WorldWideScience

Sample records for integrated optical systems

  1. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  2. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  3. Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

    International Nuclear Information System (INIS)

    ALLERMAN, ANDREW A.; ARNOLD, DON W.; ASBILL, RANDOLPH E.; BAILEY, CHRISTOPHER G.; CARTER, TONY RAY; KEMME, SHANALYN A.; MATZKE, CAROLYN M.; SAMORA, SALLY; SWEATT, WILLIAM C.; WARREN, MIAL E.; WENDT, JOEL R.

    1999-01-01

    The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10(sup -4) M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements

  4. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  5. Integrated Optical Circuit Engineering

    Science.gov (United States)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  6. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  7. Ray and wave optics of integrable and stochastic systems

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1979-07-01

    The generalization of WKB methods to more than one dimension is discussed in terms of the integrability or non-integrability of the geometrical optics (ray Hamiltonian) system derived in the short-wave approximation. In the two-dimensional case the ray trajectories are either regular or stochastic, and the qualitative differences between these types of motion are manifested in the characteristics of the spectra and eigenfunctions. These are examined for a model system which may be integrable or stochastic, depending on a single parameter

  8. All-optically integrated photoacoustic and optical coherence tomography: A review

    Directory of Open Access Journals (Sweden)

    Wei Qiao

    2017-07-01

    Full Text Available All-optically integrated photoacoustic (PA and optical coherence tomography (OCT dual-mode imaging technology that could offer comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years. This review refers to the technology aspects of all-optical PA detection and system evolution of optically integrated PA and OCT, including Michelson interferometer dual-mode imaging system, Fabry–Perot (FP interferometer dual-mode imaging system and Mach–Zehnder interferometer dual-mode imaging system. It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.

  9. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  10. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Science.gov (United States)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  11. Interferometric interrogation concepts for integrated electro-optical sensor systems

    NARCIS (Netherlands)

    Ikkink, T.J.; Ikkink, Teunis Jan

    1998-01-01

    Integrated optical sensors have a high potential in the measurement of a large variety of measurands. Research on integrated optical sensors enjoys increasing interest. In order to reach accurate performance and to facilitate the use of integrated optical sensors, electronic functions for sensor

  12. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  13. Optical electronics self-organized integration and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2012-01-01

    IntroductionFrom Electronics to Optical ElectronicsAnalysis Tools for Optical CircuitsSelf-Organized Optical Waveguides: Theoretical AnalysisSelf-Organized Optical Waveguides: Experimental DemonstrationsOptical Waveguide Films with Vertical Mirrors 3-D Optical Circuits with Stacked Waveguide Films Heterogeneous Thin-Film Device IntegrationOptical Switches OE Hardware Built by Optical ElectronicsIntegrated Solar Energy Conversion SystemsFuture Challenges.

  14. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  15. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  16. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  17. Integrated Optical Circuit Engineering For Optical Fiber Gyrocopes

    Science.gov (United States)

    Bristow, Julian P.; We, Albert C.; Keur, M.; Lukas, Greg; Ott, Daniel M...; Sriram, S.

    1988-03-01

    Fiber optic gyroscopes are of interest for low-cost, high performance rotation sensors. Integrated optical implementations of the processing optics offer the hope of mass-production, and associated cost reductions. The development of a suitable integrated optical system has been reported by other authors at a wavelength of 850nm [1]. Despite strong technical advantages at 1.3μm wavelength [2], no results have yet appeared. This wavelength is preferred for telecommunications applications applications, thus significantly reduced fiber costs may be realized. Lithium niobate is relatively immune from the photorefractive effect at this wavelength, whereas it is not at at 850nm [3].

  18. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  19. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    International Nuclear Information System (INIS)

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  20. Integrating optical, mechanical, and test software (with applications to freeform optics)

    Science.gov (United States)

    Genberg, Victor; Michels, Gregory; Myer, Brian

    2017-10-01

    Optical systems must perform under environmental conditions including thermal and mechanical loading. To predict the performance in the field, integrated analysis combining optical and mechanical software is required. Freeform and conformal optics offer many new opportunities for optical design. The unconventional geometries can lead to unconventional, and therefore unintuitive, mechanical behavior. Finite element (FE) analysis offers the ability to predict the deformations of freeform optics under various environments and load conditions. To understand the impact on optical performance, the deformations must be brought into optical analysis codes. This paper discusses several issues related to the integrated optomechanical analysis of freeform optics.

  1. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  2. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  3. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    Science.gov (United States)

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  4. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  5. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels

    DEFF Research Database (Denmark)

    Hübner, Jörg; Mogensen, Klaus Bo; Jørgensen, Anders Michael

    2001-01-01

    A transportable miniaturized fiber-pigtailed measurement system is presented which allows quantitative fluorescence detection in microliquid handling systems. The microliquid handling chips are made in silica on silicon technology and the optical functionality is monolithically integrated with th...... with two dyes, fluorescein, and Bodipy 650/665 X, showed good linear behavior over a wide range of concentrations. Minimally detected concentrations were 250 pM for fluorescein and 100 nM for Bodipy....

  6. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.

    2006-01-01

    the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  7. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition......-level advantages of these all-optical subsystems combined with their realization with compact integrated devices, suggest that they are strong candidates for future packet/label switched optical networks....... by interconnecting two optical gates that perform xor operation on incoming optical labels. We also demonstrate 40-Gb/s all-optical wavelength-switching through an optically controlled wavelength converter, consisting of an integrated flip-flop prototype device driven by an integrated optical gate. The system...

  8. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  9. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  10. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  11. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    CSIR Research Space (South Africa)

    Monem, S

    2015-12-01

    Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...

  12. High extinction ratio integrated optical modulator for quantum telecommunication systems

    Science.gov (United States)

    Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.

    2018-01-01

    A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.

  13. Bio-optical data integration based on a 4 D database system approach

    Science.gov (United States)

    Imai, N. N.; Shimabukuro, M. H.; Carmo, A. F. C.; Alcantara, E. H.; Rodrigues, T. W. P.; Watanabe, F. S. Y.

    2015-04-01

    Bio-optical characterization of water bodies requires spatio-temporal data about Inherent Optical Properties and Apparent Optical Properties which allow the comprehension of underwater light field aiming at the development of models for monitoring water quality. Measurements are taken to represent optical properties along a column of water, and then the spectral data must be related to depth. However, the spatial positions of measurement may differ since collecting instruments vary. In addition, the records should not refer to the same wavelengths. Additional difficulty is that distinct instruments store data in different formats. A data integration approach is needed to make these large and multi source data sets suitable for analysis. Thus, it becomes possible, even automatically, semi-empirical models evaluation, preceded by preliminary tasks of quality control. In this work it is presented a solution, in the stated scenario, based on spatial - geographic - database approach with the adoption of an object relational Database Management System - DBMS - due to the possibilities to represent all data collected in the field, in conjunction with data obtained by laboratory analysis and Remote Sensing images that have been taken at the time of field data collection. This data integration approach leads to a 4D representation since that its coordinate system includes 3D spatial coordinates - planimetric and depth - and the time when each data was taken. It was adopted PostgreSQL DBMS extended by PostGIS module to provide abilities to manage spatial/geospatial data. It was developed a prototype which has the mainly tools an analyst needs to prepare the data sets for analysis.

  14. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  15. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  17. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    NARCIS (Netherlands)

    Kehayas, E.; Tsiokos, D.; Bakapoulos, P.; Apostolopoulos, D.; Petrantonakis, D.; Stampoulidis, L.; Poustie, A.; McDougall, R.; Maxwell, G.D.; Liu, Y.; Zhang, S.; Dorren, H.J.S.; Seoane, J.; Van Holm-Nielsen, P.; Jeppesen, P.; Avramopoulos, H.

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be

  18. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  19. Low cost Polymer Optical Fibre based transmission system for feeding integrated broadband wireless in-house LANs

    NARCIS (Netherlands)

    Ng'Oma, A.; Koonen, A.M.J.; Tafur Monroy, I.; Boom, van den H.P.A.; Smulders, P.F.M.; Khoe, G.D.; Visser, D. Taco; Lenstra, Daan; Schouten, F. Hugo

    2002-01-01

    A bi-directional transmission system using low cost Polymer Optical Fibre (POF) to feed the required large number of radio access points in next-generation integrated broadband wireless in-house LANs is proposed. Results from simulations and experiments show that, by tuning system parameters, a

  20. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  1. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  2. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  3. Integrated optical circuit engineering IV; Proceedings of the Meeting, Cambridge, MA, Sept. 16, 17, 1986

    Science.gov (United States)

    Mentzer, Mark A.; Sriram, S.

    The design and implementation of integrated optical circuits are discussed in reviews and reports. Topics addressed include lithium niobate devices, silicon integrated optics, waveguide phenomena, coupling considerations, processing technology, nonlinear guided-wave optics, integrated optics for fiber systems, and systems considerations and applications. Also included are eight papers and a panel discussion from an SPIE conference on the processing of guided-wave optoelectronic materials (held in Los Angeles, CA, on January 21-22, 1986).

  4. Optical design and tolerancing of an ophthalmological system

    Science.gov (United States)

    Sieber, Ingo; Martin, Thomas; Yi, Allen; Li, Likai; Rübenach, Olaf

    2014-09-01

    Tolerance analysis by means of simulation is an essential step in system integration. Tolerance analysis allows for predicting the performance of a system setup of real manufactured parts and for an estimation of the yield with respect to evaluation figures, such as performance requirements, systems specification or cost demands. Currently, optical freeform optics is gaining importance in optical systems design. The performance of freeform optics often strongly depends on the manufacturing accuracy of the surfaces. For this reason, a tolerance analysis with respect to the fabrication accuracy is of crucial importance. The characterization of form tolerances caused by the manufacturing process is based on the definition of straightness, flatness, roundness, and cylindricity. In case of freeform components, however, it is often impossible to define a form deviation by means of this standard classification. Hence, prediction of the impact of manufacturing tolerances on the optical performance is not possible by means of a conventional tolerance analysis. To carry out a tolerance analysis of the optical subsystem, including freeform optics, metrology data of the fabricated surfaces have to be integrated into the optical model. The focus of this article is on design for manufacturability of freeform optics with integrated alignment structures and on tolerance analysis of the optical subsystem based on the measured surface data of manufactured optical freeform components with respect to assembly and manufacturing tolerances. This approach will be reported here using an ophthalmological system as an example.

  5. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  6. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  7. Organo-erbium systems for optical amplification at telecommunications wavelengths.

    Science.gov (United States)

    Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P

    2014-04-01

    Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.

  8. Optical detection in microfluidic systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2009-01-01

    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...... to ease commercialisation of the devices. This work will hopefully result in more commercial products that benefit from integrated optics, because the impact on commercial devices so far has been modest....

  9. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    Science.gov (United States)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  10. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  11. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  12. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NARCIS (Netherlands)

    Akça, B.I.; Povazay, B.; Chang, Lantian; Alex, A.; Worhoff, Kerstin; de Ridder, R.M.; Drexler, W.; Pollnau, Markus

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated

  13. Facial fluid synthesis for assessment of acne vulgaris using luminescent visualization system through optical imaging and integration of fluorescent imaging system

    Science.gov (United States)

    Balbin, Jessie R.; Dela Cruz, Jennifer C.; Camba, Clarisse O.; Gozo, Angelo D.; Jimenez, Sheena Mariz B.; Tribiana, Aivje C.

    2017-06-01

    Acne vulgaris, commonly called as acne, is a skin problem that occurs when oil and dead skin cells clog up in a person's pores. This is because hormones change which makes the skin oilier. The problem is people really do not know the real assessment of sensitivity of their skin in terms of fluid development on their faces that tends to develop acne vulgaris, thus having more complications. This research aims to assess Acne Vulgaris using luminescent visualization system through optical imaging and integration of image processing algorithms. Specifically, this research aims to design a prototype for facial fluid analysis using luminescent visualization system through optical imaging and integration of fluorescent imaging system, and to classify different facial fluids present in each person. Throughout the process, some structures and layers of the face will be excluded, leaving only a mapped facial structure with acne regions. Facial fluid regions are distinguished from the acne region as they are characterized differently.

  14. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    International Nuclear Information System (INIS)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.

  15. Bridge SHM system based on fiber optical sensing technology

    Science.gov (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  16. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  17. Integrated optics on Lithium Niobate for sensing applications

    Science.gov (United States)

    Zaltron, A.; Bettella, G.; Pozza, G.; Zamboni, R.; Ciampolillo, M.; Argiolas, N.; Sada, C.; Kroesen, S.; Esseling, M.; Denz, C.

    2015-05-01

    In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored.

  18. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  19. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  20. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    Science.gov (United States)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  1. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  2. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  3. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  4. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  5. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J [Johns Hopkins University, Baltimore, MD (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada)

    2014-06-15

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100.

  6. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    International Nuclear Information System (INIS)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J; Patterson, M

    2014-01-01

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100

  7. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  8. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  9. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  10. Optical multicast system for data center networks.

    Science.gov (United States)

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  11. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope.

    Science.gov (United States)

    Vokes, David E; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A; Su, Jianping; Ridgway, James M; Armstrong, William B; Chen, Zhongping; Wong, Brian J F

    2008-07-01

    Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 microm, in contrast to the conventional handheld probe system (10 microm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system's performance, potentially enabling real-time OCT-guided microsurgery of the larynx.

  12. Fiber optic/cone penetrometer system for subsurface heavy metals detection

    International Nuclear Information System (INIS)

    Saggese, S.; Greenwell, R.

    1995-01-01

    The objective of this project is to develop an integrated fiber optic sensor/cone penetrometer system to analyze the heavy metals content of the subsurface. This site characterization tool will use an optical fiber cable assembly which delivers high power laser energy to vaporize and excite a sample in-situ and return the emission spectrum from the plasma produced for chemical analysis. The chemical analysis technique, often referred to as laser induced breakdown spectroscopy (LIBS), has recently shown to be an effective method for the quantitative analysis of contaminants soils. By integrating the fiber optic sensor with the cone penetrometer, we anticipate that the resultant system will enable in-situ, low cost, high resolution, real-time subsurface characterization of numerous heavy metal soil contaminants simultaneously. There are several challenges associated with the integration of the LIBS sensor and cone penetrometer. One challenge is to design an effective means of optically accessing the soil via the fiber probe in the penetrometer. A second challenge is to develop the fiber probe system such that the resultant emission signal is adequate for quantitative analysis. Laboratory techniques typically use free space delivery of the laser to the sample. The high laser powers used in the laboratory cannot be used with optical fibers, therefore, the effectiveness of the LIBS system at the laser powers acceptable to fiber delivery must be evaluated. The primary objectives for this project are: (1) Establish that a fiber optic LIBS technique can be used to detect heavy metals to the required concentration levels; (2) Design and fabricate a fiber optic probe for integration with the penetrometer system for the analysis of heavy metals in soil samples; (3) Design, fabricate, and test an integrated fiber/penetrometer system; (4) Fabricate a rugged, field deployable laser source and detection hardware system; and (6) Demonstrate the prototype in field deployments

  13. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  14. Optimized systems for energy efficient optical tweezing

    Science.gov (United States)

    Kampmann, R.; Kleindienst, R.; Grewe, A.; Bürger, Elisabeth; Oeder, A.; Sinzinger, S.

    2013-03-01

    Compared to conventional optics like singlet lenses or even microscope objectives advanced optical designs help to develop properties specifically useful for efficient optical tweezers. We present an optical setup providing a customized intensity distribution optimized with respect to large trapping forces. The optical design concept combines a refractive double axicon with a reflective parabolic focusing mirror. The axicon arrangement creates an annular field distribution and thus clears space for additional integrated observation optics in the center of the system. Finally the beam is focused to the desired intensity distribution by a parabolic ring mirror. The compact realization of the system potentially opens new fields of applications for optical tweezers such as in production industries and micro-nano assembly.

  15. Integrated optics and optoelectronics II; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    International Nuclear Information System (INIS)

    Wong, Ka-Kha

    1991-01-01

    The present volume on integrated optics and optoelectronics discusses proton- and ion-exchange technologies, radiation effects on GaAs optical system FET devices and on the dynamical behavior of LiNbO3 switching devices, advanced lightwave components and concepts, advanced optical interconnects concepts, advanced aircraft and engine control, IOCs for fiber-optic gyroscopes, and commercial integrated optical devices. Attention is given to integrated optical devices for high-data-rate serial-to-parallel conversion, the design of novel integrated optic devices using depressed index waveguides, and a low-loss L-band microwave fiber-optic link for control of a T/R module. Topics addressed include the temperature and modulation dependence of spectral linewidth in distributed Bragg reflector laser diodes, length-minimization design considerations in photonic integrated circuits incorporating directional couplers, and the photochemical formation of polymeric optical waveguides and devices for optical interconnection applications

  16. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  17. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  18. Optical fiber network of the data acquisition sub system of SIIP Integral Information System of Process, Unit 2

    International Nuclear Information System (INIS)

    Moreno R, J.; Ramirez C, M.J.; Pina O, I.; Cortazar F, S.; Villavicencio R, A.

    1995-01-01

    In this article, a description of the communication network, based in optical fiber, which interlace the data acquisition equipment with the computers of Laguna Verde Nuclear Power Plant of SIIP is made. It is also presented a description of the equipment and accessories which conform the network. The requirements imposed by the Central which stated the selection of optical fiber as interlace mean are also outstanding. SIIP is a computerized, centralized and integrated system which make information functions by means of the acquisition of signals and the required computational process for the continuous evaluation of the nuclear power plant in normal and emergency conditions. Is an exclusive monitoring system with no one action on the generation process; that is to say, it only acquire, process, store information and assist to the personnel in the operational analysis of the nuclear plant. SIIP is a Joint Project with three participant institutions: Federal Electricity Commission/ Electrical Research Institute/ General Electric. (Author)

  19. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  20. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  1. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  2. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  3. Integrated optical circuit comprising a polarization convertor

    NARCIS (Netherlands)

    1998-01-01

    An integrated optical circuit includes a first device and a second device, which devices are connected by a polarization convertor. The polarization convertor includes a curved section of a waveguide, integrated in the optical circuit. The curved section may have several differently curved

  4. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  5. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  6. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  7. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  8. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  9. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  10. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  11. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  12. Integrated optical circuit engineering V; Proceedings of the Meeting, San Diego, CA, Aug. 17-20, 1987

    Science.gov (United States)

    Mentzer, Mark A.

    Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.

  13. Theory of absorption integrated optical sensor of gaseous materials

    Science.gov (United States)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  14. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  15. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    Science.gov (United States)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  16. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  17. Optical dichroism: E1-M1 integral relations

    International Nuclear Information System (INIS)

    Marri, Ivan; Carra, Paolo; Bertoni, C M

    2006-01-01

    The present paper discusses optical dichroism in noncentrosymmetric systems. The cases of circular and linear polarizations are considered. Integrated spectra are interpreted using effective two-electron operators, which are derived within a localized (atomic) model. As a consequence, our theory is not suitable for quantitative predictions; nevertheless, it identifies microscopic origins of natural, nonreciprocal and Jones' dichroisms

  18. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... wavelength from temperature and refractive index changes in the surroundings is investigated, pointing towards the use of the described fabrication method for on-chip polymer sensor systems....

  19. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    International Nuclear Information System (INIS)

    Nostrand, M.C.; Weiland, T.L.; Luthi, R.L.; Vickers, J.L.; Sell, W.D.; Stanley, J.A.; Honig, J.; Auerbach, J.; Hackel, R.P.; Wegner, P.J.

    2003-01-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm 2 high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics

  20. Electro-Optical Data Acquisition and Tracking System

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optical Data Acquisition and Tracking System (EDATS) dynamically tracks and measures target signatures. It consists of an instrumentation van integrated...

  1. The Impact Of Optical Storage Technology On Image Processing Systems

    Science.gov (United States)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  2. Performing derivative and integral operations for optical waves with optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)

    2016-12-01

    The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.

  3. PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Nielsen, Theodor; Clausen, Bjarne Hans

    2004-01-01

    We present an adhesive bonding technique developed for SU-8 based "lab-on-a-chip"- systems with integrated optical components. Microfluidic channels and optical components (e.g. wave-guides) are defined in SU-8 photoresist on a Pyrex glass substrate. The microfluidic channels are sealed by a second...... Pyrex substrate, bonded on top of the cross-linked SU-8 structure using an inter- mediate layer of 950K molecular weight poly-methylmethacrylate (PMMA). Due to a lower refractive index of PMMA, this bonding technique offers optical waveguiding in the SU-8 structures in combination with good sealing...... of the microfluidic channels. The bonding technique is investigated with respect to bonding temperature in the range of 50 - 150 degr. C and at bonding forces of 1000 N and 2000 N on a 4-inch wafer. A maximum bonding strength of 16 MPa is achieved for the PMMA to SU-8 bonding at a bonding temperature of 110 degr. C...

  4. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2005-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  5. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2000-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  6. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  7. Editorial European conference on integrated optics (ECIO'10)

    NARCIS (Netherlands)

    Williams, K.A.

    2011-01-01

    This Special Issue contains a selection of extended papers from the Fifteenth European Conference on Integrated Optics held on 7-9 April 2010. The First European Conference on Integrated Optics in the series was held in London, UK thirty years ago, and the conference has been held biannually across

  8. INVESTIGATING THE OPTICAL COUNTERPART CANDIDATES OF FOUR INTEGRAL SOURCES LOCALIZED WITH CHANDRA

    International Nuclear Information System (INIS)

    Özbey Arabacı, Mehtap; Kalemci, Emrah; Tomsick, John A.; Bodaghee, Arash; Halpern, Jules; Chaty, Sylvain; Rodriguez, Jerome; Rahoui, Farid

    2012-01-01

    We report on the optical spectroscopic follow-up observations of the candidate counterparts to four INTEGRAL sources: IGR J04069+5042, IGR J06552–1146, IGR J21188+4901, and IGR J22014+6034. The candidate counterparts were determined with Chandra, and the optical observations were performed with 1.5 m RTT-150 telescope (TÜBİTAK National Observatory, Antalya, Turkey) and 2.4 m Hiltner Telescope (MDM Observatory, Kitt Peak, Arizona). Our spectroscopic results show that one of the two candidates of IGR J04069+5042 and the one observed for IGR J06552–1146 could be active late-type stars in RS CVn systems. However, according to the likelihood analysis based on Chandra and INTEGRAL, two optically weaker sources in the INTEGRAL error circle of IGR J06552–1146 have higher probabilities to be the actual counterpart. The candidate counterparts of IGR J21188+4901 are classified as an active M-type star and a late-type star. Among the optical spectra of four candidates of IGR J22014+6034, two show Hα emission lines, one is a late-type star, and the other is an M type. The likelihood analysis favors a candidate with no distinguishing features in the optical spectrum. Two of the candidates classified as M-type dwarfs, are similar to some IGR candidates claimed to be symbiotic stars. However, some of the prominent features of symbiotic systems are missing in our spectra, and their NIR colors are not consistent with those expected for giants. We consider the IR colors of all IGR candidates claimed to be symbiotic systems and find that low-resolution optical spectrum may not be enough for conclusive identification.

  9. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  10. Testing methodologies and systems for semiconductor optical amplifiers

    Science.gov (United States)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable

  11. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.

    Science.gov (United States)

    Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner

    2017-04-01

    An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.

  12. IDENTIFICATIONS OF FIVE INTEGRAL SOURCES VIA OPTICAL SPECTROSCOPY

    International Nuclear Information System (INIS)

    Butler, Suzanne C.; Tomsick, John A.; Chaty, Sylvain; Heras, Juan A. Zurita; Rodriguez, Jerome; Walter, Roland; Kaaret, Philip; Kalemci, Emrah; Oezbey, Mehtap

    2009-01-01

    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is discovering hundreds of new hard X-ray sources, many of which remain unidentified. We report on optical spectroscopy of five such sources for which X-ray observations at lower energies (∼0.5-10 keV) and higher angular resolutions than INTEGRAL have allowed for unique optical counterparts to be located. We find that INTEGRAL Gamma-Ray (IGR) J16426+6536 and IGR J22292+6647 are Type 1 Seyfert active galactic nuclei (with IGR J16426+6536 further classified as a Seyfert 1.5) which have redshifts of z = 0.323 and z = 0.113, respectively. IGR J18308-1232 is identified as a cataclysmic variable (CV), and we confirm a previous identification of IGR J19267+1325 as a magnetic CV. IGR J18214-1318 is identified as an obscured high-mass X-ray binary (HMXB), which are systems thought to have a compact object embedded in the stellar wind of a massive star. We combine Chandra fluxes with distances based on the optical observations to calculate X-ray luminosities of the HMXB and CVs, finding L 0.3-10keV = 5 x 10 36 erg s -1 for IGR J18214-1318, L 0.3-10keV = 1.3 x 10 32 erg s -1 for IGR J18308-1232, and L 0.3-10keV = 6.7 x 10 32 erg s -1 for IGR J19267+1325.

  13. Information Optics and Photonics Algorithms, Systems, and Applications

    CERN Document Server

    Javidi, Bahram

    2010-01-01

    This book addresses applications, recent advances, and emerging areas in fields with applications in information optics and photonics systems. The objective of this book is to illustrate and discuss novel approaches, analytical techniques, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information using free space optics and photonics. The material in this book concentrates on integration of diverse fields for cross-disciplinary applications including bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on the nano-scale, quantum optics, super resolution imaging, photonics for biological applications, and holographic information systems. As a result, this book is a useful resource for researchers, engineers, and graduate students who work in the diverse fields comprising information optics and photonics.

  14. Optical Assembly and Characterization System for Nano-Photonics Research

    Science.gov (United States)

    2016-03-01

    freedoms) 3 (3) Carried out initial research work related to semiconductor membrane transfer printing. Based on the customer designed PDMS stamp...for optical characterization and membrane printing/assembly. The system has the following features: Micro-precision alignment with integrated 50 nm...a FL300-12 Automated Alignment System was acquired from Ficontec (USA) Corporation for optical characterization and membrane printing/assembly. The

  15. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  16. Characterization of hybrid integrated all-optical flip-flop

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Seoane, J.; Kehayas, E.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Van Holm-Nielsen, P.; Martinez, J.M.; Herrera Llorente, J.; Ramos, F.; Marti, J.; Avramopoulos, H.; Jeppesen, P.; Koonen, A.M.J.; Poustie, A.; Dorren, H.J.S.

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given

  17. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  18. Control of optical systems

    Science.gov (United States)

    Founds, D.

    1988-01-01

    Some of the current and planned activities at the Air Force Systems Command in structures and controls for optical-type systems are summarized. Many of the activities are contracted to industry; one task is an in-house program which includes a hardware test program. The objective of the in-house program, referred to as the Aluminum Beam Expander Structure (ABES), is to address issues involved in on-orbit system identification. The structure, which appears similar to the LDR backup structure, is about 35 feet tall. The activity to date has been limited to acquisition of about 250 hours of test data. About 30 hours of data per excitation force is gathered in order to obtain sufficient data for a good statistical estimate of the structural parameters. The development of an Integrated Structural Modeling (ISM) computer program is being done by Boeing Aerospace Company. The objective of the contracted effort is to develop a combined optics, structures, thermal, controls, and multibody dynamics simulation code.

  19. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor

    Science.gov (United States)

    Akiyoshi, Shimada; Naruse, Hiroshi; Uzawa, Kyoshi; Murayama, Hideaki; Kageyama, Kazuro

    2000-06-01

    We constructed a new health monitoring system to detect damage using a fiber optic distributed sensor, namely a Brillouin optical time domain reflectometer (BOTDR), and installed it in International America's Cup Class (IACC) yachts, the Japanese entry in America's Cup 2000. IACC yachts are designed to be as fast as possible, so it is essential that they are lightweight and encounter minimum water resistance. Advanced composite sandwich structures, made with carbon fiber reinforced plastic (CFRP) skins and a honeycomb core, are used to achieve the lightweight structure. Yacht structure designs push the strength of the materials to their limit and so it is important to detect highly stressed or damaged regions that might cause a catastrophic fracture. The BOTDR measures changes in the Brillouin frequency shift caused by distributed strain along one optical fiber. We undertook two experiments: a pulling test and a four point bending test on a composite beam. The former showed that no slippage occurred between the optical fiber glass and its coating. The latter confirmed that a debonding between the skin and the core of 300 mm length could be found with the BOTDR. Next we examined the effectiveness with which this system can assess the structural integrity of IACC yachts. The results show that our system has the potential for use as a damage detection system for smart structures.

  20. Optical system storage design with diffractive optical elements

    Science.gov (United States)

    Kostuk, Raymond K.; Haggans, Charles W.

    1993-01-01

    Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.

  1. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  2. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  3. Discovery Channel Telescope active optics system early integration and test

    Science.gov (United States)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  4. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  5. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  6. Designing neutral-atom nanotraps with integrated optical waveguides

    International Nuclear Information System (INIS)

    Burke, James P. Jr.; Chu, S.-T.; Bryant, Garnett W.; Williams, C.J.; Julienne, P.S.

    2002-01-01

    Integrated optical structures offer the intriguing potential of compact, reproducible waveguide arrays, rings, Y junctions, etc., that could be used to design evanescent field traps to transport, store, and interact atoms in networks as complicated as any integrated optical waveguide circuit. We theoretically investigate three approaches to trapping atoms above linear integrated optical waveguides. A two-color scheme balances the decaying evanescent fields of red- and blue-detuned light to produce a potential minimum above the guide. A one-color surface trap proposal uses blue-detuned light and the attractive surface interaction to provide a potential minimum. A third proposal uses blue-detuned light in two guides positioned above and below one another. The atoms are confined to the 'dark' spot in the vacuum gap between the guides. We find that all three approaches can be used to trap atoms in two or three dimensions with approximately 100 mW of laser power. We show that the dark spot guide is robust to light scatter and provides the most viable approach for constructing integrated optical circuits that could be used to transport and manipulate atoms in a controlled manner

  7. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  8. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-06-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  9. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  10. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    Science.gov (United States)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  11. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  12. Bright, dark and singular optical solitons in a cascaded system

    International Nuclear Information System (INIS)

    Zhou, Qin; Zhu, Qiuping; Yu, Hua; Liu, Yaxian; Wei, Chun; Yao, Ping; Bhrawy, Ali H; Biswas, Anjan

    2015-01-01

    This work studies nonlinear dynamics of optical solitons in a cascaded system with Kerr law nonlinearity and spatio-temporal dispersion. The mathematical model that describes the propagation of optical solitons through a cascaded system is given by the vector-coupled nonlinear Schrödinger equation. It is investigated analytically using three integration algorithms. The Jacobian elliptic equation expansion method, Bernoulli equation expansion approach and Riccati equation expansion scheme are the integration tools of this model that are recruited to extract singular, bright and dark solitons. The restrictions that need to hold for the existence of these solitons are derived. (paper)

  13. Low cost, small form factor, and integration as the key features for the optical component industry takeoff

    Science.gov (United States)

    Schiattone, Francesco; Bonino, Stefano; Gobbi, Luigi; Groppi, Angelamaria; Marazzi, Marco; Musio, Maurizio

    2003-04-01

    In the past the optical component market has been mainly driven by performances. Today, as the number of competitors has drastically increased, the system integrators have a wide range of possible suppliers and solutions giving them the possibility to be more focused on cost and also on footprint reduction. So, if performances are still essential, low cost and Small Form Factor issues are becoming more and more crucial in selecting components. Another evolution in the market is the current request of the optical system companies to simplify the supply chain in order to reduce the assembling and testing steps at system level. This corresponds to a growing demand in providing subassemblies, modules or hybrid integrated components: that means also Integration will be an issue in which all the optical component companies will compete to gain market shares. As we can see looking several examples offered by electronic market, to combine low cost and SFF is a very challenging task but Integration can help in achieving both features. In this work we present how these issues could be approached giving examples of some advanced solutions applied to LiNbO3 modulators. In particular we describe the progress made on automation, new materials and low cost fabrication methods for the parts. We also introduce an approach in integrating optical and electrical functionality on LiNbO3 modulators including RF driver, bias control loop, attenuator and photodiode integrated in a single device.

  14. Analysis technique for controlling system wavefront error with active/adaptive optics

    Science.gov (United States)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  15. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    Science.gov (United States)

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  16. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    Science.gov (United States)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  17. Integrated optics theory and technology

    CERN Document Server

    Hunsperger, Robert G

    1984-01-01

    Our intent in producing this book was to provide a text that would be comprehensive enough for an introductory course in integrated optics, yet concise enough in its mathematical derivations to be easily readable by a practicing engineer who desires an overview of the field. The response to the first edition has indeed been gratifying; unusually strong demand has caused it to be sold out during the initial year of publication, thus providing us with an early opportunity to produce this updated and improved second edition. This development is fortunate, because integrated optics is a very rapidly progressing field, with significant new research being regularly reported. Hence, a new chapter (Chap. 17) has been added to review recent progress and to provide numerous additional references to the relevant technical literature. Also, thirty-five new problems for practice have been included to supplement those at the ends of chapters in the first edition. Chapters I through 16 are essentially unchanged, except for ...

  18. All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting....... The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit...... an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal...

  19. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  20. Materials and integration schemes for above-IC integrated optics

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Rangarajan, B.; Kovalgin, Alexeij Y.

    2014-01-01

    A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon

  1. A full-duplex working integrated optoelectronic device for optical interconnect

    Science.gov (United States)

    Liu, Kai; Fan, Huize; Huang, Yongqing; Duan, Xiaofeng; Wang, Qi; Ren, Xiaomin; Wei, Qi; Cai, Shiwei

    2018-05-01

    In this paper, a full-duplex working integrated optoelectronic device is proposed. It is constructed by integrating a vertical cavity surface emitting laser (VCSEL) unit above a resonant cavity enhanced photodetector (RCE-PD) unit. Analysis shows that, the VCSEL unit has a threshold current of 1 mA and a slop efficiency of 0.66 W/A at 849.7 nm, the RCE-PD unit obtains its maximal absorption quantum efficiency of 90.24% at 811 nm with a FWHM of 4 nm. Moreover, the two units of the proposed integrated device can work independently from each other. So that the proposed integrated optoelectronic device can work full-duplex. It can be applied for single fiber bidirectional optical interconnects system.

  2. Controls for optical systems; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Breakwell, John

    1992-07-01

    The present conference discusses the control and actuator design for a precision magnetic suspension linear bearing, image-rotation in plane-mirror optical systems, a linear analysis for optomechanical systems, the phasing of a space-based segmented sub-mm wavelength telescope using focal plane measurements, and a fiber-optic-based position sensor immune to temperature variations. Also discussed are the dynamic simulation of precision optical systems, active damping with a reaction-mass actuator, the status of a wide-field integrated beam-control demonstration, an integrated multidisciplinary analysis of segmented reflector telescopes, and spatial filters for shape control.

  3. A multilayered integrated sensor for three-dimensional, micro total analysis systems

    International Nuclear Information System (INIS)

    Xiao, Jing; Song, Fuchuan; Seo, Sang-Woo

    2013-01-01

    This paper presents a layer-by-layer integration approach of different functional devices and demonstrates a heterogeneously integrated optical sensor featuring a micro-ring resonator and a high-speed thin-film InGaAs-based photodetector co-integrated with a microfluidic droplet generation device. A thin optical device structure allows a seamless integration with other polymer-based devices on a silicon platform. The integrated sensor successfully demonstrates its transient measurement capability of two-phase liquid flow in a microfluidic droplet generation device. The proposed approach represents an important step toward fully integrated micro total analysis systems. (paper)

  4. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  5. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    Science.gov (United States)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  6. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  7. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  8. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  9. Packaged and hybrid integrated all-optical flip-flop memory

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Dorren, H.J.S.; Poustie, A.

    2006-01-01

    A fully-packaged hybrid-integrated all-optical flip-flop, where InP-based semiconductor optical amplifiers are assembled onto a planar silica waveguide board, is demonstrated. It is shown experimentally that the flip-flop can dynamically toggle between its two states by injecting 150 ps optical

  10. Respiratory monitoring system based on fiber optic macro bending

    Science.gov (United States)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  11. Management Concerns for Optical Based Filing Systems

    Science.gov (United States)

    1990-03-01

    terminals, WORM Palo Alto, CA 94303 drives, optical jukeboxes, printers, scanners. Candi Technology Inc. Systems integrators providing 2354 Calle Del Mundo ...firms are using them to help design everything from parts to buildings. Auto makers use them to design new car moaels and even build the cars using

  12. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.

    Science.gov (United States)

    Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen

    2014-01-13

    We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

  13. Simplified Monolithic Flow Cytometer Chip With Three-Dimensional Hydrodyanmic Focusing And Integrated Fiber-Free Optics

    DEFF Research Database (Denmark)

    Motosuke, Masahiro; Jensen, Thomas Glasdam; Zhuang, Guisheng

    2011-01-01

    A miniaturized flow cytometry incorporating both fluidic and optical systems has a great possibility for portable biochemical sensing or point-of-care diagnostics. This paper presents a simple microfluidic flow cytometer combining reliable 3D hydrodynamic focusing and optical detection without...... optical fibers in a monolithic architecture fabricated by a single photolithographic process. The vertical flow focusing is achieved by the optimized inlet geometry in a PDMS lid onto the substrate with detection channel and integrated optics. The simplified approach indicates the possibility...

  14. Integration and application of optical chemical sensors in microbioreactors.

    Science.gov (United States)

    Gruber, Pia; Marques, Marco P C; Szita, Nicolas; Mayr, Torsten

    2017-08-08

    The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.

  15. Integrated-optic current sensors with a multimode interference waveguide device.

    Science.gov (United States)

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  16. Integrated design course of applied optics focusing on operating and maintaining abilities

    Science.gov (United States)

    Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai

    2017-08-01

    The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.

  17. Double Wigner distribution function of a first-order optical system with a hard-edge aperture.

    Science.gov (United States)

    Pan, Weiqing

    2008-01-01

    The effect of an apertured optical system on Wigner distribution can be expressed as a superposition integral of the input Wigner distribution function and the double Wigner distribution function of the apertured optical system. By introducing a hard aperture function into a finite sum of complex Gaussian functions, the double Wigner distribution functions of a first-order optical system with a hard aperture outside and inside it are derived. As an example of application, the analytical expressions of the Wigner distribution for a Gaussian beam passing through a spatial filtering optical system with an internal hard aperture are obtained. The analytical results are also compared with the numerical integral results, and they show that the analytical results are proper and ascendant.

  18. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-09-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.

  19. TV-acquired optical diagnostics systems on ATA

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Cornish, J.P.; Jackson, C.H.; Fessenden, T.J.

    1984-06-01

    The purpose of this paper is to report on optical system developments on the ATA and their applications to ATA beam characterization. Television (TV)-acquired optical diagnostics data provide spatial and temporal properties of the ATA beam that complements recorded information from other types of sensors, such as, beam-wall current monitors, x-ray probes, and rf probes. The ATA beam operates: (1) in the normal mode at 50-MeV, 10-kA at a 1-Hz rate; and (2) in the 1-KHz burst mode (for 10-pulses) at a 0.5 Hz rate. The beam has a 70-ns pulse width in vacuum propagation; however, beam-head erosion will occur in atmospheric propagation, thus limiting the pulse width to less than 50-ns. Various optical systems are used for ATA diagnostics. Optical-imaging provides a convenient measurement in a single pulse of the 2-dimensional profile of the beam intensity. It can also provide multiple 2-D framing in a single pulse. In some studies it may be desirable to study optical events with temporal resolution less than 100-ps with 1-dimensional streak cameras. Spatially integrated data from phototube cameras can also be used for background measurement applications as well as for single pixel monitoring. The optical line-of-sight (LOS) configurations have been made versatile to accommodate a large number of options for the various optical systems

  20. System and Method for Multi-Wavelength Optical Signal Detection

    Science.gov (United States)

    McGlone, Thomas D. (Inventor)

    2017-01-01

    The system and method for multi-wavelength optical signal detection enables the detection of optical signal levels significantly below those processed at the discrete circuit level by the use of mixed-signal processing methods implemented with integrated circuit technologies. The present invention is configured to detect and process small signals, which enables the reduction of the optical power required to stimulate detection networks, and lowers the required laser power to make specific measurements. The present invention provides an adaptation of active pixel networks combined with mixed-signal processing methods to provide an integer representation of the received signal as an output. The present invention also provides multi-wavelength laser detection circuits for use in various systems, such as a differential absorption light detection and ranging system.

  1. Integrated optical delay lines for time-division multiplexers

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Kleijn, E.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this paper, we present a study of integrated optical delay lines (DLs) for application in optical time-division multiplexers. The investigated DLs are formed by spirally folded waveguides. The components were designed in a generic approach and fabricated in multi-project wafer runs on an

  2. Design of a multimodal fibers optic system for small animal optical imaging.

    Science.gov (United States)

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    Science.gov (United States)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  4. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    Science.gov (United States)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  5. Simulation and fabrication of integrated polystyrene microlens in microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-05-17

    This paper presents a simple and quick method to integrate microlens with the microfluidics systems. The polystyrene (PS) based microlens is fabricated with the free surface thermal compression molding methods, a thin PS sheet with the microlens is bonded to a PMMA substrate which contains the laser ablated microchannels. The convex profiler of the microlens will give a magnified images of the microchannels for easier observation. Optical simulation software is being used for the design and simulation of the microlens to have optimal optical performance with the desired focal length. A microfluidic system with the integrated PS microlens is also fabricated for demonstration.

  6. Simulation and fabrication of integrated polystyrene microlens in microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper presents a simple and quick method to integrate microlens with the microfluidics systems. The polystyrene (PS) based microlens is fabricated with the free surface thermal compression molding methods, a thin PS sheet with the microlens is bonded to a PMMA substrate which contains the laser ablated microchannels. The convex profiler of the microlens will give a magnified images of the microchannels for easier observation. Optical simulation software is being used for the design and simulation of the microlens to have optimal optical performance with the desired focal length. A microfluidic system with the integrated PS microlens is also fabricated for demonstration.

  7. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  8. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  9. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  10. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  11. Automated alignment system for optical wireless communication systems using image recognition.

    Science.gov (United States)

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  12. Development of a switched integrator amplifier for high-accuracy optical measurements

    International Nuclear Information System (INIS)

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-01-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed

  13. Development of a switched integrator amplifier for high-accuracy optical measurements.

    Science.gov (United States)

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-11-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed.

  14. Integration of Optically Generated Impulse Radio UWB Signals into Baseband WDM-PON

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Dittmann, Lars

    2011-01-01

    We propose a compact integration system to simultaneously provide wireline and wireless (baseband and ultra-wide band (UWB)) services to end-users in a WDM-PON. A 1-Gbps UWB signal is optically generated and shares the same wavelength with the baseband signal. Error-free performance was achieved...

  15. Complete achromatic and robustness electro-optic switch between two integrated optical waveguides

    Science.gov (United States)

    Huang, Wei; Kyoseva, Elica

    2018-01-01

    In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.

  16. Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Science.gov (United States)

    Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.

    2012-01-01

    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.

  17. Optical detection system for MEMS-type pressure sensor

    International Nuclear Information System (INIS)

    Sareło, K; Górecka-Drzazga, A; Dziuban, J A

    2015-01-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm 3 ) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm 2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment. (paper)

  18. Foundry fabricated photonic integrated circuit optical phase lock loop.

    Science.gov (United States)

    Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C

    2017-07-24

    This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.

  19. Advances in lasers and optical micro-nano-systems

    Science.gov (United States)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  20. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  1. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  2. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  3. Distributed optical fiber sensors for integrated monitoring of railway infrastructures

    Science.gov (United States)

    Minardo, Aldo; Coscetta, Agnese; Porcaro, Giuseppe; Giannetta, Daniele; Bernini, Romeo; Zeni, Luigi

    2014-05-01

    We propose the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured dynamically along a 60 meters length of rail track, as well as along a 3-m stone arch bridge. The results indicate that distributed sensing technology is able to provide useful information in railway traffic and safety monitoring.

  4. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  5. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery.

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  6. System-level integration of active silicon photonic biosensors

    Science.gov (United States)

    Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.

    2017-02-01

    Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.

  7. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  8. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    Science.gov (United States)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  9. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    Science.gov (United States)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  10. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    Science.gov (United States)

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  11. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  12. System engineering of complex optical systems for mission assurance and affordability

    Science.gov (United States)

    Ahmad, Anees

    2017-08-01

    Affordability and reliability are equally important as the performance and development time for many optical systems for military, space and commercial applications. These characteristics are even more important for the systems meant for space and military applications where total lifecycle costs must be affordable. Most customers are looking for high performance optical systems that are not only affordable but are designed with "no doubt" mission assurance, reliability and maintainability in mind. Both US military and commercial customers are now demanding an optimum balance between performance, reliability and affordability. Therefore, it is important to employ a disciplined systems design approach for meeting the performance, cost and schedule targets while keeping affordability and reliability in mind. The US Missile Defense Agency (MDA) now requires all of their systems to be engineered, tested and produced according to the Mission Assurance Provisions (MAP). These provisions or requirements are meant to ensure complex and expensive military systems are designed, integrated, tested and produced with the reliability and total lifecycle costs in mind. This paper describes a system design approach based on the MAP document for developing sophisticated optical systems that are not only cost-effective but also deliver superior and reliable performance during their intended missions.

  13. Hybrid graphene/silicon integrated optical isolators with photonic spin–orbit interaction

    International Nuclear Information System (INIS)

    Ma, Jingwen; Sun, Xiankai; Xi, Xiang; Yu, Zejie

    2016-01-01

    Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated platform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphene's magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spins exhibit different responses to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with the extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 μm. Featuring graphene's CMOS compatibility and substantially reduced device footprint, our proposal sheds light on monolithic integration of nonreciprocal photonic devices.

  14. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  15. Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O's.

    Science.gov (United States)

    Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris

    2015-04-06

    Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.

  16. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

    Science.gov (United States)

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-01-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616

  17. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography.

    Science.gov (United States)

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S; Kuo, Anthony N; Toth, Cynthia A; Izatt, Joseph A

    2016-05-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes.

  18. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  19. Modular initiator with integrated optical diagnostic

    Science.gov (United States)

    Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  20. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    Science.gov (United States)

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  1. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  2. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  3. Micro-resonators based on integrated polymer technology for optical sensing

    OpenAIRE

    Girault , Pauline; Lemaitre , Jonathan; Guendouz , Mohammed; Lorrain , Nathalie; Poffo , Luiz; Gadonna , Michel; Bosc , Dominique

    2014-01-01

    International audience; Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induces a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and ...

  4. Optical methods and integrated systems for brain imaging in awake, untethered animals

    Science.gov (United States)

    Murari, Kartikeya

    Imaging is a powerful tool for biomedical research offering non-contact and minimally or non-invasive means of investigating at multiple scales---from single molecules to large populations of cells. Imaging in awake, behaving animals is an emerging field that offers the additional advantage of being able to study physiological processes and structures in a more natural state than what is possible in tissue slices or even in anesthetized animals. To date, most imaging in awake animals has used optical fiber bundles or electrical cables to transfer signals to traditional imaging-system components. However, the fibers or cables tether the animal and greatly limit the kind and duration of animal behavior that can be studied using imaging methods. This work involves three distinct yet related approaches to fulfill the goal of imaging in unanesthetized, unrestrained animals---optical techniques for functional and structural imaging, development of novel photodetectors and the design of miniaturized imaging systems. I hypothesized that the flow within vessels might act as a contrast-enhancing agent and improve the visualization of vascular architecture using laser speckle imaging. When imaging rodent cerebral vasculature I saw a two to four fold increase in the contrast-to-noise ratios and was able to visualize 10--30% more vascular features over reflectance techniques. I designed a complementary metal oxide semiconductor (CMOS) photodetector array that was comparable in sensitivity and noise performance to cooled CCD sensors, able to image fluorescence from a single cell, while running at faster frame rates. Next, I designed an imaging system weighing under 6 grams and occupying less than 4 cm3. The system incorporated multispectral illumination, adjustable focusing optics and the high-sensitivity CMOS imager. I was able to implement a variety of optical modalities with the system and performed reflectance, fluorescence, spectroscopic and laser speckle imaging with my

  5. Label-free silicon photonic biosensor system with integrated detector array

    Science.gov (United States)

    Yan, Rongjin; Mestas, Santano P.; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S.

    2010-01-01

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide’s upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip. PMID:19606292

  6. Label-free silicon photonic biosensor system with integrated detector array.

    Science.gov (United States)

    Yan, Rongjin; Mestas, Santano P; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S; Lear, Kevin L

    2009-08-07

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide's upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip.

  7. INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY-ASSISTED MEMBRANE PEELING.

    Science.gov (United States)

    Falkner-Radler, Christiane I; Glittenberg, Carl; Gabriel, Max; Binder, Susanne

    2015-10-01

    To evaluate microscope-integrated intrasurgical spectral domain optical coherence tomography during macular surgery in a prospective monocenter study. Before pars plana vitrectomy and before, during, and after membrane peeling, 512 × 128 macular cube scans were performed using a Carl Zeiss Meditec Cirrus high-definition OCT system adapted to the optical pathway of a Zeiss OPMI VISU 200 surgical microscope and compared with retinal staining. The study included 51 patients with epiretinal membranes, with 8 of those having additional lamellar macular holes, 11 patients with vitreomacular traction, and 8 patients with full-thickness macular holes. Intraoperative spectral domain optical coherence tomography allowed performing membrane peeling without using retinal dyes in 40% of cases (28 of 70 patients). No residual membranes were found in 94.3% of patients (66 of 70 patients) in intrasurgical spectral domain optical coherence tomography and subsequent (re)staining. In patients with vitreomacular traction, intrasurgical spectral domain optical coherence tomography scans facilitated decisions on the need for an intraocular tamponade after membrane peeling. Intraoperative spectral domain optical coherence tomography was comparable with retinal dyes in confirming success after membrane peeling. However, the visualization of flat membranes was better after staining.

  8. System Design, Implementation, and Evaluation of the Optical Broadband Correlator

    Science.gov (United States)

    1994-09-20

    shear-mode TeO2 , Model No. N45075-6-20, manufactured by Newport Electro- Optic Systems with a length of 75 pjs, acoustic direction 1110], optical...optical aperture (or useful length) TOA of our cells are shown in Table 3. The Bragg cells are shear-mode TeO2 , Model No. N45075-6-20, manufactured by...focusing or integrating (Fourier transform) lens is a laser diode glass doublet Model 06LAI013/076, from Melles Griot. Its focal length is 145 nun at 830

  9. Development of an integrated filing system for endoscopic images.

    Science.gov (United States)

    Fujino, M A; Ikeda, M; Yamamoto, Y; Kinose, T; Tachikawa, H; Morozumi, A; Sano, S; Kojima, Y; Nakamura, T; Kawai, T

    1991-01-01

    A new integrated filing system for endoscopic images has been developed, comprising a main image filing system and subsystems located at different stations. A hybrid filing system made up of both digital and analog filing devices was introduced to construct this system that combines the merits of the two filing methods. Each subsystem provided with a video processor, is equipped with a digital filing device, and routine images were recorded in the analog image filing device of the main system. The use of a multi-input adapter enabled simultaneous input of analog images from up to 8 video processors. Recorded magneto-optical disks make it possible to recall the digital images at any station in the hospital; the disks are copied without image degradation and also utilised for image processing. This system promises reliable storage and integrated, efficient management of endoscopic information. It also costs less to install than the so-called PACS (picture archiving and communication system), which connects all the stations of the hospital using optical fiber cables.

  10. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  11. Crosstalk performance of integrated optical cross-connects

    NARCIS (Netherlands)

    Herben, C.G.P.; Leijtens, X.J.M.; Maat, D.H.P.; Blok, H.; Smit, M.K.

    1999-01-01

    Crosstalk performance of monolithically integrated multiwavelength optical cross-connects (OXC's) depends strongly on their architecture. In this paper, a semiquantitative analysis of crosstalk in 11 different architectures is presented. Two architectures are analyzed numerically in more detail and

  12. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    Science.gov (United States)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  13. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  14. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  15. A fiber-optic tiltmeter system based on the moiré-fringe effect

    International Nuclear Information System (INIS)

    Kim, Dae-Hyun

    2009-01-01

    This paper presents a novel fiber-optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on an integration of the moiré-fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling and low cost. In this paper, a prototype of the fiber-optic tiltmeter system has been developed successfully. From an experimental test, the fiber-optic tiltmeter was proven to be a prospective sensor for the monitoring of the tilt angle of a civil structure with good stability and linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber-optic tiltmeter system to monitor the health of civil structures

  16. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator.

    Science.gov (United States)

    Azaña, José

    2008-01-01

    It is demonstrated that a uniform fiber Bragg grating (FBG) working in the linear regime inherently behaves as an optical temporal integrator over a limited time window. Specifically, the reflected temporal waveform from a weak-coupling uniform FBG is proportional to the time integral of an (arbitrary) optical pulse launched at the component input. This integration extends over a time window fixed by the duration of the squarelike temporal impulse response of the FBG. Ultrafast all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs. The introduced concepts are demonstrated by numerical simulations.

  17. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  18. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  19. Integrated optical interrogation of micro-structures

    Science.gov (United States)

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  20. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  1. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  2. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  3. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    Science.gov (United States)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  4. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se...... is presented and an optimized device design is proposed. The devices have been fabricated and tested optically and preliminary interrogations of the output quantum noise have been performed....

  5. A novel optically transparent RF shielding for fully integrated PET/MRI systems

    Science.gov (United States)

    Parl, C.; Kolb, A.; Schmid, A. M.; Wehrl, H. F.; Disselhorst, J. A.; Soubiran, P. D.; Stricker-Shaver, D.; Pichler, B. J.

    2017-09-01

    Preclinical imaging benefits from simultaneous acquisition of high-resolution anatomical and molecular data. Additionally, PET/MRI systems can provide functional PET and functional MRI data. To optimize PET sensitivity, we propose a system design that fully integrates the MRI coil into the PET system. This allows positioning the scintillators near the object but requires an optimized design of the MRI coil and PET detector. It further requires a new approach in realizing the radiofrequency (RF) shielding. Thus, we propose the use of an optically transparent RF shielding material between the PET scintillator and the light sensor, suppressing the interference between both systems. We evaluated two conductive foils (ITO, 9900) and a wire mesh. The PET performance was tested on a dual-layer scintillator consisting of 12  ×  12 LSO matrices, shifted by half a pitch. The pixel size was 0.9  ×  0.9 mm2 the lengths were 10.0 mm and 5.0 mm, respectively. For a light sensor, we used a 4  ×  4 SiPM array. The RF attenuation was measured from 320 kHz to 420 MHz using two pick-up coils. MRI-compatibility and shielding effect of the materials were evaluated with an MRI system. The average FWHM energy resolution at 511 keV of all 144 crystals of the layer next to the SiPM was deteriorated from 15.73  ±  0.24% to 16.32  ±  0.13%, 16.60  ±  0.25%, and 19.16  ±  0.21% by the ITO foil, 9900 foil, mesh material, respectively. The average peak-to-valley ratio of the PET detector changed from 5.77  ±  0.29 to 4.50  ±  0.39, 4.78  ±  0.48, 3.62  ±  0.16, respectively. The ITO, 9900, mesh attenuated the scintillation light by 11.3  ±  1.6%, 11.0  ±  1.8%, 54.3  ±  0.4%, respectively. To attenuate the RF from 20 MHz to 200 MHz, mesh performed better than copper. The results show that an RF shielding material that is sufficiently transparent for

  6. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  7. INTEGRATION OF DISTRIBUTED INERTIAL NAVIGATION SYSTEMS BUILT AROUND FIBER-OPTIC AND MICROELECTROMECHANICAL SENSORS

    Directory of Open Access Journals (Sweden)

    A. V. Chernodarov

    2017-01-01

    built on the basis of microelectromechanical sensors (MEMSs. Such sensors have a wide insensitivity zone and low accuracy. Taking into account the above-mentioned features, SINS-MEMSs must rely on a base high-accuracy SINS which forms part of an Acft navigation complex. Moreover, the SINS-MEMSs cannot execute the initial alignment from attitude angles in the autonomous mode. Because of this, the initial alignment of such SINSs is realized from information obtained from the base system. Mutual support of integrated inertial systems which include satellite receivers is necessary not only for continuous updating of SINS-MEMSs coordinates but also for the refinement of attitude angles of the places where surveillance systems are mounted. It should be noted that the frequency of updating the coordinates that are determined by an SNS is several units of hertz, and that are determined by a SINS is several units of kilohertz. The features mentioned earlier were taken into account in a DSINS developed by the NaukaSoft Experimental Laboratory, Ltd. (Moscow and by the Bauman Moscow State Technical University in cooperation. A breadboard model of the MSINS includes the SINS-500NS system based on fiber-optic gyros developed jointly by the “NaukaSoft EMNS” and by the “Optolink” RPC (Zelenograd; micromechanical SINS-MEMSs built on the basis of the ADIS16488 measuring modules developed by the Analog Devices Co. The paper presents the results of fullscale experiments performed at the Ramenskoye Instrument-Making Plant.

  8. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    Science.gov (United States)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  9. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  10. Integrated optical circuits for numerical computation

    Science.gov (United States)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  11. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  12. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  13. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating

    Science.gov (United States)

    Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-08-01

    In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.

  14. Fluorescence monitoring of capillary electrophoresis separation of biomolecules with monolithically integrated optical waveguides

    NARCIS (Netherlands)

    Dongre, C.; Dekker, R.; Hoekstra, Hugo; Martinez-Vazquez, R.; Osellame, R.; Ramponi, R.; Cerullo, G.; van Weeghel, R.; Besselink, G.A.J.; van den Vlekkert, H.H.; Pollnau, Markus

    2009-01-01

    Monolithic integration of optical waveguides in a commercial lab-on-a-chip by femtosecond-laser material processing enables arbitrary 3D geometries of optical sensing structures in combination with fluidic microchannels. Integrated fluorescence monitoring of molecular separation, as applicable in

  15. A removable optical sealing system for application to international safeguards

    International Nuclear Information System (INIS)

    Martin, R.E.

    1985-06-01

    A removable, optically verifiable sealing system for CANDU spent fuel storage facilities has been developed. The seal is based on the use of unique crystal patterns formed in a pure metal identity/integrity element and has been designed for easy installation and removal using simple tooling. Since the seal is optically verified, a wide range of commercial instruments, including those in use by the IAEA, can be used to verify it. Futhermore, optical verification allows the level of scrutiny to be matched with the degree of confidence required to be confident that spent fuel has not been diverted

  16. Progress in high index contrast integrated optics

    NARCIS (Netherlands)

    Baets, R.G.F.; Bienstman, P.; Bogaerts, W.; Brouckaert, J.; De Backere, P.; Dumon, P.; Roelkens, G.; Scheerlinck, S.; Smit, M.K.; Taillaert, D.; Van Campenhout, J.; Van Laere, F.; Thourhout, Van D.

    2007-01-01

    A large fraction of the recent innovation in integrated optics is enabled by the use of high index contrast structures and devices. The strong confinement achievable in such devices allows for dramatic performance benefits and downscaling. In this paper the progress in this field is reviewed.

  17. Integrated optical sensors for the chemical domain

    NARCIS (Netherlands)

    Lambeck, Paul

    2006-01-01

    During the last decade there has been a rapidly growing interest in integrated optical (IO) sensors, expecially because many of them principally allow for sensitive, real time, label-free-on-site measurements of the concentration of (bio-)chemical species. This review aims at giving an overview of

  18. Evaluation of polymer based third order nonlinear integrated optics devices

    NARCIS (Netherlands)

    Driessen, A.; Hoekstra, Hugo; Blom, F.C.; Horst, F.; Horst, F.; Krijnen, Gijsbertus J.M.; van Schoot, J.B.P.; van Schoot, J.B.P.; Lambeck, Paul; Popma, T.J.A.; Diemeer, Mart

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS

  19. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  20. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  1. Chinese National Optical Education Small Private Online Course system

    Science.gov (United States)

    Zhang, XiaoJie; Lin, YuanFang; Liu, Xu; Liu, XiangDong; Cen, ZhaoFeng; Li, XiaoTong; Zheng, XiaoDong; Wang, XiaoPing

    2017-08-01

    In order to realize the sharing of high quality course resources and promote the deep integration of `Internet+' higher education and talent training, a new on-line to off-line specialized courses teaching mode was explored in Chinese colleges and universities, which emphasized different teaching places, being organized asynchronously and localized. The latest progress of the Chinese National Optical Education Small Private On-line Course (CNOESPOC) system set up by Zhejiang University and other colleges and universities having disciplines in the field of optics and photonics under the guidance of the Chinese National Steering Committee of Optics and Photonics (CNSCOP) was introduced in this paper. The On-line to Off-line (O2O) optical education teaching resource sharing practice offers a new good example for higher education in China under the background of Internet +.

  2. Distributed fiber optic system for oil pipeline leakage detection

    Science.gov (United States)

    Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.

    2003-02-01

    We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.

  3. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    Science.gov (United States)

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  4. Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2008-11-01

    Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3÷1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

  5. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    Science.gov (United States)

    2017-06-15

    AFRL-RX-WP-JA-2017-0348 THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL ISOLATORS (POSTPRINT) Dolendra Karki...Interim 9 May 2016 – 1 December 2016 4. TITLE AND SUBTITLE THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL...transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth

  6. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  7. Optical and vision: to the training more integrated

    International Nuclear Information System (INIS)

    Salinas, J.; Sandoval, J.

    1997-01-01

    Engineering students answers wich show difficulties to explain , in very simple optical systems, the relationships between. a) perceived image and the curvature of the wavefront reaching the eye. b) optical system dimensions and the regions from wich complete image can be observed, are analyzed. Possible reasons for these difficulties are considered. The inclusion of the observer eye as well as an elemental model for vision when optical systems are studied is suggested. (Author) 16 refs

  8. OSMOSIS: a new joint laboratory between SOFRADIR and ONERA for the development of advanced DDCA with integrated optics

    Science.gov (United States)

    Druart, Guillaume; Matallah, Noura; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Jenouvrier, Pierre; Mallet, Eric; Reibel, Yann

    2014-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). SOFRADIR and ONERA have launched a new research and innovation partnership, called OSMOSIS, to develop disruptive technologies for DDCA to improve the performance and compactness of optronic systems. With this collaboration, we will break down the technological barriers of DDCA, a sealed and cooled environment dedicated to the infrared detectors, to explore Dewar-level integration of optics. This technological breakthrough will bring more compact multipurpose thermal imaging products, as well as new thermal capabilities such as 3D imagery or multispectral imagery. Previous developments will be recalled (SOIE and FISBI cameras) and new developments will be presented. In particular, we will focus on a dual-band MWIR-LWIR camera and a multichannel camera.

  9. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  10. Calculation of beam paths in optical systems containing inhomogeneous isotropic media with cylindrical distribution of the refractive index

    International Nuclear Information System (INIS)

    Grammatin, A.P.; Degen, A.B.; Katranova, N.A.

    1995-01-01

    A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs

  11. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  12. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  13. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  14. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  15. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  16. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  17. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  18. Optical network and FPGA/DSP based control system for free electron laser

    International Nuclear Information System (INIS)

    Romaniuk, R.S.; Pozniak, K.T.; Czarski, T.; Czuba, K.; Giergusiewicz, W.; Kasprowicz, G.; Koprek, W.

    2005-01-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast A/C and C/A multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to

  19. Design of optical axis jitter control system for multi beam lasers based on FPGA

    Science.gov (United States)

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  20. PMMA to SU-8 Bonding for Polymer Based Lab-on-a-chip Systems with Integrated Optics

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Nielsen, Theodor; Nilsson, Daniel

    2003-01-01

    An adhesive bonding technique for wafer-level sealing of SU-8 based lab-on-a-chip microsystems with integrated optical components is presented. Microfluidic channels and optical components, e.g. waveguides, are fabricated in cross-linked SU-8 and sealed with a Pyrex glass substrate by means...... strength of 16 MPa is achieved at bonding temperatures between 110 oC and 120oC, at a bonding force of 2000 N on a 4-inch wafer. The optical propagation loss of multi-mode 10ym (thickness)x 30ym (width)SU-8 waveguides is measured. The propagation loss in PMMA bonded waveguide struc-tures is more than 5 d......B/cm lower, at wavelengths between 600nm and 900 nm, than in similar structures bonded by an intermediate layer of SU-8. Furthermore 950K PMMA shows no tendency to flow into the bonded structures during bonding because of its high viscosity....

  1. Uni- and omnidirectional simulation tools for integrated optics

    NARCIS (Netherlands)

    Stoffer, Remco

    2001-01-01

    This thesis presents several improvements on simulation methods in integrated optics, as well as some new methods. Both uni- and omnidirectional tools are presented; for the unidirectional methods, the emphasis is on higher-order accuracy; for the omnidirectional methods, the boundary conditions are

  2. The development of a cryogenic integrated system with the working temperature of 100K

    Science.gov (United States)

    Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin

    2016-05-01

    In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.

  3. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  4. Integrating nanophotonic concepts and topics into optics curricula

    Science.gov (United States)

    Sonek, Gregory J.

    2007-06-01

    Nanophotonics has emerged as a new and important field of study, not only in research, but also in undergraduate optics and photonics education and training. Beyond the study of classical and quantum optics, it is important for students to learn about how the flow of light can be manipulated on a nanoscale level, and used in applications such as telecommunications, imaging, and medicine. This paper reports on our work to integrate basic nanophotonic concepts and topics into existing optics and optical electronics courses, as well as independent study projects, at the undergraduate level. Through classroom lectures, topical readings, computer modeling exercises, and laboratory experiments, students are introduced to nanophotonic concepts subsequent to a study of physical and geometrical optics. A compare and contrast methodology is employed to help students identify similarities and differences that exist in the optical behavior of bulk and nanostructured media. Training is further developed through engineering design and simulation exercises that use advanced, vector-diffraction-based, modeling software for simulating the performance of various materials and structures. To date, the addition of a nanophotonics component to the optics curriculum has proven successful, been enthusiastically received by students, and should serve as a basis for further course development efforts that emphasize the combined capabilities of nanotechnology and photonics.

  5. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  6. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  7. Survivable integrated grooming in multi-granularity optical networks

    Science.gov (United States)

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun

    2012-05-01

    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  8. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  9. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  10. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  11. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  12. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  13. Optical Fiber Connection Navigation System Using Visible Light Communication in Central Office with Economic Evaluation

    Science.gov (United States)

    Waki, Masaki; Uruno, Shigenori; Ohashi, Hiroyuki; Manabe, Tetsuya; Azuma, Yuji

    We propose an optical fiber connection navigation system that uses visible light communication for an integrated distribution module in a central office. The system realizes an accurate database, requires less skilled work to operate and eliminates human error. This system can achieve a working time reduction of up to 88.0% compared with the conventional work without human error for the connection/removal of optical fiber cords, and is economical as regards installation and operation.

  14. Experimental integration of quantum key distribution and gigabit-capable passive optical network

    Science.gov (United States)

    Sun, Wei; Wang, Liu-Jun; Sun, Xiang-Xiang; Mao, Yingqiu; Yin, Hua-Lei; Wang, Bi-Xiao; Chen, Teng-Yun; Pan, Jian-Wei

    2018-01-01

    Quantum key distribution (QKD) ensures information-theoretic security for the distribution of random bits between two remote parties. To extend QKD applications to fiber-to-the-home optical communications, such as gigabit-capable passive optical networks (GPONs), an effective method is the use of wavelength-division multiplexing. However, the Raman scattering noise from intensive classical traffic and the huge loss introduced by the beam splitter in a GPON severely limits the performance of QKD. Here, we demonstrate the integration of QKD and a commercial GPON system with fiber lengths up to 14 km, in which the maximum splitting ratio of the beam splitter reaches 1:64. By placing the QKD transmitter on the optical line terminal side, we reduce the Raman noise collected at the QKD receiver. Using a bypass structure, the loss of the beam splitter is circumvented effectively. Our results pave the way to extending the applications of QKD to last-mile communications.

  15. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    Science.gov (United States)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  16. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    Science.gov (United States)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  17. Optical propagators in vector and spinor theories by path integral formalism

    International Nuclear Information System (INIS)

    Linares, J.

    1993-01-01

    The construction of an extended parabolic (wide-angle) vector and spinor wave theory is presented. For that, optical propagators in monochromatic vector light optics and monoenergetic spinor electron optics are evaluated by the path integral formalism. The auxiliary parameter method introduced by Fock and the Feynman-Dyson perturbative series are used. The proposed theory supplies, by a generalized Fermat's principle, the Mukunda-Simon-Sudarshan transformation for the passage from scalar to vector light (or spinor electron) optics in an asymptotic approximation. (author). 19 refs

  18. Systems integration.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A

    2006-01-01

    The paper presents a view of systems integration, from an ergonomics/human factors perspective, emphasising the process of systems integration as is carried out by humans. The first section discusses some of the fundamental issues in systems integration, such as the significance of systems boundaries, systems lifecycle and systems entropy, issues arising from complexity, the implications of systems immortality, and so on. The next section outlines various generic processes for executing systems integration, to act as guides for practitioners. These address both the design of the system to be integrated and the preparation of the wider system in which the integration will occur. Then the next section outlines some of the human-specific issues that would need to be addressed in such processes; for example, indeterminacy and incompleteness, the prediction of human reliability, workload issues, extended situation awareness, and knowledge lifecycle management. For all of these, suggestions and further readings are proposed. Finally, the conclusions section reiterates in condensed form the major issues arising from the above.

  19. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  20. Systems engineering and analysis of electro-optical and infrared systems

    CERN Document Server

    Arrasmith, William Wolfgang

    2015-01-01

    Introduction to Electro-optic and Infrared (EO/IR) Systems Engineering?Radiation in the Visible and Infrared Parts of the Electromagnetic SpectrumRadiation SourcesThe Effect of the Atmosphere on Optical PropagationBasic OpticsOptical ModulationThe Detection of Optical RadiationNoise in the Optical Detection ProcessTechnical Performance Measures and Metrics of Optical DetectorsModern Detectors and their Measures of PerformanceThe Effects of Cooling on Optical Detector NoiseSignal and Image ProcessingElectro-Optic and Infrared Systems AnalysisLaser Imaging Systems?Spectral Imaging?LIDAR and LADA

  1. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  2. INTEGRATED APPLICATION OF OPTICAL DIAGNOSTIC METHODS IN ULCERATIVE COLITIS

    Directory of Open Access Journals (Sweden)

    E. V. Velikanov

    2013-01-01

    Full Text Available Abstract. Our results suggest that the combined use of optical coherent tomography (OCT and fluorescence diagnosis helps to refine the nature and boundaries of the pathological process in the tissue of the colon in ulcerative colitis. Studies have shown that an integrated optical diagnostics allows us to differentiate lesions respectively to histology and to decide on the need for biopsy and venue. This method is most appropriate in cases difficult for diagnosis. 

  3. Optimization of an integrated optic broadband duplexer for 0.8/1.3-micrometer applications

    Science.gov (United States)

    Ghibaudo, Elise; Broquin, Jean-Emmanuel; Benech, Pierre

    2003-06-01

    These last years, the growth of data traffic has increased the interest for broadband integrated optic devices. Their applications include, for example, the fiber communications on a single fiber by adding the transmission capacity of two optical telecommunication windows for Local Area Networks (LAN) and Wide Area Networks (WAN) or by combining pump and signal wavelenghts in rare earth doped intergrated optical amplifiers. A promising technology to realize those devices is ion-exchange on glass. Indeed, it allows the integration of different functions in a glass substrate with efficient results and a better compatibility in fiber systems with a low cost. We propose in this paper an original broadband duplexer based on a leaky structure. First, the physical principle of the component is explained. The core of the structure is a leaky zone which involves a non-resonant coupling and ensures a broadband spectral behavior to the component. Then, the broadband duplexer is presented and the focus is specially made on the improvement of the outputs crosstalk through the suppression of parasitical back reflections. Theoretical optimization and validation by simulations are presented. Finally, perspectives of this work are proposed.

  4. CPV system based on NIR reflecting lamellae integrated into a greenhouse: Optimizing of Optics

    NARCIS (Netherlands)

    Piet Sonneveld; Gert-Jan Swinkels

    2010-01-01

    In an previous research project a new type of greenhouse with an integrated concentrated photovoltaic system (CPV) was developed which has an integrated filter for reflecting the near infrared radiation (NIR) to the greenhouse and exploiting this radiation in a solar energy system. The performance

  5. A radiographic image archive system on digital optical disks

    International Nuclear Information System (INIS)

    Mankovich, N.J.; Taira, R.K.; Cho, P.S.; Wong, W.K.; Stewart, B.K.; Huang, H.K.

    1986-01-01

    The recent introduction of projection computed radiography (CR) systems allows radiology departments to consider digital operation in over 90% of performed procedures. Ideally, current patient procedures from CT, CT, and MR along with laser-digitized historical films should be centrally stored at their full digital resolution. Magnetic disks, because of their limited storage capacity and expense, can only retain these data on a limited basis. The author devised an optical disk archive system which automatically stores images directly onto 2.6-gigabyte optical cartridges without recourse to film. This system is in full clinical operation in the UCLA Pediatric Radiology Section of the authors' department. From this experience they present (a) an analysis of the digital archiving requirements of the Pediatric Radiology Section based on CR, CT, MR, and laser digitized films; (b) the archive and retrieval methods along with performance statistics; and (c) the procedure for assuring digital image integrity

  6. Design considerations for a servo optical projection system

    Science.gov (United States)

    Nadalsky, Michael; Allen, Daniel; Bien, Joseph

    1987-01-01

    The present servooptical projection system (SOPS) furnishes 'out-the-window' scenery for a pilot-training flight simulator; attention is given to the parametric tradeoffs made in the SOPS' optical design, as well as to its mechanical packaging and the servonetwork performance of the unit as integrated into a research/training helicopter flight simulator. The final SOPS configuration is a function of scan head design, assembly modularity, image deterioration method, and focal lengths and relative apertures.

  7. Optics Supply Planning System

    International Nuclear Information System (INIS)

    Gaylord, J.

    2009-01-01

    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  8. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.

  9. Optical wireless networked-systems: applications to aircrafts

    Science.gov (United States)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  10. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    Science.gov (United States)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical

  11. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    Science.gov (United States)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  12. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  13. Movable Thomson scattering system based on optical fiber (TS-probe)

    International Nuclear Information System (INIS)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  14. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  15. Problems of Aero-optics and Adaptive Optical Systems: Analytical Review

    Directory of Open Access Journals (Sweden)

    Yu. I. Shanin

    2017-01-01

    Full Text Available The analytical review gives the basic concepts of the aero-optics problem arising from the radiation propagation in the region of the boundary layers of a laser installation carrier aircraft. Estimates the radiation wave front distortions at its propagation in the near and far field. Presents main calculation approaches and methods to solve the gas-dynamic and optical problems in propagating laser radiation. Conducts a detailed analysis of the flows and their generating optical aberrations introduced by the aircraft turret (a projection platform of the on-board laser. Considers the effect of various factors (shock wave, difference in wall and flow temperatures on the flow pattern and the optical aberrations. Provides research data on the aero-optics obtained in the flying laboratory directly while in flight. Briefly considers the experimental research methods, diagnostic equipment, and synthesis of results while studying the aero-optics problem. Discusses some methods for mitigating the aerodynamic effects on the light propagation under flight conditions. Presents data about the passive, active, and hybrid effects on the flow in the boundary layers in order to reduce aberrations through improving the flow aerodynamics.The paper considers operation of adaptive optical systems under conditions of aero-optical distortions. Presents the study results concerning the reduction of the aero-optics effect on the characteristics of radiation in far field. Gives some research results regarding the effect on the efficiency of the adaptive system of a laser beam jitter and a time delay in the feedback signal transmission, which occur under application conditions. Provides data on adaptive correction of aero-optical wave fronts of radiation. Considers some application aspects in control systems of the on-board adaptive optics of adaptive filtration as a way to improve the efficiency of adaptive optical systems. The project in mind is to use obtained results

  16. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... with the integrated control scheme so as to maximize overall network throughput in the integrated network architecture. To the best of our knowledge no load balancing mechanisms, especially based on the Multi-Point Control Protocol (MPCP) defined in the IEEE 802.3ah, have been proposed so far. The major research...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  17. Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers

    OpenAIRE

    Hofstetter, Daniel; Zappe, H. P.; Dändliker, René

    2008-01-01

    Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature als...

  18. Systems and methods for enhancing optical information

    Science.gov (United States)

    DeVore, Peter Thomas Setsuda; Chou, Jason T.

    2018-01-02

    An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.

  19. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  20. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  1. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  2. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  3. Integrated Modeling of Complex Optomechanical Systems

    Science.gov (United States)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  4. Integrated Optical Synthetic Aperture Radar Processor.

    Science.gov (United States)

    1987-09-01

    acoustooptic cell was employed to input each radar return into a time-and-space integrating optical architecture comprised of several lenses, a CCD area array...acoustooptic cell and parallel rib waveguide structure. During the course of the literature survey, we became aware of an elegant and poten- tially profound...wave.) scatterer at (f , A(t) is the far-field pattern of the antenna. From the geometry of Si. 1. R can be written as [I-2R,/c - nT1 r(t) = A(nT) rectj

  5. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  6. MORTICIA, a statistical analysis software package for determining optical surveillance system effectiveness.

    Science.gov (United States)

    Ramkilowan, A.; Griffith, D. J.

    2017-10-01

    Surveillance modelling in terms of the standard Detect, Recognise and Identify (DRI) thresholds remains a key requirement for determining the effectiveness of surveillance sensors. With readily available computational resources it has become feasible to perform statistically representative evaluations of the effectiveness of these sensors. A new capability for performing this Monte-Carlo type analysis is demonstrated in the MORTICIA (Monte- Carlo Optical Rendering for Theatre Investigations of Capability under the Influence of the Atmosphere) software package developed at the Council for Scientific and Industrial Research (CSIR). This first generation, python-based open-source integrated software package, currently in the alpha stage of development aims to provide all the functionality required to perform statistical investigations of the effectiveness of optical surveillance systems in specific or generic deployment theatres. This includes modelling of the mathematical and physical processes that govern amongst other components of a surveillance system; a sensor's detector and optical components, a target and its background as well as the intervening atmospheric influences. In this paper we discuss integral aspects of the bespoke framework that are critical to the longevity of all subsequent modelling efforts. Additionally, some preliminary results are presented.

  7. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    Science.gov (United States)

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  8. Optical Manipulation System Using a Plurality of Optical Traps

    DEFF Research Database (Denmark)

    2006-01-01

    The present invention relates to an optical manipulation system (10) for generation of a plurality of optical traps for manipulation of micro-objects including nano-objects using electromagnetic radiation forces in a micro-object manipulation volume (14), the system comprising a spatially modulat...

  9. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  10. High throughput integrated thermal characterization with non-contact optical calorimetry

    Science.gov (United States)

    Hou, Sichao; Huo, Ruiqing; Su, Ming

    2017-10-01

    Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

  11. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  12. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    Science.gov (United States)

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  13. Electron-optical systems for Mott polarimeters

    International Nuclear Information System (INIS)

    Fishkova, T.Ya.; Mamaev, Yu.A.; Ovsyannikova, I.P.; Petrov, V.N.; Shpak, E.V.

    1994-01-01

    Electron-optical systems, forming polarized electron beams from solid and gaseous sources at a Mott detector with operating potentials of 20 and 50 kV, have been theoretically investigated. The integral EOS creates a beam <2.6 nm in diameter at the target of the Mott detector for secondary electrons with energies of 1-20 eV and exit angles of 0 -60 . The differential EOS provides an energy resolution of 2-6% within the range of 3-2000 eV, the illumination being 5-13% for a 4π angle; at the target of the Mott detector it creates a beam of 1-6 mm in diameter. Both systems have been constructed at the laboratory of Spin-polarized Electron Spectroscopy (Department of Experimental Physics) at St. Petersburg State Technical University. ((orig.))

  14. Organic Optical Sensor Based on Monolithic Integration of Organic Electronic Devices

    Directory of Open Access Journals (Sweden)

    Hoi Lam Tam

    2015-09-01

    Full Text Available A novel organic optical sensor that integrates a front organic light-emitting diode (OLED and an organic photodiode (OPD is demonstrated. The stripe-shaped cathode is used in the OLED components to create light signals, while the space between the stripe-shaped cathodes serves as the detection window for integrated OPD units. A MoO3 (5 nm/Ag (15 nm bi-layer inter-electrode is interposed between the vertically stacked OLED and OPD units, serving simultaneously as the cathode for the front OLED and an anode for the upper OPD units in the sensor. In the integrated sensor, the emission of the OLED units is confined by the area of the opaque stripe-shaped cathodes, optimized to maximize the reflected light passing through the window space for detection by the OPD components. This can ensure high OLED emission output, increasing the signal/noise ratio. The design and fabrication flexibility of an integrated OLED/OPD device also has low cost benefits, and is light weight and ultra-thin, making it possible for application in wearable units, finger print identification, image sensors, smart light sources, and compact information systems.

  15. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  16. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Science.gov (United States)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  17. A 1.5 Gb/s monolithically integrated optical receiver in the standard CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xindong; Mao Luhong; Yu Changliang; Zhang Shilin; Xie Sheng, E-mail: xxd@tju.edu.c [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China)

    2009-12-15

    A monolithically integrated optical receiver, including the photodetector, has been realized in Chartered 0.35 {mu}m EEPROM CMOS technology for 850 nm optical communication. The optical receiver consists of a differential photodetector, a differential transimpedance amplifier, three limiting amplifiers and an output circuit. The experiment results show that the receiver achieves an 875 MHz 3 dB bandwidth, and a data rate of 1.5 Gb/s is achieved at a bit-error-rate of 10{sup -9}. The chip dissipates 60 mW under a single 3.3 V supply. (semiconductor integrated circuits)

  18. A 1.5 Gb/s monolithically integrated optical receiver in the standard CMOS process

    International Nuclear Information System (INIS)

    Xiao Xindong; Mao Luhong; Yu Changliang; Zhang Shilin; Xie Sheng

    2009-01-01

    A monolithically integrated optical receiver, including the photodetector, has been realized in Chartered 0.35 μm EEPROM CMOS technology for 850 nm optical communication. The optical receiver consists of a differential photodetector, a differential transimpedance amplifier, three limiting amplifiers and an output circuit. The experiment results show that the receiver achieves an 875 MHz 3 dB bandwidth, and a data rate of 1.5 Gb/s is achieved at a bit-error-rate of 10 -9 . The chip dissipates 60 mW under a single 3.3 V supply. (semiconductor integrated circuits)

  19. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    OpenAIRE

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-01-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for ver...

  20. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Directory of Open Access Journals (Sweden)

    Lena Simone Fohrmann

    2017-09-01

    Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  1. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Science.gov (United States)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  2. An adaptive optics imaging system designed for clinical use

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  3. Comparison and classification of all-optical CDMA systems for future telecommunication networks

    Science.gov (United States)

    Iversen, Kay; Hampicke, Dirk

    1995-12-01

    This paper shows the state of the art in fiber optical code-division multiple-access (CDMA). Recent work in this area for both, systems and sequences is reviewed and analyzed. For that purpose a classification of systems, corresponding to the manner of signal processing and a classification of known (0,1)-sequences are presented. It is shown that due to the limits by currently available device technology especially two techniques are promising for implementation in broadband telecommunication networks: spectral encoding with integrated optical filters and CDMA in combination with wavelength multiple access schemes. Further an overview about some important experiments in this field is given.

  4. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  5. Miniaturized Integrated Platform for Electrical and Optical Monitoring of Cell Cultures

    Directory of Open Access Journals (Sweden)

    Costin Brasoveanu

    2012-08-01

    Full Text Available The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 μm width, 3 mm long and 50 μm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.. HaCaT (Immortalised Human Keratinocyte cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.

  6. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas

    2001-01-01

    . The increasing complexity and functionality of optical networks prompts a demand for highly integrated optical circuits. On-board optical amplifiers, monolithically integrated with functionalities like switching or multiplexing/demultiplexing will allow flexible incorporation of optical integrated circuits...... in existing and future networks without affecting the power budget of the system. Silica on silicon technology offers a unique possibility to selectively dope sections of the integrated circuit with erbium where amplification is desired. Some techniques for active/passive integration are reviewed and a silica......Integrated optical amplifiers are currently regaining interest. Stand-alone single integrated amplifiers offer only limited advantage over current erbium doped fiber amplifiers, whereas arrays of integrated amplifiers are very attractive due to miniaturization and the possibility of mass production...

  7. The Magnetic Physical Optics Scattered Field in Terms of a Line Integral

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2000-01-01

    An exact line integral representation Is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by a magnetic Hertzian dipole. A numerical example is presented to illustrate the exactness of the line integral representation...

  8. Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems

    Directory of Open Access Journals (Sweden)

    Graeme Williams

    2014-02-01

    Full Text Available The rapid development of microfluidics and lab-on-a-chip (LoC technologies have allowed for the efficient separation and manipulation of various biomaterials, including many diagnostically relevant species. Organic electronics have similarly enjoyed a great deal of research, resulting in tiny, highly efficient, wavelength-selective organic light-emitting diodes (OLEDs and organic photodetectors (OPDs. We consider the blend of these technologies for rapid detection and diagnosis of biological species. In the ideal system, optically active or fluorescently labelled biological species can be probed via light emission from OLEDs, and their subsequent light emission can be detected with OPDs. The relatively low cost and simple fabrication of the organic electronic devices suggests the possibility of disposable test arrays. Further, with full integration, the finalized system can be miniaturized and made simple to use. In this review, we consider the design constraints of OLEDs and OPDs required to achieve fully organic electronic optical bio-detection systems. Current approaches to integrated LoC optical sensing are first discussed. Fully realized OLED- and OPD-specific photoluminescence detection systems from literature are then examined, with a specific focus on their ultimate limits of detection. The review highlights the enormous potential in OLEDs and OPDs for integrated optical sensing, and notes the key avenues of research for cheap and powerful LoC bio-detection systems.

  9. Computerized integrated data base production system (COMPINDAS)

    International Nuclear Information System (INIS)

    Marek, D.; Buerk, K.

    1990-05-01

    Based on many years of experience, and with the main objective in mind to guarantee long-term database quality and efficiency of input processes, Fachinformationszentrum Karlsruhe is developing an integrated interactive data management systems for bibliographic and factual databases. Its concept includes the following range of applications: Subject analysis with computer-assisted classification, indexing and translation; technical procedures with online acquisition and management of literature and factual data, recording by means of optical scanning, computer-assisted bibliographic description, control and update procedures; support of the whole process by continuous surveillance of document flow. All these procedures will be performed in an integrated manner. They system is to meet high standards for flexibility, data integrity and effectiveness of system functions. Independent of the type of data, the appropriate database or the subject field to be handled, all data will be stored in one large pool. One main goal is to avoid duplication of work and redundancy of data storage. The system will work online, interactive and conversational. COMPINDAS is being established on the basis of the ADABAS as database management system for storage and retrieval. The applications are being generated by means of aDis of ASTEC in Munich. aDis is used for the definition of the data structures, checking routines, coupling processes, and the design of dialogue and batch routines including masks. (author). 7 figs

  10. Computerized integrated data base production system (COMPINDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Marek, D; Buerk, K [Fachinformationszentrum Karlsruhe, Gesellschaft fuer Wissenschaftlich-Technische Information mbH, Eggenstein-Leopoldshafen (Germany)

    1990-05-01

    Based on many years of experience, and with the main objective in mind to guarantee long-term database quality and efficiency of input processes, Fachinformationszentrum Karlsruhe is developing an integrated interactive data management systems for bibliographic and factual databases. Its concept includes the following range of applications: Subject analysis with computer-assisted classification, indexing and translation; technical procedures with online acquisition and management of literature and factual data, recording by means of optical scanning, computer-assisted bibliographic description, control and update procedures; support of the whole process by continuous surveillance of document flow. All these procedures will be performed in an integrated manner. They system is to meet high standards for flexibility, data integrity and effectiveness of system functions. Independent of the type of data, the appropriate database or the subject field to be handled, all data will be stored in one large pool. One main goal is to avoid duplication of work and redundancy of data storage. The system will work online, interactive and conversational. COMPINDAS is being established on the basis of the ADABAS as database management system for storage and retrieval. The applications are being generated by means of aDis of ASTEC in Munich. aDis is used for the definition of the data structures, checking routines, coupling processes, and the design of dialogue and batch routines including masks. (author). 7 figs.

  11. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.

    Science.gov (United States)

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F; Ross, Caroline A

    2013-11-08

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO₂ -δ , Co- or Fe-substituted SrTiO 3- δ , as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti 0.2 Ga 0.4 Fe 0.4 )O 3- δ and polycrystalline (CeY₂)Fe₅O 12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY₂)Fe₅O 12 /silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  12. An ultra-efficient nonlinear planar integrated platform for optical signal processing and generation

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2017-01-01

    This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed.......This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed....

  13. Stereoscopic optical viewing system

    Science.gov (United States)

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  14. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    Science.gov (United States)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  15. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    Science.gov (United States)

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  16. Achievement report on research and development of optics-aided measurement/control system; Hikari oyo keisoku seigyo system no kenkyu kaihatsu ni kansuru hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-03-01

    The project aims to establish technologies for putting the above-named system to practical use. Such a system will measure, transmit, and control, with safety and stability by use of optical technologies, industrial process related information to be generated in certain areas such as industrial complexes and very large plants, the information including images, temperatures, flow rates, constituents, etc. Total system evaluation was performed in demonstration tests for appropriateness conducted for 32 systems in fiscal 1980 and 10 systems in fiscal 1981. Studied in the development of element technologies are opto-electronic integrated circuits (OEIC), semiconductor laser devices, light-intercepting devices, optical transmission paths, dielectric light switches, and optical sensors. For OEIC, in particular, since it is believed to be the nucleus of an optical application system, an optical technology joint research office is established, where efforts center on the substrate crystal growth technology, process technology, and crystal/process evaluation technology. (NEDO)

  17. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  18. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  19. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  20. All-optical 40 Gbit/s compact integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1997-01-01

    An interferometric Michelson wavelength converter is presented that combines a speed-optimized semiconductor optical amplifier technology with the benefits of the integrated interferometer showing 40-Gbit/s wavelength conversion. The optimized wavelength converter demonstrates noninverted converted...

  1. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.

    Science.gov (United States)

    Solmaz, Mehmet E; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R; Mejia, Camilo A; Malmstadt, Noah; Povinelli, Michelle L

    2012-10-01

    We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

  2. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  3. Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-21

    In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.

  4. Optical computing, optical memory, and SBIRs at Foster-Miller

    Science.gov (United States)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  5. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  6. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded......), and a bend loss of ~5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-mm-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0...

  7. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  8. Non-Hermitian optics in atomic systems

    Science.gov (United States)

    Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-04-01

    A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.

  9. Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission.

    Science.gov (United States)

    Quoc Ngo, Nam

    2007-10-15

    We present a theoretical study of a new application of a simple pi-phase-shifted fiber Bragg grating (PSFBG) in transmission mode as a high-speed optical temporal integrator. The PSFBG consists of two concatenated identical uniform FBGs with a pi phase shift between them. When the reflectivities of the FBGs are extremely close to 100%, the transmissive PSFBG can perform the time integral of the complex envelope of an arbitrary input optical signal with high accuracy. As an example, the integrator is numerically shown to be able to convert an input Gaussian pulse into an optical step signal.

  10. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  11. Optical spring effect in nanoelectromechanical systems

    International Nuclear Information System (INIS)

    Tian, Feng; Zhou, Guangya; Du, Yu; Chau, Fook Siong; Deng, Jie

    2014-01-01

    In this Letter, we report a hybrid system consisting of nano-optical and nano-mechanical springs, in which the optical spring effect works to adjust the mechanical frequency of a nanoelectromechanical systems resonator. Nano-scale folded beams are fabricated as the mechanical springs and double-coupled one-dimensional photonic crystal cavities are used to pump the “optical spring.” The dynamic characteristics of this hybrid system are measured and analyzed at both low and high input optical powers. This study leads the physical phenomenon of optomechanics in complex nano-opto-electro-mechanical systems (NOEMS) and could benefit the future applications of NOEMS in chip-level communication and sensing

  12. Fiber Optic Augmented Reality System (FOARS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovation: Fiber Optics Augmented Reality System. This system in form of a mobile app interacts real time with the actual FOSS(Fiber Optics Sensing System) data and...

  13. ISOGA: Integrated Services Optical Grid Architecture for Emerging E-Science Collaborative Applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliver Yu

    2008-11-28

    This final report describes the accomplishments in the ISOGA (Integrated Services Optical Grid Architecture) project. ISOGA enables efficient deployment of existing and emerging collaborative grid applications with increasingly diverse multimedia communication requirements over a wide-area multi-domain optical network grid; and enables collaborative scientists with fast retrieval and seamless browsing of distributed scientific multimedia datasets over a wide-area optical network grid. The project focuses on research and development in the following areas: the polymorphic optical network control planes to enable multiple switching and communication services simultaneously; the intelligent optical grid user-network interface to enable user-centric network control and monitoring; and the seamless optical grid dataset browsing interface to enable fast retrieval of local/remote dataset for visualization and manipulation.

  14. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.

    Science.gov (United States)

    Lee, Myung-Jae; Youn, Jin-Sung; Park, Kang-Yeob; Choi, Woo-Young

    2014-02-10

    We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche photodetector, which provides larger photodetection bandwidth than previously reported CMOS-compatible photodetectors. The receiver also has high-speed CMOS circuits including transimpedance amplifier, DC-balanced buffer, equalizer, and limiting amplifier. With the fabricated optical receiver, detection of 12.5-Gb/s optical data is successfully achieved at 5.8 pJ/bit. Our receiver achieves the highest data rate ever reported for 850-nm integrated CMOS optical receivers.

  15. Optical system for trapping particles in air.

    Science.gov (United States)

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface.

  16. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  17. Integration of optical fibers in radiative environments: Advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Ouerdane, Y.; Boukenter, A.; Marcandella, C.; Bisutti, J.; Baggio, J.; Meunier, J. P.

    2011-01-01

    We review the advantages and limitations for the integration of optical fibers in radiative environments. Optical fibers present numerous advantages for applications in harsh environments such as their electromagnetic immunity. This explains the increasing interest of the radiation effects community to evaluate their vulnerability for future facilities. However, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation. We illustrate the major mechanisms and parameters that govern the degradation mechanism, mainly the radiation-induced attenuation phenomena. We focus on the fiber transient radiation responses when exposed to the pulsed and mixed environment associated with the Megajoule class lasers devoted to the fusion by inertial confinement study. (authors)

  18. Optical design and testing: introduction.

    Science.gov (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  19. Optical technologies for data communication in large parallel systems

    International Nuclear Information System (INIS)

    Ritter, M B; Vlasov, Y; Kash, J A; Benner, A

    2011-01-01

    Large, parallel systems have greatly aided scientific computation and data collection, but performance scaling now relies on chip and system-level parallelism. This has happened because power density limits have caused processor frequency growth to stagnate, driving the new multi-core architecture paradigm, which would seem to provide generations of performance increases as transistors scale. However, this paradigm will be constrained by electrical I/O bandwidth limits; first off the processor card, then off the processor module itself. We will present best-estimates of these limits, then show how optical technologies can help provide more bandwidth to allow continued system scaling. We will describe the current status of optical transceiver technology which is already being used to exceed off-board electrical bandwidth limits, then present work on silicon nanophotonic transceivers and 3D integration technologies which, taken together, promise to allow further increases in off-module and off-card bandwidth. Finally, we will show estimated limits of nanophotonic links and discuss breakthroughs that are needed for further progress, and will speculate on whether we will reach Exascale-class machine performance at affordable powers.

  20. Optical technologies for data communication in large parallel systems

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, M B; Vlasov, Y; Kash, J A [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Benner, A, E-mail: mritter@us.ibm.com [IBM Poughkeepsie, Poughkeepsie, NY (United States)

    2011-01-15

    Large, parallel systems have greatly aided scientific computation and data collection, but performance scaling now relies on chip and system-level parallelism. This has happened because power density limits have caused processor frequency growth to stagnate, driving the new multi-core architecture paradigm, which would seem to provide generations of performance increases as transistors scale. However, this paradigm will be constrained by electrical I/O bandwidth limits; first off the processor card, then off the processor module itself. We will present best-estimates of these limits, then show how optical technologies can help provide more bandwidth to allow continued system scaling. We will describe the current status of optical transceiver technology which is already being used to exceed off-board electrical bandwidth limits, then present work on silicon nanophotonic transceivers and 3D integration technologies which, taken together, promise to allow further increases in off-module and off-card bandwidth. Finally, we will show estimated limits of nanophotonic links and discuss breakthroughs that are needed for further progress, and will speculate on whether we will reach Exascale-class machine performance at affordable powers.

  1. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  2. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  3. Method used to test the imaging consistency of binocular camera's left-right optical system

    Science.gov (United States)

    Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui

    2016-09-01

    To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

  4. Precision-analog fiber-optic transmission system

    International Nuclear Information System (INIS)

    Stover, G.

    1981-06-01

    This article describes the design, experimental development, and construction of a DC-coupled precision analog fiber optic link. Topics to be covered include overall electrical and mechanical system parameters, basic circuit organization, modulation format, optical system design, optical receiver circuit analysis, and the experimental verification of the major design parameters

  5. Aurora laser optical system

    International Nuclear Information System (INIS)

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  6. Development of Optical System for ARGO-M

    Directory of Open Access Journals (Sweden)

    Jakyoung Nah

    2013-03-01

    Full Text Available ARGO-M is a satellite laser ranging (SLR system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

  7. Integrated Optical Information Processing

    Science.gov (United States)

    1988-08-01

    applications in optical disk memory systems [91. This device is constructed in a glass /SiO2/Si waveguide. The choice of a Si substrate allows for the...contact mask) were formed in the photoresist deposited on all of the samples, we covered the unwanted gratings on each sample with cover glass slides...processing, let us consider TeO2 (v, = 620 m/s) as a potential substrate for applications requiring large time delays. This con- sideration is despite

  8. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  9. SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. V. Anitropov

    2016-01-01

    Full Text Available Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures of its optimization were proposed. Method. We investigated the applicability of the theory of composition and synthesis of non-imaging optical systems. The main provisions of the theory of composition are based on the division of all available optical elements in four types depending on their functionality, which corresponds to a modular design. Similar items were identified in non-imaging optical systems and adaptation of composition theory to their design became possible. Main Results. General design patterns of imaging and non-imaging optical systems were studied. Classification of systems, components, as well as technical and generic characteristics of imaging and non-imaging optical systems was determined. Search mechanism of the initial optical system by means of structural and parametric synthesis of non-imaging optical system was formalized. The basic elements were determined included in non-imaging systems and their classification by functionality was done. They were subdivided into basic, corrective, wide angle and high aperture ones. The rules for formation of these elements and their composition were determined: surface reflecting, refracting, spherical and nonspherical elements with total internal reflection. The foundations of composition theory for non-imaging optical systems were laid. The approbation of this method was carried out on the example of the illumination system calculation for surgical room. A 3D model of an illumination optical

  10. A comparison of integrated and fiber optic responses in the presence of nuclear fields

    International Nuclear Information System (INIS)

    Taylor, E.W.; Wilson, V.R.; Sanchez, A.D.; Coughenour, M.; Chapman, S.

    1988-01-01

    A short survey of past experimental results is presented along with new investigative data, mathematical and physical response models and a comparison of the nuclear effects compatibility of fiber and integrated optic guided wave structures. The disparity in radiation resistance between optical fibers and guided wave structures is discussed and predictions are offered on the impact that these differences may have on influencing the eventual development of totally integrated radiation resistant structures

  11. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.

    Science.gov (United States)

    Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M

    2001-09-15

    This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.

  12. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios

    International Nuclear Information System (INIS)

    García-Vázquez, V; Marinetto, E; Santos-Miranda, J A; Calvo, F A; Desco, M; Pascau, J

    2013-01-01

    Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios. (paper)

  13. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    Science.gov (United States)

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  14. Ultrafast all-optical integrator based on a fiber Bragg grating: proposal and design.

    Science.gov (United States)

    Preciado, Miguel A; Muriel, Miguel A

    2008-06-15

    We demonstrate a simple technique for the implementation of an all-optical integrator based on a uniform-period fiber Bragg grating (FBG) in reflection that is designed to present a decreasing exponential impulse response. The proposed FBG integrator is readily feasible and can perform close to ideal integration of few-picosecond and subpicosecond pulses.

  15. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector

    NARCIS (Netherlands)

    Lee, M.J.; Youn, J.S.; Park, K.Y.; Choi, W.Y.

    2014-01-01

    We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche

  16. Optical device terahertz integration in a two-dimensional-three-dimensional heterostructure.

    Science.gov (United States)

    Feng, Zhifang; Lin, Jie; Feng, Shuai

    2018-01-10

    The transmission properties of an off-planar integrated circuit including two wavelength division demultiplexers are designed, simulated, and analyzed in detail by the finite-difference time-domain method. The results show that the wavelength selection for different ports (0.404[c/a] at B 2 port, 0.389[c/a] at B 3 port, and 0.394[c/a] at B 4 port) can be realized by adjusting the parameters. It is especially important that the off-planar integration between two complex devices is also realized. These simulated results give valuable promotions in the all-optical integrated circuit, especially in compact integration.

  17. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  18. Integrated digital control and man-machine interface for complex remote handing systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1987-01-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer systems control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  19. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  20. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  1. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose

    2014-01-01

    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services...

  2. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  3. Cylindrical integrated optical microresonators: modeling by 3-D vectorial coupled mode theory

    Czech Academy of Sciences Publication Activity Database

    Stoffer, R.; Hiremath, K. R.; Hammer, M.; Prkna, Ladislav; Čtyroký, Jiří

    2005-01-01

    Roč. 256, 1/3 (2005), s. 46-67 ISSN 0030-4018 R&D Projects: GA ČR(CZ) GA102/05/0987 Grant - others:European Commission(XE) IST-2000-28018 NAIS Institutional research plan: CEZ:AV0Z20670512 Keywords : integrated optics * optical waveguide theory * modelling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.456, year: 2005

  4. Solitonic guide and multiphoton absorption processes in photopolymerizable materials for optical integrated circuits

    Science.gov (United States)

    Klein, Stephane; Barsella, Alberto; Acker, D.; Sutter, C.; Beyer, N.; Andraud, Chantal; Fort, Alain F.; Dorkenoo, Kokou D.

    2004-09-01

    Up to now, most of the optical integrated devices are realized on glass or III-V substrates and the waveguides are usually obtained by photolithography techniques. We present here a new approach based on the use of photopolymerizable compounds. The conditions of self-written channel creation by solitonic propagation inside the bulk of these photopolymerizable formulations are analyzed. Both experimental and theoretical results of the various stages of self-written guide propagation are presented. A further step has been achieved by using a two-photon absorption process for the polymerization via a confocal microscopy technique. Combined with the solitonic guide creation, this technique allows to draw 3D optical circuits. Finally, by doping the photopolymerizable mixtures with push-pull chromophores having a controlled orientation, it will be possible to create active optical integrated devices.

  5. A fully integrated optical detector with a-Si:H based color photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Watty, Krystian; Merfort, Christian; Seibel, Konstantin; Schoeler, Lars; Boehm, Markus [Institute for Microsystem Technologies (IMT), University of Siegen, Hoelderlinstr. 3, 57076 Siegen (Germany)

    2010-03-15

    The fabrication of an electrophoresis separation microchip with monolithic integrated excitation light source and variospectral photodiodes for absorption detection is presented in this paper. Microchip based separation techniques are essential elements in the development of fully integrated micro-total analysis systems ({mu}-TAS). An integrated microfluidic device, like an application specific lab-on-microchip (ALM) (Seibel et al., in: MRS Spring Meeting, San Francisco, USA, 2005 1), includes all components, necessary to perform a chemical analysis on chip and it can be used as a stand-alone unit directly at the point of sampling. Variospectral diodes based on hydrogenated amorphous silicon (a-Si:H) technology allow for advanced optical detection schemes, because the spectral sensitivity of the devices can be tailored to fit the emission of specific fluorescent markers. Important features of a-Si:H variospectral photodiodes are a high dynamic range, a bias-tunable spectral sensitivity and a very good linearity for the separation of mixed color signals. Principle of ALM device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Integrated optic vector-matrix multiplier

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  7. An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2003-01-01

    An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...... are presented to illustrate the exactness of the line integral representation....

  8. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.

    Science.gov (United States)

    Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J

    2018-04-01

    Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

  9. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

    Science.gov (United States)

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-01-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288

  10. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Science.gov (United States)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  11. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip.

    Science.gov (United States)

    Sun, Yung-Shin; Li, Chang-Jyun; Hsu, Jin-Cherng

    2016-12-30

    A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann's configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA)-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10 -5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  12. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  13. POD evaluation for joint angles from inertial and optical motion capturing system

    International Nuclear Information System (INIS)

    Shimizu, Kai; Kobayashi, Futoshi; Nakamoto, Hiroyuki; Kojima, Fumio

    2016-01-01

    It has been recognized that advances in preventive maintenance can improve the sustainment of systems, facilities, and infrastructure. Robot technologies have also received attention for maintenance applications. In order to operate delicate tasks, multi-fingered robot hands have been proposed in cases where human capability is deficient. This paper deals with motion capturing systems for controlling the hand/arm robot remotely. Several types of motion capturing systems have been developed so far. However, it is difficult for individual motion capturing systems to measure precise joint angles of a human arm. Therefore, in this paper, we integrate the inertial motion capturing system with the optical motion capturing system to capture a human arm posture. By evaluating the reliability of each motion capturing system, the integration is carried out. The probability of detection (POD) is applied to evaluate and compare the reliability of datasets measured by each motion capturing system. POD is one of the widely used statistical techniques to determine reliability. We apply the â analysis to determine the POD(a) function from the data set. Based on the POD evaluation, two motion capturing systems are integrated. (author)

  14. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Petersen, Nickolaj Jacob; Hübner, Jörg

    2001-01-01

    . The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 mum long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U......The fabrication and performance of an electrophoretic separation chip with integrated of optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps...

  15. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  16. Towards development of a fiber optic-based transmission monitoring system

    Science.gov (United States)

    Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.

    2011-06-01

    There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.

  17. Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes

    Science.gov (United States)

    Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing

    2018-06-01

    A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.

  18. Integrated Model of the Eye/Optic Nerve Head Biomechanical Environment

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2017-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Previously, it has been suggested that ocular changes observed in VIIP syndrome are related to the cephalad fluid shift that results in altered fluid pressures [1]. We are investigating the impact of changes in intracranial pressure (ICP) using a combination of numerical models, which simulate the effects of various environment conditions, including finite element (FE) models of the posterior eye. The specific interest is to understand how altered pressures due to gravitational changes affect the biomechanical environment of tissues of the posterior eye and optic nerve sheath. METHODS: Additional description of the numerical modeling is provided in the IWS abstract by Nelson et al. In brief, to simulate the effects of a cephalad fluid shift on the cardiovascular and ocular systems, we utilized a lumped-parameter compartment model of these systems. The outputs of this lumped-parameter model then inform boundary conditions (pressures) for a finite element model of the optic nerve head (Figure 1). As an example, we show here a simulation of postural change from supine to 15 degree head-down tilt (HDT), with primary outcomes being the predicted change in strains at the optic nerve head (ONH) region, specifically in the lamina cribrosa (LC), retrolaminar optic nerve, and prelaminar neural tissue (PLNT). The strain field can be decomposed into three orthogonal components, denoted as the first, second and third principal strains. We compare the peak tensile (first principal) and compressive (third principal) strains, since elevated strain alters cell phenotype and induces tissue remodeling. RESULTS AND CONCLUSIONS: Our lumped-parameter model predicted an IOP increase of c. 7 mmHg after 21 minutes of 15 degree HDT, which agreed with previous reports of IOP in HDT [1]. The corresponding FEM simulations predicted a relative increase in the magnitudes of the peak tensile

  19. Evaluation of the optical conductivity tensor in terms of contour integrations

    OpenAIRE

    Szunyogh, Laszlo; Weinberger, Peter

    2000-01-01

    For the case of finite life-time broadening the standard Kubo-formula for the optical conductivity tensor is rederived in terms of Green's functions by using contour integrations, whereby finite temperatures are accounted for by using the Fermi-Dirac distribution function. For zero life-time broadening, the present formalism is related to expressions well-known in the literature. Numerical aspects of how to calculate the corresponding contour integrals are also outlined.

  20. Detection system of capillary array electrophoresis microchip based on optical fiber

    Science.gov (United States)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  1. Fully integrated optical system for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Balslev, Søren; Olsen, Brian Bilenberg; Geschke, Oliver

    2004-01-01

    We present a lab-on-a-chip device featuring a microfluidic dye laser, wave-guides, microfluidic components and photo-detectors integrated on the chip. The microsystem is designed for wavelength selective absorption measurements in the visible range on a fluidic sample, which can be prepared....../mixed on-chip. The laser structures, wave-guides and micro-fluidic handling system are defined in a single UV-lithography step on a 10 μm thick SU-8 layer on top of the substrate. The SU-8 structures are sealed by a Borofloat glass lid, using polymethylmethacrylate (PMMA) adhesive bonding....

  2. Self-imaging in first-order optical systems

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Guota, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    The structure and main properties of coherent and partially coherent optical fields that are self-reproducible under propagation through a first-order optical system are investigated. A phase space description of self-imaging in first-order optical systems is presented. The Wigner distribution

  3. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  4. Monolithic integration of DUV-induced waveguides into plastic microfluidic chip for optical manipulation

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Vannahme, Christoph; Sørensen, Kristian Tølbøl

    2014-01-01

    A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 dB/mm at a wavelen......A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 d......B/mm at a wavelength of λ = 808 nm. An optimized bead tracking algorithm is implemented, allowing for determination of the optical forces acting on the particles. The algorithm features a spatio-temporal mapping of coordinates for uniting partial trajectories, without increased processing time. With an external laser...

  5. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  6. Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors

    NARCIS (Netherlands)

    Zarikos, I.; Hassanizadeh, S.M.; van Oosterhout, L.M.; van Oordt, Wim

    The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter

  7. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  8. Optical integration and verification of LINC-NIRVANA

    Science.gov (United States)

    Moreno-Ventas, J.; Baumeister, H.; Bertram, Thomas; Bizenberger, P.; Briegel, F.; Greggio, D.; Kittmann, F.; Marafatto, L.; Mohr, L.; Radhakrishnan, K.; Schray, H.

    2014-07-01

    The LBT (Large Binocular Telescope) located in Mount Graham near Tucson/Arizona at an altitude of about 3200m, is an innovative project being undertaken by institutions from Europe and USA. The structure of the telescope incorporates two 8.4-meter telescopes on a 14.4 center-to-center common mount. This configuration provides the equivalent collecting area of a 12m single-dish telescope. LINC-NIRVANA is an instrument to combine the light from both LBT primary mirrors in an imaging Fizeau interferometer. Many requirements must be fulfilled in order to get a good interferometric combination of the beams, being among the most important plane wavefronts, parallel input beams, homotheticity and zero optical path difference (OPD) required for interferometry. The philosophy is to have an internally aligned instrument first, and then align the telescope to match the instrument. The sum of different subsystems leads to a quite ambitious system, which requires a well-defined strategy for alignment and testing. In this paper I introduce and describe the followed strategy, as well as the different solutions, procedures and tools used during integration. Results are presented at every step.

  9. Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard

    2007-05-01

    A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.

  10. Extension of optical lithography by mask-litho integration with computational lithography

    Science.gov (United States)

    Takigawa, T.; Gronlund, K.; Wiley, J.

    2010-05-01

    Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.

  11. Stechiometric neodymium compounds as new materials for light sources in integrated optics

    International Nuclear Information System (INIS)

    Malinowski, M.

    1981-01-01

    Short review of physico-chemical properties of stechiometric neodymium compounds has been presented. Several constructions of minilasers as promising light sources for integrated optics devices have been described. (author)

  12. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-12-01

    Full Text Available A curved D-type optical fiber sensor (OFS combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR of the Kretchmann’s configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10−5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  13. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles

    Science.gov (United States)

    Liehr, Sascha; Lenke, Philipp; Krebber, Katerina; Seeger, Monika; Thiele, Elke; Metschies, Heike; Gebreselassie, Berhane; Münich, Johannes Christian; Stempniewski, Lothar

    2008-04-01

    Fiber optic sensors based on polymer optical fibers (POF) have the advantage of being very elastic and robust at the same time. Unlike silica fibers, standard PMMA POF fibers can be strained to more than 40% while fully maintaining their light guiding properties. We investigated POF as a distributed strain sensor by analysing the backscatter increase at the strained section using the optical time domain reflectometry (OTDR) technique. This sensing ability together with its high robustness and break-down strain makes POF well-suited for integration into technical textiles for structural health monitoring purposes. Within the European research project POLYTECT (Polyfunctional textiles against natural hazards) technical textiles with integrated POF sensors, among others sensors are being developed for online structural health monitoring of geotechnical structures. Mechanical deformation in slopes, dams, dikes, embankments and retrofitted masonry structures is to be detected before critical damage occurs. In this paper we present the POF strain sensor properties, reactions to disturbing influences as temperature and bends as well as the results of the different model tests we conducted within POLYTECT. We further show the potential of perfluorinated graded-index POF for distributed strain sensing with increased spatial resolution and measurement lengths.

  14. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  15. Software-Programmed Optical Networking with Integrated NFV Service Provisioning

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Wang, Xi; Basu, Shrutarshi

    2017-01-01

    We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS).......We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS)....

  16. Integral consideration of integrated management systems

    International Nuclear Information System (INIS)

    Frauenknecht, Stefan; Schmitz, Hans

    2010-01-01

    Aim of the project for the NPPs Kruemmel and Brunsbuettel (Vattenfall) is the integral view of the business process as basis for the implementation and operation of management systems in the domains quality, safety and environment. The authors describe the integral view of the business processes in the frame of integrated management systems with the focus nuclear safety, lessons learned in the past, the concept of a process-based controlling system and experiences from the practical realization.

  17. Optically coupled CAMAC analog input output system

    International Nuclear Information System (INIS)

    Horie, Katsuzo; Kanazawa, Shuhei; Minehara, Eisuke; Hanashima, Susumu

    1985-08-01

    In an accelerator system, especially in ion sources, signals are exchanged between devices at different potentials. We have four ion sources in the negative ion injector for the JAERI tandem accelerator. Voltage to frequency conversion technic and optical fiber were used in the previous system. When we intended to extend the injector, we decided to revise the system to improve accuracy and reliability. For the purpose, we developed a new CAMAC module. It is an interface device between CAMAC dataway and optical fiber. The module has frequency synthesizers, frequency counters, optical transmitters and optical receivers in it. Accuracy, reliability and maintenability of the system were greatly improved by the module. (author)

  18. Optical design of an athermalised dual field of view step zoom optical system in MWIR

    Science.gov (United States)

    Kucukcelebi, Doruk

    2017-08-01

    In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.

  19. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  20. An Optical and Terahertz Instrumentation System at the FAST LINAC at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R. [Fermilab; Lumpkin, A. H. [Fermilab; Thangaraj, J. [Fermilab

    2017-08-01

    FAST is a facility at Fermilab that consists of a photoinjector, two superconducting capture cavities, one superconducting ILC-style cryomodule, and a small ring for studying non-linear, integrable beam optics called IOTA. This paper discusses the layout for the optical transport system that provides optical radiation to an externally located streak camera for bunch length measurements, and THz radiation to a Martin-Puplett interferometer, also for bunch length measurements. It accepts radiation from two synchrotron radiation ports in a chicane bunch compressor and a diffraction/transition radiation screen downstream of the compressor. It also has the potential to access signal from a transition radiation screen or YAG screen after the spectrometer magnet for measurements of energy-time correlations. Initial results from both the streak camera and Martin-Puplett will be presented.

  1. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    International Nuclear Information System (INIS)

    Butement, Jonathan T; Rowe, David J; Sessions, Neil P; Hua, Ping; Murugan, G Senthil; Wilkinson, James S; Clark, Owain; Chad, John E; Hunt, Hamish C

    2016-01-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µ m fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated. (paper)

  2. Automatic design of optical systems by digital computer

    Science.gov (United States)

    Casad, T. A.; Schmidt, L. F.

    1967-01-01

    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.

  3. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  4. Localization and Imaging of Integrated Circuit Defect Using Simple Optical Feedback Detection

    Directory of Open Access Journals (Sweden)

    Vernon Julius Cemine

    2004-12-01

    Full Text Available High-contrast microscopy of semiconductor and metal edifices in integrated circuits is demonstrated by combining laser-scanning confocal reflectance microscopy, one-photon optical-beam-induced current (1P-OBIC imaging, and optical feedback detection via a commercially available semiconductor laser that also serves as the excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P-OBIC images are obtained simultaneously from the same focused beam that is scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of the semiconductor, metal, and dielectric sites in a GaAs photodiode array sample. The method is then utilized to demonstrate defect localization and imaging in an integrated circuit.

  5. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Directory of Open Access Journals (Sweden)

    Troy W. Lowry

    2015-08-01

    Full Text Available Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose.

  6. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Science.gov (United States)

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  7. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  8. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    Science.gov (United States)

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  9. System for testing optical fibers

    Science.gov (United States)

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  10. Integration of the Aurora KrF ICF laser system at Los Alamos

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1988-01-01

    The Aurora laser system, under construction at the Los Alamos National Laboratory for the past few years, is now being integrated into a working system for examining the applicability of high-power KrF lasers to inertial confinement fusion (ICF). The design principles of the system have been described in detail in earlier publications and conferences. Multikilojoule 248-nm 5-ns duration laser pulses, which have been derived from angular-multiplexed electron-beam-driven KrF amplifiers, are to be delivered to ICF targets when the system is fully integrated. The authors describe the progress of the Aurora system toward the goal of delivering energy (MkJ/48 pulses stacked into one 5-ns pulse/200-μm spot) to ICF targets. Integrated performance to date of the front end optical multiplexer/demultiplexer e-beam-driven amplifiers and alignment hardware are discussed in particular. They have concentrated on the demonstration of system integration at a modest (--100-J) level of energy on-target (without the final amplifier stage). They discuss the amplifier gain measurements, the extraction of energy from a chain of three e-beam-driven machines, and progress toward the delivery of on-target energy

  11. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    Energy Technology Data Exchange (ETDEWEB)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  12. Optimisation of optical receiver for 10 Gbit/s optical duobinary transmission system

    DEFF Research Database (Denmark)

    Zheng, Xueyan; Liu, Fenghai; Jeppesen, Palle

    2001-01-01

    Optimisation of a receiver for an optical duobinary signal is studied numerically. It is shown that a conventional receiver is not optimum neither when a DCF is used before the receiver nor without a DCF being used. The optimum receiver for an optical duobinary system is identified.......Optimisation of a receiver for an optical duobinary signal is studied numerically. It is shown that a conventional receiver is not optimum neither when a DCF is used before the receiver nor without a DCF being used. The optimum receiver for an optical duobinary system is identified....

  13. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  14. Advanced integrated WDM system for POF communication

    Science.gov (United States)

    Haupt, M.; Fischer, U. H. P.

    2009-01-01

    Polymer Optical Fibres (POFs) show clear advantages compared to copper and glass fibres. In essence, POFs are inexpensive, space-saving and not susceptible to electromagnetic interference. Thus, the usage of POFs have become a reasonable alternative in short distance data communication. Today, POFs are applied in a wide number of applications due to these specific advantages. These applications include automotive communication systems and in-house-networks. State-of-the-art is to transmit data with only one channel over POF, this limits the bandwidth. To solve this problem, an integrated MUX/DEMUX-element for WDM over POF is designed and developed to use multiple channels. This integration leads to low costs, therefore this component is suitable for mass market applications. The fundamental idea is to separate the chromatic parts of the light in its monochromatic components by means of a grating based on an aspheric mirror. Due to the high NA of the POF the setup has to be designed in a 3D-approach. Therefore this setup cannot be compared with the planar solutions available on market, they would result high losses in the 3rd dimension. To achieve a fast and optimized design an optical simulation program is used. Particular attention has to be paid to the design of the POF as a light source in the simulation program and the optimisation of the grating. The following realization of the demultiplexer is planed to be done with injection molding. This technology offers easy and very economical processing. These advantages make this technology first choice for optical components in the low-cost array.

  15. Integrated security system definition

    International Nuclear Information System (INIS)

    Campbell, G.K.; Hall, J.R. II

    1985-01-01

    The objectives of an integrated security system are to detect intruders and unauthorized activities with a high degree of reliability and the to deter and delay them until effective response/engagement can be accomplished. Definition of an effective integrated security system requires proper application of a system engineering methodology. This paper summarizes a methodology and describes its application to the problem of integrated security system definition. This process includes requirements identification and analysis, allocation of identified system requirements to the subsystem level and provides a basis for identification of synergistic subsystem elements and for synthesis into an integrated system. The paper discusses how this is accomplished, emphasizing at each step how system integration and subsystem synergism is considered. The paper concludes with the product of the process: implementation of an integrated security system

  16. Designing generalized conic concentrators for conventional optical systems

    Science.gov (United States)

    Eichhorn, W. L.

    1985-01-01

    Generalized nonimaging concentrators can be incorporated into conventional optical systems in situations where flux concentration rather than imaging is required. The parameters of the concentrator for maximum flux concentration depend on the design of the particular optical system under consideration. Rationale for determining the concentrator parameters is given for one particular optical system and the procedure used for calculation of these parameters is outlined. The calculations are done for three concentrators applicable to the optical system.

  17. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  18. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  19. Real-Time PCR using a PCR Microchip with Integrated Thermal System and Polymer Waveguides for the Detection of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. By using the integrated optical system of the real-time PCR chip, cadF – a virulence gene of Campylobacter jejuni, could specifically be detected. Two different DNA binding dyes, SYTOX...

  20. Microcomputer-based real-time optical signal processing system

    Science.gov (United States)

    Yu, F. T. S.; Cao, M. F.; Ludman, J. E.

    1986-01-01

    A microcomputer-based real-time programmable optical signal processing system utilizing a Magneto-Optic Spatial Light Modulator (MOSLM) and a Liquid Crystal Light Valve (LCLV) is described. This system can perform a myriad of complicated optical operations, such as image correlation, image subtraction, matrix multiplication and many others. The important assets of this proposed system must be the programmability and the capability of real-time addressing. The design specification and the progress toward practical implementation of this proposed system are discussed. Some preliminary experimental demonstrations are conducted. The feasible applications of this proposed system to image correlation for optical pattern recognition, image subtraction for IC chip inspection and matrix multiplication for optical computing are demonstrated.

  1. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Chemisana, Daniel, E-mail: daniel.chemisana@macs.udl.cat [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain); Ignasi Rosell, Joan [Applied Physics Section of the Polytechnic School (EPS), University of Lleida, 25001 Lleida (Spain)

    2011-09-15

    Highlights: {yields} The designed concentrator has an important potential for building integration. {yields} The device concentrates radiation toward a static receiver. {yields} Tracking performed by a single driver, representing an important mechanical advantage. {yields} The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  2. Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications

    International Nuclear Information System (INIS)

    Chemisana, Daniel; Ignasi Rosell, Joan

    2011-01-01

    Highlights: → The designed concentrator has an important potential for building integration. → The device concentrates radiation toward a static receiver. → Tracking performed by a single driver, representing an important mechanical advantage. → The system reaches a global optical efficiency value of 56.38%. - Abstract: A transmissive Fresnel reflector is designed to match the needs of building integration for concentrating photovoltaic (PV), thermal (T) or hybrid photovoltaic/thermal (PVT) generation. The device concentrates radiation toward a static receiver by means of an array of reflectors which rotate collectively. All rotation axes are coplanar and parallel. A deep analytical ray tracing study has been made of the design characteristics and concentrator performance, thus determining the configuration which optimises efficiency. Numerous ray tracing numerical simulations have been performed which contrast and support the analytical results.

  3. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America

  4. Development Of The Drexler Optical-Card Reader/Writer System

    Science.gov (United States)

    Pierce, Gerald A.

    1988-06-01

    An optical-card reader/writer optical and electronic breadboard system, developed by SRI International under contract to Drexler Technology, is described. The optical card, which is the same size as a credit card, can contain more than 2 megabytes of digital user data, which may also include preformatted tracking information and preformatted data. The data layout on the card is similar to that on a floppy disk, with each track containing a header and clocking information. The design of this optical reader/writer system for optical cards is explained. Design of the optical card system entails a number of unique issues: To accommodate both laser-recorded and mass-duplicated information, the system must be compatible with preencoded information, which implies a larger-than-normal spot size (5 gm) and a detection system that can read both types of optical patterns. Cost-reduction considerations led to selection of a birefringent protection layer, which dictated a nonstandard optical system. The non-polarization-sensitive optics use an off-axis approach to detection. An LED illumination system makes it possible to read multiple tracks.

  5. Miniaturized multi channel infrared optical gas sensor system

    Science.gov (United States)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  6. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  7. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  8. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  9. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  10. Integrated Magneto-Optical Devices for On-Chip Photonic Systems

    Science.gov (United States)

    2017-09-01

    Technology SEPTEMBER 2017 Final Report Approved for public release; distribution is unlimited. See additional restrictions described on inside pages STINFO...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Massachusetts Institute of Technology 77 Massachusetts Avenue...interferometer (MZI) isolator devices based on optical modeling, for both transverse- electric (TE) and transverse-magnetic (TM) polarization. 15. SUBJECT TERMS

  11. Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems

    Science.gov (United States)

    Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce

    2011-01-01

    This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this

  12. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    International Nuclear Information System (INIS)

    Schmitt, R; Koenig, N; Zheng, H

    2011-01-01

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  13. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  14. Integrated optical transceiver with electronically controlled optical beamsteering

    Science.gov (United States)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    2017-08-22

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chip also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.

  15. Fiber-optic voltage measuring system

    Science.gov (United States)

    Ye, Miaoyuan; Nie, De-Xin; Li, Yan; Peng, Yu; Lin, Qi-Qing; Wang, Jing-Gang

    1993-09-01

    A new fibre optic voltage measuring system has been developed based on the electrooptic effect of bismuth germanium oxide (Bi4Ge3O12)crystal. It uses the LED as the light source. The light beam emitted from the light source is transmitted to the sensor through the optic fibre and the intensity of the output beam is changed by the applied voltage. This optic signal is transmitted to the PIN detector and converted to an electric signal which is processed by the electronic circuit and 8098 single chip microcomputer the output voltage signal obtained is directly proportional to the applied voltage. This paper describes the principle the configuration and the performance parameters of the system. Test results are evaluated and discussed.

  16. Searching for integrable systems

    International Nuclear Information System (INIS)

    Cary, J.R.

    1984-01-01

    Lack of integrability leads to undesirable consequences in a number of physical systems. The lack of integrability of the magnetic field leads to enhanced particle transport in stellarators and tokamaks with tearing-mode turbulence. Limitations of the luminosity of colliding beams may be due to the onset of stochasticity. Enhanced radial transport in mirror machines caused by the lack of integrability and/or the presence of resonances may be a significant problem in future devices. To improve such systems one needs a systematic method for finding integrable systems. Of course, it is easy to find integrable systems if no restrictions are imposed; textbooks are full of such examples. The problem is to find integrable systems given a set of constraints. An example of this type of problem is that of finding integrable vacuum magnetic fields with rotational transform. The solution to this problem is relevant to the magnetic-confinement program

  17. Optical performance monitoring in high-speed optical fiber communication systems

    Science.gov (United States)

    Yu, Changyuan; Yang, Jing; Hu, Junhao; Zhang, Banghong

    2011-11-01

    Optical performance monitoring (OPM) becomes an attractive topic as the rapid growth of data rate in optical communication networks. It provides improved operation of the high capacity optical transmission systems. Among the various impairments, chromatic dispersion (CD) is one of major factors limiting the transmission distance in high-speed communication systems. Polarization-mode dispersion (PMD) also becomes a degrading effect in the system with data rate larger than 40 Gbit/s. In this paper, we summarize several CD and PMD monitoring methods based on RF spectrum analysis and delay-tap sampling. By using a narrow band fiber Bragg grating (FBG) notch filter, centered at 10 GHz away from the optical carrier, 10-GHz RF power can be used as a CD-insensitive PMD monitoring signal. By taking the 10-GHz RF power ratio of non-filtered and filtered signal, PMD-insensitive CD monitoring can be achieved. If the FBG notch filter is placed at optical carrier, the RF clock power ratio between non-filtered and filtered signal is also a PMDinsensitive CD monitoring parameter, which has larger RF power dynamic range and better measurement resolution. Both simulation and experiment results show that the proposed methods are efficient on measuring CD and PMD values in 57-Gbit/s D8PSK systems. Delay-tap sampling is another efficient method of measuring residual CD. Amplitude ratio of asynchronous delay-tap sampling plot decreases with CD monotonously, and the amplitude ratio can be obtained by using low bandwidth balanced receiver. The simulated results show that our method is efficient on residual CD measurement in 50-Gbit/s 50% RZ DQPSK systems with a 12-GHz balanced receiver. Since no modification on the transmitter or receiver is required, the proposed scheme is simple and cost effective.

  18. The KSTAR integrated control system based on EPICS

    International Nuclear Information System (INIS)

    Kim, K.H.; Ju, C.J.; Kim, M.K.; Park, M.K.; Choi, J.W.; Kyum, M.C.; Kwon, M.

    2006-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) control system will be developed with several subsystems, which consist of the central control system (e.g. plasma control, machine control, diagnostic control, time synchronization, and interlock systems) and local control systems for various subsystems. We are planning to connect the entire system with several networks, viz. a reflective-memory-based real-time network, an optical timing network, a gigabit Ethernet network for generic machine control, and a storage network. Then it will evolve into a network-based, distributed real-time control system. Thus, we have to consider the standard communication protocols among the subsystems and how to handle the various kinds of hardware in a homogeneous way. To satisfy these requirements, EPICS has been chosen for the KSTAR control. The EPICS framework provides network-based real-time distributed control, operating system independent programming tools, operator interface tools, archiving tools, and interface tools with other commercial and non-commercial software. The most important advantage of the use of the EPICS framework is in providing homogeneity of the system for the control system developer. The developer does not have to be concerned about the specifics of the local system, but can concentrate on the implementation of the control logic with EPICS tools. We will present the details of the integration issues and also will give a brief summary of the entire KSTAR control system from an integration point of view

  19. System integration and performance of the EUV engineering test stand

    International Nuclear Information System (INIS)

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-01-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k 1 of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features

  20. Multiaperture Optical System Research.

    Science.gov (United States)

    1987-11-06

    pp. 179-185 (1965). 6. Welford, W. T. and Winston , R., The Optics of Nonimaging Concentrators , P. 3, Academic Press, New York (1978). 7. Schneider, R...Welford and Winston investigated it was a possible concentrator for solar energy. They came up with the "ideal concentrator ", which has walls shaped...MULTIAPZRTURE OPTICAL SYSTEM RESEARCH ." Office of Naval Research Contract Number N00014-85-C-0862 . FINAL REPORT by RTS LABORATORIES, INC. 1663

  1. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... written waveguides and in an injection molded polymer chip with grooves for optical fibers. (C) 2016 The Japan Society of Applied Physics....

  2. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  3. Menadione degrades the optical quality and mitochondrial integrity of bovine crystalline lenses.

    Science.gov (United States)

    Olsen, Kenneth W; Bantseev, Vladimir; Choh, Vivan

    2011-01-26

    The crystalline lens is a unique cellular organ that performs metabolic processes while maintaining transparency for optical functionality. Mitochondria play a role in providing cells with aerobic respiration necessary for these metabolic processes. Using menadione, a mitochondria-specific inhibitor of the quinone family, and bovine lenses in vitro, this study was undertaken to determine whether a relationship exists between mitochondrial function and optical function. Bovine lenses were treated with 50 μM, 200 μM, 600 μM, and 1,000 μM menadione and lens optical function, assessed as optical quality, was observed over 9 days. Confocal micrographs of mitochondria in superficial secondary fiber cells were also analyzed in 50 μM, 200 μM, and 600 μM menadione-treated lenses over 48 h. A decrease in lens optical quality was observed in a dose-dependent manner within 24 h for the 200 µM- (p=0.0422), 600 µM- (pmenadione. The data show that menadione has a detrimental effect on mitochondrial integrity and this change is associated with degradation of optical quality, suggesting a possible link between mitochondrial function and optical function.

  4. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array.

    Science.gov (United States)

    Kwon, Ki-Chul; Lim, Young-Tae; Shin, Chang-Won; Erdenebat, Munkh-Uchral; Hwang, Jae-Moon; Kim, Nam

    2017-08-15

    We propose and implement an integral imaging microscope with extended depth-of-field (DoF) using a bifocal holographic micro lens array (MLA). The properties of the two MLAs are switched via peristrophic multiplexing, where different properties of the MLA are recorded onto the single holographic optical element (HOE). The recorded MLA properties are perpendicular to each other: after the first mode is recorded, the HOE is rotated by 90° clockwise, and the second mode is recorded. The experimental results confirm that the DoF of the integral imaging microscopy system is extended successfully by using the bifocal MLA.

  5. Imaging Freeform Optical Systems Designed with NURBS Surfaces

    Science.gov (United States)

    2015-12-01

    reflective, anastigmat 1 Introduction The imaging freeform optical systems described here are designed using non-uniform rational basis-spline (NURBS...code, but to succeed in designing NURBS freeform optical systems an optimization code is required. The motivation for developing the optical design

  6. Laboratory testing & measurement on optical imaging systems

    CSIR Research Space (South Africa)

    Theron, B

    2013-04-01

    Full Text Available on Optical Imaging Systems Bertus Theron 27 April 2013 presented at SIECPC 2013, Riyadh, Saudi Arabia Overview of Workshop Part 1. Introduction & Context  Some history of Arabic Optics  Context: Global vs Local optical testing... of Arabic Optics 1 See [4]  Arabic records of study of geometrical optics  Traced to Hellenistic (Greek) optics  Translated to Arabic  9th century  Arabic contribution to geometric optics  Not just translation to Arabic  Innovative research...

  7. Fiber-optic Sensor Demonstrator (FSD) integration with PROBA-2

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  8. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    Science.gov (United States)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  9. Integration of OLE into the TACL control system

    International Nuclear Information System (INIS)

    Bowling, B.; Douglas, D.; Kewisch, J.; Kloeppel, P.; Kraft, G.A.

    1993-01-01

    OLE, the On-Line Envelope program, is a first-order optics code which was designed to provide fast lattice transfer functions from actual accelerator magnet and cavity control values. This paper addresses the results of a successful integration of OLE into the CEBAF control system, TACL. This marriage provides the user with the ability for obtaining real-time Twiss parameters and transfer functions which reflect the current operational state of the machine. The resultant OLE calculation provides the analytical core for many control and diagnostic functions used at CEBAF, including focusing corrections, orbit corrections, emittance measurements, and beamline analysis

  10. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  11. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  12. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  13. Integration of optical fibers in mega-joule class laser environments: advantages and limitations

    International Nuclear Information System (INIS)

    Girard, S.; Marcandella, C.; Bisutti, J.; Ouerdane, Y.; Boukenter, A.; Meunier, J.P.; Baggio, J.

    2012-01-01

    We review the advantages and limitations for the integration of optical fibers in the radiative environment associated with Megajoule class lasers as Laser Megajoule (LMJ) in France or National Ignition Facility (NIF) in the USA. Optical fibers present numerous advantages, like their electromagnetic immunity, for integration in these facilities devoted to the fusion by inertial confinement studies. Despite these advantages, it is also well-known that optical fibers suffer from a degradation of their macroscopic properties under irradiation, limiting their transmission capability. We studied the major mechanisms governing the amplitude of this degradation, focusing our discussion on the transient radiation-induced attenuation (RIA) phenomena that is often the limiting factor for LMJ applications. The amplitude and growth and decay kinetics of RIA are affected by different parameters related to the fibers themselves but also depend on the application and irradiation characteristics. We particularly investigated the fiber transient radiation responses when the optical links have to operate during the pulsed and mixed environment associated with ignition shots. Our study shows that, if the same parameters affect the fiber sensitivity for steady state and transient irradiations, the radiation tolerances of the different classes of waveguides strongly differ, implying dedicated experiments for LMJ facility needs. (authors)

  14. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  15. Optical fiber inspection system

    Science.gov (United States)

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  16. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2016-01-01

    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  17. Data transmission techniques for short-range optical fiber and wireless communication links

    DEFF Research Database (Denmark)

    Pham, Tien Thang

    The research work described in this thesis is devoted to experimental investigation of techniques for cost-effective high-speed optical communications supporting both wired and wireless services. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high......-speed optical/wireless integration and advanced modulation formats for intensity modulation with direct detection (IM/DD) optical systems. Regarding optical/wireless integration, this thesis focuses on integration of broadband ultra-wide band (UWB) and 60-GHz band wireless systems into optical fiber access...... networks to distribute wireless services in personal area networks (PANs). Photonic technologies to generate and distribute gigabit UWB and 60-GHz-band signals are proposed and demonstrated. Two novel methods are proposed and demonstrated to optically generate Federal Communications Commission (FCC...

  18. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    Science.gov (United States)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  19. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  20. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    Science.gov (United States)

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  1. Full-duplex optical communication system

    Science.gov (United States)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  2. Optically Programmable Field Programmable Gate Arrays (FPGA) Systems

    National Research Council Canada - National Science Library

    Mumbru, Jose

    2004-01-01

    ... holograms for these modules. The first chapter makes the case that a direct interface between an optical memory and a chip integrating detectors and logic circuitry can better utilize the high parallelism inherent in holographic modules...

  3. Quantitative analysis of eyes and other optical systems in linear optics.

    Science.gov (United States)

    Harris, William F; Evans, Tanya; van Gool, Radboud D

    2017-05-01

    To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  4. Metrological 2iOF fibre-optic system for position and displacement measurement with 31 pm resolution

    Science.gov (United States)

    Orłowska, Karolina; Świåtkowski, Michał; Kunicki, Piotr; Gotszalk, Teodor

    2018-04-01

    In the present paper, we describe a high sensitivity intensity fibre-optic displacement sensor with tens of picometre resolution combined with a sub-picometre resolution interferometric calibration system. Both integrated components form the so-called "2 in one ferrule" system 2iOF. The design and construction of the presented device depend on integrating two sensors' systems within one fibre-optic measuring head, which allows performing in situ calibration process with no additional time-consuming adjustment procedure. The resolution of the 2iOF system is 31 pm/Hz1/2 obtained with an interferometric Fabry-Perot based calibration system—providing accuracy better than tens of fm/Hz1/2 within 1 MHz bandwidth in the measurement range of up to 100 μm. The direct response from the intensity sensor is then the 2iOF output one. It is faster and more convenient to analyze in comparison, with much better resolution (3 orders of magnitude higher) but on the other hand also more time consuming and dependent on the absolute sample position interferometer. The proposed system is flexible and open to various applications. We will present the results of the piezoelectrical actuator displacement measurements, which were performed using the developed system.

  5. TCR industrial system integration strategy

    CERN Document Server

    Bartolomé, R; Sollander, P; Martini, R; Vercoutter, B; Trebulle, M

    1999-01-01

    New turnkey data acquisition systems purchased from industry are being integrated into CERN's Technical Data Server. The short time available for system integration and the large amount of data per system require a standard and modular design. Four different integration layers have been defined in order to easily 'plug in' industrial systems. The first layer allows the integration of the equipment at the digital I/O port or fieldbus (Profibus-DP) level. A second layer permits the integration of PLCs (Siemens S5, S7 and Telemecanique); a third layer integrates equipment drivers. The fourth layer integrates turnkey mimic diagrams in the TCR operator console. The second and third layers use two new event-driven protocols based on TCP/IP. Using this structure, new systems are integrated in the data transmission chain, the layer at which they are integrated depending only on their integration capabilities.

  6. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  7. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    Science.gov (United States)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  8. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  10. Optically Driven Mobile Integrated Micro-Tools for a Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Yi-Jui Liu

    2013-04-01

    Full Text Available This study proposes an optically driven complex micromachine with an Archimedes microscrew as the mechanical power, a sphere as a coupler, and three knives as the mechanical tools. The micromachine is fabricated by two-photon polymerization and is portably driven by optical tweezers. Because the microscrew can be optically trapped and rotates spontaneously, it provides driving power for the complex micro-tools. In other words, when a laser beam focuses on the micromachine, the microscrew is trapped toward the focus point and simultaneously rotates. A demonstration showed that the integrated micromachines are grasped by the optical tweezers and rotated by the Archimedes screw. The rotation efficiencies of the microrotors with and without knives are 1.9 rpm/mW and 13.5 rpm/mW, respectively. The micromachine can also be portably dragged along planed routes. Such Archimedes screw-based optically driven complex mechanical micro-tools enable rotation similar to moving machines or mixers, which could contribute to applications for a biological microfluidic chip or a lab-on-a-chip.

  11. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  12. Choosing the Right Systems Integration

    Directory of Open Access Journals (Sweden)

    Péči Matúš

    2014-12-01

    Full Text Available The paper examines systems integration and its main levels at higher levels of control. At present, the systems integration is one of the main aspects participating in the consolidation processes and financial flows of a company. Systems Integration is a complicated emotionconsuming process and it is often a problem to choose the right approach and level of integration. The research focused on four levels of integration, while each of them is characterized by specific conditions. At each level, there is a summary of recommendations and practical experience. The paper also discusses systems integration between the information and MES levels. The main part includes user-level integration where we describe an example of such integration. Finally, we list recommendations and also possible predictions of the systems integration as one of the important factors in the future.

  13. Electromagnetic modeling and characterization of an optically-controlled microwave phase shifterin GaAs integrated technology

    OpenAIRE

    Tripon-Canseliet, C.; Faci, S.; Deshours, F.; Algani, C.; Alquié, G.; Formont, S.; Chazelas, J.

    2005-01-01

    A state of the art of the modeling of microwave photoswitching devices is exposed. A new 3 D electromagnetic modeling allows the design of an optically-controlled microwave phase shifter microwave starting from the traditional circuit of a microwave photoswitch. Measurements of the parameters S of this optically-controlled microwave phase shifter attests the function of this circuit by optical way and highlights the interest of the integration of this new type of microwave phase shifters in ...

  14. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam Y

    2009-01-01

    Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.

  15. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  16. Information security system based on virtual-optics imaging methodology and public key infrastructure

    Science.gov (United States)

    Peng, Xiang; Zhang, Peng; Cai, Lilong

    In this paper, we present a virtual-optical based information security system model with the aid of public-key-infrastructure (PKI) techniques. The proposed model employs a hybrid architecture in which our previously published encryption algorithm based on virtual-optics imaging methodology (VOIM) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). For an asymmetric system, given an encryption key, it is computationally infeasible to determine the decryption key and vice versa. The whole information security model is run under the framework of PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOIM security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network.

  17. Electro-optical fuel pin identification system

    International Nuclear Information System (INIS)

    Kirchner, T.L.

    1978-09-01

    A prototype Electro-Optical Fuel Pin Identification System referred to as the Fuel Pin Identification System (FPIS) has been developed by the Hanford Engineering Development Laboratory (HEDL) in support of the Fast Flux Test Facility (FFTF) presently under construction at HEDL. The system is designed to remotely read an alpha-numeric identification number that is roll stamped on the top of the fuel pin end cap. The prototype FPIS consists of four major subassemblies: optical read head, digital compression electronics, video display, and line printer

  18. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  19. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  20. UV-cured polymer optics

    Science.gov (United States)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.