WorldWideScience

Sample records for integrated optics applications

  1. Compact integrated optical devices for optical sensor and switching applications

    NARCIS (Netherlands)

    Kauppinen, L.J.

    2010-01-01

    This thesis describes the design, fabrication, and characterization of compact optical devices for sensing and switching applications. Our focus has been to realize the devices using CMOS-compatible fabrication processes. Particularly the silicon photonics fabrication platform, ePIXfab, has been

  2. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  3. Optical electronics self-organized integration and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2012-01-01

    IntroductionFrom Electronics to Optical ElectronicsAnalysis Tools for Optical CircuitsSelf-Organized Optical Waveguides: Theoretical AnalysisSelf-Organized Optical Waveguides: Experimental DemonstrationsOptical Waveguide Films with Vertical Mirrors 3-D Optical Circuits with Stacked Waveguide Films Heterogeneous Thin-Film Device IntegrationOptical Switches OE Hardware Built by Optical ElectronicsIntegrated Solar Energy Conversion SystemsFuture Challenges.

  4. Integrated optics on Lithium Niobate for sensing applications

    Science.gov (United States)

    Zaltron, A.; Bettella, G.; Pozza, G.; Zamboni, R.; Ciampolillo, M.; Argiolas, N.; Sada, C.; Kroesen, S.; Esseling, M.; Denz, C.

    2015-05-01

    In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored.

  5. Integration and application of optical chemical sensors in microbioreactors.

    Science.gov (United States)

    Gruber, Pia; Marques, Marco P C; Szita, Nicolas; Mayr, Torsten

    2017-08-08

    The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.

  6. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  7. INTEGRATED APPLICATION OF OPTICAL DIAGNOSTIC METHODS IN ULCERATIVE COLITIS

    Directory of Open Access Journals (Sweden)

    E. V. Velikanov

    2013-01-01

    Full Text Available Abstract. Our results suggest that the combined use of optical coherent tomography (OCT and fluorescence diagnosis helps to refine the nature and boundaries of the pathological process in the tissue of the colon in ulcerative colitis. Studies have shown that an integrated optical diagnostics allows us to differentiate lesions respectively to histology and to decide on the need for biopsy and venue. This method is most appropriate in cases difficult for diagnosis. 

  8. Integrating optical, mechanical, and test software (with applications to freeform optics)

    Science.gov (United States)

    Genberg, Victor; Michels, Gregory; Myer, Brian

    2017-10-01

    Optical systems must perform under environmental conditions including thermal and mechanical loading. To predict the performance in the field, integrated analysis combining optical and mechanical software is required. Freeform and conformal optics offer many new opportunities for optical design. The unconventional geometries can lead to unconventional, and therefore unintuitive, mechanical behavior. Finite element (FE) analysis offers the ability to predict the deformations of freeform optics under various environments and load conditions. To understand the impact on optical performance, the deformations must be brought into optical analysis codes. This paper discusses several issues related to the integrated optomechanical analysis of freeform optics.

  9. Integrated synchronous receiver channel for optical instrumentation applications

    Science.gov (United States)

    Benten, Harold G. P. H.; Ruotsalainen, Tarmo; Maekynen, Anssi J.; Rahkonen, Timo E.; Kopola, Harri K.

    1997-09-01

    A two-channel synchronous receiver circuit for optical instrumentation applications has been designed and implemented. Each receiver channel comprises a.o. transimpedance preamplifier, voltage amplifiers, programmable feedback networks, and a synchronous detector. The function of the channel is to extract the slowly varying information carrying signal from a modulated carrier which is accompanied by relatively high levels of noise. As a whole, the channel can be characterized as a narrow band filter around the frequency of interest. Medical applications include arterial oxygen saturation (SaO2) measurement and dental pulp vitality measurement. In both cases, two optical signals with different frequencies are received by a single photodiode. The measured performance of the optical receiver shows its suitability for the above mentioned applications. Therefore the circuit will be used in a small sized, battery-operated sensor prototype to test the sensing method in a clinical environment. Other applications include the signal processing of optical position-sensitive detectors. A summary of measured receiver channel performance: input reduced noise current spectral density between 0.20 and 0.30 pA/(root)Hz at all relevant frequencies, total programmable channel transimpedance between 7 M(Omega) and 500 M(Omega) , lower -3 dB frequency of at least 50 Hz, upper -3 dB frequency of 40 kHz, maximum voltage swing at the demodulator output of 2.4 V.

  10. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  11. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  12. Atomic force microscope with integrated optical microscope for biological applications

    OpenAIRE

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a specific biological object of interest. Here an AFM is presented which has an incorporated inverted optical microscope. The optical image from the optical microscope is not obscured by the cantilever...

  13. ISOGA: Integrated Services Optical Grid Architecture for Emerging E-Science Collaborative Applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliver Yu

    2008-11-28

    This final report describes the accomplishments in the ISOGA (Integrated Services Optical Grid Architecture) project. ISOGA enables efficient deployment of existing and emerging collaborative grid applications with increasingly diverse multimedia communication requirements over a wide-area multi-domain optical network grid; and enables collaborative scientists with fast retrieval and seamless browsing of distributed scientific multimedia datasets over a wide-area optical network grid. The project focuses on research and development in the following areas: the polymorphic optical network control planes to enable multiple switching and communication services simultaneously; the intelligent optical grid user-network interface to enable user-centric network control and monitoring; and the seamless optical grid dataset browsing interface to enable fast retrieval of local/remote dataset for visualization and manipulation.

  14. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microscope Integrated Intraoperative Spectral Domain Optical Coherence Tomography for Cataract Surgery: Uses and Applications.

    Science.gov (United States)

    Das, Sudeep; Kummelil, Mathew Kurian; Kharbanda, Varun; Arora, Vishal; Nagappa, Somshekar; Shetty, Rohit; Shetty, Bhujang K

    2016-05-01

    To demonstrate the uses and applications of a microscope integrated intraoperative Optical Coherence Tomography in Micro Incision Cataract Surgery (MICS) and Femtosecond Laser Assisted Cataract Surgery (FLACS). Intraoperative real time imaging using the RESCAN™ 700 (Carl Zeiss Meditec, Oberkochen, Germany) was done for patients undergoing MICS as well as FLACS. The OCT videos were reviewed at each step of the procedure and the findings were noted and analyzed. Microscope Integrated Intraoperative Optical Coherence Tomography was found to be beneficial during all the critical steps of cataract surgery. We were able to qualitatively assess wound morphology in clear corneal incisions, in terms of subclinical Descemet's detachments, tears in the inner or outer wound lips, wound gaping at the end of surgery and in identifying the adequacy of stromal hydration, for both FLACS as well as MICS. It also enabled us to segregate true posterior polar cataracts from suspected cases intraoperatively. Deciding the adequate depth of trenching was made simpler with direct visualization. The final position of the intraocular lens in the capsular bag and the lack of bioadhesivity of hydrophobic acrylic lenses were also observed. Even though Microscope Integrated Intraoperative Optical Coherence Tomography is in its early stages for its application in cataract surgery, this initial assessment does show a very promising role for this technology in the future for cataract surgery both in intraoperative decision making as well as for training purposes.

  16. Integrated Optical Circuit Engineering

    Science.gov (United States)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  17. Optimization of an integrated optic broadband duplexer for 0.8/1.3-micrometer applications

    Science.gov (United States)

    Ghibaudo, Elise; Broquin, Jean-Emmanuel; Benech, Pierre

    2003-06-01

    These last years, the growth of data traffic has increased the interest for broadband integrated optic devices. Their applications include, for example, the fiber communications on a single fiber by adding the transmission capacity of two optical telecommunication windows for Local Area Networks (LAN) and Wide Area Networks (WAN) or by combining pump and signal wavelenghts in rare earth doped intergrated optical amplifiers. A promising technology to realize those devices is ion-exchange on glass. Indeed, it allows the integration of different functions in a glass substrate with efficient results and a better compatibility in fiber systems with a low cost. We propose in this paper an original broadband duplexer based on a leaky structure. First, the physical principle of the component is explained. The core of the structure is a leaky zone which involves a non-resonant coupling and ensures a broadband spectral behavior to the component. Then, the broadband duplexer is presented and the focus is specially made on the improvement of the outputs crosstalk through the suppression of parasitical back reflections. Theoretical optimization and validation by simulations are presented. Finally, perspectives of this work are proposed.

  18. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  19. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  20. Lab-on-a-chip systems with integrated optics for biochemical applications

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gustafsson, O; Nunes, Pedro

    2008-01-01

    Two different applications that take advantage of integrated planar waveguides will be shown. The first example is a silicon chips for capillary electrochromatography (CEC), where the fluidic part contains electrically insulated channels with an injection cross and a chromatography column...

  1. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2005-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  2. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2000-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  3. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    International Nuclear Information System (INIS)

    Butement, Jonathan T; Rowe, David J; Sessions, Neil P; Hua, Ping; Murugan, G Senthil; Wilkinson, James S; Clark, Owain; Chad, John E; Hunt, Hamish C

    2016-01-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µ m fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated. (paper)

  4. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, Daniel, E-mail: daniel.chemisana@macs.udl.cat [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain); Ignasi Rosell, Joan [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain)

    2011-09-15

    Highlights: {yields} The designed concentrator has an important potential for building integration. {yields} The device concentrates radiation toward a static receiver. {yields} Tracking performed by a single driver, representing an important mechanical advantage. {yields} The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  5. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    International Nuclear Information System (INIS)

    Chemisana, Daniel; Ignasi Rosell, Joan

    2011-01-01

    Highlights: → The designed concentrator has an important potential for building integration. → The device concentrates radiation toward a static receiver. → Tracking performed by a single driver, representing an important mechanical advantage. → The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  6. Integrated Optical Circuit Engineering For Optical Fiber Gyrocopes

    Science.gov (United States)

    Bristow, Julian P.; We, Albert C.; Keur, M.; Lukas, Greg; Ott, Daniel M...; Sriram, S.

    1988-03-01

    Fiber optic gyroscopes are of interest for low-cost, high performance rotation sensors. Integrated optical implementations of the processing optics offer the hope of mass-production, and associated cost reductions. The development of a suitable integrated optical system has been reported by other authors at a wavelength of 850nm [1]. Despite strong technical advantages at 1.3μm wavelength [2], no results have yet appeared. This wavelength is preferred for telecommunications applications applications, thus significantly reduced fiber costs may be realized. Lithium niobate is relatively immune from the photorefractive effect at this wavelength, whereas it is not at at 850nm [3].

  7. Integrated Optical Information Processing

    Science.gov (United States)

    1988-08-01

    applications in optical disk memory systems [91. This device is constructed in a glass /SiO2/Si waveguide. The choice of a Si substrate allows for the...contact mask) were formed in the photoresist deposited on all of the samples, we covered the unwanted gratings on each sample with cover glass slides...processing, let us consider TeO2 (v, = 620 m/s) as a potential substrate for applications requiring large time delays. This con- sideration is despite

  8. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  9. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  10. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  11. High quality ZnO layers with adjustable refractive indices for integrated optics applications

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Gardeniers, Johannes G.E.

    1995-01-01

    Thin (approx. 1 μm) crystalline ZnO films with a good optical quality and a good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high

  12. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  13. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  14. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  15. Fully integrated optical system for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Balslev, Søren; Olsen, Brian Bilenberg; Geschke, Oliver

    2004-01-01

    We present a lab-on-a-chip device featuring a microfluidic dye laser, wave-guides, microfluidic components and photo-detectors integrated on the chip. The microsystem is designed for wavelength selective absorption measurements in the visible range on a fluidic sample, which can be prepared....../mixed on-chip. The laser structures, wave-guides and micro-fluidic handling system are defined in a single UV-lithography step on a 10 μm thick SU-8 layer on top of the substrate. The SU-8 structures are sealed by a Borofloat glass lid, using polymethylmethacrylate (PMMA) adhesive bonding....

  16. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  17. Integrated optics theory and technology

    CERN Document Server

    Hunsperger, Robert G

    1984-01-01

    Our intent in producing this book was to provide a text that would be comprehensive enough for an introductory course in integrated optics, yet concise enough in its mathematical derivations to be easily readable by a practicing engineer who desires an overview of the field. The response to the first edition has indeed been gratifying; unusually strong demand has caused it to be sold out during the initial year of publication, thus providing us with an early opportunity to produce this updated and improved second edition. This development is fortunate, because integrated optics is a very rapidly progressing field, with significant new research being regularly reported. Hence, a new chapter (Chap. 17) has been added to review recent progress and to provide numerous additional references to the relevant technical literature. Also, thirty-five new problems for practice have been included to supplement those at the ends of chapters in the first edition. Chapters I through 16 are essentially unchanged, except for ...

  18. Integrated optical circuits for numerical computation

    Science.gov (United States)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  19. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  20. Electrical and optical properties of gold nanoparticles: applications in gold nanoparticles-cholesterol oxidase integrated systems for cholesterol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Urmila; Goswami, Pranab, E-mail: pgoswami@iitg.ernet.in [Indian Institute of Technology Guwahati, Department of Biotechnology (India)

    2012-03-15

    We describe here the application of electrical and optical properties of gold nanoparticles (AuNPs) in conjunction with cholesterol oxidase (ChOx) for cholesterol estimation. The electrocatalytic property of AuNPs was studied with spectrophotometric technique using a redox dye 2,6-dichloroindophenol (DCPIP), where AuNPs found to increase the electron transfer rate between ChOx and DCPIP by {approx}1.68-fold. This study demonstrated AuNPs as efficient electron transfer mediator for ChOx based electrochemical cholesterol biosensors. Optocatalytic property of AuNPs was used in the AuNPs seed mediated enlargement system to develop an optical detection path for cholesterol. This optical method exhibited a linear detection range of 0.01-0.1 mM and a detection limit of 10 {mu}M cholesterol. The effect of AuNPs size (13-21 nm) on the catalytic properties of AuNPs was also studied. Spectrophotometric analysis of the electron transfer process between ChOx and DCPIP with different sized AuNPs showed highest electron transfer efficiency with smaller (13 nm) AuNPs. The electrochemical bioelectrode fabricated with AuNPs and ChOx gave consensus results. Contrastingly, AuNPs size did not affect its optocatalytic activity and eventually the performance of the optical method based on the growth of AuNPs. The findings of the present study offer useful insight and perspectives for fabricating highly sensitive analytical systems based on AuNPs-ChOx complexes.

  1. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  2. Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications.

    Science.gov (United States)

    Bastos, Ana R; Vicente, Carlos M S; Oliveira-Silva, Rui; Silva, Nuno J O; Tacão, Marta; Costa, João P da; Lima, Mário; André, Paulo S; Ferreira, Rute A S

    2018-03-12

    The development of portable low-cost integrated optics-based biosensors for photonics-on-a-chip devices for real-time diagnosis are of great interest, offering significant advantages over current analytical methods. We report the fabrication and characterization of an optical sensor based on a Mach-Zehnder interferometer to monitor the growing concentration of bacteria in a liquid medium. The device pattern was imprinted on transparent self-patternable organic-inorganic di-ureasil hybrid films by direct UV-laser, reducing the complexity and cost production compared with lithographic techniques or three-dimensional (3D) patterning using femtosecond lasers. The sensor performance was evaluated using, as an illustrative example, E. coli cell growth in an aqueous medium. The measured sensitivity (2 × 10 -4 RIU) and limit of detection (LOD = 2 × 10 -4 ) are among the best values known for low-refractive index contrast sensors. Furthermore, the di-ureasil hybrid used to produce this biosensor has additional advantages, such as mechanical flexibility, thermal stability, and low insertion losses due to fiber-device refractive index mismatch (~1.49). Therefore, the proposed sensor constitutes a direct, compact, fast, and cost-effective solution for monitoring the concentration of lived-cells.

  3. Applications of optical imaging

    International Nuclear Information System (INIS)

    Schellenberger, E.

    2005-01-01

    Optical imaging in the form of near infrared fluorescence and bioluminescence has proven useful for a wide range of applications in the field of molecular imaging. Both techniques provide a high sensitivity (in the nanomolar range), which is of particular importance for molecular imaging. Imaging with near infrared fluorescence is especially cost-effective and can be performed, in contrast to radioactivity-based methods, with fluorescence dyes that remain stable for months. The most important advantage of bioluminescence, in turn, is the lack of background signal. Although molecular imaging with these techniques is still in the experimental phase, an application of near infrared fluorescence is already foreseeable for the imaging of superficial structures. (orig.)

  4. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NARCIS (Netherlands)

    Akça, B.I.; Povazay, B.; Chang, Lantian; Alex, A.; Worhoff, Kerstin; de Ridder, R.M.; Drexler, W.; Pollnau, Markus

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated

  5. Theory of absorption integrated optical sensor of gaseous materials

    Science.gov (United States)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  6. A novel Silicon Photomultiplier with bulk integrated quench resistors: utilization in optical detection and tracking applications for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovics, Stefan, E-mail: stp@hll.mpg.de [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Andricek, Ladislav [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Diehl, Inge; Hansen, Karsten [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Jendrysik, Christian [Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg (Germany); Krueger, Katja [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Lehmann, Raik; Ninkovic, Jelena [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Reckleben, Christian [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Richter, Rainer; Schaller, Gerhard; Schopper, Florian [Halbleiterlabor der Max-Planck Gesellschaft, Otto-Hahn-Ring 6, D-81739 Munich (Germany); Sefkow, Felix [DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2017-02-11

    Silicon Photomultipliers (SiPMs) are a promising candidate for replacing conventional photomultiplier tubes (PMTs) in many applications, thanks to ongoing developments and advances in their technology. Conventional SiPMs are generally an array of avalanche photo diodes, operated in Geiger mode and read out in parallel, thus leading to the necessity of a high ohmic quenching resistor. This resistor enables passive quenching and is usually located on top of the array, limiting the fill factor of the device. In this paper, a novel detector concept with a bulk integrated quenching resistor will be recapped. In addition, due to other advantages of this novel detector design, a new concept, in which these devices will be utilized as tracking detectors for particle physics applications will be introduced, as well as first simulation studies and experimental measurements of this new approach. - Highlights: • A novel SiPM concept with bulk integrated quenching resistor is shown. • First prototypes of these SiPMs as tracking detectors are proposed. • Simulations of the Geiger efficiency suggest feasible operations at low overbias. • First measurements of the electron detection efficiency show promising results. • Measurements are in good agreement with the simulations.

  7. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  8. Integrated optical delay lines for time-division multiplexers

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Kleijn, E.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this paper, we present a study of integrated optical delay lines (DLs) for application in optical time-division multiplexers. The investigated DLs are formed by spirally folded waveguides. The components were designed in a generic approach and fabricated in multi-project wafer runs on an

  9. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  10. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  11. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  12. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  13. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  14. Integrated optical circuit comprising a polarization convertor

    NARCIS (Netherlands)

    1998-01-01

    An integrated optical circuit includes a first device and a second device, which devices are connected by a polarization convertor. The polarization convertor includes a curved section of a waveguide, integrated in the optical circuit. The curved section may have several differently curved

  15. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  16. Miniaturised optical sensors for industrial applications

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Hanson, Steen Grüner

    2010-01-01

    . The technology is based on compact and low-cost laser sources such as Vertical Cavity Surface Emitting Lasers (VCSELs). The methods characterise the object motion by speckle translation in the near field (imaging) or far field (optical Fourier transform) by optical spatial filtering velocimetry. The volume...... of the two optical solutions is less than 1 cm3, including the application specific integrated circuit (ASIC), which processes the data and interfaces a PC/Laptop directly via a USB driver. The sensors are designed for working distances of 2 and 12 mm for near field and far field, respectively. We...

  17. Optical tweezers principles and applications

    CERN Document Server

    Jones, Philip; Volpe, Giovanni

    2015-01-01

    Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, dig...

  18. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  19. Integration of micro-optics and microfluidics in a glass chip by fs-laser for optofluidic applications

    Science.gov (United States)

    Osellame, Roberto; Martinez, Rebeca; Laporta, Paolo; Ramponi, Roberta; Cerullo, Giulio

    2009-02-01

    A lab-on-a-chip (LOC) is a device that incorporates in a single substrate the functionalities of a biological laboratory, i.e. a network of fluidic channels, reservoirs, valves, pumps and sensors, all with micrometer dimensions. Its main advantages are the possibility of working with small samples quantities (from nano- to picoliters), high sensitivity, speed of analysis and the possibility of measurement automation and standardization. They are becoming the most powerful tools of analytical chemistry with a broad application in life sciences, biotechnology and drug development. The next technological challenge of LOCs is direct on-chip integration of photonic functionalities for sensing of biomolecules flowing in the microchannels. Ultrafast laser processing of the bulk of a dielectric material is a very flexible and simple method to produce photonic devices inside microfluidic chips for capillary electrophoresis (CE) or chemical microreactors. By taking advantage of the unique three-dimensional capabilities of this fabrication technique, more complex functionalities, such as splitters or Mach-Zehnder interferometers, can be implemented. In this work we report on the use of femtosecond laser pulses to fabricate photonic devices (as waveguides, splitters and interferometers) inside commercial CE chips, without affecting the manufacturing procedure of the microfluidic part of the device. The fabrication of single waveguides intersecting the channels allows one to perform absorption or Laser Induced Fluorescence (LIF) sensing of the molecules separated inside the microchannels. Waveguide splitters are used for multipoint excitation of the microfluidic channel for parallel or higher sensitivity measurements. Finally, Mach-Zehnder interferometers are used for label-free sensing of the samples flowing in the microfluidic channels by means of refractive index changes detection.

  20. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  1. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  2. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  3. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  4. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  5. International Symposium on Optics and its Applications (OPTICS-2011)

    Science.gov (United States)

    Bhattacherjee, Aranya B.; Calvo, Maria L.; Kazaryan, Eduard M.; Papoyan, Aram V.; Sarkisyan, Hayk A.

    2012-03-01

    OPTICS Logo PREFACE The papers selected for this volume were reported at the International Symposium 'Optics and its applications' (OPTICS-2011, Yerevan & Ashtarak, Armenia, September 5-9, 2011), http://www.ipr.sci.am/optics2011/. The Symposium was organized by the SPIE Armenian Student Chapter and major Armenian R&D organizations, universities and industrial companies working in the field of basic and applied optics: Institute for Physical Research of the National Academy of Sciences of Armenia, Yerevan State University, Russian-Armenian (Slavonic) University, and LT-PYRKAL Closed Joint Stock Company. OPTICS-2011 was primarily intended to support and promote the involvement of students and young scientists in various fields of modern optics, giving them the possibility to attend invited talks by prominent scientists and to present and discuss their own results. Furthermore, the Symposium allowed foreign participants from 14 countries to become acquainted with the achievements of optical science and technology in Armenia, which became a full member of the International Commission for Optics (ICO) in 2011. To follow this concept, the Symposium sessions were held in various host institutions. The creative and friendly ambience established at OPTICS-2011 promoted further international collaboration in the field and motivated many students to take up research in optics and photonics as a career. This volume of Journal of Physics: Conference Series covers thematic sections of the Symposium (both oral and poster), which represent the main fields of interest in optics for Armenian scientists: quantum optics & information, laser spectroscopy, optical properties of nanostructures, photonics & fiber optics, and optics of liquid crystals. Such wide coverage is consistent with the general scope of the Symposium, allowing all the students involved in optics to present, discuss and publish their recent results, and for those who are making their first steps in science to choose

  6. All-optically integrated photoacoustic and optical coherence tomography: A review

    Directory of Open Access Journals (Sweden)

    Wei Qiao

    2017-07-01

    Full Text Available All-optically integrated photoacoustic (PA and optical coherence tomography (OCT dual-mode imaging technology that could offer comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years. This review refers to the technology aspects of all-optical PA detection and system evolution of optically integrated PA and OCT, including Michelson interferometer dual-mode imaging system, Fabry–Perot (FP interferometer dual-mode imaging system and Mach–Zehnder interferometer dual-mode imaging system. It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.

  7. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  8. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  9. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  10. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  11. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  12. Integrated optical circuit engineering IV; Proceedings of the Meeting, Cambridge, MA, Sept. 16, 17, 1986

    Science.gov (United States)

    Mentzer, Mark A.; Sriram, S.

    The design and implementation of integrated optical circuits are discussed in reviews and reports. Topics addressed include lithium niobate devices, silicon integrated optics, waveguide phenomena, coupling considerations, processing technology, nonlinear guided-wave optics, integrated optics for fiber systems, and systems considerations and applications. Also included are eight papers and a panel discussion from an SPIE conference on the processing of guided-wave optoelectronic materials (held in Los Angeles, CA, on January 21-22, 1986).

  13. Applied optics fundamentals and device applications nano, MOEMS, and biotechnology

    CERN Document Server

    Mentzer, Mark

    2011-01-01

    How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines

  14. Optical amplification in photonic integrated circuits

    NARCIS (Netherlands)

    Pollnau, Markus

    The recent results in the field of fabrication, characterization, and applications of optical waveguides in doped hard crystalline materials, specifically in Ti-doped sapphire and Yb-doped $KY(WO_4)_2$, are reviewed.

  15. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    Science.gov (United States)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  16. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  17. Integration of spectral domain optical coherence tomography with microperimetry generates unique datasets for the simultaneous identification of visual function and retinal structure in ophthalmological applications

    Science.gov (United States)

    Koulen, Peter; Gallimore, Gary; Vincent, Ryan D.; Sabates, Nelson R.; Sabates, Felix N.

    2011-06-01

    Conventional perimeters are used routinely in various eye disease states to evaluate the central visual field and to quantitatively map sensitivity. However, standard automated perimetry proves difficult for retina and specifically macular disease due to the need for central and steady fixation. Advances in instrumentation have led to microperimetry, which incorporates eye tracking for placement of macular sensitivity values onto an image of the macular fundus thus enabling a precise functional and anatomical mapping of the central visual field. Functional sensitivity of the retina can be compared with the observed structural parameters that are acquired with high-resolution spectral domain optical coherence tomography and by integration of scanning laser ophthalmoscope-driven imaging. Findings of the present study generate a basis for age-matched comparison of sensitivity values in patients with macular pathology. Microperimetry registered with detailed structural data performed before and after intervention treatments provides valuable information about macular function, disease progression and treatment success. This approach also allows for the detection of disease or treatment related changes in retinal sensitivity when visual acuity is not affected and can drive the decision making process in choosing different treatment regimens and guiding visual rehabilitation. This has immediate relevance for applications in central retinal vein occlusion, central serous choroidopathy, age-related macular degeneration, familial macular dystrophy and several other forms of retina related visual disability.

  18. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  19. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  20. Pigtailing of integrated optical components

    DEFF Research Database (Denmark)

    Zenth, Karin

    2001-01-01

    , but also a silicon motherboard for laser diode pigtailing and a Variable Optical Attenuator have been realized. The pigtailing method consists of three major parts: a waveguide chip with alignment trenches, a fiber array with alignment trenches, and a top plate with alignment rails. The top plate aligns....... The fiber array carrier and the top plate are fabricated by potassium hydroxide (KOH) etching. A method to align the mask pattern to the crystal orientation of the silicon substrate has been implemented. The impact of the etch of the nitride layer, used as an etch mask in KOH, on the line widths...... of the critical structures has been studied. The influence of the process parameters of a RIE etch process has been investigated with respect to the etch rate uniformity. After processing the variation of the line widths of the critical structures on the fiber array carrier and the top plate is determined...

  1. How complex can integrated optical circuits become?

    NARCIS (Netherlands)

    Smit, M.K.; Hill, M.T.; Baets, R.G.F.; Bente, E.A.J.M.; Dorren, H.J.S.; Karouta, F.; Koenraad, P.M.; Koonen, A.M.J.; Leijtens, X.J.M.; Nötzel, R.; Oei, Y.S.; Waardt, de H.; Tol, van der J.J.G.M.; Khoe, G.D.

    2007-01-01

    The integration scale in Photonic Integrated Circuits will be pushed to VLSI-level in the coming decade. This will bring major changes in both application and manufacturing. In this paper developments in Photonic Integration are reviewed and the limits for reduction of device demensions are

  2. Abel integral equations analysis and applications

    CERN Document Server

    Gorenflo, Rudolf

    1991-01-01

    In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equatio...

  3. Focus on integrated quantum optics

    International Nuclear Information System (INIS)

    O'Brien, Jeremy; Patton, Brian; Sasaki, Masahide; Vučković, Jelena

    2013-01-01

    A key goal of research into quantum information processing is the development of technologies that are scaleable in complexity while allowing the mass manufacture of devices that promise transformative effects on information science. The demonstration that integrated photonics circuits could be made to perform operations that exploit the quantum nature of the photon has turned them into leading candidates for practical quantum information processing technologies. To fully achieve their promise, however, requires research from diverse fields. This focus issue provides a snapshot of some of the areas in which key advances have been made. We are grateful for the contributions from leading teams based around the globe and hope that the degree of progress being made in a challenging and exciting field is apparent from the papers published here. (editorial)

  4. Integrated optical sensors for the chemical domain

    NARCIS (Netherlands)

    Lambeck, Paul

    2006-01-01

    During the last decade there has been a rapidly growing interest in integrated optical (IO) sensors, expecially because many of them principally allow for sensitive, real time, label-free-on-site measurements of the concentration of (bio-)chemical species. This review aims at giving an overview of

  5. Progress in high index contrast integrated optics

    NARCIS (Netherlands)

    Baets, R.G.F.; Bienstman, P.; Bogaerts, W.; Brouckaert, J.; De Backere, P.; Dumon, P.; Roelkens, G.; Scheerlinck, S.; Smit, M.K.; Taillaert, D.; Van Campenhout, J.; Van Laere, F.; Thourhout, Van D.

    2007-01-01

    A large fraction of the recent innovation in integrated optics is enabled by the use of high index contrast structures and devices. The strong confinement achievable in such devices allows for dramatic performance benefits and downscaling. In this paper the progress in this field is reviewed.

  6. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    Science.gov (United States)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  7. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se...... is presented and an optimized device design is proposed. The devices have been fabricated and tested optically and preliminary interrogations of the output quantum noise have been performed....

  8. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  9. Materials and integration schemes for above-IC integrated optics

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Rangarajan, B.; Kovalgin, Alexeij Y.

    2014-01-01

    A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon

  10. Solar receiver with integrated optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  11. Performing derivative and integral operations for optical waves with optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)

    2016-12-01

    The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.

  12. Modular initiator with integrated optical diagnostic

    Science.gov (United States)

    Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  13. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.

  14. Integrated optical interrogation of micro-structures

    Science.gov (United States)

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  15. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... wavelength from temperature and refractive index changes in the surroundings is investigated, pointing towards the use of the described fabrication method for on-chip polymer sensor systems....

  16. Integrated optical circuit engineering V; Proceedings of the Meeting, San Diego, CA, Aug. 17-20, 1987

    Science.gov (United States)

    Mentzer, Mark A.

    Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.

  17. Interferometric interrogation concepts for integrated electro-optical sensor systems

    NARCIS (Netherlands)

    Ikkink, T.J.; Ikkink, Teunis Jan

    1998-01-01

    Integrated optical sensors have a high potential in the measurement of a large variety of measurands. Research on integrated optical sensors enjoys increasing interest. In order to reach accurate performance and to facilitate the use of integrated optical sensors, electronic functions for sensor

  18. Distributed optical fiber sensors for integrated monitoring of railway infrastructures

    Science.gov (United States)

    Minardo, Aldo; Coscetta, Agnese; Porcaro, Giuseppe; Giannetta, Daniele; Bernini, Romeo; Zeni, Luigi

    2014-05-01

    We propose the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured dynamically along a 60 meters length of rail track, as well as along a 3-m stone arch bridge. The results indicate that distributed sensing technology is able to provide useful information in railway traffic and safety monitoring.

  19. Fluorescence monitoring of capillary electrophoresis separation of biomolecules with monolithically integrated optical waveguides

    NARCIS (Netherlands)

    Dongre, C.; Dekker, R.; Hoekstra, Hugo; Martinez-Vazquez, R.; Osellame, R.; Ramponi, R.; Cerullo, G.; van Weeghel, R.; Besselink, G.A.J.; van den Vlekkert, H.H.; Pollnau, Markus

    2009-01-01

    Monolithic integration of optical waveguides in a commercial lab-on-a-chip by femtosecond-laser material processing enables arbitrary 3D geometries of optical sensing structures in combination with fluidic microchannels. Integrated fluorescence monitoring of molecular separation, as applicable in

  20. Information Optics and Photonics Algorithms, Systems, and Applications

    CERN Document Server

    Javidi, Bahram

    2010-01-01

    This book addresses applications, recent advances, and emerging areas in fields with applications in information optics and photonics systems. The objective of this book is to illustrate and discuss novel approaches, analytical techniques, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information using free space optics and photonics. The material in this book concentrates on integration of diverse fields for cross-disciplinary applications including bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on the nano-scale, quantum optics, super resolution imaging, photonics for biological applications, and holographic information systems. As a result, this book is a useful resource for researchers, engineers, and graduate students who work in the diverse fields comprising information optics and photonics.

  1. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  2. Integrating nanophotonic concepts and topics into optics curricula

    Science.gov (United States)

    Sonek, Gregory J.

    2007-06-01

    Nanophotonics has emerged as a new and important field of study, not only in research, but also in undergraduate optics and photonics education and training. Beyond the study of classical and quantum optics, it is important for students to learn about how the flow of light can be manipulated on a nanoscale level, and used in applications such as telecommunications, imaging, and medicine. This paper reports on our work to integrate basic nanophotonic concepts and topics into existing optics and optical electronics courses, as well as independent study projects, at the undergraduate level. Through classroom lectures, topical readings, computer modeling exercises, and laboratory experiments, students are introduced to nanophotonic concepts subsequent to a study of physical and geometrical optics. A compare and contrast methodology is employed to help students identify similarities and differences that exist in the optical behavior of bulk and nanostructured media. Training is further developed through engineering design and simulation exercises that use advanced, vector-diffraction-based, modeling software for simulating the performance of various materials and structures. To date, the addition of a nanophotonics component to the optics curriculum has proven successful, been enthusiastically received by students, and should serve as a basis for further course development efforts that emphasize the combined capabilities of nanotechnology and photonics.

  3. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  4. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... with the integrated control scheme so as to maximize overall network throughput in the integrated network architecture. To the best of our knowledge no load balancing mechanisms, especially based on the Multi-Point Control Protocol (MPCP) defined in the IEEE 802.3ah, have been proposed so far. The major research...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  5. Robust optical sensors for safety critical automotive applications

    Science.gov (United States)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  6. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  7. Integration of optical fibers in radiative environments: Advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Ouerdane, Y.; Boukenter, A.; Marcandella, C.; Bisutti, J.; Baggio, J.; Meunier, J. P.

    2011-01-01

    We review the advantages and limitations for the integration of optical fibers in radiative environments. Optical fibers present numerous advantages for applications in harsh environments such as their electromagnetic immunity. This explains the increasing interest of the radiation effects community to evaluate their vulnerability for future facilities. However, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation. We illustrate the major mechanisms and parameters that govern the degradation mechanism, mainly the radiation-induced attenuation phenomena. We focus on the fiber transient radiation responses when exposed to the pulsed and mixed environment associated with the Megajoule class lasers devoted to the fusion by inertial confinement study. (authors)

  8. Biological applications of novel nonlinear optical microscopy

    International Nuclear Information System (INIS)

    Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi

    2010-01-01

    Two types of newly developed nonlinear optical microscopes namely stimulated parametric emission (SPE) microscope and stimulated Raman scattering (SRS) microscope were presented together with their biological applications.

  9. Integrated Optical Synthetic Aperture Radar Processor.

    Science.gov (United States)

    1987-09-01

    acoustooptic cell was employed to input each radar return into a time-and-space integrating optical architecture comprised of several lenses, a CCD area array...acoustooptic cell and parallel rib waveguide structure. During the course of the literature survey, we became aware of an elegant and poten- tially profound...wave.) scatterer at (f , A(t) is the far-field pattern of the antenna. From the geometry of Si. 1. R can be written as [I-2R,/c - nT1 r(t) = A(nT) rectj

  10. Fibre optic networks for safeguards applications

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Chare, P.; Barrier, A.

    1991-01-01

    The Euratom Safeguards Directorate has recently installed a fibre optic network in a new large scale nuclear facility in the European Communities. The selection, installation and commissioning of the fibre optic network is discussed from the viewpoint of network topology, physical testing, trouble shooting and authentication. The future use of fibre optic networks for safeguards applications is discussed

  11. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  12. Gradient-index optics fundamentals and applications

    CERN Document Server

    Gomez-Reino, Carlos; Bao, Carmen

    2010-01-01

    Gradient-Index (GRIN) optics provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The book can be used both as a classroom text for students in physics and engineering and as a reference for specialists. A description of the phenomena, components and technology used in GRIN Optics are presented. The relationship to lenses, waveguides, optical connections, spatial solitons and vision is demonstrated. Applications of GRIN components and hybrid structures for optical connections, optical sensing and Talbot effect are analyzed.

  13. Integrated optics and optoelectronics II; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    International Nuclear Information System (INIS)

    Wong, Ka-Kha

    1991-01-01

    The present volume on integrated optics and optoelectronics discusses proton- and ion-exchange technologies, radiation effects on GaAs optical system FET devices and on the dynamical behavior of LiNbO3 switching devices, advanced lightwave components and concepts, advanced optical interconnects concepts, advanced aircraft and engine control, IOCs for fiber-optic gyroscopes, and commercial integrated optical devices. Attention is given to integrated optical devices for high-data-rate serial-to-parallel conversion, the design of novel integrated optic devices using depressed index waveguides, and a low-loss L-band microwave fiber-optic link for control of a T/R module. Topics addressed include the temperature and modulation dependence of spectral linewidth in distributed Bragg reflector laser diodes, length-minimization design considerations in photonic integrated circuits incorporating directional couplers, and the photochemical formation of polymeric optical waveguides and devices for optical interconnection applications

  14. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    Buckle, T.H.

    1994-03-01

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  15. An ultra-efficient nonlinear planar integrated platform for optical signal processing and generation

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2017-01-01

    This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed.......This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed....

  16. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  17. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  18. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts

    Science.gov (United States)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 production of the suite of volume phase holographic (VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a

  19. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  20. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  1. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  2. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  3. Integrated optic vector-matrix multiplier

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  4. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  5. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    Science.gov (United States)

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  6. Optical HMI with biomechanical energy harvesters integrated in textile supports

    International Nuclear Information System (INIS)

    De Pasquale, G; De Pasquale, D; Kim, SG

    2015-01-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%. (paper)

  7. Optical HMI with biomechanical energy harvesters integrated in textile supports

    Science.gov (United States)

    De Pasquale, G.; Kim, SG; De Pasquale, D.

    2015-12-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.

  8. Fiber optic sensor applications in field testing

    International Nuclear Information System (INIS)

    Perea, J.A.

    1984-01-01

    Fiber optic sensors (F.O.S.) are defined, and the application of this technology to measuring various phenomonon in diverse and hostile environments are discussed. F.O.S. advantages and disavantages both technically and operationally are summarized. Three sensor techniques - intensity, interferometric, and polarization - are then discussed in some detail. General environmental instrumentation and controls that support the Nuclear Weapons Test Program at the Nevada Test Site are discussed next to provide the reader with a basic understanding of the programmatic task. This will aid in recognizing the various difficulties of the traditional measurement techniques at the NTS and the potential advantages that fiber optic measurement systems can provide. An F.O.S. development program is then outlined, depicting a plan to design and fabricate a prototype sensor to be available for field testing by the end of FY84. We conclude with future plans for further development of F.O.S. to measure more of the desired physical parameters for the Test Program, and to eventually become an integral part of an overall measurement and control system

  9. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  10. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction

    Energy Technology Data Exchange (ETDEWEB)

    Algar, W. Russ; Tavares, Anthony J. [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada)

    2010-07-12

    A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.

  11. Characterization of hybrid integrated all-optical flip-flop

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Seoane, J.; Kehayas, E.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Van Holm-Nielsen, P.; Martinez, J.M.; Herrera Llorente, J.; Ramos, F.; Marti, J.; Avramopoulos, H.; Jeppesen, P.; Koonen, A.M.J.; Poustie, A.; Dorren, H.J.S.

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given

  12. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  13. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.

    2017-01-01

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  14. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.

    2017-11-22

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  15. Editorial European conference on integrated optics (ECIO'10)

    NARCIS (Netherlands)

    Williams, K.A.

    2011-01-01

    This Special Issue contains a selection of extended papers from the Fifteenth European Conference on Integrated Optics held on 7-9 April 2010. The First European Conference on Integrated Optics in the series was held in London, UK thirty years ago, and the conference has been held biannually across

  16. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  17. Optical coherence tomography: Technique and applications

    DEFF Research Database (Denmark)

    Thomsen, Jakob Borup; Sander, Birgit; Mogensen, Mette

    2009-01-01

    Optical coherence tomography (OCT) is a noninvasive optical imaging modality providing real-time video rate images in two and three dimensions of biological tissues with micrometer resolution. OCT fills the gap between ultrasound and confocal microscopy, since it has a higher resolution than...... of retinal diseases. The potential of OCT in many other applications is currently being explored, such as in developmental biology, skin cancer diagnostics, vulnerable plaque detection in cardiology, esophageal diagnostics and a number of other applications within oncology....

  18. Cool application for Optical Fibres

    CERN Multimedia

    2001-01-01

    In a new first for CERN, optical fibres have been put on test to measure very low temperatures. If these tests prove successful, this new technology could lead to important cost-saving changes in the way the temperatures of superconducting magnets are measured. There was excitement in the air last March when the team led by Walter Scandale and Luc Thévenaz tested very low temperature measurement using optical fibres. This spring in CERN's Cryogenics lab an idea was put to the test as a new kind of low-temperature thermometry using optical fibres was tested down to 2 Kelvin (around 300 degrees below room temperature), and the first results are looking good. Optical fibres are well known for their ability to carry large amounts of data around the world, but it is less well known that they can be used for measuring temperatures. The intuition that they might be able to measure very low temperatures - such as those of the LHC magnets - came to the attention of CERN's Walter Scandale at the Optical Fi...

  19. Integrated optical transceiver with electronically controlled optical beamsteering

    Science.gov (United States)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    2017-08-22

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chip also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.

  20. Integral transforms and their applications

    CERN Document Server

    Debnath, Lokenath

    2006-01-01

    Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selecte

  1. Optical Fibre Pressure Sensors in Medical Applications

    Directory of Open Access Journals (Sweden)

    Sven Poeggel

    2015-07-01

    Full Text Available This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  2. Optical Fibre Pressure Sensors in Medical Applications.

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  3. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  4. Optical Fibre Pressure Sensors in Medical Applications

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  5. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  6. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  7. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  8. Triaxial fiber optic magnetic field sensor for MRI applications

    Science.gov (United States)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  9. Optics Communications: Special issue on Polymer Photonics and Its Applications

    Science.gov (United States)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  10. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  11. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  12. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  13. Toward Optical Sensors: Review and Applications

    International Nuclear Information System (INIS)

    Sabri, Naseer; Aljunid, S A; Ahmad, R B; Salim, M S; Kamaruddin, R

    2013-01-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  14. Toward Optical Sensors: Review and Applications

    Science.gov (United States)

    Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.

    2013-04-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  15. DLP technolgy: applications in optical networking

    Science.gov (United States)

    Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul

    2001-11-01

    For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.

  16. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  17. Spiral optical designs for nonimaging applications

    OpenAIRE

    Zamora Herranz, Pablo; Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos; Vilaplana, J.; Buljan, Marina

    2011-01-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect...

  18. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  19. Enterprise Application Integration Using Java Technologies

    Directory of Open Access Journals (Sweden)

    Alexandru BARBULESCU

    2006-01-01

    Full Text Available The current article points out some of the tasks and challenges companies must face in order to integrate their computerized systems and applications and then to place them on the Web. Also, the article shows how the Java 2 Enterprise Edition Platform and architecture helps the Web integration of applications. By offering standardized integration contracts, J2EE Platform allows application servers to play a key role in the process of Web integration of the applications.

  20. Nonlinear optics principles and applications

    CERN Document Server

    Rottwitt, Karsten

    2014-01-01

    IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...

  1. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  2. Crosstalk performance of integrated optical cross-connects

    NARCIS (Netherlands)

    Herben, C.G.P.; Leijtens, X.J.M.; Maat, D.H.P.; Blok, H.; Smit, M.K.

    1999-01-01

    Crosstalk performance of monolithically integrated multiwavelength optical cross-connects (OXC's) depends strongly on their architecture. In this paper, a semiquantitative analysis of crosstalk in 11 different architectures is presented. Two architectures are analyzed numerically in more detail and

  3. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  4. Evaluation of polymer based third order nonlinear integrated optics devices

    NARCIS (Netherlands)

    Driessen, A.; Hoekstra, Hugo; Blom, F.C.; Horst, F.; Horst, F.; Krijnen, Gijsbertus J.M.; van Schoot, J.B.P.; van Schoot, J.B.P.; Lambeck, Paul; Popma, T.J.A.; Diemeer, Mart

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS

  5. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  6. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  7. Microstructured optical fibers - Fundamentals and applications

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    In recent years optical fibers having a complex microstructure in the transverse plane have attracted much attention from both researchers and industry. Such fibers can either guide light through total internal reflection or the photonic bandgap effect. Among the many unique applications offered...... by these fibers are mode guidance in air, highly flexible dispersion engineering, and the use of very heterogeneous material combinations. In this paper, we review the different types and applications of microstructured optical fibers, with particular emphasis on recent advances in the field....

  8. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  9. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  10. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  11. Optical fibers and their instrumentation applications

    International Nuclear Information System (INIS)

    Boisde, Gilbert.

    1982-09-01

    The use of optical fibers in instrumentation requires a knowledge of their properties as ''photon carriers'' and ''sensors''. New instrumentation design implies a satisfactory evaluation of the entire measurement circuit, including the emitter, optical coupling, optical fiber with its physical, spectral and physico-chemical properties, the connector, receiver, signal amplifier and data processing system. An example, is provided of the development of a new technique in physico-chemical instrumentation: remote spectrophotometry. Three aspects are discussed: 1) industrial measurement in ''process control'' using the Telephot (R), 2) remote spectral measurement, 3) opical multiplexing. This is followed by a review of various optical fiber based instrumental techniques used in the fields of medicine (endoscopy, fluorothermy, laser surgery), solar energy industrial applications subject to electrical disturbances (position sensors, strain measurements), and in physico-chemical analysis (fluorescence, redox potentials) [fr

  12. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  13. Continuous Integration in PHP web applications development

    OpenAIRE

    Hujer, Martin

    2011-01-01

    This work deals with continuous integration of web applications, especially those in PHP language. The main objective is the selection of the server for continuous integration, its deployment and configuration for continuous integration of PHP web applications. The first chapter describes the concept of continuous integration and its individual techniques. The second chapter deals with the choice of server for continuous integration and its basic settings. The third chapter contains an overvi...

  14. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  15. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    Science.gov (United States)

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  16. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  17. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Science.gov (United States)

    Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos

    2016-01-01

    Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032

  18. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Directory of Open Access Journals (Sweden)

    Jorge Alamán

    2016-11-01

    Full Text Available Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges.

  19. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  20. Optical rangefinding applications using communications modulation technique

    Science.gov (United States)

    Caplan, William D.; Morcom, Christopher John

    2010-10-01

    A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.

  1. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  2. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector

    NARCIS (Netherlands)

    Lee, M.J.; Youn, J.S.; Park, K.Y.; Choi, W.Y.

    2014-01-01

    We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche

  3. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  4. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  5. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.

    2006-01-01

    the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  6. Integrated optical serializer designed and fabricated in a generic InP based technology

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2012-01-01

    This work presents design and characterization results of an optical pulse serializer, realized as an Application Specific Photonic Integrated Circuit (ASPIC) in a novel, generic InPbased technology and fabricated in a multi-project wafer run. The measurement results show high-speed (32 Gbit/s)

  7. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  8. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  9. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    Directory of Open Access Journals (Sweden)

    Joe-Air Jiang

    2008-03-01

    Full Text Available With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.

  10. Optical polymers for laser medical applications

    Science.gov (United States)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  11. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  12. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    International Nuclear Information System (INIS)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.

  13. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  14. Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

    International Nuclear Information System (INIS)

    ALLERMAN, ANDREW A.; ARNOLD, DON W.; ASBILL, RANDOLPH E.; BAILEY, CHRISTOPHER G.; CARTER, TONY RAY; KEMME, SHANALYN A.; MATZKE, CAROLYN M.; SAMORA, SALLY; SWEATT, WILLIAM C.; WARREN, MIAL E.; WENDT, JOEL R.

    1999-01-01

    The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10(sup -4) M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements

  15. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  16. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    Science.gov (United States)

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  17. Optical design applications for enhanced illumination performance

    Science.gov (United States)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  18. Integrated NEMS and optoelectronics for sensor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  19. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  20. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    Science.gov (United States)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  1. Optical coherence tomography technology and applications

    CERN Document Server

    Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue.  Between 30 to 40 Million OCT imaging procedures are performed per year in ophthalmology.  The overall market is estimated at more than 0.5 Billion USD.  A new generation OCT technology was developed, dramatically increasing resolution and speed, achieving in vivo optical biopsy, i.e. the visualization of tissue architectural morphology in situ and in real time.  Functional extensions of OCT technology enable non-invasive, depth resolved functional assessment and imaging of tissue.  The book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from the biomedical and clinical perspective. This second edition is widely extended and covers significantly more topics then the first edition of this book. The chapters are written leading intern...

  2. Integrated systems innovations and applications

    CERN Document Server

    2015-01-01

    This book presents the results of discussions and presentation from the latest ISDT event (2014) which was dedicated to the 94th birthday anniversary of Prof. Lotfi A. Zade, father of Fuzzy logic. The book consists of three main chapters, namely: Chapter 1: Integrated Systems Design Chapter 2: Knowledge, Competence and Business Process Management Chapter 3: Integrated Systems Technologies Each article presents novel and scientific research results with respect to the target goal of improving our common understanding of KT integration.

  3. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  4. Uni- and omnidirectional simulation tools for integrated optics

    NARCIS (Netherlands)

    Stoffer, Remco

    2001-01-01

    This thesis presents several improvements on simulation methods in integrated optics, as well as some new methods. Both uni- and omnidirectional tools are presented; for the unidirectional methods, the emphasis is on higher-order accuracy; for the omnidirectional methods, the boundary conditions are

  5. Designing neutral-atom nanotraps with integrated optical waveguides

    International Nuclear Information System (INIS)

    Burke, James P. Jr.; Chu, S.-T.; Bryant, Garnett W.; Williams, C.J.; Julienne, P.S.

    2002-01-01

    Integrated optical structures offer the intriguing potential of compact, reproducible waveguide arrays, rings, Y junctions, etc., that could be used to design evanescent field traps to transport, store, and interact atoms in networks as complicated as any integrated optical waveguide circuit. We theoretically investigate three approaches to trapping atoms above linear integrated optical waveguides. A two-color scheme balances the decaying evanescent fields of red- and blue-detuned light to produce a potential minimum above the guide. A one-color surface trap proposal uses blue-detuned light and the attractive surface interaction to provide a potential minimum. A third proposal uses blue-detuned light in two guides positioned above and below one another. The atoms are confined to the 'dark' spot in the vacuum gap between the guides. We find that all three approaches can be used to trap atoms in two or three dimensions with approximately 100 mW of laser power. We show that the dark spot guide is robust to light scatter and provides the most viable approach for constructing integrated optical circuits that could be used to transport and manipulate atoms in a controlled manner

  6. Optical dichroism: E1-M1 integral relations

    International Nuclear Information System (INIS)

    Marri, Ivan; Carra, Paolo; Bertoni, C M

    2006-01-01

    The present paper discusses optical dichroism in noncentrosymmetric systems. The cases of circular and linear polarizations are considered. Integrated spectra are interpreted using effective two-electron operators, which are derived within a localized (atomic) model. As a consequence, our theory is not suitable for quantitative predictions; nevertheless, it identifies microscopic origins of natural, nonreciprocal and Jones' dichroisms

  7. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  8. Carbon Nanomaterials for Optical Absorber Applications

    Directory of Open Access Journals (Sweden)

    Anupama KAUL

    2011-12-01

    Full Text Available Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs, synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to the benchmark, a diffuse metal black - Au-black - from wavelength l ~ 350 nm – 2500 nm. The reflectance of the MWCNT arrays was measured to be as low as 0.02 % at 2 mm in the infra-red (IR. Growth conditions were optimized for the realization of high-areal density arrays of MWCNTs using a plasma-based chemical vapor deposition (CVD process. Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

  9. Spiral optical designs for nonimaging applications

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan; Buljan, Marina

    2011-10-01

    Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.

  10. Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission.

    Science.gov (United States)

    Quoc Ngo, Nam

    2007-10-15

    We present a theoretical study of a new application of a simple pi-phase-shifted fiber Bragg grating (PSFBG) in transmission mode as a high-speed optical temporal integrator. The PSFBG consists of two concatenated identical uniform FBGs with a pi phase shift between them. When the reflectivities of the FBGs are extremely close to 100%, the transmissive PSFBG can perform the time integral of the complex envelope of an arbitrary input optical signal with high accuracy. As an example, the integrator is numerically shown to be able to convert an input Gaussian pulse into an optical step signal.

  11. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  12. Integrating CLIPS applications into heterogeneous distributed systems

    Science.gov (United States)

    Adler, Richard M.

    1991-01-01

    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  13. Optical-based smart structures for tamper-indicating applications

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Simmons, K.L.; Undem, H.A.

    1996-11-01

    This report is a compilation of several related projects performed from 1991 through 1996 concerning the design, construction, and application of optical-based smart structure to tamper-indicating and sensing secure containers. Due to several influences, the projects were carried through to varying degrees of completion. Cancellation of the overall project at the client level motivated the authors to gather all of the technology and ideas about smart structures developed during these several projects, whether completed or just conceptualized, into one document. Although each section individually discusses a specific project, the overall document is written chronologically with each successive section showing how increased smart structure complexity was integrated into the container

  14. Inverse optical design and its applications

    Science.gov (United States)

    Sakamoto, Julia Angela

    We present a new method for determining the complete set of patient-specific ocular parameters, including surface curvatures, asphericities, refractive indices, tilts, decentrations, thicknesses, and index gradients. The data consist of the raw detector outputs of one or more Shack-Hartmann wavefront sensors (WFSs); unlike conventional wavefront sensing, we do not perform centroid estimation, wavefront reconstruction, or wavefront correction. Parameters in the eye model are estimated by maximizing the likelihood. Since a purely Gaussian noise model is used to emulate electronic noise, maximum-likelihood (ML) estimation reduces to nonlinear least-squares fitting between the data and the output of our optical design program. Bounds on the estimate variances are computed with the Fisher information matrix (FIM) for different configurations of the data-acquisition system, thus enabling system optimization. A global search algorithm called simulated annealing (SA) is used for the estimation step, due to multiple local extrema in the likelihood surface. The ML approach to parameter estimation is very time-consuming, so rapid processing techniques are implemented with the graphics processing unit (GPU). We are leveraging our general method of reverse-engineering optical systems in optical shop testing for various applications. For surface profilometry of aspheres, which involves the estimation of high-order aspheric coefficients, we generated a rapid raytracing algorithm that is well-suited to the GPU architecture. Additionally, reconstruction of the index distribution of GRIN lenses is performed using analytic solutions to the eikonal equation. Another application is parameterized wavefront estimation, in which the pupil phase distribution of an optical system is estimated from multiple irradiance patterns near focus. The speed and accuracy of the forward computations are emphasized, and our approach has been refined to handle large wavefront aberrations and nuisance

  15. Ray and wave optics of integrable and stochastic systems

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1979-07-01

    The generalization of WKB methods to more than one dimension is discussed in terms of the integrability or non-integrability of the geometrical optics (ray Hamiltonian) system derived in the short-wave approximation. In the two-dimensional case the ray trajectories are either regular or stochastic, and the qualitative differences between these types of motion are manifested in the characteristics of the spectra and eigenfunctions. These are examined for a model system which may be integrable or stochastic, depending on a single parameter

  16. Complete achromatic and robustness electro-optic switch between two integrated optical waveguides

    Science.gov (United States)

    Huang, Wei; Kyoseva, Elica

    2018-01-01

    In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.

  17. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  18. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    Science.gov (United States)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  19. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  20. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  1. Integration of services into workflow applications

    CERN Document Server

    Czarnul, Pawel

    2015-01-01

    Describing state-of-the-art solutions in distributed system architectures, Integration of Services into Workflow Applications presents a concise approach to the integration of loosely coupled services into workflow applications. It discusses key challenges related to the integration of distributed systems and proposes solutions, both in terms of theoretical aspects such as models and workflow scheduling algorithms, and technical solutions such as software tools and APIs.The book provides an in-depth look at workflow scheduling and proposes a way to integrate several different types of services

  2. Techniques and applications of path integration

    CERN Document Server

    Schulman, L S

    2005-01-01

    A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra

  3. Micro optical sensor systems for sunsensing applications

    Science.gov (United States)

    Leijtens, Johan; de Boom, Kees

    2017-11-01

    Optimum application of micro system technologies allows building small sensor systems that will alter procurement strategies for spacecraft manufacturers. One example is the decreased size and cost for state of the art sunsensors. Integrated sensor systems are being designed which, through use of microsystem technology, are an order of magnitutde smaller than most current sunsensors and which hold due to the large reproducibility through batch manufacturing the promise of drastic price reduction. If the Commercial Of The Shelf (COTS) approach is adopted by satellite manufacturers, this will drastically decrease mass and cost budgets associated with sunsensing applications.

  4. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  5. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded......), and a bend loss of ~5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-mm-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0...

  6. Neutron Optics: Towards Applications for Hot Neutrons

    International Nuclear Information System (INIS)

    Schanzer, C; Schneider, M; Böni, P

    2016-01-01

    Supermirrors with large critical angles of reflection, i.e. large index m are an essential ingredient to transport, focus and polarise neutrons over a wide range of energy. Here we summarise the recent developments of supermirror with very large critical angles of reflection and high reflectivity that were conducted at SwissNeutronics as well as their implementation in devices. Approaching critical angles m = 8 times the critical angle of natural nickel makes new applications possible and extends the use of reflection optics towards the regime of hot and epithermal neutrons. Based on comparisons of simulations with experiment we demonstrate future possibilities of applications of large-m supermirrors towards devices for neutrons with short wavelength. (paper)

  7. Fiber optic temperature sensors for medical applications

    Science.gov (United States)

    Schaafsma, David T.; Palmer, Gail; Bechtel, James H.

    2003-07-01

    Recent developments in fiber-optic sensor technology have demonstrated the utility of fiber-optic sensors for both medical and industrial applications. Fiber sensors based on fluorescent decay of rare earth doped materials allow rapid and accurate temperature measurement in challenging environments. Here we review the principles of operation of these sensors with a rare earth doped probe material and demonstrate why this material is an excellent choice for these types of sensors. The decay time technique allows accurate temperature determination from two measurements of the fluorescence intensity at a well-defined time interval. With this method, all instrumental and extraneous environmental effect will cancel, thus providing an accurate temperature measurement. Stability data will be presented for the fiber-optic probes. For medical applications, new breakthroughs in RF ablation technology and electro-surgical procedures are being introduced as alternative, less invasive treatment for removal of small tumors and for removal of plaque within arteries as a preventive treatment that avoids open heart surgery. The availability of small diameter temperature probes (230 microns or 450 microns in diameter) offers a whole new scope to temperature measurement. Accurate and reliable temperature monitoring during any laser treatment procedure or RF ablation at the surgical site is critical. Precise, NIST traceable reliable results are needed to prevent overheating or underheating during treatment. In addition, how interventional catheters are used in hyperthermia studies and the advantages to having flexible cables and multiple sensors are discussed. Preliminary data is given from an animal study where temperature was monitored in a pig during an RF study.

  8. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  9. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  10. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  11. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  12. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  13. Integrating Web Services into Map Image Applications

    National Research Council Canada - National Science Library

    Tu, Shengru

    2003-01-01

    Web services have been opening a wide avenue for software integration. In this paper, we have reported our experiments with three applications that are built by utilizing and providing web services for Geographic Information Systems (GIS...

  14. Advanced applications of scatterometry based optical metrology

    Science.gov (United States)

    Dixit, Dhairya; Keller, Nick; Kagalwala, Taher; Recchia, Fiona; Lifshitz, Yevgeny; Elia, Alexander; Todi, Vinit; Fronheiser, Jody; Vaid, Alok

    2017-03-01

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, and lower cost per transistor. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require continuous development of metrology tools used for characterization of these complex 3D device architectures. Optical scatterometry or optical critical dimension (OCD) is one of the most prevalent inline metrology techniques in semiconductor manufacturing because it is a quick, precise and non-destructive metrology technique. However, at present OCD is predominantly used to measure the feature dimensions such as line-width, height, side-wall angle, etc. of the patterned nano structures. Use of optical scatterometry for characterizing defects such as pitch-walking, overlay, line edge roughness, etc. is fairly limited. Inspection of process induced abnormalities is a fundamental part of process yield improvement. It provides process engineers with important information about process errors, and consequently helps optimize materials and process parameters. Scatterometry is an averaging technique and extending it to measure the position of local process induced defectivity and feature-to-feature variation is extremely challenging. This report is an overview of applications and benefits of using optical scatterometry for characterizing defects such as pitch-walking, overlay and fin bending for advanced technology nodes beyond 7nm. Currently, the optical scatterometry is based on conventional spectroscopic ellipsometry and spectroscopic reflectometry measurements, but generalized ellipsometry or Mueller matrix spectroscopic ellipsometry data provides important, additional information about complex structures that exhibit anisotropy and depolarization effects. In addition the symmetry-antisymmetry properties associated with Mueller matrix (MM) elements

  15. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    Science.gov (United States)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  16. Foundry fabricated photonic integrated circuit optical phase lock loop.

    Science.gov (United States)

    Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C

    2017-07-24

    This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.

  17. From space qualified fiber optic gyroscope to generic fiber optic solutions available for space application

    Science.gov (United States)

    Buret, Thomas; Ramecourt, David; Napolitano, Fabien

    2017-11-01

    The aim of this article is to present how the qualification of the Fiber Optic Gyroscope technology from IXSEA has been achieved through the qualification of a large range of optical devices and related manufacturing processes. These qualified optical devices and processes, that are now fully mastered by IXSEA through vertical integration of the technology, can be used for other space optical sensors. The example of the SWARM project will be discussed.

  18. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  19. Applications of lasers and electro-optics

    International Nuclear Information System (INIS)

    Tan, B.C.; Low, K.S.; Chen, Y.H.; Harith bin Ahmad; Tou, T.Y.

    1994-01-01

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: 1. Industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes. Prototype operational systems have been developed. 2. Medical applications of lasers for cancer treatment using the technique of photodynamic therapy. A new and more effective treatment protocol has been proposed. 3. Agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies. Fruit ripeness signature has been developed and palm oil oxidation level were investigated. 4. Development of atmospheric pollution monitoring systems using laser lidar techniques. Laboratory scale systems were developed. 5. Other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials. The activities of the group (from 1988-1990) have resulted in the submission of a patent for a laser device, publication of many research paper sin local and overseas journals and conference proceedings, completion of 1 Ph.D. dissertation and 6 M. Phil theses. Currently (1991), a total of 3 Ph.D., 6 M. Phil research programmes are involved in this research and development programme

  20. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels

    DEFF Research Database (Denmark)

    Hübner, Jörg; Mogensen, Klaus Bo; Jørgensen, Anders Michael

    2001-01-01

    A transportable miniaturized fiber-pigtailed measurement system is presented which allows quantitative fluorescence detection in microliquid handling systems. The microliquid handling chips are made in silica on silicon technology and the optical functionality is monolithically integrated with th...... with two dyes, fluorescein, and Bodipy 650/665 X, showed good linear behavior over a wide range of concentrations. Minimally detected concentrations were 250 pM for fluorescein and 100 nM for Bodipy....

  1. Development Of Fiber Optics For Passenger Car Applications

    Science.gov (United States)

    Steele, R. E.; Schmitt, H. J.

    1987-12-01

    The benefits of fiber optics for telecommunications and Local Area Networks (LANs) are well documented. The benefits to passenger car applications are not as clearly defined. This paper examines the differences between Telecommunications, LAN, and automotive point to point and network applications. Current production automotive applications of optics and fiber optics, automotive data communications trends, and both functional and non-functional requirements and constraints will be described.

  2. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    Science.gov (United States)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  3. Optical waveguides in lithium niobate: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  4. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    Science.gov (United States)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  5. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

    International Nuclear Information System (INIS)

    Niu Bin; Zhou Daibing; Zhang Can; Liang Song; Lu Dan; Zhao Lingjuan; Wang Wei; Qiu Jifang; Wu Jian

    2014-01-01

    A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented. (semiconductor devices)

  6. High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components

    DEFF Research Database (Denmark)

    Kulkova, Irina; Kadkhodazadeh, Shima; Kuznetsova, Nadezda

    2014-01-01

    In this paper, we demonstrate the applicability of MOVPE butt-joint regrowth for integration of all-active InP/AlGaAs/InGaAsP optical components and the realization of high-functionality compact photonic devices. Planar high-quality integration of semiconductor optical amplifiers of various epi...

  7. Optical Microresonators Theory, Fabrication, and Applications

    CERN Document Server

    Heebner, John; Ibrahim, Tarek

    2008-01-01

    This book explains why microresonators came to be important components in the photonic toolbox. While functionally similar to the Fabry-Perot, microring resonators offer a planar nature which is naturally compatible with monolithic microfabrication technologies. In these chapters lie the principles required to characterize, design, construct, and implement microresonators as lasers, amplifiers, sensors, filters, demultiplexers, switches, routers, and logic gates. Additionally, much like quantum dots and photonic crystals, it will be shown how microresonators offer an alternative method for creating engineerable materials with designer linear and nonlinear responses tailored for advanced functionalities operating at ultrafast speeds and compact scales. This is the first detailed text on the theory, fabrication, and applications of optical microresonators, and will be found useful by both graduate students and researchers. With an emphasis on building intuition with distilled equations and graphical illustratio...

  8. Optical nanoparticles: synthesis and biomedical application

    International Nuclear Information System (INIS)

    Nhung Tran, Hong; Lien Nghiem, Thi Ha; Duong Vu, Thi Thuy; Ha Chu, Viet; Hoa Do, Quang; Vu, Duong; Nghia Nguyen, Trong; Tan Pham, Minh; Son Vu, Van; Nguyen, Thi Thuy; Ngoc Nguyen, Thi Bich; Duc Tran, Anh; Trinh, Thi Thuong; Huan Le, Quang; Thuan Tong, Kim; Thuy Tran, Thanh; Hoang, Thi My Nhung; Thanh Nguyen, Lai; Nguyen Duong, Cao; Minh Pham, Duc

    2015-01-01

    This paper presents a summary of our results on studies of synthesis and biomedical application of optical nanoparticles. Gold, dye-doped silica based and core–shell multifunctional multilayer (SiO_2/Au, Fe_3O_4/SiO_2, Fe_3O_4/SiO_2/Au) water-monodispersed nanoparticles were synthesized by chemical route and surface modified with proteins and biocompatible chemical reagents. The particles were conjugated with antibody or aptamer for specific detecting and imaging bacteria and cancer cells. The photothermal effects of gold nanoshells (SiO_2/Au and Fe_3O_4/SiO_2/Au) on cells and tissues were investigated. The nano silver substrates were developed for surface enhanced Raman scattering (SERS) spectroscopy to detect melamine. (review)

  9. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  10. Application of a universal optic data link for radiation measurements

    International Nuclear Information System (INIS)

    Komatsu, T.; Takada, E.

    2002-01-01

    Optic Data Link (ODL) is a device to convert electric and optic signals to each other, which is used for the field of optical communications. We examined the possibility to apply ODLs to radiation measurements. The effect of ODLs on energy and timing resolution has been investigated. From the results, fundamental applicability of ODLs to radiation measurements has been demonstrated. (author)

  11. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  12. Integrated Applications with Laser Technology

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2013-01-01

    Full Text Available The introduction of new materials as Power Point presentations are the most convenient way of teaching a course or to display a scientific paper. In order to support this function, most schools, universities, institutions, are equipped with projectors and computers. For controlling the presentation of the materials, the persons that are in charge with the presentation use, in most cases, both the keyboard of the computer as well as the mouse for the slides, thing that burdens, in a way, the direct communication (face to face with the audience. Of course, the invention of the wireless mouse allowed a sort of freedom in controlling from the distance the digital materials. Although there seems to appear a certain impediment: in order to be used, the mouse requires to be placed on a flat surface. This article aims at creating a new application prototype that will manipulate, only through the means of a light-beam instrument (laser fascicle, both the actions of the mouse as well as some of the elements offered by the keyboard on a certain application or presentation. The light fascicle will be „connected” to a calculus system only through the images that were captured by a simple webcam.

  13. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Science.gov (United States)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  14. 3rd Symposium on Space Optical Instruments and Applications

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 – 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications. .

  15. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  16. Optical engineering for high power laser applications

    International Nuclear Information System (INIS)

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  17. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  18. Integration of optical fibers in mega-joule class laser environments: advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Marcandella, C.; Bisutti, J.; Ouerdane, Y.; Boukenter, A.; Meunier, J.P.; Baggio, J.

    2012-01-01

    We review the advantages and limitations for the integration of optical fibers in the radiative environment associated with Megajoule class lasers as Laser Megajoule (LMJ) in France or National Ignition Facility (NIF) in the USA. Optical fibers present numerous advantages, like their electromagnetic immunity, for integration in these facilities devoted to the fusion by inertial confinement studies. Despite these advantages, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation, limiting their transmission capability. We studied the major mechanisms governing the amplitude of this degradation, focusing our discussion on the transient radiation-induced attenuation (RIA) phenomena that is often the limiting factor for LMJ applications. The amplitude and growth and decay kinetics of RIA are affected by different parameters related to the fibers themselves but also depend on the application and irradiation characteristics. We particularly investigated the fiber transient radiation responses when the optical links have to operate during the pulsed and mixed environment associated with ignition shots. Our study shows that, if the same parameters affect the fiber sensitivity for steady state and transient irradiations, the radiation tolerances of the different classes of waveguides strongly differ, implying dedicated experiments for LMJ facility needs. (authors)

  19. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  20. Application of visual cryptography for learning in optics and photonics

    Science.gov (United States)

    Mandal, Avikarsha; Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan

    2016-09-01

    In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students.

  1. Survivable integrated grooming in multi-granularity optical networks

    Science.gov (United States)

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun

    2012-05-01

    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  2. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  3. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.

    Science.gov (United States)

    Solmaz, Mehmet E; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R; Mejia, Camilo A; Malmstadt, Noah; Povinelli, Michelle L

    2012-10-01

    We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

  4. Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices

    Science.gov (United States)

    Summitt, Christopher Ryan

    The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4-6]. These couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool's high NA optics. To overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality. The newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree

  5. IDENTIFICATIONS OF FIVE INTEGRAL SOURCES VIA OPTICAL SPECTROSCOPY

    International Nuclear Information System (INIS)

    Butler, Suzanne C.; Tomsick, John A.; Chaty, Sylvain; Heras, Juan A. Zurita; Rodriguez, Jerome; Walter, Roland; Kaaret, Philip; Kalemci, Emrah; Oezbey, Mehtap

    2009-01-01

    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is discovering hundreds of new hard X-ray sources, many of which remain unidentified. We report on optical spectroscopy of five such sources for which X-ray observations at lower energies (∼0.5-10 keV) and higher angular resolutions than INTEGRAL have allowed for unique optical counterparts to be located. We find that INTEGRAL Gamma-Ray (IGR) J16426+6536 and IGR J22292+6647 are Type 1 Seyfert active galactic nuclei (with IGR J16426+6536 further classified as a Seyfert 1.5) which have redshifts of z = 0.323 and z = 0.113, respectively. IGR J18308-1232 is identified as a cataclysmic variable (CV), and we confirm a previous identification of IGR J19267+1325 as a magnetic CV. IGR J18214-1318 is identified as an obscured high-mass X-ray binary (HMXB), which are systems thought to have a compact object embedded in the stellar wind of a massive star. We combine Chandra fluxes with distances based on the optical observations to calculate X-ray luminosities of the HMXB and CVs, finding L 0.3-10keV = 5 x 10 36 erg s -1 for IGR J18214-1318, L 0.3-10keV = 1.3 x 10 32 erg s -1 for IGR J18308-1232, and L 0.3-10keV = 6.7 x 10 32 erg s -1 for IGR J19267+1325.

  6. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-06-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  7. High extinction ratio integrated optical modulator for quantum telecommunication systems

    Science.gov (United States)

    Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.

    2018-01-01

    A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.

  8. Tracking integration in concentrating photovoltaics using laterally moving optics.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  9. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  10. Custom CCD for adaptive optics applications

    Science.gov (United States)

    Downing, Mark; Arsenault, Robin; Baade, Dietrich; Balard, Philippe; Bell, Ray; Burt, David; Denney, Sandy; Feautrier, Philippe; Fusco, Thierry; Gach, Jean-Luc; Diaz Garcia, José Javier; Guillaume, Christian; Hubin, Norbert; Jorden, Paul; Kasper, Markus; Meyer, Manfred; Pool, Peter; Reyes, Javier; Skegg, Michael; Stadler, Eric; Suske, Wolfgang; Wheeler, Patrick

    2006-06-01

    ESO and JRA2 OPTICON have funded e2v technologies to develop a compact packaged Peltier cooled 24 μm square 240x240 pixels split frame transfer 8-output back-illuminated L3Vision CCD3, L3Vision CCD for Adaptive Optic Wave Front Sensor (AO WFS) applications. The device is designed to achieve sub-electron read noise at frame rates from 25 Hz to 1,500 Hz and dark current lower than 0.01 e-/pixel/frame. The development has many unique features. To obtain high frame rates, multi-output EMCCD gain registers and metal buttressing of row clock lines are used. The baseline device is built in standard silicon. In addition, a split wafer run has enabled two speculative variants to be built; deep depletion silicon devices to improve red response and devices with an electronic shutter to extend use to Rayleigh and Pulsed Laser Guide Star applications. These are all firsts for L3Vision CCDs. The designs of the CCD and Peltier package have passed their reviews and fabrication has begun. This paper will describe the progress to date, the requirements and the design of the CCD and compact Peltier package, technology trade-offs, schedule and proposed test plan. High readout speed, low noise and compactness (requirement to fit in confined spaces) provide special challenges to ESO's AO variant of its NGC, New General detector Controller to drive this CCD. This paper will describe progress made on the design of the controller to meet these special needs.

  11. Luminescence optically stimulated: theory and applications

    International Nuclear Information System (INIS)

    Rivera M, T.; Azorin N, J.

    2002-01-01

    The thermally stimulated luminescence (Tl) has occupied an important place in the Solid state physics (FES) by the flexibility of the phenomena, mainly for its applications in the fields of Radiation Physics (FR) and Medical Physics (MF). The reason of this phenomena lies in the fact of the electrons release by the action of heat. Under that same reason, it can be used the action of another stimulant agent for releasing the trapped electrons in the metastable states (EM), this agent is the light which has the same effect that the heat, giving as result the production of light photons at using light in the visible spectra, of different wavelength that the excitation light. This phenomena is called Luminescence optically stimulated (LOE). The LOE has a great impact in the Solid State Physics (FES), dating and now in the use of the phenomena as a dosimetric method, alternate to the Tl, for its use in the ionizing and non-ionizing radiations fields. (Author)

  12. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  13. Smart Materials for Electromagnetic and Optical Applications

    Science.gov (United States)

    Ramesh, Prashanth

    The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This

  14. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    on the potentials of currently used FSO systems. Furthermore, utilizing this new statistical channel model, closed-form expressions for the diversity gain and the error rate performance of FSO links with spatial diversity are derived. In addition to addressing ways to improve outdoor FSO communication sys- tems, this dissertation addresses some major challenges in indoor visible light communication (VLC). VLC is an advantageous technique that is proposed for wireless indoor communications. In VLC systems, the existence of multiple paths between the transmitter and receiver causes multipath distortion, particularly in links using non-directional transmitters and receivers, or in links relying upon non-line of-sight propagation. This multipath distortion can lead to intersymbol interference (ISI) at high bit rates. Multicarrier modulation usually implemented by orthogonal frequency division multiplexing (OFDM) can be used to mitigate ISI and multipath dispersion. Nevertheless, the performance of VLC systems employing OFDM modulation is significantly affected by nonlinear characteristic of light-emitting diode (LED) due to the large peak-to-average power ratio (PAPR) of OFDM signal. In other words, signal amplitudes below the LED turn-on-voltage and above the LED saturation point are clipped. This dissertation targets these important issues and successfully addresses them by developing some techniques to reduce high PAPR of optical OFDM signal and determining the optimum operating characteristics of LEDs for combined lighting and communications applications. VLC can also provide a practical solution for indoor positioning as global po- sitioning system (GPS) does not provide an accurate and rapid indoor positioning since GPS radio signals are attenuated and scattered by walls of large buildings and other objects. A practical VLC system would be likely to deploy the same configuration for both positioning and communication purposes where high speed data rates are desired

  15. Stable optical frequency comb generation and applications in arbitrary waveform generation, signal processing and optical data mining

    Science.gov (United States)

    Ozharar, Sarper

    This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.

  16. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  17. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  18. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  19. Novel applications of the dispersive optical model

    Science.gov (United States)

    Dickhoff, W. H.; Charity, R. J.; Mahzoon, M. H.

    2017-03-01

    A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (d, p) transfer reaction using the adiabatic distorted wave approximation. We review these calculations which suggest that physically meaningful results are easier to obtain by employing DOM ingredients as compared to the traditional approach which relies on a phenomenologically-adjusted bound-state wave function combined with a global (nondispersive) optical-model potential. Application to the exotic 132Sn nucleus also shows great promise for the extrapolation of DOM potentials towards the drip line with attendant relevance for the physics of FRIB. We note that the DOM method combines structure and reaction information on the same footing providing a unique approach to the analysis of exotic nuclei. We illustrate the importance of abandoning the custom of representing the non-local Hartree-Fock (HF) potential in the DOM by an energy-dependent local potential as it impedes the proper normalization of the solution of the Dyson equation. This important step allows for the interpretation of the DOM potential as representing the nucleon self-energy permitting the calculations of

  20. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  1. Applications of plastic optical fiber in communication

    Science.gov (United States)

    Tayahi, Moncef Ben

    In this thesis, we report the results of our theoretical and experimental studies of large core polymer fibers. This relatively low loss and high bandwidth plastic optical fiber (POF) potentially have important applications in LAN. We measured the power penalty due to modal noise. We also developed a model to calculate the signal to noise ratio (SNR) and the bit error rate (BER) floor just by knowing the coupling coefficient in the mode selective loss being considered. The calculated bandwidth using the WKB approximation was found to be 0.44 GHz per 100 m, which is much lower than the measured bandwidth of 3 GHz per 100 m. This discrepancy was explained by the presence of strong mode coupling in POFs. We studied distortions products in CATV systems. Composite second order (CSO) and composite triple beat (CTB) for different channels were measured using a spectrum analyzer and adjustable band pass filter. Since the CSO and the CTB did not meet the CATV standard, a predistortion circuit was used to minimize CSO and CTB products produced by the laser. The predistortion circuit provides a signal comprising multiple subcarrier signals substantially equal in magnitude and opposite in phase to those associated with the nonlinear transfer function of the laser being deployed. The RF signal is split into a primary branch that has a time delayed portion (80% of the RF signal), the secondary branch (10% of the RF signal) is where the second order products are generated with a 180 °phase shift from the fundamental, and the last remaining 10% of the RF signal is where the third order distortion products are generated with a 180 °phase shift from the fundamental. The output signal is taken as the summation of three signals processed by the branch circuits and coupled to the directly to the laser to be linearized. Finally, using cyclic transparent optical polymer (CYTOP), a perfluorinated graded index fiber, different transmission characteristics were investigated. CYTOP fiber

  2. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    NARCIS (Netherlands)

    Kehayas, E.; Tsiokos, D.; Bakapoulos, P.; Apostolopoulos, D.; Petrantonakis, D.; Stampoulidis, L.; Poustie, A.; McDougall, R.; Maxwell, G.D.; Liu, Y.; Zhang, S.; Dorren, H.J.S.; Seoane, J.; Van Holm-Nielsen, P.; Jeppesen, P.; Avramopoulos, H.

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be

  3. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    Science.gov (United States)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  4. Integral and discrete inequalities and their applications

    CERN Document Server

    Qin, Yuming

    2016-01-01

    This book focuses on one- and multi-dimensional linear integral and discrete Gronwall-Bellman type inequalities. It provides a useful collection and systematic presentation of known and new results, as well as many applications to differential (ODE and PDE), difference, and integral equations. With this work the author fills a gap in the literature on inequalities, offering an ideal source for researchers in these topics. The present volume is part 1 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.

  5. Photonic crystal nanostructures for optical biosensing applications

    DEFF Research Database (Denmark)

    Dorfner, D.; Zabel, T.; Hürlimann, T.

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine...

  6. Editorial: Focus on Atom Optics and its Applications

    Science.gov (United States)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A

  7. Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-09-01

    Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of

  8. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  9. PREFACE: 3rd International Symposium ''Optics and its Applications''

    Science.gov (United States)

    Calvo, M. L.; Dolganova, I. N.; Gevorgyan, N.; Guzman, A.; Papoyan, A.; Sarkisyan, H.; Yurchenko, S.

    2016-01-01

    The SPIE.FOCUS Armenia: 3rd International Symposium ''Optics and its Applications'' (OPTICS-2015) http://rau.am/optics2015/ was held in Yerevan, Armenia, in the period October 1 - 5, 2015. The symposium was organized by the International Society for Optics and Photonics (SPIE), the Armenian SPIE student chapter with collaboration of the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-PYRKAL, and the Yerevan State University (YSU). The Symposium was co-organized by the SPIE & OSA student chapters of BMSTU, the Armenian OSA student chapter, and the SPIE student chapters of Lund University and Wroclaw University of Technology. The symposium OPTICS-2015 was dedicated to the International Year of Light and Light-Based Technologies. OPTICS-2015 was devoted to modern topics and optical technologies such as: optical properties of nanostructures, silicon photonics, quantum optics, singular optics & its applications, laser spectroscopy, strong field optics, biomedical optics, nonlinear & ultrafast optics, photonics & fiber optics, and mathematical methods in optics. OPTICS-2015 was attended by 100 scientists and students representing 17 countries: Armenia, China, Czech Republic, France, Georgia, Germany, India, Iran, Italy, Latvia, Mexico, Poland, Russia, Saudi Arabia, Sweden, Ukraine, and USA. Such a broad international community confirmed the important mission of science to be a uniting force between different countries, religions, and nations. We hope that OPTICS-2015 inspired and motivated students and young scientists to work in optics and in science in general. The present volume of Journal of Physics: Conference Series includes proceedings of the symposium covering various aspects of modern problems in optics. We are grateful to all people who were involved in the organization process. We gratefully acknowledge support from

  10. Optical wireless networked-systems: applications to aircrafts

    Science.gov (United States)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  11. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  12. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva

    2014-01-01

    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  13. Optically Driven Mobile Integrated Micro-Tools for a Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Yi-Jui Liu

    2013-04-01

    Full Text Available This study proposes an optically driven complex micromachine with an Archimedes microscrew as the mechanical power, a sphere as a coupler, and three knives as the mechanical tools. The micromachine is fabricated by two-photon polymerization and is portably driven by optical tweezers. Because the microscrew can be optically trapped and rotates spontaneously, it provides driving power for the complex micro-tools. In other words, when a laser beam focuses on the micromachine, the microscrew is trapped toward the focus point and simultaneously rotates. A demonstration showed that the integrated micromachines are grasped by the optical tweezers and rotated by the Archimedes screw. The rotation efficiencies of the microrotors with and without knives are 1.9 rpm/mW and 13.5 rpm/mW, respectively. The micromachine can also be portably dragged along planed routes. Such Archimedes screw-based optically driven complex mechanical micro-tools enable rotation similar to moving machines or mixers, which could contribute to applications for a biological microfluidic chip or a lab-on-a-chip.

  14. Nonlinear Optical Fiber Arrays for Limiting Application

    National Research Council Canada - National Science Library

    Khoo, Iam-Choon

    2006-01-01

    .... Measurements show that they possess desirable nonlinear optical such as low-freezing pint, non-volatile, transparent for low light level and possess large effective nonlinear absorption coefficients...

  15. Monolithically integrated fiber-to-the-home diplexers and triplexers using a bilevel etched 2 x 2 optical coupler.

    Science.gov (United States)

    Zhang, Li; Wang, Lei; He, Jian-Jun

    2009-09-01

    A novel design of monolithically integrated diplexers and triplexers for fiber-to-the-home applications is presented. A bilevel etched asymmetrical 2 x 2 optical coupler is analyzed for efficient couplings of both upstream and downstream signals. The design of the diplexer is extended to a triplexer by adding an etched diffraction grating as an additional downstream demultiplexing element. The total size of the integrated diplexer and triplexer is smaller than 500 microm x 500 microm.

  16. A new optical concentrator design and analysis for rooftop solar applications

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A.

    2015-08-01

    In this paper, a new type of linear focus, linear-tracking, catadioptric concentrator system is proposed and analysed for roof-integrated solar thermal applications. The optical concentrator designs have a focal distance of less than 10cm and are analysed using optical simulation software (Zemax). The results show that a relatively high concentration ratio (4.5 ~ 5.9 times) can be obtained and that the concentrators are capable of achieving an average optical efficiency around 66 - 69% during the middle 6 hours of a sunny day (i.e. a day with ~1000W/m2 global irradiance). Optical efficiency is analysed for perfect and non-ideal optical components to predict the collector performance under different `practical' circumstances. Overall, we intend for this paper to catalyse the development of rooftop solar thermal concentrators with compact form factors, similar to PV panels.

  17. Design of coherent receiver optical front end for unamplified applications.

    Science.gov (United States)

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-01-30

    Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

  18. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  19. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  20. Optical detection of random features for high security applications

    Science.gov (United States)

    Haist, T.; Tiziani, H. J.

    1998-02-01

    Optical detection of random features in combination with digital signatures based on public key codes in order to recognize counterfeit objects will be discussed. Without applying expensive production techniques objects are protected against counterfeiting. Verification is done off-line by optical means without a central authority. The method is applied for protecting banknotes. Experimental results for this application are presented. The method is also applicable for identity verification of a credit- or chip-card holder.

  1. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  2. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition......-level advantages of these all-optical subsystems combined with their realization with compact integrated devices, suggest that they are strong candidates for future packet/label switched optical networks....... by interconnecting two optical gates that perform xor operation on incoming optical labels. We also demonstrate 40-Gb/s all-optical wavelength-switching through an optically controlled wavelength converter, consisting of an integrated flip-flop prototype device driven by an integrated optical gate. The system...

  3. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.

    Science.gov (United States)

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-05-24

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO₃. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  4. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    Directory of Open Access Journals (Sweden)

    Ryohei Takei

    2012-05-01

    Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  5. Optic Fiber Sensing IOT Technology and Application Research

    Directory of Open Access Journals (Sweden)

    Wenjuan Zeng

    2014-10-01

    Full Text Available The growth of the Internet of Things (IOT industry has become a new mark of the communication domain. As the development of the technology of the IOT and the fiber-optical sensor, the combination of the both is a big question to be discussed, and the fiber-optical IOT also has a good development prospect. This article first introduces IOT’s current status, the key technology, the theoretical frame and the applications. Then, it discusses the classification of the optical fiber sensor as well as the development and its application’s situation. Lastly, it puts the optical fiber sensing technology into the IOT, and introduces a specific application which is used in the mine safety based on the fiber-optical IOT.

  6. New fiber optics illumination system for application to electronics holography

    Science.gov (United States)

    Sciammarella, Cesar A.

    1995-08-01

    The practical application of electronic holography requires the use of fiber optics. The need of employing coherent fiber optics imposes restrictions in the efficient use of laser light. This paper proposes a new solution to this problem. The proposed method increases the efficiency in the use of the laser light and simplifies the interface between the laser source and the fiber optics. This paper will present the theory behind the proposed method. A discussion of the effect of the different parameters that influence the formation of interference fringes is presented. Limitations and results that can be achieved are given. An example of application is presented.

  7. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    CSIR Research Space (South Africa)

    Monem, S

    2015-12-01

    Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...

  8. Signal Integrity Applications of an EBG Surface

    Directory of Open Access Journals (Sweden)

    MATEKOVITS, L.

    2015-05-01

    Full Text Available Electromagnetic band-gap (EBG surfaces have found applications in mitigation of parallel-plate noise that occurs in high speed circuits. A 2D periodic structure previously introduced by the same authors is dimensioned here for adjusting EBG parameters in view of meeting applications requirements by decreasing the phase velocity of the propagating waves. This adjustment corresponds to decreasing the lower bound of the EBG spectra. The positions of the EBGs' in frequency are determined through full-wave simulation, by solving the corresponding eigenmode equation and by imposing the appropriate boundary conditions on all faces of the unit cell. The operation of a device relying on a finite surface is also demonstrated. Obtained results show that the proposed structure fits for the signal integrity related applications as verified also by comparing the transmission along a finite structure of an ideal signal line and one with an induced discontinuity.

  9. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  10. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    Science.gov (United States)

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  11. Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2008-11-01

    Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3÷1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

  12. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  13. A removable optical sealing system for application to international safeguards

    International Nuclear Information System (INIS)

    Martin, R.E.

    1985-06-01

    A removable, optically verifiable sealing system for CANDU spent fuel storage facilities has been developed. The seal is based on the use of unique crystal patterns formed in a pure metal identity/integrity element and has been designed for easy installation and removal using simple tooling. Since the seal is optically verified, a wide range of commercial instruments, including those in use by the IAEA, can be used to verify it. Futhermore, optical verification allows the level of scrutiny to be matched with the degree of confidence required to be confident that spent fuel has not been diverted

  14. Advanced lightweight optics development for space applications

    International Nuclear Information System (INIS)

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  15. Freeform optics applications in photovoltaic concentration

    OpenAIRE

    Miñano Dominguez, Juan Carlos; Benitez Gimenez, Pablo; Zamora Herranz, Pablo; Mendes Lopes, Joao; Buljan, Marina; Santamaria Galdon, Maria Asuncion

    2012-01-01

    Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.

  16. Multidimensional quantum entanglement with large-scale integrated optics.

    Science.gov (United States)

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.

    Science.gov (United States)

    Lee, Myung-Jae; Youn, Jin-Sung; Park, Kang-Yeob; Choi, Woo-Young

    2014-02-10

    We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche photodetector, which provides larger photodetection bandwidth than previously reported CMOS-compatible photodetectors. The receiver also has high-speed CMOS circuits including transimpedance amplifier, DC-balanced buffer, equalizer, and limiting amplifier. With the fabricated optical receiver, detection of 12.5-Gb/s optical data is successfully achieved at 5.8 pJ/bit. Our receiver achieves the highest data rate ever reported for 850-nm integrated CMOS optical receivers.

  18. Application of fiber optic gyros at JAE

    Science.gov (United States)

    Sakuma, Kazuhiro

    1996-11-01

    IFOG has entered into the practical application phase for widely inertial equipments of aerospace market to industrial equipments of commercial market. This paper describes the examples of IFOG products and its applications at Japan Aviation Electronics.

  19. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  20. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Röbig, Malte [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstraße 49, 52062 Aachen (Germany)

    2016-03-09

    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  1. Packaged and hybrid integrated all-optical flip-flop memory

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Dorren, H.J.S.; Poustie, A.

    2006-01-01

    A fully-packaged hybrid-integrated all-optical flip-flop, where InP-based semiconductor optical amplifiers are assembled onto a planar silica waveguide board, is demonstrated. It is shown experimentally that the flip-flop can dynamically toggle between its two states by injecting 150 ps optical

  2. Electrowetting Variable Optics for Visible and Infrared Applications

    Science.gov (United States)

    Watson, Alexander Maxwell

    Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material

  3. Application specific integrated circuit for high temperature oil well applications

    Energy Technology Data Exchange (ETDEWEB)

    Fallet, T.; Gakkestad, J.; Forre, G.

    1994-12-31

    This paper describes the design of an integrated BiCMOS circuit for high temperature applications. The circuit contains Pierce oscillators with automatic gain control, and measurements show that it is operating up to 266{sup o}C. The relative frequency variation up to 200 {sup o}C is less than 60 ppm caused mainly by the crystal element itself. 4 refs., 7 figs.

  4. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    Science.gov (United States)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  5. Optical Character Recognition: Application for Android

    OpenAIRE

    Gonzalez Manzanero, Joaquin Miguel

    2013-01-01

    Treball realitzat a Tongji University El projecte és el desenvolupament d'una aplicació per Android basat en OCR(Optical Character Recognition) que consisteix en traduir frases d'un idioma a un altre a través de fotografiar el text amb el mòbil, després reconéixer els caràcters i finalment traduïnt al llenguatge desitjat.

  6. Cyber integrated MEMS microhand for biological applications

    Science.gov (United States)

    Weissman, Adam; Frazier, Athena; Pepen, Michael; Lu, Yen-Wen; Yang, Shanchieh Jay

    2009-05-01

    Anthropomorphous robotic hands at microscales have been developed to receive information and perform tasks for biological applications. To emulate a human hand's dexterity, the microhand requires a master-slave interface with a wearable controller, force sensors, and perception displays for tele-manipulation. Recognizing the constraints and complexity imposed in developing feedback interface during miniaturization, this project address the need by creating an integrated cyber environment incorporating sensors with a microhand, haptic/visual display, and object model, to emulates human hands' psychophysical perception at microscale.

  7. Integral and finite difference inequalities and applications

    CERN Document Server

    Pachpatte, B G

    2006-01-01

    The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero

  8. Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch.

    Science.gov (United States)

    Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H

    2013-03-25

    n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

  9. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  10. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Science.gov (United States)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  11. All-optical signal processing data communication and storage applications

    CERN Document Server

    Eggleton, Benjamin

    2015-01-01

    This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and ful...

  12. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram

    2006-01-01

    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  13. Integrated model-based retargeting and optical proximity correction

    Science.gov (United States)

    Agarwal, Kanak B.; Banerjee, Shayak

    2011-04-01

    Conventional resolution enhancement techniques (RET) are becoming increasingly inadequate at addressing the challenges of subwavelength lithography. In particular, features show high sensitivity to process variation in low-k1 lithography. Process variation aware RETs such as process-window OPC are becoming increasingly important to guarantee high lithographic yield, but such techniques suffer from high runtime impact. An alternative to PWOPC is to perform retargeting, which is a rule-assisted modification of target layout shapes to improve their process window. However, rule-based retargeting is not a scalable technique since rules cannot cover the entire search space of two-dimensional shape configurations, especially with technology scaling. In this paper, we propose to integrate the processes of retargeting and optical proximity correction (OPC). We utilize the normalized image log slope (NILS) metric, which is available at no extra computational cost during OPC. We use NILS to guide dynamic target modification between iterations of OPC. We utilize the NILS tagging capabilities of Calibre TCL scripting to identify fragments with low NILS. We then perform NILS binning to assign different magnitude of retargeting to different NILS bins. NILS is determined both for width, to identify regions of pinching, and space, to locate regions of potential bridging. We develop an integrated flow for 1x metal lines (M1) which exhibits lesser lithographic hotspots compared to a flow with just OPC and no retargeting. We also observe cases where hotspots that existed in the rule-based retargeting flow are fixed using our methodology. We finally also demonstrate that such a retargeting methodology does not significantly alter design properties by electrically simulating a latch layout before and after retargeting. We observe less than 1% impact on latch Clk-Q and D-Q delays post-retargeting, which makes this methodology an attractive one for use in improving shape process windows

  14. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator.

    Science.gov (United States)

    Azaña, José

    2008-01-01

    It is demonstrated that a uniform fiber Bragg grating (FBG) working in the linear regime inherently behaves as an optical temporal integrator over a limited time window. Specifically, the reflected temporal waveform from a weak-coupling uniform FBG is proportional to the time integral of an (arbitrary) optical pulse launched at the component input. This integration extends over a time window fixed by the duration of the squarelike temporal impulse response of the FBG. Ultrafast all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs. The introduced concepts are demonstrated by numerical simulations.

  15. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  16. Applications of expectation maximization algorithm for coherent optical communication

    DEFF Research Database (Denmark)

    Carvalho, L.; Oliveira, J.; Zibar, Darko

    2014-01-01

    In this invited paper, we present powerful statistical signal processing methods, used by machine learning community, and link them to current problems in optical communication. In particular, we will look into iterative maximum likelihood parameter estimation based on expectation maximization...... algorithm and its application in coherent optical communication systems for linear and nonlinear impairment mitigation. Furthermore, the estimated parameters are used to build the probabilistic model of the system for the synthetic impairment generation....

  17. The application of micro-lesson in optics teaching

    Science.gov (United States)

    Yuan, Suzhen; Mao, Xuefeng; Lu, Yongle; Wang, Yan; Luo, Yuan

    2017-08-01

    In order to improve students' ability on self-study, this paper discusses the application of micro-lesson as a supplementary way in the course of optics teaching. Both geometric optics and wave optics require a lot of demos, fortunately, micro-lesson just meets this requirement. Nowadays, college education focuses on quality education, so the new nurture scheme of most universities shortened the class hours. However, the development of students and the social needs also require students to have a solid foundation. The effective way to solve this contradiction is to improve the efficiency of classroom teaching and provide the repeatable learning form, micro-lesson.

  18. Scientific Applications of Optical Instruments to Materials Research

    Science.gov (United States)

    Witherow, William K.

    1997-01-01

    Microgravity is a unique environment for materials and biotechnology processing. Microgravity minimizes or eliminates some of the effects that occur in one g. This can lead to the production of new materials or crystal structures. It is important to understand the processes that create these new materials. Thus, experiments are designed so that optical data collection can take place during the formation of the material. This presentation will discuss scientific application of optical instruments at MSFC. These instruments include a near-field scanning optical microscope, a miniaturized holographic system, and a phase-shifting interferometer.

  19. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R

    2005-01-01

    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  20. Optical integration and verification of LINC-NIRVANA

    Science.gov (United States)

    Moreno-Ventas, J.; Baumeister, H.; Bertram, Thomas; Bizenberger, P.; Briegel, F.; Greggio, D.; Kittmann, F.; Marafatto, L.; Mohr, L.; Radhakrishnan, K.; Schray, H.

    2014-07-01

    The LBT (Large Binocular Telescope) located in Mount Graham near Tucson/Arizona at an altitude of about 3200m, is an innovative project being undertaken by institutions from Europe and USA. The structure of the telescope incorporates two 8.4-meter telescopes on a 14.4 center-to-center common mount. This configuration provides the equivalent collecting area of a 12m single-dish telescope. LINC-NIRVANA is an instrument to combine the light from both LBT primary mirrors in an imaging Fizeau interferometer. Many requirements must be fulfilled in order to get a good interferometric combination of the beams, being among the most important plane wavefronts, parallel input beams, homotheticity and zero optical path difference (OPD) required for interferometry. The philosophy is to have an internally aligned instrument first, and then align the telescope to match the instrument. The sum of different subsystems leads to a quite ambitious system, which requires a well-defined strategy for alignment and testing. In this paper I introduce and describe the followed strategy, as well as the different solutions, procedures and tools used during integration. Results are presented at every step.

  1. Optics and optical instruments an introduction with special reference to practical applications

    CERN Document Server

    Johnson, B K

    1947-01-01

    This book illustrates basic practical applications of optical principle. Working models of telescopes, microscopes, photographic lenses, and optical projection systems are diagrammed and explained in full, as are the basic experiments for determining accuracy, power, angular field of view, amount of aberration, and all other necessary facts about the instrument. Throughout the book, only elementary mathematics is used, for the benefit of the student and the beginner in the field of optics.The author, an assistant professor at the Imperial College of Science and Technology in London, shows ho

  2. Molecular studies and plastic optical fiber device structures for nonlinear optical applications

    Science.gov (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne

    1995-10-01

    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.

  3. Scalable optical switches for computing applications

    NARCIS (Netherlands)

    White, I.H.; Aw, E.T.; Williams, K.A.; Wang, Haibo; Wonfor, A.; Penty, R.V.

    2009-01-01

    A scalable photonic interconnection network architecture is proposed whereby a Clos network is populated with broadcast-and-select stages. This enables the efficient exploitation of an emerging class of photonic integrated switch fabric. A low distortion space switch technology based on recently

  4. Nonlinear Optics: Materials, Fundamentals, and Applications. Postdeadline papers

    Science.gov (United States)

    1992-08-01

    The Nonlinear Optics: Materials, Fundamentals, and Applications conference was held on 17-21 Aug. 1992. The following topics were addressed: subpicosecond time resolved four-wave mixing spectroscopy in heteroepitaxial ZnSe thin layers; anisotropic two-photon transition in GaAs/AlGaAs multiple quantum well waveguides; two picosecond, narrow-band, tunable, optical parametric systems using BBO and LBO; second generation in an optically active liquid: experimental observation of a fourth-order optical nonlinearity due to molecular chirality; optical image recognition system implemented with a 3-D memory disk; phase-matched second-harmonic generation in waveguides of polymeric Langmuir-Blodgett films; fluence dependent dynamics observed in the resonant third-order optical response of C60 and C70 films; temporal modulation of spatial optical solitons: a variational approach; measurements of light-scattering noise during two-wave mixing in a Kerr medium; excess noise introduced by beam propagation through an atomic vapor; an approach to all-optical switching based on second-order nonlinearities; multilayer, nonlinear ARROW waveguides for surface emitted sum-frequency mixing; energy scaling of SBS phase conjugate mirrors to 4J; vector versus scalar theory for the double phase conjugate mirror; cross-talk and error probability in counter-beam lambda-multiplexed digital holograms; and modal growth of SHG in doped silica thin film waveguides.

  5. Black phosphorus: broadband nonlinear optical absorption and application

    Science.gov (United States)

    Li, Ying; He, Yanliang; Cai, Yao; Chen, Shuqing; Liu, Jun; Chen, Yu; Yuanjiang, Xiang

    2018-02-01

    Black phosphorus (BP), 2D layered material with layered dependent direct bandgap (0.3 eV (bulk), 2.0 eV (single layer)) that has gained renewed attention, has been demonstrated as an extremely appropriate optical material for broadband optical applications from infrared to mid-infrared wavebands. Herein, by coupling multi-layer BP films with microfiber, we fabricated a nonlinear optical device with long light-matter interaction distance and enhanced damage threshold. Through taking full advantage of its fine nonlinear optical absorption property, we obtained stable mode-locking (51 ps) and Q-switched mode-locking states in Yb-doped or Er-doped (403.7 fs) all-fiber lasers and the single-longitudinal-mode operation (53 kHz) in an Er-doped fiber laser with enhanced power tolerance, using the same nonlinear optical device. Our results showed that BP could be a favorable nonlinear optical material for developing BP-enabled wave-guiding photonic devices, and revealed new insight into BP for high optical power unexplored optical devices.

  6. Development of an optical fiber SERS microprobe for minimally invasive sensing applications

    Science.gov (United States)

    Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.

    2018-02-01

    Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.

  7. Applications of maximally concentrating optics for solar energy collection

    Science.gov (United States)

    O'Gallagher, J.; Winston, R.

    1985-11-01

    A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.

  8. Applications of optical manipulation in plant biology

    Science.gov (United States)

    Buer, Charles S.

    Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall

  9. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Science.gov (United States)

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  10. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  11. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    Science.gov (United States)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching

  12. New development in optical fibers for data center applications

    Science.gov (United States)

    Sun, Yi; Shubochkin, Roman; Zhu, Benyuan

    2015-01-01

    VCSEL-multimode optical fiber based links is the most successful optical technology in Data Centers. Laser-optimized multimode optical fibers, OM3 and OM4, have been the primary choice of physical media for 10 G serial, 4 x 10 G parallel, 10 x 10 G parallel, and 4 x 25 G parallel optical solutions in IEEE 802.3 standards. As the transition of high-end servers from 10 Gb/s to 40 Gb/s is driving the aggregation of speeds to 40 Gb/s now, and to 100 Gb/s and 400 Gb/s in near future, industry experts are coming together in IEEE 802.3bs 400 Gb/s study group and preliminary discussion of Terabit transmission for datacom applications has also been commenced. To meet the requirement of speed, capacity, density, power consumption and cost for next generation datacom applications, optical fiber design concepts beyond the standard OM3 and OM4 MMFs have a revived research and developmental interest, for example, wide band multimode optical fiber using multiple dopants for coarse wavelength division multiplexing; multicore multimode optical fiber using plural multimode cores in a single fiber strand to improve spatial density; and perhaps 50 Gb/s per lane and few mode fiber in spatial division multiplexing for ultimate capacity increase in far future. This talk reviews the multitude of fiber optic media being developed in the industry to address the upcoming challenges of datacom growth. We conclude that multimode transmission using low cost VCSEL technology will continue to be a viable solution for datacom applications.

  13. Optical hybrid quantum teleportation and its applications

    Science.gov (United States)

    Takeda, Shuntaro; Okada, Masanori; Furusawa, Akira

    2017-08-01

    Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a "hybrid" approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.

  14. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  15. Optical intersatellite links - Application to commercial satellite communications

    Science.gov (United States)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  16. Implementation of DFT application on ternary optical computer

    Science.gov (United States)

    Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei

    2018-03-01

    As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.

  17. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  18. Optical coatings for laser fusion applications

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-01-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation

  19. Integrated-optic current sensors with a multimode interference waveguide device.

    Science.gov (United States)

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  20. Optical and vision: to the training more integrated

    International Nuclear Information System (INIS)

    Salinas, J.; Sandoval, J.

    1997-01-01

    Engineering students answers wich show difficulties to explain , in very simple optical systems, the relationships between. a) perceived image and the curvature of the wavefront reaching the eye. b) optical system dimensions and the regions from wich complete image can be observed, are analyzed. Possible reasons for these difficulties are considered. The inclusion of the observer eye as well as an elemental model for vision when optical systems are studied is suggested. (Author) 16 refs

  1. Fibre optic strain sensor: examples of applications

    Science.gov (United States)

    Kruszewski, J.; Beblowska, M.; Wrzosek, P.

    2006-03-01

    Construction of strain sensor for application in safety systems has been presented. The device consists of sensor's head and source and detector units. The head is made of polymer fiber bends. Designed sensor could be mounted in monitoring place (e.g. under a floor) and controlled by PC unit or could be used as a portable device for a valuable object protection.

  2. Synthesis of Chromophores for Nonlinear Optics Applications

    Science.gov (United States)

    2010-03-12

    Investigacion de Quimica Aplicada Blvd. Enrique reyna, No. 140 Saltillo, Coahuila, Mexico 25253 AFOSR FA9550-09-1-0017 12 March 2010...PERFORMING ORGANIZATION REPORT NUMBER CENTRO DE INVESTIGACION EN QUIMICA APLICADA BLVD ENRIQUE REYNA NO 140 SALTILLO 25253 MEXICO...APPLICATIONS Eduardo Arias, Ivana Moggio and Ronald F. Ziolo Centro de Investigacion de Quimica Aplicada Saltillo, Coahuila, Mexico 25253

  3. Visual Learning in Application of Integration

    Science.gov (United States)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  4. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  5. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d......B bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber....

  6. Application of monolithic polycapillary focusing optics in MXRF

    International Nuclear Information System (INIS)

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  7. Miniaturized Integrated Platform for Electrical and Optical Monitoring of Cell Cultures

    Directory of Open Access Journals (Sweden)

    Costin Brasoveanu

    2012-08-01

    Full Text Available The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 μm width, 3 mm long and 50 μm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.. HaCaT (Immortalised Human Keratinocyte cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.

  8. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  9. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  10. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  11. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  12. Ultrafast all-optical integrator based on a fiber Bragg grating: proposal and design.

    Science.gov (United States)

    Preciado, Miguel A; Muriel, Miguel A

    2008-06-15

    We demonstrate a simple technique for the implementation of an all-optical integrator based on a uniform-period fiber Bragg grating (FBG) in reflection that is designed to present a decreasing exponential impulse response. The proposed FBG integrator is readily feasible and can perform close to ideal integration of few-picosecond and subpicosecond pulses.

  13. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    Energy Technology Data Exchange (ETDEWEB)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  14. Organic Optical Sensor Based on Monolithic Integration of Organic Electronic Devices

    Directory of Open Access Journals (Sweden)

    Hoi Lam Tam

    2015-09-01

    Full Text Available A novel organic optical sensor that integrates a front organic light-emitting diode (OLED and an organic photodiode (OPD is demonstrated. The stripe-shaped cathode is used in the OLED components to create light signals, while the space between the stripe-shaped cathodes serves as the detection window for integrated OPD units. A MoO3 (5 nm/Ag (15 nm bi-layer inter-electrode is interposed between the vertically stacked OLED and OPD units, serving simultaneously as the cathode for the front OLED and an anode for the upper OPD units in the sensor. In the integrated sensor, the emission of the OLED units is confined by the area of the opaque stripe-shaped cathodes, optimized to maximize the reflected light passing through the window space for detection by the OPD components. This can ensure high OLED emission output, increasing the signal/noise ratio. The design and fabrication flexibility of an integrated OLED/OPD device also has low cost benefits, and is light weight and ultra-thin, making it possible for application in wearable units, finger print identification, image sensors, smart light sources, and compact information systems.

  15. Micro-resonators based on integrated polymer technology for optical sensing

    Science.gov (United States)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  16. Applications of fiber-optics-based nanosensors to drug discovery.

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  17. Replicated x-ray optics for space applications

    Science.gov (United States)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  18. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    Science.gov (United States)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  19. Fiber-optic Sensor Demonstrator (FSD) integration with PROBA-2

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  20. Applications of quantum electro-optic control and squeezed light

    International Nuclear Information System (INIS)

    Lam, P.K.

    2000-01-01

    Full text: The control theory of electronic feedback or feedforward is a topic well understood by many scientists and engineers. With many of the modern equipment relying on automation and robotics, an understanding of this classical control theory is a common requisite for many technologists. In the field of optics, electronic control theory is also commonly used in many situations. From the temperature controlling of laser systems, the auto-alignment of optical elements, to the locking of optical resonators, all make use of electronic control theory in their operations. In this talk, we present the use the control theory in the context of quantum optics. In much the same as its classical counterpart, the 'quantum electro-optic' control loop consists simply of an optical beam splitter, a detector and an electro-optic modulator. This simple system, however, can offer many interesting applications when used in combination with nonclassical states of light. One well-known example of non-classical light is that of the squeezed state of light. A light beam is referred to as being amplitude 'squeezed' when its amplitude has less noise when compared to that of a coherent light state. In fact, the field fluctuation of such light states in some sense lower that the field fluctuation of the photonic vacuum state. Yet another interesting non-classical light state is the so-called 'Einstein-Podolsky-Rosen' entangled pair. This consists of two beams of light, each of which has properties that are highly dependent on each other. Using both the quantum electro-optic control loops and these light states, we demonstrate schemes which allow us to perform noiseless optical amplification, quantum non-demolition measurement and quantum teleportation. These schemes may be important building blocks to the realisation of future quantum communications and quantum information networks

  1. Optical packet switching in HPC : an analysis of applications performance

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Miao, Wang; Calabretta, Nicola

    2018-01-01

    Optical Packet Switches (OPS) could provide the needed low latency transmissions in today large data centers. OPS can deliver lower latency and higher bandwidth than traditional electrical switches. These features are needed for parallel High Performance Computing (HPC) applications. For this

  2. Application of the Wigner distribution function in optics

    NARCIS (Netherlands)

    Bastiaans, M.J.; Mecklenbräuker, W.; Hlawatsch, F.

    1997-01-01

    This contribution presents a review of the Wigner distribution function and of some of its applications to optical problems. The Wigner distribution function describes a signal in space and (spatial) frequency simultaneously and can be considered as the local frequency spectrum of the signal.

  3. Integral Representations of the Catalan Numbers and Their Applications

    Directory of Open Access Journals (Sweden)

    Feng Qi

    2017-08-01

    Full Text Available In the paper, the authors survey integral representations of the Catalan numbers and the Catalan–Qi function, discuss equivalent relations between these integral representations, supply alternative and new proofs of several integral representations, collect applications of some integral representations, and present sums of several power series whose coefficients involve the Catalan numbers.

  4. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  5. Monolithic photonic integration technology platform and devices at wavelengths beyond 2 μm for gas spectroscopy applications

    NARCIS (Netherlands)

    Latkowski, S.; van Veldhoven, P.J.; Hänsel, A.; D'Agostino, D.; Rabbani-Haghighi, H.; Docter, B.; Bhattacharya, N.; Thijs, P.J.A.; Ambrosius, H.P.M.M.; Smit, M.K.; Williams, K.A.; Bente, E.A.J.M.

    2017-01-01

    In this paper a generic monolithic photonic integration technology platform and tunable laser devices for gas sensing applications at 2 μm will be presented. The basic set of long wavelength optical functions which is fundamental for a generic photonic integration approach is realized using planar,

  6. Hybrid graphene/silicon integrated optical isolators with photonic spin–orbit interaction

    International Nuclear Information System (INIS)

    Ma, Jingwen; Sun, Xiankai; Xi, Xiang; Yu, Zejie

    2016-01-01

    Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated platform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphene's magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spins exhibit different responses to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with the extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 μm. Featuring graphene's CMOS compatibility and substantially reduced device footprint, our proposal sheds light on monolithic integration of nonreciprocal photonic devices.

  7. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  8. Semiconductor nanocrystals for novel optical applications

    Science.gov (United States)

    Moon, Jong-Sik

    Inspired by the promise of enhanced spectral response, photorefractive polymeric composites photosensitized with semiconductor nanocrystals have emerged as an important class of materials. Here, we report on the photosensitization of photorefractive polymeric composites at visible wavelengths through the inclusion of narrow band-gap semiconductor nanocrystals composed of PbS. Through this approach, internal diffraction efficiencies in excess of 82%, two-beam-coupling gain coefficients in excess of 211 cm-1, and response times 34 ms have been observed, representing some of the best figures-of-merit reported on this class of materials. In addition to providing efficient photosensitization, however, extensive studies of these hybrid composites have indicated that the inclusion of nanocrystals also provides an enhancement in the charge-carrier mobility and subsequent reduction in the photorefractive response time. Through this approach with PbS as charge-carrier, unprecedented response times of 399 micros were observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency and with internal diffraction efficiencies of 72% and two- beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of the enhanced charge mobility without the accompaniment of superfluous traps. Finally, water soluble InP/ZnS and CdSe/ZnS quantum dots interacted with CPP and Herceptin to apply them as a bio-maker. Both of quantum dots showed the excellent potential for use in biomedical imaging and drug delivery applications. It is anticipated that these approaches can play a significant role in the eventual commercialization of these classes of materials.

  9. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as 'Key Component' for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  10. Biological applications of near-field scanning optical microscopy

    Science.gov (United States)

    Moers, Marco H. P.; Ruiter, A. G. T.; Jalocha, Alain; van Hulst, Niko F.; Kalle, W. H. J.; Wiegant, J. C. A. G.; Raap, A. K.

    1995-09-01

    Near-field Scanning Optical Microscopy (NSOM) is a true optical microscopic technique allowing fluorescence, absorption, reflection and polarization contrast with the additional advantage of nanometer lateral resolution, unlimited by diffraction and operation at ambient conditions. NSOM based on metal coated adiabatically tapered fibers, combined with shear force feedback and operated in illumination mode, has proven to be the most powerful NSOM arrangement, because of its true localization of the optical interaction, its various optical contrast possibilities and its sensitivity down to the single molecular level. In this paper applications of `aperture' NSOM to Fluorescence In Situ Hybridization of human metaphase chromosomes are presented, where the localized fluorescence allows to identify specific DNA sequences. All images are accompanied by the simultaneously acquired force image, enabling direct comparison of the optical contrast with the sample topography on nanometer scale, far beyond the diffraction limit. Thus the unique combination of high resolution, specific optical contrast and ambient operation offers many new direction possibilities in biological studies.

  11. Optical fibers and their applications for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  12. All-optical 40 Gbit/s compact integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1997-01-01

    An interferometric Michelson wavelength converter is presented that combines a speed-optimized semiconductor optical amplifier technology with the benefits of the integrated interferometer showing 40-Gbit/s wavelength conversion. The optimized wavelength converter demonstrates noninverted converted...

  13. Stechiometric neodymium compounds as new materials for light sources in integrated optics

    International Nuclear Information System (INIS)

    Malinowski, M.

    1981-01-01

    Short review of physico-chemical properties of stechiometric neodymium compounds has been presented. Several constructions of minilasers as promising light sources for integrated optics devices have been described. (author)

  14. Integrated Optoelectronic Networks for Application-Driven Multicore Computing

    Science.gov (United States)

    2017-05-08

    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  15. Performance of magneto-optical glass in optical current transducer application

    International Nuclear Information System (INIS)

    Shen, Yan; Lu, Yunhe; Liu, Zhao; Yu, Xueliang; Zhang, Guoqing; Yu, Wenbin

    2015-01-01

    First, a theoretical analysis was performed on the effect of temperature on the performance of the sensing element of paramagnetic rare earth-doped magneto-optical glass material that can be used in an optical current transducer application. The effect comprises two aspects: the linear birefringence and the Verdet constant. On this basis, rare earth-doped glass temperature characteristics were studied, and the experimental results indicated that the linear birefringence of rare earth-doped glass increased with increasing temperature, while its magneto-optical sensitivity decreased. Comparative experiments performed for various concentrations of rare earth dopant in the glass revealed that changes in the dopant concentration had no significant effect on the performance of magneto-optical glass. At last, a comparison between rare earth-doped magneto-optical and diamagnetic dense flint glass showed that the sensitivity of the former was six times that of the latter, although the temperature stability of the former was poorer. - Highlights: • Theoretical analysis on the effects of temperature on RE glass. • Rare earth doping leads to higher magneto-optical sensitivity. • The sensitivity of the RE glass is six times that of the dense flint glass

  16. Integrated optical switch circuit operating under FPGA control

    NARCIS (Netherlands)

    Stabile, R.; Zal, M.; Williams, K.A.; Bienstman, P.; Morthier, G.; Roelkens, G.; et al., xx

    2011-01-01

    Integrated photonic circuits are enabling an abrupt step change in networking systems providing massive bandwidth and record transmission. The increasing complexity of high connectivity photonic integrated switches requires sophisticated control planes and more intimate high speed electronics. Here

  17. Fiber optic interferometry for industrial process monitoring and control applications

    Science.gov (United States)

    Marcus, Michael A.

    2002-02-01

    Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.

  18. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  19. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  20. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  1. Guided-wave acousto-optics interactions, devices, and applications

    CERN Document Server

    1990-01-01

    The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in­ tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap­ plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in­ tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...

  2. Flexible optical network components based on densely integrated microring resonators

    NARCIS (Netherlands)

    Geuzebroek, D.H.

    2005-01-01

    This thesis addresses the design, realization and characterization of reconfigurable optical network components based on multiple microring resonators. Since thermally tunable microring resonators can be used as wavelength selective space switches, very compact devices with high complexity and

  3. Fiber optic sensors for environmental applications: A brief review

    International Nuclear Information System (INIS)

    Rossabi, J.

    1992-04-01

    Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface

  4. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  5. Application of optical processing to adaptive phased array radar

    Science.gov (United States)

    Carroll, C. W.; Vijaya Kumar, B. V. K.

    1988-01-01

    The results of the investigation of the applicability of optical processing to Adaptive Phased Array Radar (APAR) data processing will be summarized. Subjects that are covered include: (1) new iterative Fourier transform based technique to determine the array antenna weight vector such that the resulting antenna pattern has nulls at desired locations; (2) obtaining the solution of the optimal Wiener weight vector by both iterative and direct methods on two laboratory Optical Linear Algebra Processing (OLAP) systems; and (3) an investigation of the effects of errors present in OLAP systems on the solution vectors.

  6. Applications of capillary optics for focused ion beams

    International Nuclear Information System (INIS)

    Umezawa, Kenji

    2014-01-01

    This article introduces applications of focused ion beams (∼1 μm) with glass capillaries systems. A first report on the interaction between ion beams and glass capillaries was published in 1996. The guiding capabilities of glass capillaries were discovered due to ion reflection from inner wall of glass surfaces. Meanwhile, the similar optics have been already realized in focusing X-rays using glass capillaries. The basic technology of X-rays optics using glass capillaries had been developed in the 1980's and 1900's. Also, low energy atom scattering spectroscopy for insulator material analysis will be mentioned. (author)

  7. A comparison of integrated and fiber optic responses in the presence of nuclear fields

    International Nuclear Information System (INIS)

    Taylor, E.W.; Wilson, V.R.; Sanchez, A.D.; Coughenour, M.; Chapman, S.

    1988-01-01

    A short survey of past experimental results is presented along with new investigative data, mathematical and physical response models and a comparison of the nuclear effects compatibility of fiber and integrated optic guided wave structures. The disparity in radiation resistance between optical fibers and guided wave structures is discussed and predictions are offered on the impact that these differences may have on influencing the eventual development of totally integrated radiation resistant structures

  8. Micro-resonators based on integrated polymer technology for optical sensing

    OpenAIRE

    Girault , Pauline; Lemaitre , Jonathan; Guendouz , Mohammed; Lorrain , Nathalie; Poffo , Luiz; Gadonna , Michel; Bosc , Dominique

    2014-01-01

    International audience; Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induces a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and ...

  9. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    Science.gov (United States)

    2017-06-15

    AFRL-RX-WP-JA-2017-0348 THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL ISOLATORS (POSTPRINT) Dolendra Karki...Interim 9 May 2016 – 1 December 2016 4. TITLE AND SUBTITLE THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL...transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth

  10. Research on optical applications in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Baik, Sung Hoon; Kwon, Seong Ouk; Hong, Suc Kyoung; Kim, Duk Hyeon

    1988-12-01

    The laser fluorometer developed in 1987 has been modified to compensate the inner filter and quenching effects. The signal processing electronic circuit was redesigned and a computer interface was introduced for data processing. It has been already used in routine chemical analysis in the chemical analysis division. Its application to uranium monitoring in conversion plant is being investigated. Also, we found that it can be used in trace analysis of samarium and europium with detection limit of 1 ppb and 0.1 ppb, respectively. The IRMPA/D process of CDF 3 and CHF 3 have been studied. The pressure effects of CDF 3 ,CHF 3 and added buffer gas were investigated. Mainly, the change in reaction rate was examined while varying the pressure of CDF 3 , CHF 3 and buffer gas. The IRMPD reaction ratio of CDF 3 and CHF 3 from below 0.1 torr up to a few torr was studied and the buffer gas pressure effect was investigated at constant pressure of CDF 3 or CHF 3 of 1 torr. Several kinds of buffer gas, Ar, N 2 , and SF 6 , were used to investigate the buffer gas pressure effect. We applied double exposure holographic interferometry, and analyzed qualitatively the distortion due to thermal heat and vibration. The research on holographic remote inspection will be achieved to apply this technique to the nuclear fuel cycle facilities. (Author)

  11. Software-Programmed Optical Networking with Integrated NFV Service Provisioning

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Wang, Xi; Basu, Shrutarshi

    2017-01-01

    We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS).......We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS)....

  12. DEVELOPING FLEXIBLE APPLICATIONS WITH XML AND DATABASE INTEGRATION

    Directory of Open Access Journals (Sweden)

    Hale AS

    2004-04-01

    Full Text Available In recent years the most popular subject in Information System area is Enterprise Application Integration (EAI. It can be defined as a process of forming a standart connection between different systems of an organization?s information system environment. The incorporating, gaining and marriage of corporations are the major reasons of popularity in Enterprise Application Integration. The main purpose is to solve the application integrating problems while similar systems in such corporations continue working together for a more time. With the help of XML technology, it is possible to find solutions to the problems of application integration either within the corporation or between the corporations.

  13. Applications of nonimaging optics for very high solar concentrations

    International Nuclear Information System (INIS)

    O'Gallagher, J.; Winston, R.

    1997-01-01

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy

  14. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    Science.gov (United States)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  15. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  16. A fully integrated optical detector with a-Si:H based color photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Watty, Krystian; Merfort, Christian; Seibel, Konstantin; Schoeler, Lars; Boehm, Markus [Institute for Microsystem Technologies (IMT), University of Siegen, Hoelderlinstr. 3, 57076 Siegen (Germany)

    2010-03-15

    The fabrication of an electrophoresis separation microchip with monolithic integrated excitation light source and variospectral photodiodes for absorption detection is presented in this paper. Microchip based separation techniques are essential elements in the development of fully integrated micro-total analysis systems ({mu}-TAS). An integrated microfluidic device, like an application specific lab-on-microchip (ALM) (Seibel et al., in: MRS Spring Meeting, San Francisco, USA, 2005 1), includes all components, necessary to perform a chemical analysis on chip and it can be used as a stand-alone unit directly at the point of sampling. Variospectral diodes based on hydrogenated amorphous silicon (a-Si:H) technology allow for advanced optical detection schemes, because the spectral sensitivity of the devices can be tailored to fit the emission of specific fluorescent markers. Important features of a-Si:H variospectral photodiodes are a high dynamic range, a bias-tunable spectral sensitivity and a very good linearity for the separation of mixed color signals. Principle of ALM device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  18. Bragg-Fresnel optics: New field of applications

    Energy Technology Data Exchange (ETDEWEB)

    Snigirev, A. [ESRF, Grenoble (France)

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  19. Surface analysis of Borkron glass for neutron optics applications

    International Nuclear Information System (INIS)

    Farnoux, B.; Maaza, M.; Maaza, M.; Samuel, F.; Sella, C.

    1991-01-01

    Grazing Angle Neutron Reflectometry, Optical and Mechanical Roughness Profilometry techniques have been used to study the effects of the polishing operations on the surface of Borkron Schott glass (special borosilicate glass for neutron optics applications) as the polishing tool pressure P and the mean grain size of the polishing powder Φ. The neutron reflectivity investigations have shown that there is formation of a layer at the surface glass substrate. This layer is less dense than the bulk substrate and its thickness is around 60A. The optical and mechanical profilometry measurements have shown that both roughness and waviness decrease with P and Φ. All the experimental results show a good correlation between the neutron refractive index, the thickness and the roughness of the surface layer and the waviness of the glass surface with the two mechanical polishing parameters. The previous techniques have been completed by Secondary Ion Mass Spectroscopy and Atomic Force Microscopy measurements

  20. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  1. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  2. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  3. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  4. A 1.5 Gb/s monolithically integrated optical receiver in the standard CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xindong; Mao Luhong; Yu Changliang; Zhang Shilin; Xie Sheng, E-mail: xxd@tju.edu.c [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China)

    2009-12-15

    A monolithically integrated optical receiver, including the photodetector, has been realized in Chartered 0.35 {mu}m EEPROM CMOS technology for 850 nm optical communication. The optical receiver consists of a differential photodetector, a differential transimpedance amplifier, three limiting amplifiers and an output circuit. The experiment results show that the receiver achieves an 875 MHz 3 dB bandwidth, and a data rate of 1.5 Gb/s is achieved at a bit-error-rate of 10{sup -9}. The chip dissipates 60 mW under a single 3.3 V supply. (semiconductor integrated circuits)

  5. A 1.5 Gb/s monolithically integrated optical receiver in the standard CMOS process

    International Nuclear Information System (INIS)

    Xiao Xindong; Mao Luhong; Yu Changliang; Zhang Shilin; Xie Sheng

    2009-01-01

    A monolithically integrated optical receiver, including the photodetector, has been realized in Chartered 0.35 μm EEPROM CMOS technology for 850 nm optical communication. The optical receiver consists of a differential photodetector, a differential transimpedance amplifier, three limiting amplifiers and an output circuit. The experiment results show that the receiver achieves an 875 MHz 3 dB bandwidth, and a data rate of 1.5 Gb/s is achieved at a bit-error-rate of 10 -9 . The chip dissipates 60 mW under a single 3.3 V supply. (semiconductor integrated circuits)

  6. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  7. Tunable light source for fiber optic lighting applications

    Science.gov (United States)

    Narendran, Nadarajah; Bierman, Andrew; Finney, Mark J.; Edwards, Ian K.

    1997-09-01

    This paper examines the possibility of tuning the lamp spectrum to compensate for color distortions in fiber optic lighting systems. Because most optical fibers have strong absorption in the blue and red wavelength regions, white light entering and propagating down an optical fiber suffers varied amounts of attenuation as a function of wavelength. As a result, the light exiting the optical fiber has a greenish tint that the lighting design community considers undesirable in interior lighting applications. HID lamps are commonly used for the light source in this industry. Certain classes of HID lamps tend to shift in color when their operating position or the input voltage to the lamp is changed. An experimental study is being conducted to characterize the color shift properties of a small HID lamp as a function of tilt and input voltage. The study also examines the possibility of exploiting this color shift to compensate for the color distortions caused by optical fibers. The details of the experiment and the results are presented in this manuscript.

  8. A magic mirror - quantum applications of the optical beam splitter

    International Nuclear Information System (INIS)

    Bachor, H.A.

    2000-01-01

    Mirrors are some of the simplest optical components, and their use in optical imaging is well known. They have many other applications, such as the control of laser beams or in optical communication. Indeed they can be found in most optical instruments. It is the partially reflecting mirror, better known as the beam splitter, that is of particular interest to us. It lies at the centre of a number of recent scientific discoveries and technical developments that go beyond the limits of classical optics and make use of the quantum properties of light. In this area Australian and New Zealand researchers have made major contributions in the last two decades. In this paper, the author discusses how a mirror modifies the light itself and the information that can be sent by a beam, and summarise the recent scientific achievements. It combines the idea of photons, where the idea of quantisation is immediately obvious, with the idea of modulating continuous laser beams, which is practical and similar to the engineering description of radio communication

  9. Plasmon assisted optical trapping: fundamentals and biomedical applications

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini; Tsigaridas, Georgios N.; Gousetis, Anastasios

    2015-01-01

    The field of optical trapping has dramatically grown due to implementation in various arenas including physics, biology, medicine and nanotechnology. Certainly, optical tweezers are an invaluable tool to manipulate a variation of particles, such as small dielectric spheres, cells, bacteria, chromosomes and even genes, by highly focused laser beams through microscope. As the main disadvantage of the conventional optical trapping systems is the diffraction limit of the incident light, plasmon assisted nanotrapping is reported as a suitable technique for trapping sub-wavelength metallic or dielectric particles. In this work, firstly, we report briefly on the basic theory of plasmon excitation, focusing on the interaction of nanoscale metallic structures with laser light. Secondly, experimental and numerical simulation results are also presented, demonstrating enhancement of the trapping efficiency of glass or SiO2 substrates, coated with Au and Ag nanostructures, with or without nanoparticles. The optical forces were calculated by measuring the particle's escape velocity calibration method. Finally, representative applications of plasmon assisted optical trapping are reviewed, from cancer therapeutics to fundamental biology and cell nanosurgery.

  10. Accelerated optical polymer aging studies for LED luminaire applications

    Science.gov (United States)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  11. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  12. Optical propagators in vector and spinor theories by path integral formalism

    International Nuclear Information System (INIS)

    Linares, J.

    1993-01-01

    The construction of an extended parabolic (wide-angle) vector and spinor wave theory is presented. For that, optical propagators in monochromatic vector light optics and monoenergetic spinor electron optics are evaluated by the path integral formalism. The auxiliary parameter method introduced by Fock and the Feynman-Dyson perturbative series are used. The proposed theory supplies, by a generalized Fermat's principle, the Mukunda-Simon-Sudarshan transformation for the passage from scalar to vector light (or spinor electron) optics in an asymptotic approximation. (author). 19 refs

  13. Design issues of optical router for metropolitan optical network (MON) applications

    Science.gov (United States)

    Wei, Wei; Zeng, QingJi

    2001-10-01

    The popularity of the Internet has caused the traffic on the Metro Area Network (MAN) to grow drastically every year. It is believed that Wavelength Division Multiplexing (WDM) has become a cornerstone technology in the MAN. Solutions to provide a MAN with high bandwidth, good scalability and easy management are being constantly searched from both IP and WDM. In this paper we firstly propose a metro optical network architecture based on GMPLS--a flexible, highly scalable IP over WDM optical network architecture for the delivery of public network IP services. Two kinds of node including Electronic Label Switching Router (E-LSR) and Optical Router (O-LSR) are involved in this metro optical network architecture. Secondly, we mainly focus on design issues of OR including multi-granularity electro-optical hybrid switching fabrics, intelligent OTU, contro l plane software and etc. And we also discuss some issues such as routing, forwarding and management of OR. Finally, we reach conclusions that OR based on GMPLS and hybrid-switching fabrics is suitable for current multi-services application environment of MON and optimistic for IP traffic transfer.

  14. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  15. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-09-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.

  16. The Magnetic Physical Optics Scattered Field in Terms of a Line Integral

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2000-01-01

    An exact line integral representation Is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by a magnetic Hertzian dipole. A numerical example is presented to illustrate the exactness of the line integral representation...

  17. An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2003-01-01

    An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...... are presented to illustrate the exactness of the line integral representation....

  18. Designing interaction behaviour in service-oriented enterprise application integration

    NARCIS (Netherlands)

    Dirgahayu, T.; Quartel, Dick; van Sinderen, Marten J.

    In this paper we present an approach for designing interaction behaviour in service-oriented enterprise application integration. The approach enables business analysts to actively participate in the design of an integration solution. In this way, we expect that the solution meets its integration

  19. Integration with respect to the Euler characteristic and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, Sabir M [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2010-09-16

    The notion of integration with respect to the Euler characteristic and its generalizations are discussed: integration over the infinite-dimensional spaces of arcs and functions, motivic integration. The author describes applications of these notions to the computation of monodromy zeta functions, Poincare series of multi-index filtrations, generating series of classes of certain moduli spaces, and so on. Bibliography: 70 titles.

  20. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.

    Science.gov (United States)

    Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner

    2017-04-01

    An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.

  1. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  2. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    OpenAIRE

    Moore, Michael Christopher

    2013-01-01

    With a rapidly growing population, dwindling resources, and increasing environmental pressures, the need for sustainable technological solutions becomes more urgent. Metal oxides make up much of the earth's crust and are typically inexpensive materials, but poor electrical and optical properties prevent them from being useful for most semiconductor applications. Recent breakthroughs in chemistry and materials science allow for the growth of high-quality materials with nanometer-scale features...

  3. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  4. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  5. Integration of multiwavelength lasers with fast electro-optical modulators

    NARCIS (Netherlands)

    Besten, den J.H.

    2004-01-01

    Photonic Integrated Circuits (PICs) are of key importance in Wavelength-Division Multiplexing (WDM) networks because of their reduced volume and packaging costs compared to discrete components. The research described in this thesis was focussed on the integration of WDM-lasers and Radio-Frequency

  6. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    Science.gov (United States)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  7. ZnO processing for integrated optic sensors

    NARCIS (Netherlands)

    Horsthuis, Winfried H.G.

    1986-01-01

    ZnO thin films were sputter deposited onto oxidized silicon wafers. The film quality increased with increasing applied r.f. power. Characterization of the films was performed by measurements of the attenuation of the transverse electric TE0 optical guided mode. For an applied r.f. power of 2000 W,

  8. Combined nanoimprint and photolithography of integrated polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Gersborg-Hansen, Morten

    2007-01-01

    are defined in SU-8 resist, doped with Rhodamine 6G laser dye, shaped as planar slab waveguides on a Fused Silica buffer substrate, and with a lst-order DFB surface corrugation forming the laser resonator. When optically pumped at 532 nm, lasing is obtained in the wavelength range 560 nm -600 nm, determined...

  9. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  10. New Optical Sensing Materials for Application in Marine Research

    Science.gov (United States)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  11. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Matos Pires

    2014-08-01

    Full Text Available The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a study of the compatibility of conventional instrumentation with microfluidic structures, and (b integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  12. Compact holographic memory and its application to optical pattern recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Reyes, George F.; Zhou, Hanying

    2001-03-01

    JPL is developing a high-density, nonvolatile Compact Holographic Data Storage (CHDS) system to enable large- capacity, high-speed, low power consumption, and read/write of data for commercial and space applications. This CHDS system consists of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high- speed. In this paper, recent technology progress in developing this CHDS at JPL will be presented. The recent applications of the CHDS to optical pattern recognition, as a high-density, high transfer rate memory bank will also be discussed.

  13. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    Science.gov (United States)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high

  14. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  15. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    Science.gov (United States)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  16. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  17. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  18. Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O's.

    Science.gov (United States)

    Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris

    2015-04-06

    Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.

  19. Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects.

    Science.gov (United States)

    Wong, Ronnie; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Dinn, Nicole A; Sun, Cuiru; Huang, Yize; Smith, James A; Yang, Victor X D

    2015-01-01

    Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery.

  20. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    Science.gov (United States)

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  1. Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

    OpenAIRE

    Zainud-Deen, S. H.; El-Shalaby, N. A.; Gaber, S. M.; Malhat, H. A.

    2016-01-01

    Circularly polarized (CP) transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC) square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensatio...

  2. Potential application of Chinese traditional medicine (CTM) as enhancer for tissue optical clearing

    Science.gov (United States)

    Chen, Wei; Jiang, Jingying; Wang, Ruikang K.; Xu, Kexin

    2009-02-01

    Many biocompatible hyperosmotic agents such as dimethyl sulfoxide(DMSO) have been used as enhancers for tissue optical clearing technique. However, previous investigations showed that DMSO can induce bradycardia, respiratory problems, and alterations in blood pressure. Also, DMSO could potentially alter the chemical structure, and hence the functional properties, of cell membranes. In this talk, Borneol among natural and nontoxic CTMs was introduced as new enhancer for optical clearing of porcine skin tissue since it has been widely used as new penetration promoter in the field of trandermial drug delivery system(TDDS) and been proved to be effective. In the first, the spectral characteristics of borneol was obtained and analyzed by Fourier Transformation Infrared (FTIR) spectrophotometer. And further experimental studies were performed to probe if borneol is capable of optical clearing of porcine skin tissue in vitro with near infrared spectroscopy, double integrating-spheres system and Inverse Adding-Doubling(IAD) algorithm. Spectral results show that light penetration depth into skin tissue got the increase. Meanwhile, absorption coefficient and scattering coefficient of porcine skin treated by borneol got the decrease during the permeation of Borneol. Therefore, Borneol could be potentially used as enhancer for tissue optical clearing to improve non-invasive light-based diagnostic and imaging techniques while practically optical application and clinical safety are under consideration.

  3. Integrated design course of applied optics focusing on operating and maintaining abilities

    Science.gov (United States)

    Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai

    2017-08-01

    The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.

  4. Multilayer optics for x-ray analysis: design - fabrication - application

    International Nuclear Information System (INIS)

    Dietsch, R.; Holz, Th.; Bruegemann, L.

    2002-01-01

    Full text: The use of multilayer optics induced a decisive extension of opportunities in laboratory based X-ray analysis. With the growing number of different applications, more and more dedicated X-ray optics are required, optimized for the spectral range they are intended to be used for. Both the characteristic of the used X-ray source and the design of the multilayer optics finally define the performance of the conditioned incident beam for the application. In any case, qualified spacer and absorber materials have to be selected for the deposition of the multilayer in respect to the designated X-ray wavelength. X-ray optical devices based on uniform multilayers have the advantage of a wide acceptance angle but show chromatic aberrations. This effect can be avoided by synthesizing a multilayer with a lateral thickness gradient. The gradient ensures that any beam of a certain wavelength emitted from an infinite narrow X-ray source impinging the multilayer optics fulfills the Bragg condition. Three different types of curvature of laterally graded multilayer mirrors are used for X-ray analysis experiments: parabolic, elliptic and planar, which result in parallel, focusing and divergent beam conditions, respectively. Furthermore, the X-ray beam characteristics: intensity, monochromasy, divergence, beam width and brilliance can be additionally conditioned by combining one multilayer optics with either a different optic and/or with a crystal monochromator. The deposition of nanometer-multilayers, used as X-ray optical components, result in extraordinary requirements of the deposition process concerning precision, reproducibility and long term stability. Across a stack of more than 150 individual layers with thicknesses in the range between 1 to 10 nm, a variation of single layer thickness considerably lower than σ D = 0.1 nm and an interface roughness below σ R = 0.25 nm have to be achieved. Thickness homogeneity Δd/d -8 have to be guaranteed across macroscopic

  5. On-chip integrated lasers for biophotonic applications

    DEFF Research Database (Denmark)

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser ...

  6. Current use and potential of additive manufacturing for optical applications

    Science.gov (United States)

    Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate

    2017-10-01

    Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.

  7. Coordinating standards and applications for optical water quality sensor networks

    Science.gov (United States)

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  8. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields

  9. Integrative production technology theory and applications

    CERN Document Server

    Özdemir, Denis

    2017-01-01

    This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. .

  10. A Multiple Iterated Integral Inequality and Applications

    Directory of Open Access Journals (Sweden)

    Zongyi Hou

    2014-01-01

    Full Text Available We establish new multiple iterated Volterra-Fredholm type integral inequalities, where the composite function w(u(s of the unknown function u with nonlinear function w in integral functions in [Ma, QH, Pečarić, J: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. 69 (2008 393–407] is changed into the composite functions w1(u(s,w2(u(s,…, wn (u(s of the unknown function u with different nonlinear functions w1,w2,…,wn, respectively. By adopting novel analysis techniques, the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of ordinary differential equations and integral equations.

  11. A search for applications of Fiber Optics in early warning systems for natural hazards.

    Science.gov (United States)

    Wenker, Koen; Bogaard, Thom

    2013-04-01

    In order to reduce the societal risk associated with natural hazards novel technologies could help to advance in early warning systems. In our study we evaluate the use of multi-sensor technologies as possible early-warning systems for landslides and man-made structures, and the integration of the information in a simple Decision Support System (DSS). In this project, particular attention will be paid to some new possibilities available in the field of distributed monitoring systems of relevant parameters for landslide and man-made structures monitoring (such as large dams and bridges), and among them the distributed monitoring of temperature, strain and acoustic signals by FO cables. Fiber Optic measurements are becoming more and more popular. Fiber optic cables have been developed in the telecommunication business to send large amounts of information over large distances with the speed of light. Because of the commercial application, production costs are relatively low. Using fiber optics for measurements has several advantages. This novel technology is, for instance, immune to electromagnetic interference, appears stable, very accurate, and has the potential to measure several independent physical properties in a distributed manner. The high resolution spatial and temporal distributed information on e.g. temperature or strain (or both) make fiber optics an interesting measurement technique. Several applications have been developed in both engineering as science and the possibilities seem numerous. We will present a thorough literature review that was done to assess the applicability and limitations of FO cable technology. This review was focused but not limited to application in landslide research. Several examples of current practices will be shown, also from outside the natural hazard practice and possible application will be discussed.

  12. Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications

    Science.gov (United States)

    Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.

    2017-10-01

    Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.

  13. Implementation of Optical Characterization for Flexible Organic Electronics Applications

    Science.gov (United States)

    Laskarakis, A.; Logothetidis, S.

    One of the most rapidly evolving sectors of the modern science and technology is the flexible organic electronic devices (FEDs) that are expected to significantly improve and revolutionize our everyday life. The FED application includes the generation of electricity by renewable sources (by organic photovoltaic cells - OPVs), power storage (thin film batteries), the visualization of information (by organic displays), the working and living environment (ambient lighting, sensors), safety, market (smart labels, radio frequency identification tags - RFID), textiles (smart fabrics with embedded display and sensor capabilities), as well as healthcare (smart sensors for vital sign monitoring), etc. Although there has been important progresses in inorganic-based Si devices, there are numerous advances in the organic (semiconducting, conducting), inorganic, and hybrid (organic-inorganic) materials that exhibit desirable properties and stability, and in the synthesis and preparation methods. The understanding of the organic material properties can lead to the fast progress of the functionality and performance of FEDs. The investigation of the optical properties of these materials can promote the understanding of the optical, electrical, structural properties of organic semiconductors and electrodes and can contribute to the optimization of the synthesis process and the tuning of their structure and morphology. In this chapter, we will describe briefly some of the advances toward the implementation of optical characterization methods, such as Spectroscopic Ellipsometry (SE) from the infrared to the visible and ultraviolet spectral region for the study of materials (flexible polymer substrates, barrier layers, transparent electrodes) to be used for application in the fabrication of FEDs.

  14. Applicability study of optical fiber distribution sensing to nuclear facilities

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Nakazawa, Masaharu; Kakuta, Tsunemi

    1999-01-01

    Optical fibers have advantages like flexible configuration, intrinsic immunity for electromagnetic fields etc., and they have been used for signal transmission and as optical fiber sensors (OFSs). By some of these sensor techniques, continuous or discrete distribution of physical parameters can be measured. Here, in order to discuss the applicability of these OFSs to nuclear facilities, irradiation experiments to optical fibers were carried out using the fast neutron source reactor 'YAYOI' and a 60 Co γ source. It has been shown that, under irradiation with fast neutrons, the radiation induced loss increase almost linearly with the neutron fluence. On the other hand, when irradiated with 60 Co γ rays, the loss shows a saturation tendency. As an example of the OFSs, applicability of the Raman distributed temperature sensor (RDTS) to the monitoring of nuclear facilities has been examined. Two correction techniques for radiation induced errors have been developed and for the demonstration of their feasibility, measurements were carried out along the primary piping system of the experimental fast reactor: JOYO. During the continuous measurements with the total dose of more than 10 7 [R], the radiation induced errors showed a saturating tendency and the feasibility of the loss correction technique was demonstrated. Although the time response of the system should be improved, the RDTS can be expected as a noble temperature monitor in nuclear facilities. (author)

  15. ZnO - Wide Bandgap Semiconductor and Possibilities of Its Application in Optical Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Struk Przemysław

    2014-08-01

    Full Text Available The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a~ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a~ 3 dB/cm (TE0 and TM0 modes. The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.

  16. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Directory of Open Access Journals (Sweden)

    Troy W. Lowry

    2015-08-01

    Full Text Available Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose.

  17. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Science.gov (United States)

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  18. Fractional Differential and Integral Inequalities with Applications

    Science.gov (United States)

    2016-02-14

    Dynamic Systems and Applications (07 2013) Aghalaya S. Vatsala, Bhuvaneswari Sambandham. Laplace Transform Method for Sequential CaputoFractional...coupled minimal and maximal solutions for such an equation and a numerical example is provided as an application of the theoretical results. The... Applications The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of

  19. Multidimensional quantum entanglement with large-scale integrated optics

    DEFF Research Database (Denmark)

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong

    2018-01-01

    -dimensional entanglement. A programmable bipartite entangled system is realized with dimension up to 15 × 15 on a large-scale silicon-photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality......The ability to control multidimensional quantum systems is key for the investigation of fundamental science and for the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control and analyze high...

  20. Review on developments in fiber optical sensors and applications

    Science.gov (United States)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    The last couple of decades had witnessed a rise in the research of optoelectronic and fiber optical communication fields, which resulted in applications focused initially in military and aerospace equipments, and later in health monitoring for medicine, heritage culture and various engineering fields. The monitoring of existing or /and new engineering, biomedical structures has become a regular feature throughout the world. Monitoring is fast emerging as a pioneering field with high precision and quality equipments. This field is very vast, consisting of both traditional as well as smart materials based methods. The fiber optics belong to the finest class of smart materials, there are many types and classifications based on the necessity, manufacturer and the end user. In this paper, a complete over view of fiber sensing systems and their usefulness is briefly presented.

  1. Broadband diffuse optical characterization of elastin for biomedical applications.

    Science.gov (United States)

    Konugolu Venkata Sekar, Sanathana; Beh, Joo Sin; Farina, Andrea; Dalla Mora, Alberto; Pifferi, Antonio; Taroni, Paola

    2017-10-01

    Elastin is a key structural protein of dynamic connective tissues widely found in the extracellular matrix of skin, arteries, lungs and ligaments. It is responsible for a range of diseases related to aging of biological tissues. The optical characterization of elastin can open new opportunities for its investigation in biomedical studies. In this work, we present the absorption spectra of elastin using a broadband (550-1350nm) diffuse optical spectrometer. Distortions caused by fluorescence and finite bandwidth of the laser source on estimated absorption were effectively accounted for in measurements and data analysis and compensated. A comprehensive summary and comparison between collagen and elastin is presented, highlighting distinct features for its accurate quantification in biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  3. Potential applications of optical coherence tomography angiography in glaucoma.

    Science.gov (United States)

    Dastiridou, Anna; Chopra, Vikas

    2018-05-01

    Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging modality that allows assessment of the retinal and choroidal vasculature. The scope of this review is to summarize recent studies using OCTA in glaucoma and highlight potential applications of this new technology in the field of glaucoma. OCTA studies have shown that retinal vascular changes may not develop solely as a result of advanced glaucoma damage. OCTA-derived measurements have provided evidence for lower retinal vascular densities at the optic nerve head, peripapillary and macula in preperimetric-glaucoma and early-glaucoma, as well as, in more advanced glaucoma, in comparison to with normal eyes. OCTA is a novel imaging modality that has already started to expand our knowledge base regarding the role of ocular blood flow in glaucoma. Future studies will better elucidate the role of OCTA-derived measurements in clinical practice, research, and clinical trials in glaucoma.

  4. Discovery Channel Telescope active optics system early integration and test

    Science.gov (United States)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  5. Micro-Optical Distributed Sensors for Aero Propulsion Applications

    Science.gov (United States)

    Arnold, S.; Otugen, V.

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  6. Feature Issue Introduction: Bio-Optics in Clinical Applications, Nanotechnology, and Drug Discovery

    OpenAIRE

    Nordstrom, Robert J.; Almutairi, Adah; Hillman, Elizabeth M.C.

    2010-01-01

    The editors introduce the Biomedical Optics Express feature issue, “Bio-Optics in Clinical Applications, Nanotechnology, and Drug Discovery,” which combines three technical areas from the 2010 Optical Society of America (OSA), Biomedical Optics (BIOMED) Topical Meeting held on 11–14 April in Miami, FL and includes contributions from conference attendees.

  7. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

    Directory of Open Access Journals (Sweden)

    Chantal M W Tax

    Full Text Available Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

  8. Cylindrical integrated optical microresonators: modeling by 3-D vectorial coupled mode theory

    Czech Academy of Sciences Publication Activity Database

    Stoffer, R.; Hiremath, K. R.; Hammer, M.; Prkna, Ladislav; Čtyroký, Jiří

    2005-01-01

    Roč. 256, 1/3 (2005), s. 46-67 ISSN 0030-4018 R&D Projects: GA ČR(CZ) GA102/05/0987 Grant - others:European Commission(XE) IST-2000-28018 NAIS Institutional research plan: CEZ:AV0Z20670512 Keywords : integrated optics * optical waveguide theory * modelling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.456, year: 2005

  9. Performance degradation of integrated optical modulators due to electrical crosstalk

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2016-01-01

    In this paper, we investigate electrical crosstalk in integrated Mach-Zehnder modulator arrays based on n-doped InP substrate and show that it can be the cause for transmitter performance degradations. In particular, a common ground return path between adjacent modulators can cause high coupling

  10. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  11. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  12. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  13. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  14. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Petersen, Nickolaj Jacob; Hübner, Jörg

    2001-01-01

    . The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 mum long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U......The fabrication and performance of an electrophoretic separation chip with integrated of optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps...

  15. Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics

    Science.gov (United States)

    Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei

    2017-08-01

    Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.

  16. Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral

    Science.gov (United States)

    Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo

    2018-06-01

    We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.

  17. Editorial: Special issue on smart optical instruments and systems for space applications

    Institute of Scientific and Technical Information of China (English)

    XING; Fei

    2015-01-01

    Optical systems are playing more and more important roles for space applications,such as high accurate attitude determination and remote sensing systems etc.Innovations in optical systems have brought great advantages,some even revolutionary for the space applications.Accordingly,in this special issue of Smart Optical systems and instruments

  18. Optical device terahertz integration in a two-dimensional-three-dimensional heterostructure.

    Science.gov (United States)

    Feng, Zhifang; Lin, Jie; Feng, Shuai

    2018-01-10

    The transmission properties of an off-planar integrated circuit including two wavelength division demultiplexers are designed, simulated, and analyzed in detail by the finite-difference time-domain method. The results show that the wavelength selection for different ports (0.404[c/a] at B 2 port, 0.389[c/a] at B 3 port, and 0.394[c/a] at B 4 port) can be realized by adjusting the parameters. It is especially important that the off-planar integration between two complex devices is also realized. These simulated results give valuable promotions in the all-optical integrated circuit, especially in compact integration.

  19. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    Science.gov (United States)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  20. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...