimization Design Method for the CMOS-type Capacitive Micro-Machined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    D. Y. Chiou

    2011-12-01

    Full Text Available In this study, an integrated modeling technique for characterization and optimization design of the complementary metal-oxide-semiconductor (CMOS capacitive micro-arrayed ultrasonic transducer (pCMOS-CMUT is presented. Electromechanical finite element simulations are performed to investigate its operational characteristics, such as the collapse voltage and the resonant frequency. Both the numerical and experimental results are in good agreement. In order to simultaneously customize the resonant frequency and minimize the collapse voltage, the genetic algorithm (GA is applied to optimize dimensional parameters of the transducer. From the present results, it is concluded that the FE/GA coupling approach provides another efficient numerical tool for multi-objective design of the pCMOS-CMUT.

  8. Mechanical Amplifier for a Piezoelectric Transducer

    Science.gov (United States)

    Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert

    2003-01-01

    A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.

  9. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  10. Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study

    Science.gov (United States)

    Kang, Edward Shinuk

    2017-01-01

    In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).

  11. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  12. Use of lambda pMu bacteriophages to isolate lambda specialized transducing bacteriophages carrying genes for bacterial chemotaxis.

    Science.gov (United States)

    Kondoh, H; Paul, B R; Howe, M M

    1980-09-01

    A general method for constructing lambda specialized transducing phages is described. The method, which is potentially applicable to any gene of Escherichia coli, is based on using Mu DNA homology to direct the integration of a lambda pMu phage near the genes whose transduction is desired. With this method we isolated a lambda transducing phage carrying all 10 genes in the che gene cluster (map location, 41.5 to 42.5 min). The products of the cheA and tar genes were identified by using transducing phages with amber mutations in these genes. It was established that tar codes for methyl-accepting chemotaxis protein II (molecular weight, 62,000) and that cheA codes for two polypeptides (molecular weights, 76,000 and 66,000). Possible origins of the two cheA polypeptides are discussed.

  13. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  15. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    International Nuclear Information System (INIS)

    Perfetto, S; Rohlfing, J; Infante, F; Mayer, D; Herold, S

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency. (paper)

  16. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    Science.gov (United States)

    Perfetto, S.; Rohlfing, J.; Infante, F.; Mayer, D.; Herold, S.

    2016-09-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency.

  17. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  18. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  19. Reflective array modeling for reflective and directional SAW transducers.

    Science.gov (United States)

    Morgan, D P

    1998-01-01

    This paper presents a new approximate method for analyzing reflective SAW transducers, with much of the convenience of the coupled-mode (COM) method but with better accuracy. Transduction accuracy is obtained by incorporating the accurate electrostatic solution, giving for example correct harmonics, and allowance for electrode width variation, in a simple manner. Results are shown for a single-electrode transducer, Natural SPUDT and DART SPUDT, each using theoretically derived parameters. In contrast to the COM, the RAM can give accurate results for short or withdrawal-weighted transducers and for wide analysis bandwidth.

  20. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  1. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    International Nuclear Information System (INIS)

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-01-01

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  2. Quantification of amyloid deposits and oxygen extraction fraction in the brain with multispectral optoacoustic imaging in arcAβ mouse model of Alzheimer's disease

    Science.gov (United States)

    Ni, Ruiqing; Vaas, Markus; Rudin, Markus; Klohs, Jan

    2018-02-01

    Beta-amyloid (Aβ) deposition and vascular dysfunction are important contributors to the pathogenesis in Alzheimer's disease (AD). However, the spatio-temporal relationship between an altered oxygen metabolism and Aβ deposition in the brain remains elusive. Here we provide novel in-vivo estimates of brain Aβ load with Aβ-binding probe CRANAD-2 and measures of brain oxygen saturation by using multi-spectral optoacoustic imaging (MSOT) and perfusion imaging with magnetic resonance imaging (MRI) in arcAβ mouse models of AD. We demonstrated a decreased cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in the cortical region of the arcAβ mice compared to wildtype littermates at 24 months. In addition, we showed proof-of-concept for the detection of cerebral Aβ deposits in brain from arcAβ mice compared to wild-type littermates.

  3. Electromechanically active polymer transducers: research in Europe

    Science.gov (United States)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  4. Wideband Single Crystal Transducer for Bone Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS proposes to develop a simple-to-use, launch capable, ultrasound transducer that is capable of producing the necessary bandwidth to accurately determine in vivo...

  5. Phage Pl mutants with altered transducing abilities for Escherichia coli

    International Nuclear Information System (INIS)

    Wall, J.D.; Harriman, P.D.

    1974-01-01

    A search was made for mutants of the coliphage P1 with altered transducing frequencies. A method was developed for the rapid assay of transducing frequencies in single plaques using prophage lambda as the transduced bacterial marker. This procedure selects for mutants altered in their ability to package host DNA. Mutants with 5 to 10 times higher or 10 to 20 times lower frequencies than those of wild-type P1 were found. Not only are the markers used for the detection of the mutants affected, but all other markers are similarly affected (not always to the same extent). One of the high transducing frequency mutants is a suppressible amber, indicating that loss of a function increases P1's ability to package host DNA preferentially. (U.S.)

  6. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  7. Failure Analysis of High-Power Piezoelectric Transducers

    National Research Council Canada - National Science Library

    Gabrielson, T. B

    2005-01-01

    ... and stress in a piezoelectric material. For a transducer operated near resonance, there will be "hot spots" or regions of locally intense stress and electric field that precipitate premature failure...

  8. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    Science.gov (United States)

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  9. Detection of plane, poorly oriented wide flaws using focused transducers

    International Nuclear Information System (INIS)

    Vadder, D. de; Azou, P.; Bastien, P.; Saglio, R.

    1976-01-01

    The detection of plane, poorly oriented, wide flaws by ultrasonic non destructive testing is distinctly improved when using focused transducers. An increased echo can be obtained crossing the defect limit [fr

  10. Piezoelectric transducer vibrations in a one-dimensional approximation

    CERN Document Server

    Hilke, H J

    1973-01-01

    The theory of piezoelectric transducer vibrations, which may be treated as one-dimensional, is developed in detail for thin discs vibrating in a pure thickness extensional mode. An effort has been made to obtain relations of general validity, which include losses, and which are in a simple explicit form convenient for practical calculations. The behaviour of transducers is discussed with special attention to their characteristics at the two fundamental frequencies, the so-called parallel and series resonances. Several peculiarities occur when transducers are coupled to media with considerably different acoustic impedances. These peculiarities are discussed and illustrated by numerical results for quartz and PZT 4 piezoelectric discs radiating into water, air and liquid hydrogen. The application of the theory to different types of vibrations is briefly illustrated for thin bars vibrating longitudinally. Short discussions are included on compound transducer systems, and on the properties of thin discs as receiv...

  11. Active Metamaterial Based Ultrasonic Guided Wave Transducer System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An active and tunable metamaterial phased array transducer for guided wave mode selection with high intensity per driving channel and with dramatically lower modal...

  12. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  13. Finite-State Complexity and the Size of Transducers

    Directory of Open Access Journals (Sweden)

    Cristian Calude

    2010-08-01

    Full Text Available Finite-state complexity is a variant of algorithmic information theory obtained by replacing Turing machines with finite transducers. We consider the state-size of transducers needed for minimal descriptions of arbitrary strings and, as our main result, we show that the state-size hierarchy with respect to a standard encoding is infinite. We consider also hierarchies yielded by more general computable encodings.

  14. Test and evaluation of radioactively contaminated transducers and transmitters

    International Nuclear Information System (INIS)

    Strahm, R.C.

    1983-01-01

    People in the nuclear industries face some unique problems when handling, testing, or examining transducers and transmitters that have been radioactively contaminated. Although many people and organizations, including EG and G Idaho, have performed such work for many years, there are no set, structured approaches or procedures. This paper discusses a disciplined laboratory approach to contaminated transducer testing and evaluation, utilizing equipment and facilities developed specifically for this type of work

  15. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia

    International Nuclear Information System (INIS)

    Lin, W.-L.; Fan, W.-C.; Yen, J.-Y.; Chen, Y.-Y.; Shieh, M.-J.

    2000-01-01

    Purpose: The purpose of this paper was to examine the heating patterns and penetration depth when a cylindrical ultrasound transducer is employed for intracavitary hyperthermia treatments. Methods and Materials: The present study employs a simulation program based on a simplified power deposition model for infinitely long cylindrical ultrasound transducers. The ultrasound power in the tissue is assumed to be exponentially attenuated according to the penetration depth of the ultrasound beam, and a uniform attenuation for the entire treatment region is also assumed. The distribution of specific absorption rate (SAR) ratio (the ratio of SAR for a point within the tissue to that for a specific point on the cavity surface) is used to determine the heating pattern for a set of given parameters. The parameters considered are the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity. Results: Simulation results show that the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity are the most influential parameters for the distribution of SAR ratio. A low frequency transducer located in a large cavity can produce a much better penetration. The cavity size is the major parameter affecting the penetration depth for a small cavity size, such as interstitial hyperthermia. The heating pattern can also be dramatically changed by the transducer eccentricity and radiating sector. In addition, for a finite length of cylindrical transducer, lower SAR ratio appears in the regions near the applicator's edges. Conclusion: The distribution of SAR ratio indicates the relationship between the treatable region and the parameters if an appropriate threshold of SAR ratio is taken. The findings of the present study comprehend whether or not a tumor is treatable, as well as select the optimal driving frequency, the appropriate cavity size, and the eccentricity of a cylindrical transducer for a specific treatment

  16. Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2009-06-01

    Full Text Available A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM. Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder.

  17. DESIGN AND IMPLEMENTATION OF POTENTIOMETER-BASED NONLINEAR TRANSDUCER EMULATOR

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2011-05-01

    Full Text Available This work attempts to design and implement in hardware a transducer with a nonlinear response using potentiometer. Potentiometer is regarded as a linear transducer, while a the response of a nonlinear transducer can be treated as a concatenation of linear segments made out of the response curve of an actual nonlinear transducer at the points of inflections being exhibited by the nonlinear curve. Each straight line segment is characterized by its slope and a constant, called the y-intercept, which is ultimately realized by a corresponding electronic circuit. The complete circuit diagram is made of three stages: (i the input stage for range selection, (ii a digital logic to make appropriate selection, (iii a conditioning circuit for realizing a given straight-line segment identified by its relevant slope and reference voltage. The simulation of the circuit is carried using MULTISIM, and the designed circuit is afterward tested to verify that variations of the input voltage give us an output voltage very close to the response pattern envisaged in the analytical stage of the design. The utility of this work lies in its applications in emulating purpose built transducers that could be used to nicely emulate a transducer in a real world system that is to be controlled by a programmable digital system.

  18. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    Directory of Open Access Journals (Sweden)

    Tobias J. R. Eriksson

    2016-08-01

    Full Text Available Three designs for electrodynamic flexural transducers (EDFT for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio ( SNR ≃ 15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart.

  19. Damage detection in concrete structures with smart piezoceramic transducers

    Science.gov (United States)

    Naidu, Akshay S. K.; Bhalla, Suresh

    2003-10-01

    Detection of damages and progressive deterioration in structures is a critical issue. Visual inspections are tedious and unreliable. Incipient damages are often not discernible by low frequency dynamic response and other NDE techniques. Smart piezoelectric ceramic (PZT) transducers are emerging as an effective alternative in health monitoring of structures. The electro-mechanical impedance method employs the self-actuating and sensing characteristics of the PZT, without having to use actuators and sensors separately. When excited by an ac source, the PZT transducers bonded to the host structure activates the higher modes of vibration locally. Changes in the admittance response of the transducer serves as an indicator of damage around the transducer. In this paper, the effectiveness of PZT transducers for characterizing damages in concrete, in terms of the damage extent and location, is experimentally examined. The root mean square deviation (RMSD) index, adopted to quantify the changes in the admittance signatures, correlates with the damage extent. The damages on the surface that is not mounted by the PZT are also discernible. An array of transducers proves effective in detecting the damaged zone. The progressive incipient crack can be detected much before it actually becomes visible to the naked eye.

  20. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  1. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  2. Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures

    Science.gov (United States)

    Bosyj, Christopher

    An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.

  3. Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry

    International Nuclear Information System (INIS)

    Zhao, J; Tang, J; Wang, K W

    2008-01-01

    The frequency-shift-based damage detection method entertains advantages such as global detection capability and easy implementation, but also suffers from drawbacks that include low detection accuracy and sensitivity and the difficulty in identifying damage using a small number of measurable frequencies. Moreover, the damage detection/identification performance is inevitably affected by the uncertainty/variations in the baseline model. In this research, we investigate an enhanced statistical damage identification method using the tunable piezoelectric transducer circuitry. The tunable piezoelectric transducer circuitry can lead to much enriched information on frequency shift (before and after damage occurrence). The circuitry elements, meanwhile, can be directly and accurately measured and thus can be considered uncertainty-free. A statistical damage identification algorithm is formulated which can identify both the mean and variance of the elemental property change. Our analysis indicates that the integration of the tunable piezoelectric transducer circuitry can significantly enhance the robustness of the frequency-shift-based damage identification approach under uncertainty and noise

  4. Development of a Flexible Lead-Free Piezoelectric Transducer for Health Monitoring in the Space Environment

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2015-11-01

    Full Text Available In this work we report on the fabrication process for the development of a flexible piezopolymeric transducer for health monitoring applications, based on lead-free, piezoelectric zinc oxide (ZnO thin films. All the selected materials are compatible with the space environment and were deposited by the RF magnetron sputtering technique at room temperature, in view of preserving the total flexibility of the structures, which is an important requirement to guarantee coupling with cylindrical fuel tanks whose integrity we want to monitor. The overall transducer architecture was made of a c-axis-oriented ZnO thin film coupled to a pair of flexible Polyimide foils coated with gold (Au electrodes. The fabrication process started with the deposition of the bottom electrode on Polyimide foils. The ZnO thin film and the top electrode were then deposited onto the Au/Polyimide substrates. Both the electrodes and ZnO layer were properly patterned by wet-chemical etching and optical lithography. The assembly of the final structure was then obtained by gluing the upper and lower Polyimide foils with an epoxy resin capable of guaranteeing low outgassing levels, as well as adequate thermal and electrical insulation of the transducers. The piezoelectric behavior of the prototypes was confirmed and evaluated by measuring the mechanical displacement induced from the application of an external voltage.

  5. Combined Opto-Acoustical sensor modules for KM3NeT

    International Nuclear Information System (INIS)

    Enzenhöfer, A.

    2013-01-01

    KM3NeT is a future multi-cubic-kilometre water Cherenkov neutrino telescope currently entering a first construction phase. It will be located in the Mediterranean Sea and comprise about 600 vertical structures called detection units. Each of these detection units has a length of several hundred metres and is anchored to the sea bed on one side and held taut by a buoy on the other side. The detection units are thus subject to permanent movement due to sea currents. Modules holding photosensors and additional equipment are equally distributed along the detection units. The relative positions of the photosensors has to be known with an uncertainty below 20 cm in order to achieve the necessary precision for neutrino astronomy. These positions can be determined with an acoustic positioning system: dedicated acoustic emitters located at known positions and acoustic receivers along each detection unit. This article describes the approach to combine an acoustic receiver with the photosensors inside one detection module using a common power supply and data readout. The advantage of this approach lies in a reduction of underwater connectors and module configurations as well as in the compactification of the detection units integrating the auxiliary devices necessary for their successful operation.

  6. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  7. Development and research of in-core transducers at IAE (Institute of Atomic Energy)

    International Nuclear Information System (INIS)

    Huang Yucai; Qian Shunfa; Jia Guozhen

    1989-10-01

    The development of in-core transducers at IAE (Institute of Atomic Energy) and their applications in in-pile fuel assembly test are mentioned. These transducers include mainly tubed tungsten-rhenium thermocouple assembly, displacement transducer of linear variable differential transformer, pressure transducer of membrane type, gamma thermometer, turbine flow meter, self-powered neutron detector etc

  8. Immersion apparatus and process for an ultrasonic transducer in a liquid metal

    International Nuclear Information System (INIS)

    Le Baud, P.

    1987-01-01

    The ultrasonic transducer is introduced in a casing. The coupling zone of the transducer is covered by a layer of liquid metal. This layer is solidified and then the transducer with his coating layer is introduced in the liquid metal under an inert atmosphere. The device for immersing the transducer is claimed [fr

  9. A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists.

    Science.gov (United States)

    Neuschler, Erin I; Butler, Reni; Young, Catherine A; Barke, Lora D; Bertrand, Margaret L; Böhm-Vélez, Marcela; Destounis, Stamatia; Donlan, Pamela; Grobmyer, Stephen R; Katzen, Janine; Kist, Kenneth A; Lavin, Philip T; Makariou, Erini V; Parris, Tchaiko M; Schilling, Kathy J; Tucker, F Lee; Dogan, Basak E

    2018-05-01

    Purpose To compare the diagnostic utility of an investigational optoacoustic imaging device that fuses laser optical imaging (OA) with grayscale ultrasonography (US) to grayscale US alone in differentiating benign and malignant breast masses. Materials and Methods This prospective, 16-site study of 2105 women (study period: 12/21/2012 to 9/9/2015) compared Breast Imaging Reporting and Data System (BI-RADS) categories assigned by seven blinded independent readers to benign and malignant breast masses using OA/US versus US alone. BI-RADS 3, 4, or 5 masses assessed at diagnostic US with biopsy-proven histologic findings and BI-RADS 3 masses stable at 12 months were eligible. Independent readers reviewed US images obtained with the OA/US device, assigned a probability of malignancy (POM) and BI-RADS category, and locked results. The same independent readers then reviewed OA/US images, scored OA features, and assigned OA/US POM and a BI-RADS category. Specificity and sensitivity were calculated for US and OA/US. Benign and malignant mass upgrade and downgrade rates, positive and negative predictive values, and positive and negative likelihood ratios were compared. Results Of 2105 consented subjects with 2191 masses, 100 subjects (103 masses) were analyzed separately as a training population and excluded. An additional 202 subjects (210 masses) were excluded due to technical failures or incomplete imaging, 72 subjects (78 masses) due to protocol deviations, and 41 subjects (43 masses) due to high-risk histologic results. Of 1690 subjects with 1757 masses (1079 [61.4%] benign and 678 [38.6%] malignant masses), OA/US downgraded 40.8% (3078/7535) of benign mass reads, with a specificity of 43.0% (3242/7538, 99% confidence interval [CI]: 40.4%, 45.7%) for OA/US versus 28.1% (2120/7543, 99% CI: 25.8%, 30.5%) for the internal US of the OA/US device. OA/US exceeded US in specificity by 14.9% (P < .0001; 99% CI: 12.9, 16.9%). Sensitivity for biopsied malignant masses was 96

  10. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong; Morsy, Ahmed Mohamed Aly; Kosel, Jü rgen

    2012-01-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  11. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  12. High-Speed Universal Frequency-to-Digital Converter for Quasi-Digital Sensors and Transducers

    Directory of Open Access Journals (Sweden)

    Sergey Y. Yurish

    2007-06-01

    Full Text Available New fast, accurate universal integrated frequency-to-digital converter (UFDC-1M-16 is described in the article. It is based on the novel patented modified method of the dependent count and has non-redundant conversion time from 6.25 ms to 6.25 ms for 1 to 0.001 % relative errors respectively, comparable with conversion time for successive-approximation and S-D ADC. The IC can work with different sensors, transducers and encoders, which have frequency, period, duty-cycle, PWM, phase shift, pulse number, etc. output.

  13. Design of a saturated analogue and digital current transducer

    International Nuclear Information System (INIS)

    Pross, Alexander

    2002-01-01

    This project describes the development of a new analogue and digital current transducer, providing a range of new theoretical design methods for these novel devices. The main control feature is the limit cycling operation, and the novel use of the embedded sigma-delta modulator sensor structure to derive a low component count digital sensor. The research programme was initiated into the design, development and evaluation of a novel non-Hall sensing analogue and digital current transducer. These transducers are used for measurement of high currents in power systems applications. The investigation is concerned with a new design which uses a magnetic ferrite core without an air gap for current measurement. The motivation for this work was to design a new control circuit which provides a low component count, and utilises the non-linear properties of the magnetic ferrite core to transmit direct current. The use of a limit cycle control circuit was believed to be particularly suitable for the analogue and digital transducers, for two main reasons: the low component count, and the output signal is directly digital. In line with the motivations outlined above, the outcome of the research has witnessed the design, development and evaluation of a practically realisable analogue and digital current transducer. The design procedure, which is documented in this thesis, is considered to be a major contribution to the field of transducers design and development using a control systems approach. Mathematical models for both analogue and digital transducers were developed and the resulting model based predictions were found to be in good agreement with measured results. Simplification of the new model sensing device was achieved by approximating the non-linear ferrite core using FFT analysis. This is also considered to be a significant contribution. The development analogue and digital current censors employed a sampled data control systems design and utilised limit cycling

  14. Multiple single-element transducer photoacoustic computed tomography system

    Science.gov (United States)

    Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit

    2018-02-01

    Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.

  15. A piezoelectric transducer for measurement of dynamic strain in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lannes, Daniel P.; Gama, Antonio L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    This work presents a new strain transducer developed mainly for the inspection and evaluation of piping systems with excessive vibration. Vibration is one of the most common causes of piping failures. These failures could be avoided if the vibration problems were identified and quickly evaluated. Procedures for evaluation of piping vibration are usually based on pipe velocity or displacement. Although simple and fast, these procedures do not provide precise information on the risk of piping fatigue failure. Through the measurement of pipe dynamic strains the risk of failure due to vibration can be determined more accurately. The measurement of strain is usually performed using the conventional strain gauge method. Although efficient and accurate, the implementation of the conventional strain gauge technique may become a difficult task in certain industrial scenarios. Motivated by the need of a simple and rapid method for pipe dynamic strain measurement, a piezoelectric dynamic strain transducer was developed. This work presents a description of the piezoelectric strain transducer and the preliminary results of pipe strain measurements. The transducer can be applied directly to the pipe through magnetic bases allowing for the quick measurement of the dynamic strains in many points of the pipe. The transducer signal can be read with the same commercial data collectors used for accelerometers. (author)

  16. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    International Nuclear Information System (INIS)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu; Sun, Xiaodong; Zhang, Dong

    2016-01-01

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  17. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023 (China); Sun, Xiaodong [China Key System & Integrated Circuit Co., Ltd., Wuxi 214072 (China); Zhang, Dong [Laboratory of Modern Acoustics of MOE, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  18. Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kang Lyeol; Cao, Yanggang [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2012-10-15

    PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Furthermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

  19. A new hybrid longitudinal–torsional magnetostrictive ultrasonic transducer

    International Nuclear Information System (INIS)

    Karafi, Mohammad Reza; Hojjat, Yousef; Sassani, Farrokh

    2013-01-01

    In this paper, a novel hybrid longitudinal–torsional magnetostrictive ultrasonic transducer (HL–TMUT) is introduced. The transducer is composed of a magnetostrictive exponential horn and a stainless steel tail mass. In this transducer a spiral magnetic field made up of longitudinal and circumferential magnetic fields is applied to the magnetostrictive horn. As a result, the magnetostrictive horn oscillates simultaneously both longitudinally and torsionally in accordance with the Joule and Wiedemann effects. The magnetostrictive exponential horn is designed in such a manner that it has the same longitudinal and torsional resonant frequency. It is made up of ‘2V Permendur’, which has isotropic magnetic properties. The differential equations of the torsional and longitudinal vibration of the horn are derived, and a HL–TMUT is designed with a resonant frequency of 20 573 Hz. The natural frequency and mode shapes of the transducer are considered theoretically and numerically. The experimental results show that this transducer resonates torsionally and longitudinally with frequencies of 20 610 Hz and 20 830 Hz respectively. The maximum torsional displacement is 1.5 mrad m −1 and the maximum longitudinal displacement is 0.6 μm. These are promising features for industrial applications. (paper)

  20. Design of compact piezoelectric transducers for shock wave applications

    Science.gov (United States)

    Dreyer, Thomas; Liebler, Marko; Riedlinger, Rainer E.; Ginter, Siegfried

    2003-10-01

    The application of focused intense sound pulses to treat several orthopedic diseases has gained in importance during the past years. Self-focusing piezoelectric transducers known from ESWL are not well suited for this purpose due to their size. Therefore compact transducers have to be designed. This implies an increase of the pressure pulse amplitude generated at the radiating surface. A stacked placement of two piezoelectric layers driven by two high-voltage pulses with an adjustable delay accomplishes this. Several designs are presented here representing transducers of different sizes. In principle piezoelectric transducers have the ability to vary the pressure pulse shape to a wider extent than other shock wave sources. Based on FEM simulations of the transducer the influence of some driving parameters, like a variation of the interpulse delay or shape of the driving voltage, on the resulting focal pressure signal is demonstrated. The results show the feasibility to control some parameters of the signal, for example the peak negative pressure amplitude. This possibility could provide new aspects in basic research as well as in clinical applications.

  1. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    Science.gov (United States)

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  2. Initial Validation of Ballistic Shock Transducers

    Science.gov (United States)

    2017-06-05

    Access to an air compressor for operation of a gas gun. (3) The capability for reference measurements via a LDV. 2.2 Instrumentation. a. High-g...MISC TB 10004 BTSX Calibration4, and ATC IOP MISC TB10005 BTSX Signal Conditioner /Digitizer Add-On Module Procedure5. TOP 01-1-070 5 June 2017...accelerometer, that while not noticeable in the acceleration-time history , accumulate large errors during the integration process and are present in the

  3. Electromechanical characteristics of discal piezoelectric transducers with spiral interdigitated electrodes

    International Nuclear Information System (INIS)

    Pan, Chengliang; Xiao, Guangjun; Feng, Zhihua; Liao, Wei-Hsin

    2014-01-01

    In this study, piezoceramic thin disks with spiral interdigitated electrodes on their surfaces are proposed to generate in-plane torsional vibrations. Electromechanical characteristics of the discal piezoelectric transducers are investigated. Working principles of the transducers are explained while their static deformations are formulated. Dynamic models are derived to analyze the in-plane torsional vibrations of the disks together with the radial vibrations. The corresponding electromechanical equivalent circuits are also obtained. With different boundary conditions and structural parameters, frequency responses of their electric admittances are calculated numerically. Resonant frequencies, mode shapes, and electromechanical coupling coefficients of the vibration modes are also extracted. Prototype transducers are fabricated and tested to validate the theoretical results. (paper)

  4. Inspection of complex geometry pieces with an intelligent contact transducer

    International Nuclear Information System (INIS)

    Chatillon, S.; Roy, O.; Mahaut, St.

    2000-01-01

    A new multi-element contact transducer has been developed to improve the inspection of components with complex geometry. The emitting surface is flexible in order to optimize the contact with pieces. An algorithm, based on a simplified geometric model, has been used to determine the delays law which allows to control the focal characteristics of the transmitted field. Acquisition data lead in transmission with an articulated transducer validate the behavior provided by simulation. Thus the optimization of the delays law ensures the transmission of a beam which is homogeneous and controlled during the moving of the transducer. Inspections in echo-pulse mode are implemented on a sample simulating a component controlled on site. Results show that the dynamical adaptation of the delays law to the geometry of the piece leads to very good performances

  5. Actuators, transducers and motors based on giant magnetostrictive materials

    Energy Technology Data Exchange (ETDEWEB)

    Claeyssen, F.; Lhermet, N.; Le Letty, R. [Cedrat Recherche, Meylan (France); Bouchilloux, P. [Magsoft Corporation, 1223 People`s Avenue, New York 12180 (United States)

    1997-08-01

    Rare earth-iron magnetostrictive alloys, especially Terfenol-D, feature ``giant`` magnetostrains: static strains of 1000-2000 ppm and dynamic strains of 3500 ppm are reported. These strains permit building various actuating devices (actuators, transducers, motors) both at macro and micro scale. The object of the paper is to recall adapted design methods, especially finite element methods such as ATILA, and to review these different kinds of devices studied at Cedrat Recherche, providing both up-dated experimental and numerical results. The presented devices will include several large displacement longitudinal and shear actuators biased using permanent magnets and used either as characterisation devices or as electromechanical actuators (for active damping, for sonar transducers..), a 1 kHz 4 kW Tonpilz-type sonar transducer called the tripode, a 2 N m torque rotating multi-mode motor, a torsion based drift free micro actuator and a wireless linear micromotor. (orig.)

  6. Torque magnetometry by use of capacitance type transducer

    International Nuclear Information System (INIS)

    Braught, M.C.; Pechan, M.J.

    1992-01-01

    Interfacial anisotropy in magnetic multilayered samples comprised of nanometer thick magnetic layers alternating with non-magnetic layers is investigated by torque magnetometry in the temperature regime of 4 to 300K. The design, construction and use of a capacitance type transducer wherein the sample is mounted directly on with the plate of the capacitor, will be described. As a result the sample and transducer spatially coexist at the sample temperature in an applied external field, eliminating mechanical coupling from the cryogenic region to a remote room temperature transducer. The capacitor measuring the torque of the sample is paired with a reference capacitor. The difference between torque influenced capacitance and the reference is then determined by a differential transimpedance amplifier. Since both capacitors are physically identical variables such as temperature, vibration, orientation and external devices are minimized. Torques up to 300 dyne-cm can be measured with a sensitivity of 0.010 dyne-cm

  7. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  8. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  9. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-01-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  10. Measurement of two-phase flow momentum with force transducers

    International Nuclear Information System (INIS)

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs

  11. A new ultrasonic transducer for improved contrast nonlinear imaging

    International Nuclear Information System (INIS)

    Bouakaz, Ayache; Cate, Folkert ten; Jong, Nico de

    2004-01-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  12. Transducers for the Brazilian gravitational wave detector 'Mario Schenberg'

    International Nuclear Information System (INIS)

    Frajuca, Carlos; Ribeiro, Kilder L; Andrade, Luiz A; Jr, Walter F Velloso; Melo, Jose L; Aguiar, Odylio D; Magalhaes, Nadja S

    2002-01-01

    'Mario Schenberg' is a spherical resonant-mass gravitational wave (GW) detector that will be part of a GW detection array of three detectors. The other two will be built in Italy and the Netherlands. Their resonant frequencies will be around 3.2 kHz with a bandwidth of about 200 Hz. This range of frequencies is new in a field where the typical frequencies lie below 1 kHz, making the transducer development much more complex. In this paper, the design of the mechanical part of the transducer will be shown, as well as the attachment method to the sphere and the expected sensitivity

  13. A digital transducer and digital microphone using an optical technique

    Science.gov (United States)

    Ghelmansarai, F. A.

    1996-09-01

    A transducer is devised to measure pressure, displacements or angles by optical means. This transducer delivers a digital output without relying on interferometry techniques or analogue-to-digital converters. This device is based on an optical scanner and an optical detector. An inter-digital photoconductive detector (IDPC) is employed that delivers a series of pulses, whose number depends on the scan length. A pre-objective scanning configuration is used that allows for the possibility of a flat image plane. The optical scanner provides scanning of IDPC and the generated scan length is proportional to the measurand.

  14. An overview of the dynamic calibration of piezoelectric pressure transducers

    Science.gov (United States)

    Theodoro, F. R. F.; Reis, M. L. C. C.; d’ Souto, C.

    2018-03-01

    Dynamic calibration is a research area that is still under development and is of great interest to aerospace and automotive industries. This study discusses some concepts regarding dynamic measurements of pressure quantities and presents an overview of dynamic calibration of pressure transducers. Studies conducted by the Institute of Aeronautics and Space focusing on research regarding piezoelectric pressure transducer calibration in shock tube are presented. We employed the Guide to the Expression of Uncertainty and a Monte Carlo Method in the methodology. The results show that both device and methodology employed are adequate to calibrate the piezoelectric sensor.

  15. Thermal energy harvesters with piezoelectric or electrostatic transducer

    Science.gov (United States)

    Prokaryn, Piotr; Domański, Krzysztof; Marchewka, Michał; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  16. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  17. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    Science.gov (United States)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  18. Semi-analytical computation of the acoustic field of a segment of a cylindrically concave transducer in lossless and attenuating media.

    Science.gov (United States)

    Karbeyaz, Başak Ulker; Miller, Eric L; Cleveland, Robin O

    2007-02-01

    Conventional ultrasound transducers used for medical diagnosis generally consist of linearly aligned rectangular apertures with elements that are focused in one plane. While traditional beamforming is easily accomplished with such transducers, the development of quantitative, physics-based imaging methods, such as tomography, requires an accurate, and computationally efficient, model of the field radiated by the transducer. The field can be expressed in terms of the Helmholtz-Kirchhoff integral; however, its direct numerical evaluation is a computationally intensive task. Here, a fast semianalytical method based on Stepanishen's spatial impulse response formulation [J. Acoust. Soc. Am. 49, 1627-1638 (1971)] is developed to compute the acoustic field of a rectangular element of cylindrically concave transducers in a homogeneous medium. The pressure field, for, lossless and attenuating media, is expressed as a superposition of Bessel functions, which can be evaluated rapidly. In particular, the coefficients of the Bessel series are frequency independent and need only be evaluated once for a given transducer. A speed up of two orders of magnitude is obtained compared to an optimized direct numerical integration. The numerical results are compared with Field II and the Fresnel approximation.

  19. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Directory of Open Access Journals (Sweden)

    Atiyeh Zarifi

    2018-03-01

    Full Text Available The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  20. Analysis of eigenfrequencies in piezoelectric transducers using the finite element method

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1988-01-01

    transducers, which include the complete set of piezoelectric equations, have been included. They can find eigenfrequencies for undamped transducers and perform forced-response analysis for transducers with internal and radiation damping. The superelement technique is used to model the transducer backing......It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...

  1. Determination of the response time of pressure transducers using the direct method

    International Nuclear Information System (INIS)

    Perillo, S.R.P.

    1994-01-01

    The available methods to determine the response time of nuclear safety related pressure transducers are discussed, with emphasis to the direct method. In order to perform the experiments, a Hydraulic Ramp Generator was built. The equipment produces ramp pressure transients simultaneously to a reference transducer and to the transducer under test. The time lag between the output of the two transducers, when they reach a predetermined setpoint, is measured as the time delay of the transducer under test. Some results using the direct method to determine the time delay of pressure transducers (1 E Class Conventional) are presented. (author). 18 refs, 35 figs, 12 tabs

  2. Wall thickness tests by means of rotating electrodynamic transducers

    International Nuclear Information System (INIS)

    Hueschelrath, G.

    1986-01-01

    For about three years, the EROT system has been employed for measuring wall thicknesses on pipes of ferritic steels. The experience gathered and the degree of reliability reached up to now are definitely encouraging, so that an increased use of electrodynamic transducers can be expected for measuring pipes with outside diameters of up to 22 inches. (orig.) [de

  3. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W

    2016-03-01

    A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

  4. Universal Quantum Transducers Based on Surface Acoustic Waves

    NARCIS (Netherlands)

    Schuetz, M.J.A.; Kessler, E.M.; Giedke, G.; Vandersypen, L.M.K.; Lukin, M.D.; Cirac, J.I.

    2015-01-01

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits,

  5. Instantaneous input electrical power measurements of HITU transducer

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Guelmez, Y [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagapol, S; Shaw, A, E-mail: baki.karaboce@ume.tubitak.gov.t [National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW (United Kingdom)

    2011-02-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  6. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  7. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  8. Analysis of a non-contact magnetoelastic torque transducer

    International Nuclear Information System (INIS)

    Andreescu, R.; Spellman, B.; Furlani, E.P.

    2008-01-01

    Results are presented for the performance of a magnetoelastic torque transducer that converts a torque-induced strain in a non-magnetic shaft into changes in a measurable magnetic field. The magnetic field is generated by a thin magnetostrictive layer that is coated onto the circumference of the shaft. The layer is magnetized and has an initial residual strain. The magnetization within the layer rotates in response to changes in the strain which occur when the shaft is torqued. The magnetic field produced by the layer changes with the magnetization and this can be sensed by a magnetometer to monitor the torque on the shaft. In this paper, a phenomenological theory is developed for predicting the performance of the transducer. The theory can be used to predict the magnetic field distribution of the transducer as a function of the physical properties of the magnetic coating, its residual strain, and the applied torque. It enables rapid parametric analysis of transducer performance, which is useful for the development and optimization of novel non-contact torque sensors

  9. Power doppler 'blanching' after the application of transducer pressure

    International Nuclear Information System (INIS)

    Joshua, F.; Edmonds, J.; Lassere, M.; De Carle, R.; Rayment, M.; Bryant, C.; Shnier, R.

    2005-01-01

    The aim of this study was to determine if transducer pressure modifies power Doppler assessments of rheumatoid arthritis synovium at the metacarpophalangeal joints and metatarsophalangeal joints. Five rheumatoid arthritis patients of varying degrees of 'disease activity' and damage were assessed with power Doppler ultrasound scanning of the dominant hand second to fifth metacarpophalangeal joints. Two rheumatoid arthritis patients had their dominant foot first to fifth metatarsophalangeal joints assessed with power Doppler ultrasound. Ultrasonography was performed with a high frequency transducer (14 MHz) with a colour mode frequency of 10 Mhz, and a standard colour box and gain. In the joint that showed the highest power Doppler signal, an image was made. A further image was taken after transducer pressure was applied. In all patients, there was increased flow to at least one joint. After pressure was applied, power Doppler signal intensity markedly reduced in all images and in some there was no recordable power Doppler signal. Increased transducer pressure can result in a marked reduction or obliteration in power Doppler signal. This power Doppler 'blanching' shows the need for further studies to evaluate sources of error and standardization before power Doppler ultrasound becomes a routine measure of 'disease activity' in rheumatoid arthritis. Copyright (2005) Blackwell Science Pty Ltd

  10. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  11. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  12. Instantaneous input electrical power measurements of HITU transducer

    International Nuclear Information System (INIS)

    Karaboece, B; Guelmez, Y; Rajagapol, S; Shaw, A

    2011-01-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  13. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  14. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  15. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  16. Electrical capacity and resistance determination of emitting electric transducer

    International Nuclear Information System (INIS)

    Alba Fernandez, J.; Ramis Soriano, J.

    2000-01-01

    In this work we calculate the electrical resistance and capacity of emitting electric transducer, which is mainly formed, in direct relationship with its properties, by a ceramic capacitor. Our aim is to motivate the students with an attractive element in order to carry out traditional measurements of the charge and discharge transients of a capacitor, implementing high resistance setups. (Author) 5 refs

  17. Analysis of the conical piezoelectric acoustic emission transducer

    Czech Academy of Sciences Publication Activity Database

    Červená, Olga; Hora, Petr

    2008-01-01

    Roč. 2, č. 1 (2008), s. 13-24 ISSN 1802-680X R&D Projects: GA ČR GA101/06/1689 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * conical transducer * FEM Subject RIV: BI - Acoustics

  18. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  19. Multilayer piezoelectric transducer models combined with Field II

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten; Jensen, Jørgen Arendt

    2012-01-01

    One-dimensional and three-dimensional axisymmetric transducer model have been compared to determine their feasibility to predict the volt-to-surface impulse response of a circular Pz27 piezoceramic disc. The ceramic is assumed mounted with silver electrodes, bounded at the outer circular boundary...

  20. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Transducer frequency response variations investigated by time reversal calibration

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk

    2016-01-01

    Roč. 26, č. 2 (2016), A16-A16 ISSN 1213-3825. [Europen Conference on Acoustic Emission Testing /32./. 07.09.2016-09.09.2016, Praha] Institutional support: RVO:61388998 Keywords : calibration * time reversal * transducer * frequency response Subject RIV: BI - Acoustics

  2. Modelling of multilayer piezoelectric transducers for echographic applications Equivalent circuits

    International Nuclear Information System (INIS)

    Ramos, A.; Riera, E.; San Emeterio, J.L.; Sanz, P.T.

    1988-01-01

    In this paper, the main equivalent circuits of pulse-echo, single element, multilayer piezoelectric transducers, are analysed. The analogy of matching layers with lossless transmission lines is described. Finally, using the KLM model, the effects of backing and matching layers on the bandwidth and impulse response is analysed. (Author)

  3. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  4. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  5. Effect of stimuli, transducers and gender on acoustic change complex

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2012-08-01

    Full Text Available The objective of this study was to investigate the effect of stimuli, transducers and gender on the latency and amplitude of acoustic change complex (ACC. ACC is a multiple overlapping P1-N1-P2 complex reflecting acoustic changes across the entire stimulus. Fifteen males and 15 females, in the age range of 18 to 25 (mean=21.67 years, having normal hearing participated in the study. The ACC was recorded using the vertical montage. The naturally produced stimuli /sa/ and /si/ were presented through the insert earphone/loud speaker to record the ACC. The ACC obtained from different stimuli presented through different transducers from male/female participants were analyzed using mixed analysis of variance. Dependent t-test and independent t-test were performed when indicated. There was a significant difference in latency of 2N1 at the transition, with latency for /sa/ being earlier; but not at the onset portions of ACC. There was no significant difference in amplitude of ACC between the stimuli. Among the transducers, there was no significant difference in latency and amplitude of ACC, for both /sa/ and /si/ stimuli. Female participants showed earlier latency for 2N1 and larger amplitude of N1 and 2P2 than male participants, which was significant. ACC provides important insight in detecting the subtle spectral changes in each stimulus. Among the transducers, no difference in ACC was noted as the spectra of stimuli delivered were within the frequency response of the transducers. The earlier 2N1 latency and larger N1 and 2P2 amplitudes noticed in female participants could be due to smaller head circumference. The findings of this study will be useful in determining the capacity of the auditory pathway in detecting subtle spectral changes in the stimulus at the level of the auditory cortex.

  6. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  7. A Novel Algorithm for the Sound Field of Elliptically Shaped Transducers

    Science.gov (United States)

    Ding, De-Sheng; Lü, Hua; Shen, Chang-Sheng

    2014-06-01

    An alternative extension to the Gaussian-beam expansion technique is presented for efficient computation of the Fresnel field integral for elliptically symmetric sources. With a known result that the circ function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel—Fourier transform. Two expansions are together inserted into this integral, it is then expressible in terms of the simple algebraic functions. The numerical examples for the elliptical and uniform piston transducers are presented, in good agreement with the results given by other methods. The approach is applicable to treat the field radiation problem for a large and important group of piston sources in acoustics.

  8. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection

    Science.gov (United States)

    Maruyama, Satoshi; Hizawa, Takeshi; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-01-01

    We developed a Fabry–Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction. PMID:29304011

  9. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection

    Directory of Open Access Journals (Sweden)

    Satoshi Maruyama

    2018-01-01

    Full Text Available We developed a Fabry–Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.

  10. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection.

    Science.gov (United States)

    Maruyama, Satoshi; Hizawa, Takeshi; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-01-05

    We developed a Fabry-Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.

  11. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    Directory of Open Access Journals (Sweden)

    Felix Pyatkov

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

  12. Six-Axis Force-Torque Transducer for Mars 2018 Mission, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical...

  13. Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Grzegorz Psuj

    2012-01-01

    Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.

  14. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Brian; Tittmann, Bernhard [The Pennsylvania State University (United States); Rempe, Joy; Daw, Joshua [Idaho National Laboratory (United States); Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov [Massachusetts Institute of Technology (United States); Ramuhalli, Pradeep; Montgomery, Robert [Pacific Northwest National Laboratory (United States); Chien, Hualte [Argonne National Laboratory (United States); Wernsman, Bernard [Bechtel Marine Propulsion Corp (United States)

    2015-03-31

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  15. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    Science.gov (United States)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  16. A laboratory device for evaluation and study in the filed of ultrasonic transducers

    International Nuclear Information System (INIS)

    Vasiliu, S.

    1978-12-01

    A laboratory device for evaluation of the ultrasonic transducers, in view of adequate selection according to the testing requirements is presented. Recordings of ultrasonic beam of some transducers delivered as being of the same type are presented, showing important departures from specifications of the characteristics. Some of transducers evaluated have not been found acceptable for NDT in the nuclear field. (author)

  17. Calculation of wideband ultrasonic fields radiated by immersed transducers into solids

    International Nuclear Information System (INIS)

    Lhemery, A.; Calmon, P.; Mephane, M.

    1996-01-01

    In ultrasonic nondestructive testing (NDT), configurations of immersion techniques where transducers radiate through non-planar interfaces are often encountered, e.g., pipe inspection where the probe can be scanned either inside or outside the pipe. When local radii of curvature are far larger that typical wave paths in the coupling fluid and into the piece, field predictions can often be made assuming a plane interface. For smaller radii, such an approximation is not valid. The model developed at the French Atomic ENergy Commission (CEA) to predict ultrasonic fields radiated by wideband transducers through liquid-interfaces (called Champ-Sons) is based on a modification of the Rayleigh integral to take account of refraction. It is derived under the geometrical optics approximation (GO) which introduces two factors: the transmission coefficient between the two media of elementary contributions from source-points to field-points and the so-called 'divergence factor' of the transmitted rays (denoted by DF), accounting for the principal radii of curvature of the retransmitted rays (denoted by DF), accounting for the principal radii of curvature of the refracted wave fronts (initially spherical in the coupling medium). (authors)

  18. Measurement of vehicle-load using capacitance and acceleration transducers

    International Nuclear Information System (INIS)

    Yang, S; Yang, W; Yang, Y

    2007-01-01

    Over-loading is a common problem in some developing countries. Currently, large and fixed measurement systems are used to measure the load of vehicles travelling on highways. This paper presents an on-vehicle measuring device, which is based on measurement of change in capacitance due to variation in distance between electrodes mounted on vehicles. The on-vehicle leaf springs are used as a key part of the weighing transducer. Acceleration transducers are used to measure the vehicle's forward and the vertical accelerations. A feature of this on-vehicle measuring device is that it can provide both static and dynamic load measurements. The drivers can check the load in the cab, and the highway inspectors can check the load at any time and any place through radio communication, thus identifying over-loaded vehicles

  19. W-Band Circularly Polarized TE11 Mode Transducer

    Science.gov (United States)

    Zhan, Mingzhou; He, Wangdong; Wang, Lei

    2018-06-01

    This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.

  20. The copying power of one-state tree transducers

    DEFF Research Database (Denmark)

    Engelfriet, Joost; Skyum, Sven

    1982-01-01

    One-state deterministic top-down tree transducers (or, tree homomorphisms) cannot handle “prime copying,” i.e., their class of output (string) languages is not closed under the operation L → {$(w$)f(n) short parallel w ε L, f(n) greater-or-equal, slanted 1}, where f is any integer function whose...... range contains numbers with arbitrarily large prime factors (such as a polynomial). The exact amount of nonclosure under these copying operations is established for several classes of input (tree) languages. These results are relevant to the extended definable (or, restricted parallel level) languages......, to the syntax-directed translation of context-free languages, and to the tree transducer hierarchy....

  1. Transducers for providing an electrical signal representative of physical movement

    International Nuclear Information System (INIS)

    Duncombe, E.; Roach, P.F.

    1985-01-01

    A transducer for use in hostile environments has an externally threaded rod slidable in an internally threaded tube. The threads of rod and tube are of two-start form and define slots in which inductively coupled mineral insulated conductors are located, the conductors being of hairpin form secured at the ends of the rod and tube at the hairpin bend with the hairpin tails in the slots. End diaphragms make a sealed transducer in which the rod can move axially relative to the tube by one half of one pitch of the threads without straining the diaphragms. In a modification rod and tube are arranged to rotate relative to each other up to +-180 0 which effectively also causes a one half pitch movement of the conductors. (author)

  2. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  3. Nonlinear electromechanical response of the ferroelectret ultrasonic transducers

    Czech Academy of Sciences Publication Activity Database

    Döring, J.; Bovtun, Viktor; Bartusch, J.; Erhard, A.; Kreutzbruck, M.; Yakymenko, Y.

    2010-01-01

    Roč. 100, č. 2 (2010), 479-485 ISSN 0947-8396 R&D Projects: GA ČR GAP204/10/0616; GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : piezoelectric * ferroelectret * transducer * ultrasonic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.765, year: 2010

  4. Application of digital PWM technology in current transducers

    International Nuclear Information System (INIS)

    Liu Huifang; Hu Zhimin; Li Rui

    2012-01-01

    With the development of DSP technology and mature use of PID technology,, a new program for DC or AC signal measurement is proposed. Combined with the DSP chip timer module and PID algorithm, PWM signals are generated to control the feedback circuit for the compensation current. Finally the measured current value can be obtained according to the ampere-turns compensation current and the measured current. Studies have shown that this technology enables new current transducers have high stability. (authors)

  5. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An all-optical fiber optic photoacoustic transducer

    Science.gov (United States)

    Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai

    2018-02-01

    A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.

  7. Finite element analysis of hysteresis effects in piezoelectric transducers

    Science.gov (United States)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  8. Sensitivity limits of capacitive transducer for gravitational wave resonant antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bassan, M; Pizzella, G [Rome Tor Vergata Univ. (Italy). Dip. di Fisica

    1996-12-01

    It is analyzed the performance of a resonant gravitational wave antenna equipped with a resonant, d.c. biased capacitive transducer, an untuned superconducting matching circuit and a d.c. Squid. It is derived simple relations for the detector energy sensitivity that serve as guidelines for device development and it is shown that, with reasonable improvements in Squid technology, an effective temperature for burst detection of 2miK can be achieved.

  9. Development of ultrasonic testing equipment incorporating electromagnetic acoustic transducer

    International Nuclear Information System (INIS)

    Sato, Michio; Kimura, Motohiko; Okano, Hideharu; Miyazawa, Tatsuo; Nagase, Koichi; Ishikawa, Masaaki

    1989-01-01

    An ultrasonic testing equipment for use in in-service inspection of nuclear power plant piping has been developed, which comprises an angle-beam electromagnetic acoustic transducer mounted on a vehicle for scanning the piping surface to be inspected. The transducer functions without direct contact with the piping surface through couplant, and the vehicle does not require a guide track installed on the piping surface, being equipped with magnetic wheels that adhere to the piping material, permitting it to travel along the circumferential weld joint of a carbon steel pipe. The equipment thus dispenses with the laborious manual work involved in preparing the piping for inspection, such as removal of protective coating, surface polishing and installation of guide track and thereby considerably reduces the duration of inspection. The functioning principle and structural features of the transducer and vehicle are described, together with the results of trial operation of a prototype unit, which proved a 1mm deep notch cut on a test piece of 25mm thick carbon steel plate to be locatable with an accuracy of ±2mm. (author)

  10. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  11. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  12. Ergonomic design and evaluation of a diagnostic ultrasound transducer holder.

    Science.gov (United States)

    Ghasemi, Mohamad Sadegh; Hosseinzadeh, Payam; Zamani, Farhad; Ahmadpoor, Hossein; Dehghan, Naser

    2017-12-01

    Work-related musculoskeletal disorders (WMSDs) are injuries and disorders that affect the body's movement and musculoskeletal system. Awkward postures represent one of the major ergonomic risk factors that cause WMSDs among sonographers while working with an ultrasound transducer. This study aimed to design and evaluate a new holder for the ultrasound transducer. In the first phase a new holder was designed for the transducer, considering design principles. Evaluation of the new holder was then carried out by electrogoniometry and a locally perceived discomfort (LPD) scale. The application of design principles to the new holder resulted in an improvement of wrist posture and comfort. Wrist angles in extension, flexion, radial deviation and ulnar deviation were lower with utilization of the new holder. The severity of discomfort based on the LPD method in the two modes of work with and without the new holder was reported with values of 1.3 and 1.8, respectively (p ergonomics design principles was effective in minimizing wrist deviation and increasing comfort while working with the new holder.

  13. Damage detection with concentrated configurations of piezoelectric transducers

    International Nuclear Information System (INIS)

    Wandowski, T; Malinowski, P; Ostachowicz, W M

    2011-01-01

    In this paper results of investigation on concentrated piezoelectric networks with different configurations are presented. They were used for elastic wave generation and acquisition. The elastic wave propagation phenomenon was used for damage localization in thin aluminium panels. This approach utilized the fact that any discontinuities existing in structural elements cause local changes of physical material properties which affect elastic wave propagation. Elastic waves were excited and received using piezoelectric transducer networks with different element arrangements. The method of transducer placement and the number of piezoelectric elements used had an influence on the accuracy of the damage localization algorithm. Obviously, the more elements there were, the more data had to be processed. After the acquisition process signal processing was conducted in order to create damage influence maps. These maps presents elastic wave energy connected with reflection from discontinuities. In order to create such a map a computer program was developed that assigns a mesh of points to the panel surface. At each point the energy of elastic wave reflection was calculated. This energy was extracted from the acquired signals. This paper summarizes an extensive experimental investigation that included three damage scenarios and twelve transducer configurations

  14. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  15. Research and development of in-core transducers at the CIAE

    International Nuclear Information System (INIS)

    Huang Yucai; Liu Yupu; Jia Guozhen; Liu Lianping

    1996-01-01

    In this paper, R and D of in-core transducers at the CIAE are briefly summarized. With the construction and commissioning of PWR nuclear power plant in China, fuel rod behaviour need to be studied carefully. As conventional transducers cannot meet the requirements of in-core applications, R and D of in-core transducers are developed. Since 1980's, several kinds of in-core transducers have been successfully fabricated and tested under the conditions simulating PWR. At present, in-pile tests of the transducers combining with the studies of individual behaviour of PWR fuel rod are being planned at the CIAE. (author). 11 refs, 12 figs, 4 tabs

  16. Positioning calibration apparatus for transducers employed in nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Elsner, H.J.

    1981-01-01

    The invention provides a calibration apparatus suitable for verifying the position and orientation of transducers used in reactor vessel ultrasonic inspection. The apparatus includes moveable mounting means which secures a transducer within the tank in its normal inspection orientation. A drive is also provided for moving the transducer in the tank relative to a target. The target is slidably positioned in the tank at a distance from the transducer which is selected to avoid the distortion effects in the near field of the transducer. The drive mechanism may be provided with graduated indicia of travel, or a scale may be affixed to the side of the tank. (L.L.)

  17. Full-scale Mark II CRT program: dynamic response evaluation test of pressure transducers

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Takeshita, Isao; Shiba, Masayoshi

    1982-12-01

    A dynamic response evaluation test of pressure transducers was conducted in support of the JAERI Full-Scale Mark II CRT (Containment Response Test) Program. The test results indicated that certain of the cavity-type transducers used in the early blowdown test had undesirable response characteristics. The transducer mounting scheme was modified to avoid trapping of air bubbles in the pressure transmission tubing attached to the transducers. The dynamic response of the modified transducers was acceptable within the frequency range of 200 Hz. (author)

  18. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    Science.gov (United States)

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  19. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  20. Lead-free piezoelectric transducers for vibration-based energy harvesting devices

    Energy Technology Data Exchange (ETDEWEB)

    Roescher, Mark

    2011-11-15

    Future applications like piezoelectric energy harvesters in addition with increasing environmental awareness ultimately demand novel sophisticated material systems in the field of piezoelectrics as an alternative to the long-established system lead-zirconate-titanate. In this publication state-of-the-art microgenerators have been designed to possess nonlinear Duffing oscillator characteristics. It is shown by measurement and simulation that lead-zirconate-titanate may hence no longer be the first choice in material selection for a piezoelectric microgenerator. Polyvinylidene fluoride has been integrated in a piezoelectric microgenerator and identified as an extraordinarily promising material system for transducer applications being highly insusceptible to stretching induced material failure. Finally, a fundamentally new chemical synthesis approach has been developed for the fabrication of potassium-sodium-niobate films that may also be suitable for other complex oxides.

  1. Development of a High-Temperature Smart Transducer Interface Node and Telemetry System (HSTINTS)

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.A. et al.

    2006-11-03

    Halliburton Energy Services and Oak Ridge National Laboratory established a CRADA to conduct applied research to develop a general purpose, High-Temperature, Smart Transducer Interface Node and Telemetry System (HSTINTS) capable of temporally-coherent multiple-channel, high speed, high-resolution data transuction and acquisition while operating in a hostile thermal, chemical, and pressure environment for extended periods of time over a single coaxial cable. This ambitious, high-risk effort required development of custom dielectric isolated integrated circuits, amplified hybrid couplers for telemetry and an audio-frequency based power supply and distribution system using an engineered application of standing waves to compensate voltage drop along a 2 mile long cable. Several goals were achieved but underestimated challenges and a couple of mistakes hampered progress. When it was determined that an additional year of concerted effort would be required to complete the system demonstration, the sponsor withdrew funding and terminated the effort.

  2. Development of a novel omnidirectional magnetostrictive transducer for plate applications

    Science.gov (United States)

    Vinogradov, Sergey; Cobb, Adam; Bartlett, Jonathan; Udagawa, Youichi

    2018-04-01

    The application of guided waves for the testing of plate-type structures has been recently investigated by a number of research groups due to the ability of guided waves to detect corrosion in remote and hidden areas. Guided wave sensors for plate applications can be either directed (i.e., the waves propagate in a single direction) or omnidirectional. Each type has certain advantages and disadvantages. Omnidirectional sensors can inspect large areas from a single location, but it is challenging to define where a feature is located. Conversely, directed sensors can be used to precisely locate an indication, but have no sensitivity to flaws away from the wave propagation direction. This work describes a newly developed sensor that combines the strengths of both sensor types to create a novel omnidirectional transducer. The sensor transduction is based on a custom magnetostrictive transducer (MsT). In this new probe design, a directed, plate-application MsT with known characteristics was incorporated into an automated scanner. This scanner rotates the directed MsT for data collection at regular intervals. Coupling of the transducer to the plate is accomplished using a shear wave couplant. The array of data that is received is used for compiling B-scans and imaging, utilizing a synthetic aperture focusing algorithm (SAFT). The performance of the probe was evaluated on a 0.5-inch thick carbon steel plate mockup with a surface area of over 100 square feet. The mockup had a variety of known anomalies representing localized and distributed pitting corrosion, gradual wall thinning, and notches of different depths. Experimental data was also acquired using the new probe on a retired storage tank with known corrosion damage. The performance of the new sensor and its limitations are discussed together with general directions in technology development.

  3. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  4. LOFT liquid level transducer application techniques and measurement uncertainty

    International Nuclear Information System (INIS)

    Batt, D.L.; Biladeau, G.L.; Goodrich, L.D.; Nightingale, C.M.

    1979-01-01

    A conductivity sensitive liquid level transducer (LLT) has been designed and used successfully for determining whether steam or water is present in the Loss-of-Fluid Tests (LOFT) performed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. The presence of steam or water is determined by establishing a discriminator level which is set manually. A computer program establishes the presence or absence of water for each data point taken. In addition to liquid level, the LLT is used for reactor vessel mass and volume calculations. The uncertainty in the liquid level is essentially the spacing of the LLT electrodes

  5. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  6. The Current State of Silicone-Based Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2016-01-01

    class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material devel- opment is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower...... driving voltages. In this review, the current state of sili- cone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects...

  7. Production of particulates from transducer erosion: implications on food safety.

    Science.gov (United States)

    Mawson, Raymond; Rout, Manoj; Ripoll, Gabriela; Swiergon, Piotr; Singh, Tanoj; Knoerzer, Kai; Juliano, Pablo

    2014-11-01

    The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1μm, 0.05μm, and 0.01μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be

  8. Supported silver clusters as nanoplasmonic transducers for protein sensing

    DEFF Research Database (Denmark)

    Fojan, Peter; Hanif, Muhammad; Bartling, Stephen

    2015-01-01

    Transducers for optical sensing of proteins are prepared using cluster beam deposition on quartz substrates. Surface plasmon resonance phenomenon of the supported silver clusters is used for the detection. It is shown that surface immobilisation procedure providing adhesion of the silver clusters...... stages and protein immobilisation scheme the sensing of protein of interest can be assured using a relatively simple optical spectroscopy method....... an enhancement of the plasmon absorption band used for the detection. Atomic force microscopy study allows to suggest that immobilisation of antibodies on silver clusters has been achieved, thus giving a possibility to incubate and detect an antigen of interest. Hence, by applying the developed preparation...

  9. A Treatise on Acoustic Radiation. Volume 2. Acoustic Transducers

    Science.gov (United States)

    1983-01-01

    Newton) V (meter/sec) acoustical p (Newton/meter2 ) U (meter 3/sec) To display Eq. 1.53.1 in simple form we take time to be given by exp(- iot ) and choose...if all the C-component edges and e-drivers are in the tree, all the L-component "A edges and idrivers are in the cotree, all the algebraic equations...momentum and mass of the elastic field then become, (a) Al - V -T + F 278 W-4. ,-,- * * * 4 % • *.• Design of Acoustic Transducers IOT (b) I + VV-s

  10. Immersed acoustical transducers and their potential uses in LMFBR

    International Nuclear Information System (INIS)

    Argous, J.P.; Brunet, M.; Baron, J.; Lhuillier, C.; Segui, J.L.

    1980-04-01

    Six years satisfactory operation in PHENIX has proved the reliability and effectivness of under-sodium viewing (VISUS) and Acoustic Detection. This fact has been strong incentive to maintain, on the future LMFBR the visus as well as the Acoustic Detection functions. These two functions are performed on SUPER PHENIX, by two sets of distinct systems using the well-known solution. Taking into account of recent improvements in sodium immersible acoustic transducers technology, CEA decided to undertake the development of a multi-functions instrument. This paper gives an outline of this new concept, which should be able to reduce the cost and the complexity of core instrumentation

  11. Making transducers and sensors which lead to safer mining

    Energy Technology Data Exchange (ETDEWEB)

    Laird, R

    1977-10-20

    MRDE work on transducers and sensors is described. A device containing a radioactive source has already been developed for detecting the edge of a coal seam; on a device which senses the edge of the seam by measuring natural radiation form the neighbouring rocks. Hard bands or dirt in a seam can be located by measuring pick force or pick vibrations. Environmental monitors, sensors for measuring pressure and flow in methane drainage pipes, vibration monitors for fans, means of detecting cage position in pit shaft, and bunker control systems are also mentioned.

  12. Out-of-plane buckled cantilever microstructures with adjustable angular positions using thermal bimorph actuation for transducer applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-10-27

    The integration of thermal bimorph actuators and buckled cantilever structures to form an out-of-plane plate with adjustable angular positions is reported. This structure could be used as a platform to build other transducers such as optical micromirrors, scanning antennas, switches or low-frequency oscillators. The electromechanical characterisation has shown that these structures can adjust their angular position by 6° when they are operated using a DC source. The thermal characterisation performed by an infrared camera showed that the heat-affected zone reaches a maximum temperature of 125°C while the rest of the structure remains unaffected by the generated heat.

  13. ''Simulation of the testing of cladded steel pieces by focussed ultrasonic transducers''

    International Nuclear Information System (INIS)

    Nadal, J.

    1996-01-01

    The inner surface of vessels of pressurized water reactor is protected from corrosion by a stainless steel cladding hot-layer in many cuts. Therefore, the surface irregularities generate spurious echoes that can either mask or be misinterpreted for echoes from possible defects. Probes are calibrated on a specific reflector (side drilled holes in a steel block). The echo arising from it is used as a reference to quantify echoes measured during an examination. The study aims at simulating echographs of the vessel inspection so as to help the analysis of actual measurements. Three models are developed to compute echoes from cladding surface irregularities, echoes from planar defects and the reference echo, respectively. The radiated field is modelled using the Rayleigh integral, the integration of the incident beam with the cladded surface is treated under Kirchhoffs approximation and the reception of reflected waves involves reciprocity between radiation and reception. An extra physical hypothesis allows a fast algorithm to be developed for simulating the Bscan image obtained by transducer scan. The reference echo is also computed under Kirchhoffs approximation. The field refracted inside the material is modelled by an extension of the Rayleigh integral using the geometrical optics approximation. The model for computing diffracted echoes from crack tips is based upon the Geometric Theory of Diffraction. The model for predicting echoes from cladded surface irregularities has been validated by comparing theoretical predictions with experimental measurements. (author)

  14. Design and fabrication of conductive polyaniline transducers via computer controlled direct ink writing

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2017-04-01

    The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.

  15. Design of a titering assay for lentiviral vectors utilizing direct extraction of DNA from transduced cells in microtiter plates

    Directory of Open Access Journals (Sweden)

    Michele E Murphy

    2016-01-01

    Full Text Available Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform. Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

  16. Putting Encyclopaedia Knowledge into Structural Form: Finite State Transducers Approach

    Directory of Open Access Journals (Sweden)

    Pajić Vesna

    2011-06-01

    Full Text Available In biology and functional genomics in particular, understanding the dependence and interplay between different genome and ecological characteristics of organisms is a very challenging problem. There are some public databases which combine this kind of information, but there is still much more information about microbes and other organisms that reside in unstructured and semi-structured documents, such as encyclopaedias. In this paper we present a method for extracting information from semi-structured resources, such as encyclopaedias, based on finite state transducers, consisting of two clearly distinguished phases. The first phase strongly relies on the analysis of the document structure and it is used for locating records of data in the text. The second phase is based on the finite state transducers created for extracting the data, which can be modified so as to achieve the preferred efficiency and it is used for extracting the particular characteristic from the text. We show how the two phase method is applied to the text of the encyclopaedia “Systematic Bacteriology”. A fully structured database with genotype and phenotype characteristics of organisms has been created from the encyclopaedia unstructured descriptions.

  17. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    Science.gov (United States)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  18. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, John L. [University of Texas Medical School, Houston, TX (United States). Health Science Center, Dept. of Biochemistry and Molecular Biology

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for α-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the world’s oceans. Specific aims are: (1) To develop a high-efficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  19. A ring transducer system for medical ultrasound research.

    Science.gov (United States)

    Waag, Robert C; Fedewa, Russell J

    2006-10-01

    An ultrasonic ring transducer system has been developed for experimental studies of scattering and imaging. The transducer consists of 2048 rectangular elements with a 2.5-MHz center frequency, a 67% -6 dB bandwidth, and a 0.23-mm pitch arranged in a 150-mm-diameter ring with a 25-mm elevation. At the center frequency, the element size is 0.30lambda x 42lambda and the pitch is 0.38lambda. The system has 128 parallel transmit channels, 16 parallel receive channels, a 2048:128 transmit multiplexer, a 2048:16 receive multiplexer, independently programmable transmit waveforms with 8-bit resolution, and receive amplifiers with time variable gain independently programmable over a 40-dB range. Receive signals are sampled at 20 MHz with 12-bit resolution. Arbitrary transmit and receive apertures can be synthesized. Calibration software minimizes system nonidealities caused by noncircularity of the ring and element-to-element response differences. Application software enables the system to be used by specification of high-level parameters in control files from which low-level hardware-dependent parameters are derived by specialized code. Use of the system is illustrated by producing focused and steered beams, synthesizing a spatially limited plane wave, measuring angular scattering, and forming b-scan images.

  20. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    Science.gov (United States)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  1. Iron-free moving coil high temperature displacement transducer

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, A

    1976-07-01

    A unique, iron free, moving coil linear displacement transducer system is described, which is suitable for continuously monitoring linear movements, at varying temperatures up to 750/sup 0/C, in operational nuclear reactors. Although this device has been primarily developed for Advanced Gas Cooled Reactor Systems, it also has uses where long term measurements on conventional high temperature plant are required. Furthermore it could be particularly useful in material creep laboratories where precise linear changes in specimen length need to be monitored at elevated temperatures, over several years. Since individual transducer installations demand specific mounting arrangements to suit particular component geometries, evaluations have been made only on standard operational modules or capsules which are designed for containment in a range of housing or fixtures to suit particular applications. The behaviour of these devices has been studied at temperatures up to 750/sup 0/C for periods of over 10,000 h. An evaluation is also included of a commercially designed sensor assembly employing the same principle, for monitoring the boiler-shield wall movement at Hinkley Point 'B' AGR Station.

  2. Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields

    Science.gov (United States)

    Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation oftissue. In this work, an inverse problem of determining transducer parameters to enable formation of shockswith desired amplitude at the focus is solved. The solution was obtained by performing multipledirect simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sourcesas well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocksare formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.

  3. Echo signal from rough planar interfaces influence of roughness, angle, range and transducer type

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P.C.; Jacobsen, S.M.

    1998-01-01

    The received electrical signal from a pulse-echo system insonifying a planar acoustical interface was measured for varying degrees of rms roughness (0-0.16 mm), angle of incidence (typically +/-7°) and range to the transducer. A planar and a focused 5 MHz transducer was used. When insonifying...... a smooth interface, the normalized spectrum of the received signals for a planar transducer exhibits an increasing number of nulls with increased angle of insonification, as predicted from numerical modeling while the dependence on insonification angle for the focused transducer was smaller and the null...... pattern was much less distinct. For the planar transducer and for the focused transducer with the interface located at the geometrical point of focus, the energy of the received signal as a function of incident angle was approximately Gaussian with maximum at 0°. For the smooth interface, the -3 dB width...

  4. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  5. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    International Nuclear Information System (INIS)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon

    2011-01-01

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  6. Class H power amplifier for power saving in fluxgate current transducers

    OpenAIRE

    Velasco Quesada, Guillermo; Román Lumbreras, Manuel; Pérez Delgado, Raul; Conesa Roca, Alfons

    2016-01-01

    This paper presents a new improvement in the design of a fluxgate-based current transducer in order to reduce the power consumption of control electronics. The proposed improvement involves the replacement of the output linear amplifier of the transducer by a class H amplifier. The output amplifier is devoted to the magnetic flux compensation and generates the transducer output current, which is proportional to the current to be measured. In this way, it is possible to reduce significantly th...

  7. Effect of planecta and ROSE? on the frequency characteristics of blood pressure-transducer kits

    OpenAIRE

    Fujiwara, Shigeki; Kawakubo, Yoshifumi; Mori, Satoshi; Tachihara, Keiichi; Toyoguchi, Izumi; Yokoyama, Takeshi

    2014-01-01

    Pressure-transducer kits have frequency characteristics such as natural frequency and damping coefficient, which affect the monitoring accuracy. The aim of the present study was to investigate the effect of planecta ports and a damping device (ROSE?, Argon Medical Devices, TX, USA) on the frequency characteristics of pressure-transducer kits. The FloTrac sensor kit (Edwards Lifesciences, CA, USA) and the DTXplus transducer kit (Argon Medical Devices) were prepared with planecta ports, and the...

  8. Local Interaction Simulation Approach for Fault Detection in Medical Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2015-01-01

    Full Text Available A new approach is proposed for modelling medical ultrasonic transducers operating in air. The method is based on finite elements and the local interaction simulation approach. The latter leads to significant reductions of computational costs. Transmission and reception properties of the transducer are analysed using in-air reverberation patterns. The proposed approach can help to provide earlier detection of transducer faults and their identification, reducing the risk of misdiagnosis due to poor image quality.

  9. Detection and generation of first sound in4He by vibrating superleak transducers

    Science.gov (United States)

    Giordano, N.; Edison, N.

    1986-07-01

    Measurement is made of the first-sound generation and detection efficiencies of vibrating superleak transducers (VSTs) operated in superfluid4He. This is accomplished by using an ordinary pressure transducer to generate first sound with a VST as the detector, and by using a pressure transducer to detect the sound generated by a VST. The results are in reasonably good agreement with the current theory of VST operation.

  10. Detection and generation of first sound in 4He by vibrating superleak transducers

    International Nuclear Information System (INIS)

    Giordano, N.; Edison, N.

    1986-01-01

    Measurement is made of the first-sound generation and detection efficiencies of vibrating superleak transducers (VSTs) operated in superfluid 4 He. This is accomplished by using an ordinary pressure transducer to generate first sound with a VST as the detector, and by using a pressure transducer to detect the sound generated by a VST. The results are in reasonably good agreement with the current theory of VST operation

  11. Development of a robotic nozzle inspection with a flexible transducer array

    International Nuclear Information System (INIS)

    Dobigny, Blandine; Wattiau, Olivier; Bey, Sebastien; Vanhoye, Arnaud; Ancrenaz, Patrick; Dumas, Philippe; Fournier, Laurent

    2016-01-01

    The evaluation of the integrity of the nuclear plant components is a major issue. It is mandatory to assess the degradation due to the aging. NDE aim is to detect potential defects, resulting of thermal fatigue, and to be able to evaluate their dimensions. Ultrasonic non destructive testing has demonstrated its efficiency for detection and characterization of such defects and industrial probes offer satisfactory results in various applications. However, the complex geometry of some components (nozzle,..) severely limits the inspection performances. Indeed, the use of conventional probes is restricted to regular surfaces. Flexible transducer arrays technology provides an attractive solution in ultrasonic NDT for the inspection of complex geometry components. Its ability to conform to the wavy surface of the component and to ensure a good coupling when the limits of conventional probes are reached, makes it suitable for the characterization of a defect detected in a nozzle. To develop and implement a flexible probe inspection of a nozzle weld, several skills are needed: especially ultrasonic, robotic, simulation skills. Moreover, an innovative tool dedicated to delay laws and probe position calculation is used to optimize the performance of such phased array probes. In the framework of a partnership, EDF, the CEA LIST and AREVA have developed a robotic inspection tool able to be operate on nuclear site, in order to characterize defects located in the inner radius of a nozzle with a flexible transducer array. The article describes the use of the new tools developed for the nozzle case. It also presents acquisition results and the contribution of this technology of potential defect characterization. These results are compared to classical phased-array methods.

  12. A Float Type Liquid Level Measuring System Using a Modified Inductive Transducer

    Directory of Open Access Journals (Sweden)

    Samik MARICK

    2014-11-01

    Full Text Available Float type liquid level sensor is generally used as a very simple technique for local level indication and level switching. In the present paper a technique has been proposed to transmit the measured liquid level signal of a float type sensor at remote terminal using a modified differential inductance type electromechanical transducer. The theoretical characteristic equation of this transducer has been derived. A prototype unit of the transducer has been developed and fabricated and its performance characteristic has been experimentally determined. The experimental results are reported in the paper. From experimental data, a very good linear characteristic of the proposed level transducer has been observed.

  13. A High-Voltage Class D Audio Amplifier for Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Dielectric Elastomer (DE) transducers have emerged as a very interesting alternative to the traditional electrodynamic transducer. Lightweight, small size and high maneuverability are some of the key features of the DE transducer. An amplifier for the DE transducer suitable for audio applications...... is proposed and analyzed. The amplifier addresses the issue of a high impedance load, ensuring a linear response over the midrange region of the audio bandwidth (100 Hz – 3.5 kHz). THD+N below 0.1% are reported for the ± 300 V prototype amplifier producing a maximum of 125 Var at a peak efficiency of 95 %....

  14. New improvement of the combined optical fiber transducer for landslide monitoring

    Science.gov (United States)

    Zhu, Z.-W.; Yuan, Q.-Y.; Liu, D.-Y.; Liu, B.; Liu, J.-C.; Luo, H.

    2014-08-01

    Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1 : 1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement vs. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1 mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0-20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.

  15. Polarization Control with Piezoelectric and LiNbO3 Transducers

    Science.gov (United States)

    Bradley, E.; Miles, E.; Loginov, B.; Vu, N.

    Several Polarization control transducers have appeared on the market, and now automated, endless polarization control systems using these transducers are becoming available. Unfortunately it is not entirely clear what benchmark performance tests a polarization control system must pass, and the polarization disturbances a system must handle are open to some debate. We present quantitative measurements of realistic polarization disturbances and two benchmark tests we have successfully used to evaluate the performance of an automated, endless polarization control system. We use these tests to compare the performance of a system using piezoelectric transducers to that of a system using LiNbO3 transducers.

  16. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    International Nuclear Information System (INIS)

    Cao, Shuying; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei

    2015-01-01

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device

  17. Research on recognition of ramp angle based on transducer

    Directory of Open Access Journals (Sweden)

    Wenhao GU

    2015-12-01

    Full Text Available Focusing on the recognition of ramp angle, the relationship between the signal of vehicle transducer and real ramp angle is studied. The force change of vehicle on the ramp, and the relationship between the body tilt angle and front and rear suspension scale is discussed. According to the suspension and tire deformation, error angle of the ramp angle is deduced. A mathematical model is established with Matlab/Simulink and used for simulation to generate error curve of ramp angle. The results show that the error angle increases with the increasing of the ramp angle, and the limit value can reach 6.5%, while the identification method can effectively eliminate this error, and enhance the accuracy of ramp angle recognition.

  18. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  19. Smooth driving of Mössbauer electromechanical transducers

    International Nuclear Information System (INIS)

    Veiga, A.; Mayosky, M. A.; Martínez, N.; Mendoza Zélis, P.; Pasquevich, G. A.; Sánchez, F. H.

    2011-01-01

    Quality of Mössbauer spectra is strongly related to the performance of source velocity modulator. Traditional electromechanical driving techniques demand hard-edged square or triangular velocity waveforms that introduce long settling times and demand careful driver tuning. For this work, the behavior of commercial velocity transducers and drive units was studied under different working conditions. Different velocity reference waveforms in constant-acceleration, constant-velocity and programmable-velocity techniques were tested. Significant improvement in spectrometer efficiency and accuracy was achieved by replacing triangular and square hard edges with continuous smooth-shaped transitions. A criterion for best waveform selection and synchronization is presented and attainable enhancements are evaluated. In order to fully exploit this driving technique, a compact microprocessor-based architecture is proposed and a suitable data acquisition system implementation is presented. System linearity and efficiency characterization are also shown.

  20. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...... intrinsically. The time-dependent Ginzburg-Landau theory is used in the parameter identification involving hysteresis effects. We use the Chebyshev collocation method in the numerical simulations. The elastic field is assumed to be coupled linearly with other fields, and the nonlinearity is in the E-D coupling...

  1. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    Science.gov (United States)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  2. Class D audio amplifiers for high voltage capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis

    of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice......Audio reproduction systems contains two key components, the amplifier and the loudspeaker. In the last 20 – 30 years the technology of audio amplifiers have performed a fundamental shift of paradigm. Class D audio amplifiers have replaced the linear amplifiers, suffering from the well-known issues...... with the low level of acoustical output power and complex amplifier requirements, have limited the commercial success of the technology. Horn or compression drivers are typically favoured, when high acoustic output power is required, this is however at the expense of significant distortion combined...

  3. A Pseudo-3D Model for Electromagnetic Acoustic Transducers (EMATs

    Directory of Open Access Journals (Sweden)

    Wuliang Yin

    2018-03-01

    Full Text Available Previous methods for modelling Rayleigh waves produced by a meander-line-coil electromagnetic acoustic transducer (EMAT consisted mostly of two-dimensional (2D simulations that focussed on the vertical plane of the material. This paper presents a pseudo-three-dimensional (3D model that extends the simulation space to both vertical and horizontal planes. For the vertical plane, we combines analytical and finite-difference time-domain (FDTD methods to model Rayleigh waves’ propagation within an aluminium plate and their scattering behaviours by cracks. For the horizontal surface plane, we employ an analytical method to investigate the radiation pattern of Rayleigh waves at various depths. The experimental results suggest that the models and the modelling techniques are valid.

  4. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    International Nuclear Information System (INIS)

    Li Ming-Liang; Deng Ming-Xi; Gao Guang-Jian

    2016-01-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. (special topic)

  5. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond.

    Science.gov (United States)

    Chandrashekhar, Kshipra; Kassem, Issmat I; Rajashekara, Gireesh

    2017-07-04

    Chemotaxis, a process that mediates directional motility toward or away from chemical stimuli (chemoeffectors/ligands that can be attractants or repellents) in the environment, plays an important role in the adaptation of Campylobacter jejuni to disparate niches. The chemotaxis system consists of core signal transduction proteins and methyl-accepting-domain-containing Transducer like proteins (Tlps). Ligands binding to Tlps relay a signal to chemotaxis proteins in the cytoplasm which initiate a signal transduction cascade, culminating into a directional flagellar movement. Tlps facilitate substrate-specific chemotaxis in C. jejuni, which plays an important role in the pathogen's adaptation, pathobiology and colonization of the chicken gastrointestinal tract. However, the role of Tlps in C. jejuni's host tissue specific colonization, physiology and virulence remains not completely understood. Based on recent studies, it can be predicted that Tlps might be important targets for developing strategies to control C. jejuni via vaccines and antimicrobials.

  6. Introduction to special session on "ultrasonic transducers for harsh environments

    Science.gov (United States)

    Tittmann, B. R.; Reinhardt, B.; Daw, J.

    2018-04-01

    This work describes the results of experiments conducted as part of an instrumented lead test in-core in a nuclear reactor with the piezoelectric and magnetostrictive materials. The experiments exposed AlN, ZnO, BiT, Remendur, and Galfenol to more neutron radiation than found in the literature. The magnetostrictive sensors produce stable ultrasonic pulse-echoes throughout much of the irradiation. The BiT transducers could operate up until approximate 5 × 10^20 n/cm^2 (E>1MeV). The piezoelectric AlN operated well during the entire experiment. The results imply that now available are candidates for operation in harsh environments found in nuclear reactors and steam generator plants.

  7. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, T.; Simonsen, A.; Schmid, Silvan

    2014-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would...... strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity....... The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane...

  8. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuying, E-mail: shuying-cao@hebut.edu.cn; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei [Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130 (China)

    2015-05-07

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.

  9. HIFU Transducer Characterization Using a Robust Needle Hydrophone

    Science.gov (United States)

    Howard, Samuel M.; Zanelli, Claudio I.

    2007-05-01

    A robust needle hydrophone has been developed for HIFU transducer characterization and reported on earlier. After a brief review of the hydrophone design and performance, we demonstrate its use to characterize a 1.5 MHz, 10 cm diameter, F-number 1.5 spherically focused source driven to exceed an intensity of 1400 W/cm2at its focus. Quantitative characterization of this source at high powers is assisted by deconvolving the hydrophone's calibrated frequency response in order to accurately reflect the contribution of harmonics generated by nonlinear propagation in the water testing environment. Results are compared to measurements with a membrane hydrophone at 0.3% duty cycle and to theoretical calculations, using measurements of the field at the source's radiating surface as input to a numerical solution of the KZK equation.

  10. Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator

    Science.gov (United States)

    Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.

    Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  11. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  12. Reliability and Validity Assessment of a Linear Position Transducer

    Science.gov (United States)

    Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.

    2015-01-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  13. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  14. Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers with Low-Temperature Wafer Direct Bonding

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-12-01

    Full Text Available This paper presents a fabrication method of capacitive micromachined ultrasonic transducers (CMUTs by wafer direct bonding, which utilizes both the wet chemical and O2plasma activation processes to decrease the bonding temperature to 400 °C. Two key surface properties, the contact angle and surface roughness, are studied in relation to the activation processes, respectively. By optimizing the surface activation parameters, a surface roughness of 0.274 nm and a contact angle of 0° are achieved. The infrared images and static deflection of devices are assessed to prove the good bonding effect. CMUTs having silicon membranes with a radius of 60 μm and a thickness of 2 μm are fabricated. Device properties have been characterized by electrical and acoustic measurements to verify their functionality and thus to validate this low-temperature process. A resonant frequency of 2.06 MHz is obtained by the frequency response measurements. The electrical insertion loss and acoustic signal have been evaluated. This study demonstrates that the CMUT devices can be fabricated by low-temperature wafer direct bonding, which makes it possible to integrate them directly on top of integrated circuit (IC substrates.

  15. A Dual-Range Strain Gage Weighing Transducer Employing Automatic Switching

    Science.gov (United States)

    Rodger A. Arola

    1968-01-01

    Describes a dual-range strain gage transducer which has proven to be an excellent weight-sensing device for weighing trees and tree-length logs; discusses basic principals of the design and operation; and shows that a single transducer having two sensitivity ranges with automatic internal switching can sense weight with good repeatability and that one calibration curve...

  16. Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Karatzas, L S

    2009-01-01

    Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.

  17. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    Lin Shuyu; Tian Hua

    2008-01-01

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  18. Phased transducer array for acoustic energy harvesting inside an MRI machine

    NARCIS (Netherlands)

    Klymko, V.; Roes, M.G.L.; Duivenbode, van J.; Lomonova, E.

    2013-01-01

    In this study, an array of piezoelectric speakers is used to focus acoustic energy on a single transducer that acts as a harvester. The transmitting transducers are located along a curve that fits inside the magnetic resonance interferometer (MRI) torus interior. The numerical results for the

  19. Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiloucas, S; Walker, G C; Bowen, J W [Cybernetics, School of Systems Engineering, University of Reading, RG6 6AY (United Kingdom); Karatzas, L S, E-mail: s.hadjiloucas@reading.ac.u [Temasek Polytechnic, School of Engineering, 21 Tampines Avenue 1, Singapore, 529757 (Singapore)

    2009-07-01

    Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.

  20. A Doubly-Curved Piezoelectric Composite with 1-3 Connectivity for Underwater Transducer Applications

    Science.gov (United States)

    Zhang, Yanjun; Wang, Likun; Qin, Lei; Liao, Qingwei; Zhong, Chao

    2018-03-01

    Aim to increase the horizontal and vertical beam width of the high frequency transducer simultaneously, we present a doubly-curved 1-3 piezoelectric composite element. It consists of 54% piezoelectric ceramic volume fraction and two phases polymer matrix. The finite element analysis (FEA) is used to evaluate the dynamic response of composite. Electroacoustic response in water was measured for the doubly-curved composite being considered as underwater transducer. An underwater transducer was fabricated using the doubly-curved 1-3 piezoelectric composite element. The -3 dB full angle beam width of transducer is approximately 106° and 36° in the horizontal and vertical plane respectively. Both the FEA simulations and experimental results show the potential of a broad covered area of the composite transducer in underwater environment.

  1. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail: wangfujun@tju.edu.cn; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  2. Development of a Modular Magnetostrictive Transducer for Torsional Guided Wave Transduction in a Cylindrical Structure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Park, Jae Ha; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2009-10-15

    Cylindrical structures such as pipes and shafts are widely used in various industrial facilities. Recently, researches on magnetostrictive transduction of torsional waves have been actively reported for the nondestructive evaluation of those cylindrical structures. However, the existing magnetostrictive patch transducer has somewhat inconvenient and time. Consuming process like patch bonding to a structure since it should employ a magnetostrictive patch having strong magnetostriction. To overcome these limitations of the existing transducer, in this work, we develop a novel modular magnetostrictive transducer to generate and measure torsional waves to inspect a cylindrical structure. The proposed transducer can be applied as viscous liquid coupling with shear couplant or dry coupling without coupling media instead of patch bonding to a structure. We describe a detailed structure of the modular transducer and conduct some experiments to verify its performance

  3. Development of a Modular Magnetostrictive Transducer for Torsional Guided Wave Transduction in a Cylindrical Structure

    International Nuclear Information System (INIS)

    Cho, Seung Hyun; Park, Jae Ha; Kwon, Hyu Sang; Ahn, Bong Young; Lee, Seung Seok

    2009-01-01

    Cylindrical structures such as pipes and shafts are widely used in various industrial facilities. Recently, researches on magnetostrictive transduction of torsional waves have been actively reported for the nondestructive evaluation of those cylindrical structures. However, the existing magnetostrictive patch transducer has somewhat inconvenient and time. Consuming process like patch bonding to a structure since it should employ a magnetostrictive patch having strong magnetostriction. To overcome these limitations of the existing transducer, in this work, we develop a novel modular magnetostrictive transducer to generate and measure torsional waves to inspect a cylindrical structure. The proposed transducer can be applied as viscous liquid coupling with shear couplant or dry coupling without coupling media instead of patch bonding to a structure. We describe a detailed structure of the modular transducer and conduct some experiments to verify its performance

  4. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...

  5. Ultrasonic Transducer Design for the Axial Flaw Detection of Dissimilar Metal Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Kim, Yong Sik; Yang, Seung Han

    2011-01-01

    Dissimilar metal welds in nuclear power plant are known as very susceptible to PWSCC flaws, and periodically inspected by the qualified inspector and qualified procedure during in-service inspection period. According to field survey data, the majority of their DMWs are located on tapered nozzle or adjacent to a tapered component. These types of configurations restrict examination access and also limit examination volume coverage. Additionally, circumferential scan for axially oriented flaw is very difficult to detect located on tapered surface because the transducer can't receive flaw response from reflector for miss-orientation. To overcome this miss-orientation, it is necessary adapt skewed ultrasonic transducer accommodate tapered surface. The skewed refracted longitudinal ultrasonic transducer designed by modeling and manufactured from the modelling result for axial flaw detection. Experimental results showed that the skewed refracted longitudinal ultrasonic transducer get higher flaw response than non-skewed refracted longitudinal ultrasonic transducer

  6. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Girone, M., E-mail: mario.girone@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Department of Engineering, University of Sannio, Benevento (Italy); Liccardo, A., E-mail: annalisa.liccardo@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Pezzetti, M., E-mail: marco.pezzetti@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Piccinelli, F., E-mail: fabio.piccinelli@cern.ch [Department of Mechanical Engineering, University of Brescia, Brescia (Italy)

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  7. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik

    2013-01-01

    We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the transducer geometry, transducer...... change in geometry and that the coupling angle may be used as an additional tuning parameter for improved acoustophoretic control with single-frequency actuation. Further, we find that frequency-modulation actuation is suitable for diminishing such tuning effects and that it is a robust method to produce...... coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5 µm diameter beads and the results with the tunable-angle...

  8. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  9. Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

    Science.gov (United States)

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2015-01-01

    Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

  10. The Use of Flexible Ultrasound Transducers for the Detection of Laser-Induced Guided Waves on Curved Surfaces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Tai Chieh Wu

    2017-06-01

    Full Text Available In this study, a flexible ultrasonic transducer (FUT was applied in a laser ultrasonic technique (LUT for non-destructive characterization of metallic pipes at high temperatures of up to 176 °C. Compared with normal ultrasound transducers, a FUT is a piezoelectric film made of a PZT/PZT sol-gel composite which has advantages due to its high sensitivity, curved surface adaptability and high temperature durability. By operating a pulsed laser in B-scan mode along with the integration of FUT and LUT, a multi-mode dispersion spectrum of a stainless steel pipe at high temperature can be measured. In addition, dynamic wave propagation behaviors are experimentally visualized with two dimensional scanning. The images directly interpret the reflections from the interior defects and also can locate their positions. This hybrid technique shows great potential for non-destructive evaluation of structures with complex geometry, especially in high temperature environments.

  11. Improvement of amperometric transducer selectivity using nanosized phenylenediamine films

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Pyeshkova, V. M.; Alekseev, S. A.; Soldatkin, O. O.; Dzyadevych, S. V.

    2017-11-01

    In this work, we studied the conditions of deposition of a semipermeable polyphenylenediamine (PPD)-based membrane on amperometric disk platinum electrodes. Restricting an access of interfering substances to the electrode surface, the membrane prevents their impact on the sensor operation. Two methods of membrane deposition by electropolymerization were compared—at varying potential (cyclic voltammetry) and at constant potential. The cyclic voltammetry was shown to be easier in performing and providing better properties of the membrane. The dependence of PPD membrane effectiveness on the number of cyclic voltammograms and phenylenediamine concentration was analyzed. It was shown that the impact of interfering substances (ascorbic acid, dopamine, cysteine, uric acid) on sensor operation could be completely avoided using three cyclic voltammograms in 30 mM phenylenediamine. On the other hand, when working with diluted samples, i.e., at lower concentrations of electroactive substances, it is reasonable to decrease the phenylenediamine concentration to 5 mM, which would result in a higher sensitivity of transducers to hydrogen peroxide due to a thinner PPD layer. The PPD membrane was tested during continuous operation and at 8-day storage and turned out to be efficient in sensor and biosensors.

  12. The Evolution of Energy-Transducing Systems. Studies with Archaebacteria

    Science.gov (United States)

    Stan-Lotter, Helga

    1996-01-01

    The dicyclohexyl carbodiimide (DCCD)- binding site of the membrane ATPase from Halobacterium saccharovorum was investigated during earlier periods of this Cooperative Agreement and was localized to a cyanogen bromide fragment of subunit 2 from amino acids 379 (Glu) to 442 (Met). Although the exact position of the reactive amino acid (probably a glutamic acid) has not yet been determined, the data, together with recently obtained immuno reactions and sequences of Cyanogen Bromide (CNBr) fragments from E.coli F-ATPase, suggested subunit interactions in the halobacterial ATPase which had not been recognized before. They also provided evidence for the presence of a gamma subunit in the halobacterial ATPase, and for a stretch of a amino acids similar to the 'catch' between beta and gamma in bovine F-ATPase. The evolutionary implications of these findings are twofold: first, halobacterial (or archaebacterial) ATPases appear as complex as those from higher organisms - no simpler versions of these membrane enzymes are known to date; second, a monophyletic origin of the energy-transducing ATPases is becoming more apparent, and - together with other data - the split into V- and F-ATPases may have occurred much later than had been previously thought (i.e., after the split into Archaea and Bacteria). Other work included the characterization of an extremely halophilic isolate (Halococcus salifodinae ) from Permian salt sediments. This organism appeared to be an autotrophic halobacterium; its incorporation of C02 was investigated.

  13. Development of inter digital transducers to the control structures

    International Nuclear Information System (INIS)

    Takpara, R.; Fall, D.; Duquennoy, M.; Ouaftouh, M.; Courtois, C.; Rguiti, M.; Gonon, M.; Maurye, N.; Martic, G.; Lardot, V.; Seronveaux, L.; Halleux, J.; Pelegris, C.; Guessasma, M.

    2015-01-01

    This work deals with the realization of interdigital transducers (IDT) in order to characterize the quality of coatings and surfaces of structures. The challenge of this study is three fold. Firstly, the aim is to have efficient sensors to generate surface acoustic wave (SAW) since these wave sare well suited for this type of characterization. The second objective ofthis study is to provide flexible sensors so that they can adapt to different shapes of structures. Finally, relatively inexpensive technologies are favored for the development of these sensors because this allows continuous monitoring (structural health monitoring) by incorporating these sensors permanently on the structures to be tested. To meet these goals, several French and Belgian laboratories have gathered around the PRISTIFLEX project INTERREG IV. After a presentation of the manufacturing process and the characteristics of the piezo electric material developed in this study, we discussed modeling which helped to define the dimensional parameters of the piezo electric plate that composes the sensor. Then, the techniques for producing the electrodes (laserablation and inkjet printing) were presented and an example of performed electrode was provided. Finally, the effectiveness of these sensors from the measurement of the displacement caused by the surface wave excited by these IDT sensors were demonstrated. (author)

  14. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  15. Bio-applications of ionic polymer metal composite transducers

    International Nuclear Information System (INIS)

    Aw, K C; McDaid, A J

    2014-01-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications

  16. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    Science.gov (United States)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  17. Bio-applications of ionic polymer metal composite transducers

    Science.gov (United States)

    Aw, K. C.; McDaid, A. J.

    2014-07-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications.

  18. A rotary piezoelectric actuator using longitudinal and bending hybrid transducer

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2012-12-01

    Full Text Available A rotary piezoelectric actuator using bolt-clamped type transducer with double driving feet is proposed in this study. The first-order longitudinal and fourth-order bending vibration modes are superimposed in the actuator to produce elliptical movements on the driving tips. Longitudinal PZT and bending PZT are clamped between the exponential shape horns and the flange by bolts. The vibration shape changes of the actuator are presented to give a clear explanation of its working principle. Several structural parameters of the exponential shape horn are selected and adjusted to accomplish the tuning process of the longitudinal and bending resonance frequencies. The input impedance and vibration characteristics are calculated by using FEM method; the gained results verify the feasibility of the proposed actuator. After the fabrication of a prototype, its vibration characteristics are measured by using a scanning laser Doppler vibrometer; the tested results are in good agreement with the FEM calculated results. The mechanical output performance experiments state that the prototype achieves a maximum speed of 129 r/min and a maximum torque of 1.5 Nm.

  19. Variable reluctance displacement transducer temperature compensated to 6500F

    International Nuclear Information System (INIS)

    1975-01-01

    In pressurized water reactor tests, compact instruments for accurate measurement of small displacements in a 650 0 F environment are often required. In the case of blowdown tests such as the Loss of Fluid Test (LOFT) or Semiscale computer code development tests, not only is the initial environment water at 650 0 F and 2200 psi but it undergoes a severe transient due to depressurization. Since the LOFT and Semiscale tests are run just for the purpose of obtaining data during the depressurization, instruments used to obtain the data must not give false outputs induced by the change in environment. A LOFT rho v 2 probe and a Semiscale drag disk are described. Each utilizes a variable reluctance transducer (VRT) for indication of the drag-disk location and a torsion bar for drag-disk restoring force. The VRT, in addition to being thermally gain and null offset stable, is fabricated from materials known to be resistant to large nuclear radiation levels and has successfully passed a fast neutron radiation test of 2.7 x 10 17 nvt without failure

  20. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers

    KAUST Repository

    Viržonis, Darius

    2014-04-08

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction.

  1. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  2. Structural model of standard ultrasonic transducer array developed for FEM analysis of mechanical crosstalk.

    Science.gov (United States)

    Celmer, M; Opieliński, K J; Dopierała, M

    2018-02-01

    One of the reasons of distortions in ultrasonic imaging are crosstalk effects. They can be divided into groups according to the way of their formation. One of them is constituted by mechanical crosstalk, which is propagated by a construction of a multi-element array of piezoelectric transducers. When an individual transducer is excited, mechanical vibrations are transferred to adjacent construction components, thereby stimulating neighboring transducers to an undesired operation. In order to explore ways of the propagation of such vibrations, the authors developed the FEM model of the array of piezoelectric transducers designed for calculations in COMSOL Multiphysics software. Simulations of activating individual transducers and calculated electrical voltages appearing on transducers unstimulated intentionally, were performed in the time domain in order to assess the propagation velocity of different vibration modes through the construction elements. On this basis, conclusions were drawn in terms of the participation of various construction parts of the array of piezoelectric transducers in the process of creating the mechanical crosstalk. The elaborated FEM model allowed also to examine the ways aimed at reducing the transmission of mechanical crosstalk vibrations through the components of the array. Studies showed that correct cuts in the fasteners and the front layer improve the reduction of the mechanical crosstalk effect. The model can become a helpful tool in the process of design and modifications of manufactured ultrasonic arrays particularly in terms of mechanical crosstalk reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A rectangle-type linear ultrasonic motor using longitudinal vibration transducers with four driving feet.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2013-04-01

    To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.

  4. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  5. Thermal effects on transducer material for heat assisted magnetic recording application

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Rong, E-mail: Ji-Rong@dsi.a-star.edu.sg; Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck [Data Storage Institute, Agency for Science, Technology and Research (A-STAR), 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  6. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Shuyu Lin

    2017-02-01

    Full Text Available The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  7. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.

    Science.gov (United States)

    Lin, Shuyu; Xu, Jie

    2017-02-10

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  8. PREFACE: 5th International Conference on Materials and Applications for Sensors and Transducers (IC-MAST2015)

    Science.gov (United States)

    Hristoforou, E.; Vlachos, D. S.; Giouroudi, I.; Kar-Narayan, S.; Potirakis, S.

    2016-03-01

    The 5th International Conference on Materials and Applications for Sensors and Transducers, Mykonos island, Greece, hosted about 110 oral and poster papers and more than 90 participants. IC-MAS, as an international annual conference which tries to meet the needs for various types of sensors, particularly those which may be manufactured by low cost methods (i.e. hybrid sensors, smart specialization devices, particular applications not necessarily requiring integrated micro-nano technologies), covering all types of materials and physical effects, appears to be a necessity. IC-MAST has been established as a high quality international conference by: I. Gathering together multinational researchers from all over the world, working in different materials for sensors and transducers and technical applications of sensors, but also in some cases in the management of the data coming from sensors and transducers. The careful selection of the conference place (like Aegean Sea, Budapest, Prague, Bilbao, Mykonos etc) allows for enjoying the local hospitality and sightseeing. II. Emphasizing in hybrid sensors and smart specialization devices produced by inexpensive methods, without excluding of course micro-nano technology, from all kinds of solid state, liquid and gaseous materials, as well as in particular transducer applications (design and development, as well as use of sensing data) III. Innovatively implementing the Virtual Paper Concept, allowing for large impact of research works presented in the conference by authors who either have no time or no funding support for visiting a conference; this year more than 12 virtual papers are presented in the 5th IC MAST, following a standardized procedure via the our robust and reliable Conference Site (www.icmast.net!) > IV. Allowing for lengthy technical and managerial discussions in terms of sensor, material and instrumentation development; furthermore, the different research groups gathered together are offered the particular

  9. Damage detection monitoring applications in self-healing concrete structures using embedded piezoelectric transducers and recovery

    International Nuclear Information System (INIS)

    Karaiskos, G; Tsangouri, E; Aggelis, D G; Van Hemelrijck, D; Deraemaeker, A

    2015-01-01

    The ageing, operational and ambient loadings have a great impact in the operational and maintenance cost of concrete structures. Their service life prolongation is of utmost importance and this can be efficiently achieved by using reliable and low-cost monitoring and self-healing techniques. In the present study, the ultrasonic pulse velocity (UPV) method using embedded small-size and low-cost piezoelectric PZT (lead zirconate titanate) ceramic transducers in concrete with self-healing properties is implemented for monitoring not only the setting and hardening phases of concrete since casting time, but also for the detection of damage initiation, propagation and recovery of integrity after healing. A couple of small-scale notched unreinforced concrete beams are subjected to mode-I fracture through three-point bending tests. After a 24-hour healing agent curing period, the beams are reloaded using the same loading scenario. The results demonstrate the excellent performance of the proposed monitoring technique during the hydration, damage generation and recovery periods. (paper)

  10. A conclusive scalable model for the complete actuation response for IPMC transducers

    International Nuclear Information System (INIS)

    McDaid, A J; Aw, K C; Haemmerle, E; Xie, S Q

    2010-01-01

    This paper proposes a conclusive scalable model for the complete actuation response for ionic polymer metal composites (IPMC). This single model is proven to be able to accurately predict the free displacement/velocity and force actuation at varying displacements, with up to 3 V inputs. An accurate dynamic relationship between the force and displacement has been established which can be used to predict the complete actuation response of the IPMC transducer. The model is accurate at large displacements and can also predict the response when interacting with external mechanical systems and loads. This model equips engineers with a useful design tool which enables simple mechanical design, simulation and optimization when integrating IPMC actuators into an application. The response of the IPMC is modelled in three stages: (i) a nonlinear equivalent electrical circuit to predict the current drawn, (ii) an electromechanical coupling term and (iii) a segmented mechanical beam model which includes an electrically induced torque for the polymer. Model parameters are obtained using the dynamic time response and results are presented demonstrating the correspondence between the model and experimental results over a large operating range. This newly developed model is a large step forward, aiding in the progression of IPMCs towards wide acceptance as replacements to traditional actuators

  11. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie.

    Science.gov (United States)

    Parker, Joseph; Struhl, Gary

    2015-10-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes--a phenomenon we term "nuclear seclusion." Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability.

  12. A Low-Power CMOS Piezoelectric Transducer Based Energy Harvesting Circuit for Wearable Sensors for Medical Applications

    Directory of Open Access Journals (Sweden)

    Taeho Oh

    2017-12-01

    Full Text Available Piezoelectric vibration based energy harvesting systems have been widely utilized and researched as powering modules for various types of sensor systems due to their ease of integration and relatively high energy density compared to RF, thermal, and electrostatic based energy harvesting systems. In this paper, a low-power CMOS full-bridge rectifier is presented as a potential solution for an efficient energy harvesting system for piezoelectric transducers. The energy harvesting circuit consists of two n-channel MOSFETs (NMOS and two p-channel MOSFETs (PMOS devices implementing a full-bridge rectifier coupled with a switch control circuit based on a PMOS device driven by a comparator. With a load of 45 kΩ, the output rectifier voltage and the input piezoelectric transducer voltage are 694 mV and 703 mV, respectably, while the VOUT versus VIN conversion ratio is 98.7% with a PCE of 52.2%. The energy harvesting circuit has been designed using 130 nm standard CMOS process.

  13. Study of a Modified Displacement Transducer of a Piston in a Power Cylinder

    Directory of Open Access Journals (Sweden)

    S. C. BERA

    2011-05-01

    Full Text Available The position monitoring of the piston inside a power cylinder is very important in process plant measurement and control. In the present paper a modified inductance type position sensing technique of a power cylinder piston has been described. A modified inductance measuring transducer circuit has been designed to measure the change of inductance of a very high inductance coil. The theoretical equations of the proposed inductive sensor and the displacement transducer have been derived. The transducer has been experimentally tested and the experimental data are presented in the paper.

  14. Hysteretic self-oscillating bandpass current mode control for Class D audio amplifiers driving capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    A hysteretic self-oscillating bandpass current mode control (BPCM) scheme for Class D audio amplifiers driving capacitive transducers are presented. The scheme provides excellent stability margins and low distortion over a wide range of operating conditions. Small-signal behavior of the amplifier...... the rules of electrostatics have been known as very interesting alternatives to the traditional inefficient electrodynamic transducers. When driving capacitive transducers from a Class D audio amplifier the high impedance nature of the load represents a key challenge. The BPCM control scheme ensures a flat...

  15. Angle transducer based on fiber Bragg gratings able for tunnel auscultation

    Science.gov (United States)

    Quintela, A.; Lázaro, J. M.; Quintela, M. A.; Mirapeix, J.; Muñoz-Berti, V.; López-Higuera, J. M.

    2010-09-01

    In this paper an angle transducer based on Fiber Bragg Grating (FBG) is presented. Two gratings are glued to a metallic platen, one in each side. It is insensitive to temperature changes, given that the temperature shifts affect equally to both FBG. When the platen is uniformly bent an uniform strain appears in both sides of the platen. It depends on the bend angle and the platen length and thickness. The transducer has been designed to be used in the auscultation of tunnels during their construction process and during their live time. The transducer design and its characterization are presented.

  16. Influence of Ultrasonic Nonlinear Propagation on Hydrophone Calibration Using Two-Transducer Reciprocity Method

    Science.gov (United States)

    Yoshioka, Masahiro; Sato, Sojun; Kikuchi, Tsuneo; Matsuda, Yoichi

    2006-05-01

    In this study, the influence of ultrasonic nonlinear propagation on hydrophone calibration by the two-transducer reciprocity method is investigated quantitatively using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. It is proposed that the correction for the diffraction and attenuation of ultrasonic waves used in two-transducer reciprocity calibration can be derived using the KZK equation to remove the influence of nonlinear propagation. The validity of the correction is confirmed by comparing the sensitivities calibrated by the two-transducer reciprocity method and laser interferometry.

  17. Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Tianyong Jiang

    2016-08-01

    Full Text Available A post-tensioning tendon duct filled with grout can effectively prevent corrosion of the reinforcement, maintain bonding behavior between the reinforcement and concrete, and enhance the load bearing capacity of concrete structures. In practice, grouting of the post-tensioning tendon ducts always causes quality problems, which may reduce structural integrity and service life, and even cause accidents. However, monitoring of the grouting compactness is still a challenge due to the invisibility of the grout in the duct during the grouting process. This paper presents a stress wave-based active sensing approach using piezoceramic transducers to monitor the grouting compactness in real time. A segment of a commercial tendon duct was used as research object in this study. One lead zirconate titanate (PZT piezoceramic transducer with marble protection, called a smart aggregate (SA, was bonded on the tendon and installed in the tendon duct. Two PZT patch sensors were mounted on the top outside surface of the duct, and one PZT patch sensor was bonded on the bottom outside surface of the tendon duct. In the active sensing approach, the SA was used as an actuator to generate a stress wave and the PZT sensors were utilized to detect the wave response. Cement or grout in the duct functions as a wave conduit, which can propagate the stress wave. If the cement or grout is not fully filled in the tendon duct, the top PZT sensors cannot receive much stress wave energy. The experimental procedures simulated four stages during the grout pouring process, which includes empty status, half grouting, 90% grouting, and full grouting of the duct. Experimental results show that the bottom PZT sensor can detect the signal when the grout level increases towards 50%, when a conduit between the SA and PZT sensor is formed. The top PZT sensors cannot receive any signal until the grout process is completely finished. The wavelet packet-based energy analysis was adopted in this

  18. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    Science.gov (United States)

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  19. Nanomechanical probing of thin-film dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Seifi, Saman; Park, Harold S.; Leung, Vanessa; Töpper, Tino; Müller, Bert

    2017-08-01

    Dielectric elastomer transducers (DETs) have attracted interest as generators, actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. Their performance crucially depends on the elastic properties of the electrode-elastomer sandwich structure. The compressive displacement of a single-layer DET can be easily measured using atomic force microscopy (AFM) in the contact mode. While polymers used as dielectric elastomers are known to exhibit significant mechanical stiffening for large strains, their mechanical properties when subjected to voltages are not well understood. To examine this effect, we measured the depths of 400 nanoindentations as a function of the applied electric field using a spherical AFM probe with a radius of (522 ± 4) nm. Employing a field as low as 20 V/μm, the indentation depths increased by 42% at a load of 100 nN with respect to the field-free condition, implying an electromechanically driven elastic softening of the DET. This at-a-glance surprising experimental result agrees with related nonlinear, dynamic finite element model simulations. Furthermore, the pull-off forces rose from (23.0 ± 0.4) to (49.0 ± 0.7) nN implying a nanoindentation imprint after unloading. This embossing effect is explained by the remaining charges at the indentation site. The root-mean-square roughness of the Au electrode raised by 11% upon increasing the field from zero to 12 V/μm, demonstrating that the electrode's morphology change is an undervalued factor in the fabrication of DET structures.

  20. Reliability and Validity Assessment of a Linear Position Transducer

    Directory of Open Access Journals (Sweden)

    Manuel V. Garnacho-Castaño

    2015-03-01

    Full Text Available The objectives of the study were to determine the validity and reliability of peak velocity (PV, average velocity (AV, peak power (PP and average power (AP measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain during two resistance exercises, bench press (BP and full back squat (BS, performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2. Intraclass correlation coefficients (ICCs indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W. Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W. Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP make this device a useful tool for monitoring resistance training.