WorldWideScience

Sample records for integrated noise model

  1. Overview of en route noise prediction using a integrated noise model

    Science.gov (United States)

    2010-04-20

    En route aircraft noise is often ignored in aircraft noise modeling because large amounts of noise attenuation due to long propagation distances between the aircraft and the receivers on the ground, reduced power in cruise flight compared to takeoff ...

  2. Examination of the low frequency limit for helicopter noise data in the Federal Aviation Administration's Aviation Environmental Design Tool and Integrated Noise Model

    Science.gov (United States)

    2010-04-19

    The Federal Aviation Administration (FAA) aircraft noise modeling tools Aviation Environmental Design Tool (AEDTc) and Integrated Noise Model (INM) do not currently consider noise below 50 Hz in their computations. This paper describes a preliminary ...

  3. Integration and comparison of assessment and modeling of road traffic noise in Baripada town, India

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Swain, Bijay [Department of Environmental Science, Utkal University, Bhubaneswar-751004, Odisha (India); Goswami, Shreerup [Department of Geology, Ravenshaw University, Cuttack-753003, Odisha (India)

    2013-07-01

    The road traffic is the predominant source of noise pollution in urban areas. Despite enactment of legislations and despite effort from Government level to abate vehicle noise, the noise exposure of people of India due to road traffic has hardly changed, but has increased day by day due to growth of vehicular population. Thus, an attempt had been made to assess the noise level in 12 different squares (major intersection points) of Baripada town during four different specified times (7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m., 7-10 p.m.). The equivalent noise levels of all the 12 squares were found to be much beyond the permissible limit (70 dB during day time). Noise descriptors such as L10, L50, L90, Leq, TNI (Traffic Noise Index), NPL (Noise Pollution Level) and NC (Noise climate) were assessed to reveal the extent of noise pollution due to heavy traffic in this town. It is pertinent to mention here that even the minimum Leq and NPL values were more than 70.9 dB and 88.4 dB, respectively. Chi-square (X2) test was also computed for investigated squares at different times to infer the level of significance. The test depicts that the noise levels of different squares do not differ significantly at the peak hour. The prediction model was used in the present study to predict equivalent noise levels. Comparison of predicted equivalent noise level with that of the actual measured data demonstrated that the model used for the prediction has the ability to calibrate the multi-component traffic noise and yield reliable results close to that by direct measurement. Episodic and impulsive noise levels by the air-horn of motor vehicles in Baripada were also appraised and were more than the permissible limit. Though, the dimension of the traffic generated noise pollution in Baripada was not so alarming like other towns of India, a preliminary public health survey has also been carried out.

  4. Underwater noise modelling for environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farcas, Adrian [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom); Thompson, Paul M. [Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, Cromarty IV11 8YL (United Kingdom); Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom)

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  5. Underwater noise modelling for environmental impact assessment

    International Nuclear Information System (INIS)

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D.

    2016-01-01

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  6. Noise analysis of switched integrator preamplifiers

    International Nuclear Information System (INIS)

    Sun Hongbo; Li Yulan; Zhu Weibin

    2004-01-01

    The main noise sources of switched integrator preamplifiers are discussed, and their noise performance are given combined PSpice simulation and experiments on them. Then, some practical methods on how to reduce noise of preamplifiers in two different integrator modes are provided. (authors)

  7. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  8. Intra-Day Trading System Design Based on the Integrated Model of Wavelet De-Noise and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Hongguang Liu

    2016-12-01

    Full Text Available Technical analysis has been proved to be capable of exploiting short-term fluctuations in financial markets. Recent results indicate that the market timing approach beats many traditional buy-and-hold approaches in most of the short-term trading periods. Genetic programming (GP was used to generate short-term trade rules on the stock markets during the last few decades. However, few of the related studies on the analysis of financial time series with genetic programming considered the non-stationary and noisy characteristics of the time series. In this paper, to de-noise the original financial time series and to search profitable trading rules, an integrated method is proposed based on the Wavelet Threshold (WT method and GP. Since relevant information that affects the movement of the time series is assumed to be fully digested during the market closed periods, to avoid the jumping points of the daily or monthly data, in this paper, intra-day high-frequency time series are used to fully exploit the short-term forecasting advantage of technical analysis. To validate the proposed integrated approach, an empirical study is conducted based on the China Securities Index (CSI 300 futures in the emerging China Financial Futures Exchange (CFFEX market. The analysis outcomes show that the wavelet de-noise approach outperforms many comparative models.

  9. Noise adaptation in integrate-and fire neurons.

    Science.gov (United States)

    Rudd, M E; Brown, L G

    1997-07-01

    The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.

  10. Evaluating Performances of Traffic Noise Models | Oyedepo ...

    African Journals Online (AJOL)

    Traffic noise in decibel dB(A) were measured at six locations using 407780A Integrating Sound Level Meter, while spot speed and traffic volume were collected with cine-camera. The predicted sound exposure level (SEL) was evaluated using Burgess, British and FWHA model. The average noise level obtained are 77.64 ...

  11. Noise in restaurants: levels and mathematical model.

    Science.gov (United States)

    To, Wai Ming; Chung, Andy

    2014-01-01

    Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.

  12. Noise in restaurants: Levels and mathematical model

    Directory of Open Access Journals (Sweden)

    Wai Ming To

    2014-01-01

    Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.

  13. Model of aircraft noise adaptation

    Science.gov (United States)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  14. Modeling road-tyre noise

    OpenAIRE

    Martins, Mário M. Abreu; Santos, Luís Picado; Freitas, Elisabete F.

    2008-01-01

    The growing awareness by the broader public of the consequences to health and wellbeing due to road noise has led to a growing number of legal requirements being produced to deal with this matter, both in the design of new or assessment of existing infrastructure. In this article the purpose is to make an up-to-date review of existing studies being carried out to deliver models for predicting noise produced from tyre-road contact, taking account of different methodological appr...

  15. Road traffic noise: self-reported noise annoyance versus GIS modelled road traffic noise exposure.

    Science.gov (United States)

    Birk, Matthias; Ivina, Olga; von Klot, Stephanie; Babisch, Wolfgang; Heinrich, Joachim

    2011-11-01

    self-reported road traffic noise annoyance is commonly used in epidemiological studies for assessment of potential health effects. Alternatively, some studies have used geographic information system (GIS) modelled exposure to road traffic noise as an objective parameter. The aim of this study was to analyse the association between noise exposure due to neighbouring road traffic and the noise annoyance of adults, taking other determinants into consideration. parents of 951 Munich children from the two German birth cohorts GINIplus and LISAplus reported their annoyance due to road traffic noise at home. GIS modelled road traffic noise exposure (L(den), maximum within a 50 m buffer) from the noise map of the city of Munich was available for all families. GIS-based calculated distance to the closest major road (≥10,000 vehicles per day) and questionnaire based-information about family income, parental education and the type of the street of residence were explored for their potential influence. An ordered logit regression model was applied. The noise levels (L(den)) and the reported noise annoyance were compared with an established exposure-response function. the correlation between noise annoyance and noise exposure (L(den)) was fair (Spearman correlation r(s) = 0.37). The distance to a major road and the type of street were strong predictors for the noise annoyance. The annoyance modelled by the established exposure-response function and that estimated by the ordered logit model were moderately associated (Pearson's correlation r(p) = 0.50). road traffic noise annoyance was associated with GIS modelled neighbouring road traffic noise exposure (L(den)). The distance to a major road and the type of street were additional explanatory factors of the noise annoyance appraisal.

  16. Computer model for noise in the dc Squid

    International Nuclear Information System (INIS)

    Tesche, C.D.; Clarke, J.

    1976-08-01

    A computer model for the dc SQUID is described which predicts signal and noise as a function of various SQUID parameters. Differential equations for the voltage across the SQUID including the Johnson noise in the shunted junctions are integrated stepwise in time

  17. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: A simulation study on the effect of sampling schedule and noise

    Energy Technology Data Exchange (ETDEWEB)

    Hardiansyah, Deni [Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany and Department of Radiation Oncology, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167 (Germany); Guo, Wei; Glatting, Gerhard, E-mail: gerhard.glatting@medma.uni-heidelberg.de [Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167 (Germany); Kletting, Peter [Department of Nuclear Medicine, Ulm University, Ulm 89081 (Germany); Mottaghy, Felix M. [Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen 52074, Germany and Department of Nuclear Medicine, Maastricht University Medical Center MUMC+, Maastricht 6229 (Netherlands)

    2016-09-15

    Purpose: The aim of this study was to investigate the accuracy of PET-based treatment planning for predicting the time-integrated activity coefficients (TIACs). Methods: The parameters of a physiologically based pharmacokinetic (PBPK) model were fitted to the biokinetic data of 15 patients to derive assumed true parameters and were used to construct true mathematical patient phantoms (MPPs). Biokinetics of 150 MBq {sup 68}Ga-DOTATATE-PET was simulated with different noise levels [fractional standard deviation (FSD) 10%, 1%, 0.1%, and 0.01%], and seven combinations of measurements at 30 min, 1 h, and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data using population-based Bayesian parameters to construct predicted MPPs. Therapy simulations were performed as 30 min infusion of {sup 90}Y-DOTATATE of 3.3 GBq in both true and predicted MPPs. Prediction accuracy was then calculated as relative variability v{sub organ} between TIACs from both MPPs. Results: Large variability values of one time-point protocols [e.g., FSD = 1%, 240 min p.i., v{sub kidneys} = (9 ± 6)%, and v{sub tumor} = (27 ± 26)%] show inaccurate prediction. Accurate TIAC prediction of the kidneys was obtained for the case of two measurements (1 and 4 h p.i.), e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 10)%, or three measurements, e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 9)%. Conclusions: {sup 68}Ga-DOTATATE-PET measurements could possibly be used to predict the TIACs of {sup 90}Y-DOTATATE when using a PBPK model and population-based Bayesian parameters. The two time-point measurement at 1 and 4 h p.i. with a noise up to FSD = 1% allows an accurate prediction of the TIACs in kidneys.

  18. The equivalent internal orientation and position noise for contour integration.

    Science.gov (United States)

    Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F

    2017-10-12

    Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

  19. Integrate-and-fire neurons driven by asymmetric dichotomous noise.

    Science.gov (United States)

    Droste, Felix; Lindner, Benjamin

    2014-12-01

    We consider a general integrate-and-fire (IF) neuron driven by asymmetric dichotomous noise. In contrast to the Gaussian white noise usually used in the so-called diffusion approximation, this noise is colored, i.e., it exhibits temporal correlations. We give an analytical expression for the stationary voltage distribution of a neuron receiving such noise and derive recursive relations for the moments of the first passage time density, which allow us to calculate the firing rate and the coefficient of variation of interspike intervals. We study how correlations in the input affect the rate and regularity of firing under variation of the model's parameters for leaky and quadratic IF neurons. Further, we consider the limit of small correlation times and find lowest order corrections to the first passage time moments to be proportional to the square root of the correlation time. We show analytically that to this lowest order, correlations always lead to a decrease in firing rate for a leaky IF neuron. All theoretical expressions are compared to simulations of leaky and quadratic IF neurons.

  20. Aero-acoustic noise of wind turbines. Noise prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  1. Modelling of Substrate Noise and Mitigation Schemes for UWB Systems

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Larsen, Torben

    2012-01-01

    tuned elements in the signal paths. However, for UWB designs this is not a viable option and other means are therefore required. Moreover, owing to the ultra-wideband nature and low power spectral density of the signal, UWB mixed-signal integrated circuits are more sensitive to substrate noise compared...... with narrow-band circuits. This chapter presents a study on the modeling and mitigation of substrate noise in mixed-signal integrated circuits (ICs), focusing on UWB system/circuit designs. Experimental impact evaluation of substrate noise on UWB circuits is presented. It shows how a wide-band circuit can......The last chapter of this first part of the book, chapter seven, is devoted to Modeling of Substrate Noise and Mitigation Schemes for Ultrawideband (UWB) systems, and is written by Ming Shen, Jan H. Mikkelsen, and Torben Larsen from Aalborg University, Denmark. In highly integrated mixed...

  2. Noise Residual Learning for Noise Modeling in Distributed Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Forchhammer, Søren

    2012-01-01

    Distributed video coding (DVC) is a coding paradigm which exploits the source statistics at the decoder side to reduce the complexity at the encoder. The noise model is one of the inherently difficult challenges in DVC. This paper considers Transform Domain Wyner-Ziv (TDWZ) coding and proposes...

  3. Modeling and Prediction of Krueger Device Noise

    Science.gov (United States)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  4. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  5. Enhanced Fan Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  6. A Noise Robust Statistical Texture Model

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    Appearance Models segmentation framework. This is accomplished by augmenting the model with an estimate of the covariance of the noise present in the training data. This results in a more compact model maximising the signal-to-noise ratio, thus favouring subspaces rich on signal, but low on noise......This paper presents a novel approach to the problem of obtaining a low dimensional representation of texture (pixel intensity) variation present in a training set after alignment using a Generalised Procrustes analysis.We extend the conventional analysis of training textures in the Active...

  7. Urban Noise Modelling in Boka Kotorska Bay

    Directory of Open Access Journals (Sweden)

    Aleksandar Nikolić

    2014-04-01

    Full Text Available Traffic is the most significant noise source in urban areas. The village of Kamenari in Boka Kotorska Bay is a site where, in a relatively small area, road traffic and sea (ferry traffic take place at the same time. Due to the specificity of the location, i.e. very rare synergy of sound effects of road and sea traffic in the urban area, as well as the expressed need for assessment of noise level in a simple and quick way, a research was conducted, using empirical methods and statistical analysis methods, which led to the creation of acoustic model for the assessment of equivalent noise level (Leq. The developed model for noise assessment in the Village of Kamenari in Boka Kotorska Bay quite realistically provides data on possible noise levels at the observed site, with very little deviations in relation to empirically obtained values.

  8. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    Science.gov (United States)

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  9. Statistics of a neuron model driven by asymmetric colored noise.

    Science.gov (United States)

    Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin

    2015-02-01

    Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.

  10. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  11. Simulation of excitonic optical line shapes of cyclic oligomers - models for basic units of photosynthetic antenna systems: Transfer integral versus local energy fluctuations with dichotomic coloured noise

    International Nuclear Information System (INIS)

    Barvik, I.; Reineker, P.; Warns, C.; Neidlinger, T.

    1995-08-01

    For Frenkel excitons moving on cyclic and linear molecular chains modeling in part photosynthetic antenna systems we investigate the influence of dynamic and static disorder on their optical line shapes. The dynamic disorder describes the influence of vibrational degrees of freedom and is taken into account by fluctuations of the transfer matrix element between neighbouring molecules. The fluctuations are represented by dichotomic Markov processes with coloured noise. We obtain a closed set of equations of motion for the correlation functions determining the optical line shape which is solved exactly. The line shapes are discussed for various sets of the model parameters and arrangements of molecules and their dipole moments. (author). 63 refs, 10 figs

  12. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  13. Improved Trailing Edge Noise Model

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient increa...

  14. White Gaussian Noise - Models for Engineers

    Science.gov (United States)

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  15. Collapse models with non-white noises

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo

    2007-01-01

    We set up a general formalism for models of spontaneous wavefunction collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schroedinger terms of the equation induce the collapse of the wavefunction to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading-order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the 'imaginary noise' trick can be used for non-white Gaussian noise

  16. Dichotomous noise models of gene switches

    Energy Technology Data Exchange (ETDEWEB)

    Potoyan, Davit A., E-mail: potoyan@rice.edu; Wolynes, Peter G., E-mail: pwolynes@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-11-21

    Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.

  17. Dynamical reduction models with general gaussian noises

    International Nuclear Information System (INIS)

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-02-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence. (author)

  18. Dynamical reduction models with general Gaussian noises

    International Nuclear Information System (INIS)

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-01-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the state vector, white-noise stochastic processes with nonwhite ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view, the most relevant motivation for the approach we propose here derives from the fact that in relativistic models intractable divergences appear as a consequence of the white nature of the noises. Therefore, one can hope that resorting to nonwhite noises, one can overcome such a difficulty. We investigate stochastic equations with nonwhite noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above-mentioned subject but also for the general study of dissipative systems and decoherence

  19. Environmental noise and noise modelling-some aspects in Malaysian development

    International Nuclear Information System (INIS)

    Leong, Mohd Salman; Mohd Shafiek bin Hj Yaacob

    1994-01-01

    Environmental noise is of growing concern in Malaysia with the increasing awareness of the need for an environmental quality consistent with improved quality of life. While noise is one of the several elements in an Environmental Impact Assessment report, the degree of emphasis in the assessment is not as thorough as other aspects in the EIA study. The measurements, prediction (if at all any), and evaluation tended to be superficial. The paper presents a summary of correct noise descriptors and annoyance assessment parameters appropriate for the evaluation of environmental noise. The paper further highlights current inadequacies in the Environmental Quality Act for noise pollution, and annoyance assessment. Some examples of local noise pollution are presented. A discussion on environmental noise modelling is presented. Examples illustrating environmental noise modelling for a mining operation and a power station are given. It is the authors' recommendation that environmental noise modelling be made mandatory in all EIA studies such that a more definitive assessment could be realised

  20. Nonlinear GARCH model and 1 / f noise

    Science.gov (United States)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  1. Jet Noise Modeling for Supersonic Business Jet Application

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  2. Analysis of modeling aircraft noise with the Nord2000 noise model

    Science.gov (United States)

    2012-10-31

    This report provides comparisons between AEDT/INM and the Nord 2000 Noise Models for the following parameters: ground type, simple terrain (downward slope, upward slope, hill), temperature and humidity, temperature gradients (positive and negative), ...

  3. Optimal Height Calculation and Modelling of Noise Barrier

    Directory of Open Access Journals (Sweden)

    Raimondas Grubliauskas

    2011-04-01

    Full Text Available Transport is one of the main sources of noise having a particularly strong negative impact on the environment. In the city, one of the best methods to reduce the spread of noise in residential areas is a noise barrier. The article presents noise reduction barrier adaptation with empirical formulas calculating and modelling noise distribution. The simulation of noise dispersion has been performed applying the CadnaA program that allows modelling the noise levels of various developments under changing conditions. Calculation and simulation is obtained by assessing the level of noise reduction using the same variables. The investigation results are presented as noise distribution isolines. The selection of a different height of noise barriers are the results calculated at the heights of 1, 4 and 15 meters. The level of noise reduction at the maximum overlap of data, calculation and simulation has reached about 10%.Article in Lithuanian

  4. Low dose CT simulation using experimental noise model

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Satori; Zamyatin, Alexander A. [Toshiba Medical Systems Corporation, Tochigi, Otawarashi (Japan); Silver, Michael D. [Toshiba Medical Research Institute, Vernon Hills, IL (United States)

    2011-07-01

    We suggest a method to obtain system noise model experimentally without relying on assumptions on statistical distribution of the noise; also, knowledge of DAS gain and electronic noise level are not required. Evaluation with ultra-low dose CT data (5 mAs) shows good match between simulated and real data noise. (orig.)

  5. Advances in automated noise data acquisition and noise source modeling for power reactors

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Kryter, R.C.; Sweeney, F.J.; Renier, J.A.

    1981-01-01

    A newly expanded program, directed toward achieving a better appreciation of both the strengths and limitations of on-line, noise-based, long-term surveillance programs for nuclear reactors, is described. Initial results in the complementary experimental (acquisition and automated screening of noise signatures) and theoretical (stochastic modeling of likely noise sources) areas of investigation are given

  6. Noise in Genetic Toggle Switch Models

    Directory of Open Access Journals (Sweden)

    Andrecut M.

    2006-06-01

    Full Text Available In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach for modeling the transcription and translation processes one can make the system to lock in one of the steady states for exponentially long times.

  7. Least Squares Inference on Integrated Volatility and the Relationship between Efficient Prices and Noise

    DEFF Research Database (Denmark)

    Nolte, Ingmar; Voev, Valeri

    The expected value of sums of squared intraday returns (realized variance) gives rise to a least squares regression which adapts itself to the assumptions of the noise process and allows for a joint inference on integrated volatility (IV), noise moments and price-noise relations. In the iid noise...

  8. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  9. An aircraft noise pollution model for trajectory optimization

    Science.gov (United States)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  10. Applicability of models to estimate traffic noise for urban roads.

    Science.gov (United States)

    Melo, Ricardo A; Pimentel, Roberto L; Lacerda, Diego M; Silva, Wekisley M

    2015-01-01

    Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.

  11. Spring-block Model for Barkhausen Noise

    International Nuclear Information System (INIS)

    Kovacs, K.; Brechet, Y.; Neda, Z.

    2005-01-01

    A simple mechanical spring-block model is used for studying Barkhausen noise (BN). The model incorporates the generally accepted physics of domain wall movement and pinning. Computer simulations on this model reproduces the main features of the hysteresis loop and Barkhausen jumps. The statistics of the obtained Barkhausen jumps follows several scaling laws, in qualitative agreement with experimental results. The model consists of a one-dimensional frictional spring-block system. The blocks model the Bloch-walls that separate inversely oriented magnetic domains, and springs correspond to the magnetized regions. Three types of realistic forces are modelled with this system: 1. the force resulting from the magnetic energy of the neighboring domains in external magnetic field (modelled by forces having alternating orientations and acting directly on the blocks); 2. the force resulting from the magnetic self-energy of each domain (modelled by the elastic forces of the springs); 3. the pinning forces acting on the domain walls (modelled by position dependent static friction acting on blocks). The dynamics of the system is governed by searching for equilibrium: one particular domain wall can jump to the next pinning center if the resultant of forces 1. and 2. is greater then the pinning force. The external magnetic field is successively increased (or decreased) and the system is relaxed to mechanical equilibrium. During the simulations we are monitoring the variation of the magnetization focusing on the shape of the hysteresis loop, power spectrum, jump size (avalanche size) distribution, signal duration distribution, signal area distribution. The simulated shape of the hysteresis loops fulfills all the requirements for real magnetization phenomena. The power spectrum indicates different behavior in the low (1/f noise) and high (white noise) frequency region. All the relevant distribution functions show scaling behavior over several decades of magnitude with a naturally

  12. STAMINA - Model description. Standard Model Instrumentation for Noise Assessments

    NARCIS (Netherlands)

    Schreurs EM; Jabben J; Verheijen ENG; CMM; mev

    2010-01-01

    Deze rapportage beschrijft het STAMINA-model, dat staat voor Standard Model Instrumentation for Noise Assessments en door het RIVM is ontwikkeld. Het instituut gebruikt dit standaardmodel om omgevingsgeluid in Nederland in kaart te brengen. Het model is gebaseerd op de Standaard Karteringsmethode

  13. Nonlinear interaction model of subsonic jet noise.

    Science.gov (United States)

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  14. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm.

    Science.gov (United States)

    Chen, Yung-Yue

    2018-05-08

    Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  15. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm

    Directory of Open Access Journals (Sweden)

    Yung-Yue Chen

    2018-05-01

    Full Text Available Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H2 estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  16. Design of low noise class D amplifiers using an integrated filter

    International Nuclear Information System (INIS)

    Wang Haishi; Zhang Bo

    2012-01-01

    This paper investigates the noise sources in a single-ended class D amplifier (SECDA) and suggests corresponding ways to lower the noise. The total output noise could be expressed as a function of the gain and noises from different sources. According to the function, the bias voltage (V B ) is a primary noise source, especially for a SECDA with a large gain. A low noise SECDA is obtained by integrating a filter into the SECDA to lower the noise of the V B . The filter utilizes an active resister and an 80 pF capacitance to get a 3 Hz pole. A noise test and fast Fourier transform analysis show that the noise performance of this SECDA is the same as that of a SECDA with an external filter. (semiconductor integrated circuits)

  17. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  18. An efficient model for background noise mapping

    NARCIS (Netherlands)

    Wei, W.; Renterghem, T. van; Botteldooren, D.; Hornikx, M.; Forssén, J.; Salomons, E.; Ögren, M.

    2012-01-01

    It has been shown that inhabitants of dwellings exposed to high noise levels benefit from having access to a quiet side. Therefore the European Environmental Noise Directive allows member states to include the presence of a quiet side in their reports. However, current practice applications of noise

  19. Measurement of the Boltzmann constant by Johnson noise thermometry using a superconducting integrated circuit

    Science.gov (United States)

    Urano, C.; Yamazawa, K.; Kaneko, N.-H.

    2017-12-01

    We report on our measurement of the Boltzmann constant by Johnson noise thermometry (JNT) using an integrated quantum voltage noise source (IQVNS) that is fully implemented with superconducting integrated circuit technology. The IQVNS generates calculable pseudo white noise voltages to calibrate the JNT system. The thermal noise of a sensing resistor placed at the temperature of the triple point of water was measured precisely by the IQVNS-based JNT. We accumulated data of more than 429 200 s in total (over 6 d) and used the Akaike information criterion to estimate the fitting frequency range for the quadratic model to calculate the Boltzmann constant. Upon detailed evaluation of the uncertainty components, the experimentally obtained Boltzmann constant was k=1.380 6436× {{10}-23} J K-1 with a relative combined uncertainty of 10.22× {{10}-6} . The value of k is relatively -3.56× {{10}-6} lower than the CODATA 2014 value (Mohr et al 2016 Rev. Mod. Phys. 88 035009).

  20. Estimating integrated variance in the presence of microstructure noise using linear regression

    Science.gov (United States)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  1. Digitally controlled active noise reduction with integrated speech communication

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Verhave, J.A.

    2004-01-01

    Active noise reduction is a successful addition to passive ear-defenders for improvement of the sound attenuation at low frequencies. Design and assessment methods are discussed, focused on subjective and objective attenuation measurements, stability, and high noise level applications. Active noise

  2. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  3. Least Squares Inference on Integrated Volatility and the Relationship between Efficient Prices and Noise

    OpenAIRE

    Nolte, Ingmar; Voev, Valeri

    2009-01-01

    The expected value of sums of squared intraday returns (realized variance)gives rise to a least squares regression which adapts itself to the assumptions ofthe noise process and allows for a joint inference on integrated volatility (IV),noise moments and price-noise relations. In the iid noise case we derive theasymptotic variance of the regression parameter estimating the IV, show thatit is consistent and compare its asymptotic efficiency against alternative consistentIV measures. In case of...

  4. Evaluation of internal noise methods for Hotelling observer models

    International Nuclear Information System (INIS)

    Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.

    2007-01-01

    The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality

  5. Helicopter noise in hover: Computational modelling and experimental validation

    Science.gov (United States)

    Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.

    2017-11-01

    The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.

  6. Study on Noise Prediction Model and Control Schemes for Substation

    Science.gov (United States)

    Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356

  7. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  8. Realistic camera noise modeling with application to improved HDR synthesis

    Science.gov (United States)

    Goossens, Bart; Luong, Hiêp; Aelterman, Jan; Pižurica, Aleksandra; Philips, Wilfried

    2012-12-01

    Due to the ongoing miniaturization of digital camera sensors and the steady increase of the "number of megapixels", individual sensor elements of the camera become more sensitive to noise, even deteriorating the final image quality. To go around this problem, sophisticated processing algorithms in the devices, can help to maximally exploit the knowledge on the sensor characteristics (e.g., in terms of noise), and offer a better image reconstruction. Although a lot of research focuses on rather simplistic noise models, such as stationary additive white Gaussian noise, only limited attention has gone to more realistic digital camera noise models. In this article, we first present a digital camera noise model that takes several processing steps in the camera into account, such as sensor signal amplification, clipping, post-processing,.. We then apply this noise model to the reconstruction problem of high dynamic range (HDR) images from a small set of low dynamic range (LDR) exposures of a static scene. In literature, HDR reconstruction is mostly performed by computing a weighted average, in which the weights are directly related to the observer pixel intensities of the LDR image. In this work, we derive a Bayesian probabilistic formulation of a weighting function that is near-optimal in the MSE sense (or SNR sense) of the reconstructed HDR image, by assuming exponentially distributed irradiance values. We define the weighting function as the probability that the observed pixel intensity is approximately unbiased. The weighting function can be directly computed based on the noise model parameters, which gives rise to different symmetric and asymmetric shapes when electronic noise or photon noise is dominant. We also explain how to deal with the case that some of the noise model parameters are unknown and explain how the camera response function can be estimated using the presented noise model. Finally, experimental results are provided to support our findings.

  9. Integration of motion energy from overlapping random background noise increases perceived speed of coherently moving stimuli.

    Science.gov (United States)

    Chuang, Jason; Ausloos, Emily C; Schwebach, Courtney A; Huang, Xin

    2016-12-01

    The perception of visual motion can be profoundly influenced by visual context. To gain insight into how the visual system represents motion speed, we investigated how a background stimulus that did not move in a net direction influenced the perceived speed of a center stimulus. Visual stimuli were two overlapping random-dot patterns. The center stimulus moved coherently in a fixed direction, whereas the background stimulus moved randomly. We found that human subjects perceived the speed of the center stimulus to be significantly faster than its veridical speed when the background contained motion noise. Interestingly, the perceived speed was tuned to the noise level of the background. When the speed of the center stimulus was low, the highest perceived speed was reached when the background had a low level of motion noise. As the center speed increased, the peak perceived speed was reached at a progressively higher background noise level. The effect of speed overestimation required the center stimulus to overlap with the background. Increasing the background size within a certain range enhanced the effect, suggesting spatial integration. The speed overestimation was significantly reduced or abolished when the center stimulus and the background stimulus had different colors, or when they were placed at different depths. When the center- and background-stimuli were perceptually separable, speed overestimation was correlated with perceptual similarity between the center- and background-stimuli. These results suggest that integration of motion energy from random motion noise has a significant impact on speed perception. Our findings put new constraints on models regarding the neural basis of speed perception. Copyright © 2016 the American Physiological Society.

  10. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  11. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  12. Application of autoregressive moving average model in reactor noise analysis

    International Nuclear Information System (INIS)

    Tran Dinh Tri

    1993-01-01

    The application of an autoregressive (AR) model to estimating noise measurements has achieved many successes in reactor noise analysis in the last ten years. The physical processes that take place in the nuclear reactor, however, are described by an autoregressive moving average (ARMA) model rather than by an AR model. Consequently more correct results could be obtained by applying the ARMA model instead of the AR model to reactor noise analysis. In this paper the system of the generalised Yule-Walker equations is derived from the equation of an ARMA model, then a method for its solution is given. Numerical results show the applications of the method proposed. (author)

  13. Improvement of airfoil trailing edge bluntness noise model

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2016-01-01

    In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks......, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...

  14. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  15. Film grain noise modeling in advanced video coding

    Science.gov (United States)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  16. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    Science.gov (United States)

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  17. Improvement of airfoil trailing edge bluntness noise model

    Directory of Open Access Journals (Sweden)

    Wei Jun Zhu

    2016-02-01

    Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.

  18. Model integration and a theory of models

    OpenAIRE

    Dolk, Daniel R.; Kottemann, Jeffrey E.

    1993-01-01

    Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...

  19. Catastrophe Insurance Modeled by Shot-Noise Processes

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2014-02-01

    Full Text Available Shot-noise processes generalize compound Poisson processes in the following way: a jump (the shot is followed by a decline (noise. This constitutes a useful model for insurance claims in many circumstances; claims due to natural disasters or self-exciting processes exhibit similar features. We give a general account of shot-noise processes with time-inhomogeneous drivers inspired by recent results in credit risk. Moreover, we derive a number of useful results for modeling and pricing with shot-noise processes. Besides this, we obtain some highly tractable examples and constitute a useful modeling tool for dynamic claims processes. The results can in particular be used for pricing Catastrophe Bonds (CAT bonds, a traded risk-linked security. Additionally, current results regarding the estimation of shot-noise processes are reviewed.

  20. Background noise model development for seismic stations of KMA

    Science.gov (United States)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  1. Modeling Noise Sources and Propagation in External Gear Pumps

    Directory of Open Access Journals (Sweden)

    Sangbeom Woo

    2017-07-01

    Full Text Available As a key component in power transfer, positive displacement machines often represent the major source of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of improving the performance of current hydraulic systems, as well as applying fluid power systems to a wider range of applications. The present work aims at developing modeling techniques on the topic of noise generation caused by external gear pumps for high pressure applications, which can be useful and effective in investigating the interaction between noise sources and radiated noise and establishing the design guide for a quiet pump. In particular, this study classifies the internal noise sources into four types of effective load functions and, in the proposed model, these load functions are applied to the corresponding areas of the pump case in a realistic way. Vibration and sound radiation can then be predicted using a combined finite element and boundary element vibro-acoustic model. The radiated sound power and sound pressure for the different operating conditions are presented as the main outcomes of the acoustic model. The noise prediction was validated through comparison with the experimentally measured sound power levels.

  2. Noise Controlled Synchronization in Potassium Coupled Neural Models

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Zhirin, R. A.

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we......-temporal oscillations in neuronal ensembles....

  3. Predictive modelling of noise level generated during sawing of rocks

    Indian Academy of Sciences (India)

    This paper presents an experimental and statistical study on noise level generated during of rock sawing by circular diamond sawblades. Influence of the operating variables and rock properties on the noise level are investigated and analysed. Statistical analyses are then employed and models are built for the prediction of ...

  4. INTEGRATED CORPORATE STRATEGY MODEL

    Directory of Open Access Journals (Sweden)

    CATALINA SORIANA SITNIKOV

    2014-02-01

    Full Text Available Corporations are at present operating in demanding and highly unsure periods, facing a mixture of increased macroeconomic need, competitive and capital market dangers, and in many cases, the prospect for significant technical and regulative gap. Throughout these demanding and highly unsure times, the corporations must pay particular attention to corporate strategy. In present times, corporate strategy must be perceived and used as a function of various fields, covers, and characters as well as a highly interactive system. For the corporation's strategy to become a competitive advantage is necessary to understand and also to integrate it in a holistic model to ensure sustainable progress of corporation activities under the optimum conditions of profitability. The model proposed in this paper is aimed at integrating the two strategic models, Hoshin Kanri and Integrated Strategy Model, as well as their consolidation with the principles of sound corporate governance set out by the OECD.

  5. Model/data comparison of typhoon-generated noise

    International Nuclear Information System (INIS)

    Wang Jing-Yan; Li Feng-Hua

    2016-01-01

    Ocean noise recorded during a typhoon can be used to monitor the typhoon and investigate the mechanism of the wind-generated noise. An analytical expression for the typhoon-generated noise intensity is derived as a function of wind speed. A “bi-peak” structure was observed in an experiment during which typhoon-generated noise was recorded. Wind speed dependence and frequency dependence were also observed in the frequency range of 100 Hz–1000 Hz. The model/data comparison shows that results of the present model of 500 Hz and 1000 Hz are in reasonable agreement with the experimental data, and the typhoon-generated noise intensity has a dependence on frequency and a power-law dependence on wind speed. (special topic)

  6. Integrated covariance estimation using high-frequency data in the presence of noise

    DEFF Research Database (Denmark)

    Voev, Valeri; Lunde, Asger

    2007-01-01

    We analyze the effects of nonsynchronicity and market microstructure noise on realized covariance type estimators. Hayashi and Yoshida (2005) propose a simple estimator that resolves the problem of nonsynchronicity and is unbiased and consistent for the integrated covariance in the absence of noise...

  7. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    Science.gov (United States)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault

  8. Modeling Of Construction Noise For Environmental Impact Assessment

    Directory of Open Access Journals (Sweden)

    Mohamed F. Hamoda

    2008-06-01

    Full Text Available This study measured the noise levels generated at different construction sites in reference to the stage of construction and the equipment used, and examined the methods to predict such noise in order to assess the environmental impact of noise. It included 33 construction sites in Kuwait and used artificial neural networks (ANNs for the prediction of noise. A back-propagation neural network (BPNN model was compared with a general regression neural network (GRNN model. The results obtained indicated that the mean equivalent noise level was 78.7 dBA which exceeds the threshold limit. The GRNN model was superior to the BPNN model in its accuracy of predicting construction noise due to its ability to train quickly on sparse data sets. Over 93% of the predictions were within 5% of the observed values. The mean absolute error between the predicted and observed data was only 2 dBA. The ANN modeling proved to be a useful technique for noise predictions required in the assessment of environmental impact of construction activities.

  9. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

    2014-10-01

    In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

  10. Model for Estimating Noise-Induced Hearing Loss Associated With Occupational Noise Exposure in a Specified US Navy Population

    National Research Council Canada - National Science Library

    Tufts, Jennifer; Weathersby, Paul K; Marshall, Lynne; Sachs, Felix

    2007-01-01

    This report details the initial steps in the development of a method for modeling the noise-induced hearing loss accrued by a population of Sailors exposed to high-level steady-state occupational noise...

  11. A high and low noise model for strong motion accelerometers

    Science.gov (United States)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.

  12. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  13. Adaptive Active Noise Suppression Using Multiple Model Switching Strategy

    Directory of Open Access Journals (Sweden)

    Quanzhen Huang

    2017-01-01

    Full Text Available Active noise suppression for applications where the system response varies with time is a difficult problem. The computation burden for the existing control algorithms with online identification is heavy and easy to cause control system instability. A new active noise control algorithm is proposed in this paper by employing multiple model switching strategy for secondary path varying. The computation is significantly reduced. Firstly, a noise control system modeling method is proposed for duct-like applications. Then a multiple model adaptive control algorithm is proposed with a new multiple model switching strategy based on filter-u least mean square (FULMS algorithm. Finally, the proposed algorithm was implemented on Texas Instruments digital signal processor (DSP TMS320F28335 and real time experiments were done to test the proposed algorithm and FULMS algorithm with online identification. Experimental verification tests show that the proposed algorithm is effective with good noise suppression performance.

  14. Sound Modeling Simplifies Vehicle Noise Management

    Science.gov (United States)

    2015-01-01

    Under two SBIR contracts with Langley Research Center, Ann Arbor, Michigan-based Comet Technology Corporation developed Comet EnFlow, a software program capable of predicting both high- and low-frequency noise and vibration behavior in plane fuselages and other structures. The company now markets the software to airplane, automobile, and ship manufacturers, and Langley has found an unexpected use for it in leak detection on the International Space Station.

  15. Noise magnetic Barkahausen: modeling and scale

    International Nuclear Information System (INIS)

    Rodríguez-Pérez, Jorge L.; Pérez Benítez, José A.

    2008-01-01

    Noise magnetic Barkahausen of produces due to network defaults, and is reflected in abrupt changes that take place in the magnetization of the material in Studio. This fact presupposes a complexity, according to the various factors that influence its occurrence and internal changes in the system. A study of noise are used in three fundamental quantities: length the signal, the area under the curve and the energy of the signal; from these other quantities that are used often are defined: the square root mean (average-quadratic voltage) signal and the amplitude of the signal (maximum peak voltage). This form of investigate the phenomenon assumes a statistical analysis of the behaviour of the signal as a result of a set of changes that occur in the material, showing the complexity of the system and the importance of the laws of scale. This paper investigates the relationship between noise magnetic Barkahausen, laws of scale and complexity using structural steel ATSM 36 samples that have been subjected to mechanical deformations by traction and compression. For it's performed a statistical analysis to determine the complexity from the Test-appointment and reported the values of fundamental quantities and laws of scale for different deformation, resulting in the unit which shows the connection between the values of the voltage quadratic medium, the depth of the sample, the characteristics of the laws of scale and complexity: a pseudo random system.

  16. Computer model for estimating electric utility environmental noise

    International Nuclear Information System (INIS)

    Teplitzky, A.M.; Hahn, K.J.

    1991-01-01

    This paper reports on a computer code for estimating environmental noise emissions from the operation and the construction of electric power plants that was developed based on algorithms. The computer code (Model) is used to predict octave band sound power levels for power plant operation and construction activities on the basis of the equipment operating characteristics and calculates off-site sound levels for each noise source and for an entire plant. Estimated noise levels are presented either as A-weighted sound level contours around the power plant or as octave band levels at user defined receptor locations. Calculated sound levels can be compared with user designated noise criteria, and the program can assist the user in analyzing alternative noise control strategies

  17. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  18. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  19. Effects of random noise in a dynamical model of love

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yong, E-mail: hsux3@nwpu.edu.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-07-15

    Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  20. Effects of random noise in a dynamical model of love

    International Nuclear Information System (INIS)

    Xu Yong; Gu Rencai; Zhang Huiqing

    2011-01-01

    Highlights: → We model the complexity and unpredictability of psychology as Gaussian white noise. → The stochastic system of love is considered including bifurcation and chaos. → We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  1. Designing charge-sensitive preamplifiers based on low-noise analog integrated circuits

    International Nuclear Information System (INIS)

    Agakhanyan, T.M.

    1998-01-01

    The methodology for designing charge-sensitive preamplifiers on the low-noise analog integral circuits, including all the stages: the mathematical synthesis with optimization of the intermediate function; the scheme-technical synthesis with parametric optimization of the scheme and analysis of draft projects with the parameter verification is presented. The designing is conducted on the basis of requirements for signal parameters and noise indices of the preamplifier. The system of automated designing of the charge-sensitive preamplifiers on the low-noise analog integral circuits is developed [ru

  2. Low-Gain, Low-Noise Integrated Neuronal Amplifier for Implantable Artifact-Reduction Recording System

    Directory of Open Access Journals (Sweden)

    Abdelhamid Benazzouz

    2013-09-01

    Full Text Available Brain neuroprostheses for neuromodulation are being designed to monitor the neural activity of the brain in the vicinity of the region being stimulated using a single macro-electrode. Using a single macro-electrode, recent neuromodulation studies show that recording systems with a low gain neuronal amplifier and successive amplifier stages can reduce or reject stimulation artifacts. These systems were made with off-the-shelf components that are not amendable for future implant design. A low-gain, low-noise integrated neuronal amplifier (NA with the capability of recording local field potentials (LFP and spike activity is presented. In vitro and in vivo characterizations of the tissue/electrode interface, with equivalent impedance as an electrical model for recording in the LFP band using macro-electrodes for rodents, contribute to the NA design constraints. The NA occupies 0.15 mm2 and dissipates 6.73 µW, and was fabricated using a 0.35 µm CMOS process. Test-bench validation indicates that the NA provides a mid-band gain of 20 dB and achieves a low input-referred noise of 4 µVRMS. Ability of the NA to perform spike recording in test-bench experiments is presented. Additionally, an awake and freely moving rodent setup was used to illustrate the integrated NA ability to record LFPs, paving the pathway for future implantable systems for neuromodulation.

  3. Stochastic bifurcation in a model of love with colored noise

    Science.gov (United States)

    Yue, Xiaokui; Dai, Honghua; Yuan, Jianping

    2015-07-01

    In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.

  4. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  5. Noise and dose modeling for pediatric CT optimization: preliminary results

    International Nuclear Information System (INIS)

    Miller Clemente, Rafael A.; Perez Diaz, Marlen; Mora Reyes, Yudel; Rodriguez Garlobo, Maikel; Castillo Salazar, Rafael

    2008-01-01

    Full text: A Multiple Linear Regression Model was developed to predict noise and dose in computed tomography pediatric imaging for head and abdominal examinations. Relative values of Noise and Volumetric Computed Tomography Dose Index was used to estimate de model respectively. 54 images of physical phantoms were performed. Independent variables considered included: phantom diameter, tube current and kilovolts, x ray beam collimation, reconstruction diameter and equipment's post processing filters. Predicted values show good agreement with measurements, which were better in noise model (R 2 adjusted =0.953) than the dose model (R 2 adjusted =0.744). Tube current, object diameter, beam collimation and reconstruction filter were identified as the most influencing factors in models. (author)

  6. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Science.gov (United States)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  7. Colored noise and memory effects on formal spiking neuron models

    Science.gov (United States)

    da Silva, L. A.; Vilela, R. D.

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  8. Joint models for noise annoyance and willingness to pay for road noise reduction

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bue Bjørner, Thomas

    2006-01-01

    Recent contingent valuation (CV) studies of the willingness to pay (WTP) for road noise reduction have used stated annoyance as an independent variable. We argue that this may be inappropriate due to potential endogeneity bias. Instead, an alternative model is proposed that treats both WTP...... and annoyance as endogenous variables in a simultaneous equation model as a combination of a linear regression with an ordered probit with correlated error terms and possibly common parameters. Thus, information on stated annoyance is utilised to estimate WTP with increased efficiency. Application of the model...... to a dataset from Copenhagen indicates a potential for improving the precision of the estimate of WTP for noise reduction with CV data....

  9. A low-noise, wideband, integrated CMOS transimpedance preamplifier for photodiode applications

    International Nuclear Information System (INIS)

    Binkley, D.M.; Paulus, M.J.; Casey, M.E.; Rochelle, J.M.

    1992-01-01

    In this paper, a low-noise, wideband, integrated CMOS transimpedance preamplifier is presented for silicon avalanche photodiode (APD) applications. The preamplifier, fabricated in a standard 2μ CMOS technology, features a transimpedance gain of 45 kΩ, a risetime of 22 ns, a series noise of 1.6nV/Hz 1/2 , and a wideband equivalent input-noise current of 12 nA for a source capacitance of 12 pF. The measured 22 Na timing resolution of 9.2-ns FWHM and energy resolution of 22.4% FWHM for the RCA C30994 BGO/APD detector module coupled to the preamplifier is comparable to the performance reported using charge-sensitive preamplifiers. This illustrates that transimpedance preamplifiers should be considered for APD applications, especially where APD noise current dominates noise from feedback resistors in the 1--kΩ to 50-kΩ range

  10. Preventing Noise-Induced Extinction in Discrete Population Models

    Directory of Open Access Journals (Sweden)

    Irina Bashkirtseva

    2017-01-01

    Full Text Available A problem of the analysis and prevention of noise-induced extinction in nonlinear population models is considered. For the solution of this problem, we suggest a general approach based on the stochastic sensitivity analysis. To prevent the noise-induced extinction, we construct feedback regulators which provide a low stochastic sensitivity and keep the system close to the safe equilibrium regime. For the demonstration of this approach, we apply our mathematical technique to the conceptual but quite representative Ricker-type models. A variant of the Ricker model with delay is studied along with the classic widely used one-dimensional system.

  11. Command Generator Tracker Synthesis Methods Using an LQG (Linear System Model, Quadratic Cost, and Gaussian Noise Process) Derived Proportional Plus Integral Controller Based on the Integral of the Regulation Error.

    Science.gov (United States)

    1983-12-01

    34 M4 + + Z + + + E + ass + + Z + + + osi " " + + Z + + + + 9tr"- + t + Z + ++ +" + + L + Z + +0+ + : :L:+: • +: E. . :ce + L+ Z+ + E+ 9 " + L z + K...this guide.) The truth model description is identified by the heading "TRUTH MODELO . The matrices of the continuous-time system are listed first. The

  12. Prediction Model for Impulsive Noise on Structures

    Science.gov (United States)

    2012-09-01

    integral,11,51 which is simply a convolution of the waveform with the impulse response:        t dFthtx 0  (4.11) Reference 39...All the windows considered herein are single pane windows. The higher surface weight and probable higher damping of double pane or laminated

  13. Noise characterization of silicon strip detectors-comparison of sensors with and without integrated jfet source-follower.

    CERN Document Server

    Giacomini, Gabriele

    Noise is often the main factor limiting the performance of detector systems. In this work a detailed study of the noise contributions in different types of silicon microstrip sensors is carried on. We investigate three sensors with double-sided readout fabricated by different suppliers for the ALICE experiment at the CERN LHC, in addition to detectors including an integrated JFET Source-Follower as a first signal conditioning stage. The latter have been designed as an attempt at improving the performance when very long strips, obtained by gangling together several sensors, are required. After a description of the strip sensors and of their operation, the “static” characterization measurements performed on them (current and capacitance versus voltage and/or frequency) are illustrated and interpreted. Numerical device simulation has been employed as an aid in interpreting some of the measurement results. The commonly used models for expressing the noise of the detector-amplifier system in terms of its relev...

  14. Engineering modeling of traffic noise in shielded areas in cities.

    Science.gov (United States)

    Salomons, Erik M; Polinder, Henk; Lohman, Walter J A; Zhou, Han; Borst, Hieronymous C; Miedema, Henk M E

    2009-11-01

    A computational study of road traffic noise in cities is presented. Based on numerical boundary-element calculations of canyon-to-canyon propagation, an efficient engineering algorithm is developed to calculate the effect of multiple reflections in street canyons. The algorithm is supported by a room-acoustical analysis of the reverberant sound fields in the source and receiver canyons. Using the algorithm, a simple model for traffic noise in cities is developed. Noise maps and exposure distributions of the city of Amsterdam are calculated with the model, and for comparison also with an engineering model that is currently used for traffic noise impact assessments in cities. Considerable differences between the two model predictions are found for shielded buildings with day-evening-night levels of 40-60 dB at the facades. Further, an analysis is presented of level differences between the most and the least exposed facades of buildings. Large level differences are found for buildings directly exposed to traffic noise from nearby roads. It is shown that by a redistribution of traffic flow around these buildings, one can achieve low sound levels at quiet sides and a corresponding reduction in the percentage of highly annoyed inhabitants from typically 23% to 18%.

  15. Noise barriers and the harmonoise sound propagation model

    NARCIS (Netherlands)

    Salomons, E.M.; Maercke, D. van; Randrianoelina, A.

    2009-01-01

    The Harmonoise sound propagation model ('the Harmonoise engineering model') was developed in the European project Harmonoise (2001-2004) for road and rail traffic noise. In 2008, CSTB Grenoble and TNO Delft have prepared a detailed description of the various steps involved in a calculation with the

  16. An approximate fractional Gaussian noise model with computational cost

    KAUST Repository

    Sø rbye, Sigrunn H.; Myrvoll-Nilsen, Eirik; Rue, Haavard

    2017-01-01

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood

  17. Urban traffic noise assessment by combining measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Graafland, F.; Wessels, P.W.; Basten, T.G.H.

    2013-01-01

    A model based monitoring system is applied on a local scale in an urban area to obtain a better understanding of the traffic noise situation. The system consists of a scalable sensor network and an engineering model. A better understanding is needed to take appropriate and cost efficient measures,

  18. Nuclear spin noise in the central spin model

    Science.gov (United States)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  19. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-01-01

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  20. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takahiro, E-mail: yamada-takahiro@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Maezawa, Masaaki [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Urano, Chiharu [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Central 3, Umezono 1-1-1, Tsukuba, Ibaraki 305-8563 (Japan)

    2015-11-15

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  1. Integrated Assessment Model Evaluation

    Science.gov (United States)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  2. Diverse methods for integrable models

    NARCIS (Netherlands)

    Fehér, G.

    2017-01-01

    This thesis is centered around three topics, sharing integrability as a common theme. This thesis explores different methods in the field of integrable models. The first two chapters are about integrable lattice models in statistical physics. The last chapter describes an integrable quantum chain.

  3. Four-jet impingement: Noise characteristics and simplified acoustic model

    International Nuclear Information System (INIS)

    Brehm, C.; Housman, J.A.; Kiris, C.C.; Barad, M.F.; Hutcheson, F.V.

    2017-01-01

    Highlights: • Large eddy simulation of unique four jet impingement configuration. • Characterization of flow features using POD, FFT, and wavelet decomposition. • Noise source identification utilizing causality method. • Development of simplified acoustic model utilizing equivalent source method. • Comparison with experimental data from BENS experiment. - Abstract: The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order weighted essentially non-oscillatory scheme. Although these types of impinging jet configurations have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortical flow structures in the center of the four-jet impingement region. The causality method based on Lighthills acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a simplified acoustic model of the four-jet impingement device by utilizing the equivalent source method. Finally, three linear acoustic four-jet impingement models of the four-jet impingement device are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  4. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

    Science.gov (United States)

    Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

    2015-06-01

    A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

  5. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  6. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    Science.gov (United States)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  7. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    Science.gov (United States)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  8. Fractional Gaussian noise: Prior specification and model comparison

    KAUST Repository

    Sø rbye, Sigrunn Holbek; Rue, Haavard

    2017-01-01

    Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.

  9. Fractional Gaussian noise: Prior specification and model comparison

    KAUST Repository

    Sørbye, Sigrunn Holbek

    2017-07-07

    Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.

  10. Extracting the noise spectral densities parameters of JFET transistor by modeling a nuclear electronics channel response

    International Nuclear Information System (INIS)

    Assaf, J.

    2009-07-01

    Mathematical model for the RMS noise of JFET transistor has been realized. Fitting the model according to the experimental results gives the noise spectral densities values. Best fitting was for the model of three noise sources and real preamplifier transfer function. After gamma irradiation, an additional and important noise sources appeared and two point defects are estimated through the fitting process. (author)

  11. Integrated Environmental Assessment Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guardanz, R; Gimeno, B S; Bermejo, V; Elvira, S; Martin, F; Palacios, M; Rodriguez, E; Donaire, I [Ciemat, Madrid (Spain)

    2000-07-01

    This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.

  12. Evaluation of substitution monopole models for tire noise sound synthesis

    Science.gov (United States)

    Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.

    2010-01-01

    Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.

  13. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  14. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  15. Properties of autoregressive model in reactor noise analysis, 1

    International Nuclear Information System (INIS)

    Yamada, Sumasu; Kishida, Kuniharu; Bekki, Keisuke.

    1987-01-01

    Under appropriate conditions, stochastic processes are described by the ARMA model, however, the AR model is popularly used in reactor noise analysis. Hence, the properties of AR model as an approximate representation of the ARMA model should be made clear. Here, convergence of AR-parameters and PSD of AR model were studied through numerical analysis on specific examples such as the neutron noise in subcritical reactors, and it was found that : (1) The convergence of AR-parameters and AR model PSD is governed by the ''zero nearest to the unit circle in the complex plane'' (μ -1 ,|μ| M . (3) The AR model of the neutron noise of subcritical reactors needs a large model order because of an ARMA-zero very close to unity corresponding to the decay constant of the 6-th group of delayed neutron precursors. (4) In applying AR model for system identification, much attention has to be paid to a priori unknown error as an approximate representation of the ARMA model in addition to the statistical errors. (author)

  16. An Integrated Real-Time Beamforming and Postfiltering System for Nonstationary Noise Environments

    Directory of Open Access Journals (Sweden)

    Gannot Sharon

    2003-01-01

    Full Text Available We present a novel approach for real-time multichannel speech enhancement in environments of nonstationary noise and time-varying acoustical transfer functions (ATFs. The proposed system integrates adaptive beamforming, ATF identification, soft signal detection, and multichannel postfiltering. The noise canceller branch of the beamformer and the ATF identification are adaptively updated online, based on hypothesis test results. The noise canceller is updated only during stationary noise frames, and the ATF identification is carried out only when desired source components have been detected. The hypothesis testing is based on the nonstationarity of the signals and the transient power ratio between the beamformer primary output and its reference noise signals. Following the beamforming and the hypothesis testing, estimates for the signal presence probability and for the noise power spectral density are derived. Subsequently, an optimal spectral gain function that minimizes the mean square error of the log-spectral amplitude (LSA is applied. Experimental results demonstrate the usefulness of the proposed system in nonstationary noise environments.

  17. Airport acoustics: Aircraft noise distribution and modelling of some ...

    African Journals Online (AJOL)

    Airport acoustics: Aircraft noise distribution and modelling of some aircraft parameters. MU Onuu, EO Obisung. Abstract. No Abstract. Nigerian Journal of Physics Vol. 17 (Supplement) 2005: pp. 177-186. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  18. Integrated Medical Model Overview

    Science.gov (United States)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  19. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  20. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  1. Validation of an Aero-Acoustic Wind Turbine Noise Model Using Advanced Noise Source Measurements of a 500kW Turbine

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2016-01-01

    rotor noise model is presented. It includes the main sources of aeroacoustic noise from wind turbines: turbulent inflow, trailing edge and stall noise. The noise measured by one microphone located directly downstream of the wind turbine is compared to the model predictions at the microphone location....... A good qualitative agreement is found. When wind speed increases, the rotor noise model shows that at high frequencies the stall noise becomes dominant. It also shows that turbulent inflow noise is dominant at low frequencies for all wind speeds and that trailing edge noise is dominant at low wind speeds...

  2. Wavepacket models for supersonic jet noise

    OpenAIRE

    Sinha, Aniruddha; Rodríguez, Daniel; Brès, Guillaume A.; Colonius, Tim

    2014-01-01

    Gudmundsson and Colonius (J. Fluid Mech., vol. 689, 2011, pp. 97–128) have recently shown that the average evolution of low-frequency, low-azimuthal modal large-scale structures in the near field of subsonic jets are remarkably well predicted as linear instability waves of the turbulent mean flow using parabolized stability equations. In this work, we extend this modelling technique to an isothermal and a moderately heated Mach 1.5 jet for which the mean flow fields are obtained from a high-f...

  3. Literature review of models on tire-pavement interaction noise

    Science.gov (United States)

    Li, Tan; Burdisso, Ricardo; Sandu, Corina

    2018-04-01

    Tire-pavement interaction noise (TPIN) becomes dominant at speeds above 40 km/h for passenger vehicles and 70 km/h for trucks. Several models have been developed to describe and predict the TPIN. However, these models do not fully reveal the physical mechanisms or predict TPIN accurately. It is well known that all the models have both strengths and weaknesses, and different models fit different investigation purposes or conditions. The numerous papers that present these models are widely scattered among thousands of journals, and it is difficult to get the complete picture of the status of research in this area. This review article aims at presenting the history and current state of TPIN models systematically, making it easier to identify and distribute the key knowledge and opinions, and providing insight into the future research trend in this field. In this work, over 2000 references related to TPIN were collected, and 74 models were reviewed from nearly 200 selected references; these were categorized into deterministic models (37), statistical models (18), and hybrid models (19). The sections explaining the models are self-contained with key principles, equations, and illustrations included. The deterministic models were divided into three sub-categories: conventional physics models, finite element and boundary element models, and computational fluid dynamics models; the statistical models were divided into three sub-categories: traditional regression models, principal component analysis models, and fuzzy curve-fitting models; the hybrid models were divided into three sub-categories: tire-pavement interface models, mechanism separation models, and noise propagation models. At the end of each category of models, a summary table is presented to compare these models with the key information extracted. Readers may refer to these tables to find models of their interest. The strengths and weaknesses of the models in different categories were then analyzed. Finally

  4. Modeling the characteristics of wheel/rail rolling noise

    Science.gov (United States)

    Lui, Wai Keung; Li, Kai Ming; Frommer, Glenn H.

    2005-04-01

    To study the sound radiation characteristics of a passing train, four sets of noise measurements for different train operational conditions have been conducted at three different sites, including ballast tracks at grade and railway on a concrete viaduct. The time histories computed by the horizontal radiation models were compared with the measured noise profiles. The measured sound exposure levels are used to deduce the vertical directivity pattern for different railway systems. It is found that the vertical directivity of different railway systems shows a rather similar pattern. The vertical directivity of train noise is shown to increase up to about 30× before reducing to a minimum at 90×. A multipole expansion model is proposed to account for the vertical radiation directivity of the train noise. An empirical formula, which has been derived, compares well with the experimental data. The empirical model is found to be applicable to different train/rail systems at train speeds ranging up to 120 km/h in this study. [Work supported by MTR Corporation Ltd., Innovation Technology Commission of the HKSAR Government and The Hong Kong Polytechnic University.

  5. Integrated identification, modeling and control with applications

    Science.gov (United States)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing

  6. Information contraction and extraction by multivariate autoregressive (MAR) modelling. Pt. 2. Dominant noise sources in BWRS

    International Nuclear Information System (INIS)

    Morishima, N.

    1996-01-01

    The multivariate autoregressive (MAR) modeling of a vector noise process is discussed in terms of the estimation of dominant noise sources in BWRs. The discussion is based on a physical approach: a transfer function model on BWR core dynamics is utilized in developing a noise model; a set of input-output relations between three system variables and twelve different noise sources is obtained. By the least-square fitting of a theoretical PSD on neutron noise to an experimental one, four kinds of dominant noise sources are selected. It is shown that some of dominant noise sources consist of two or more different noise sources and have the spectral properties of being coloured and correlated with each other. By diagonalizing the PSD matrix for dominant noise sources, we may obtain an MAR expression for a vector noise process as a response to the diagonal elements(i.e. residual noises) being white and mutually-independent. (Author)

  7. The influence of noise on nonlinear time series detection based on Volterra-Wiener-Korenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Lei Min [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: leimin@sjtu.edu.cn; Meng Guang [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-04-15

    This paper studies the influence of noises on Volterra-Wiener-Korenberg (VWK) nonlinear test model. Our numerical results reveal that different types of noises lead to different behavior of VWK model detection. For dynamic noise, it is difficult to distinguish chaos from nonchaotic but nonlinear determinism. For time series, measure noise has no impact on chaos determinism detection. This paper also discusses various behavior of VWK model detection with surrogate data for different noises.

  8. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  9. Multivariate Product-Shot-noise Cox Point Process Models

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Mateu, Jorge

    We introduce a new multivariate product-shot-noise Cox process which is useful for model- ing multi-species spatial point patterns with clustering intra-specific interactions and neutral, negative or positive inter-specific interactions. The auto and cross pair correlation functions of the process...... can be obtained in closed analytical forms and approximate simulation of the process is straightforward. We use the proposed process to model interactions within and among five tree species in the Barro Colorado Island plot....

  10. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2013-11-01

    Full Text Available The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes, we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  11. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  12. Noise stabilization effects in models of interdisciplinary physics

    International Nuclear Information System (INIS)

    Spagnolo, B; Augello, G; Caldara, P; Fiasconaro, A; La Cognata, A; Pizzolato, N; Valenti, D; Dubkov, A A; Pankratov, A L

    2009-01-01

    Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The investigation of noise-induced phenomena in far from equilibrium systems is one of the approaches used to understand the behaviour of physical and biological complex systems. The enhancement of the lifetime of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) polymer translocation dynamics; (ii) transient regime of FitzHugh-Nagumo model; (iii) market stability in a nonlinear Heston model; (iv) dynamics of Josephson junctions; (v) metastability in a quantum bitable system.

  13. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  14. Business and technology integrated model

    OpenAIRE

    Noce, Irapuan; Carvalho, João Álvaro

    2011-01-01

    There is a growing interest in business modeling and architecture in the areas of management and information systems. One of the issues in the area is the lack of integration between the modeling techniques that are employed to support business development and those used for technology modeling. This paper proposes a modeling approach that is capable of integrating the modeling of the business and of the technology. By depicting the business model, the organization structure and the technolog...

  15. NoiseMap and AEDT Gap Analysis

    Science.gov (United States)

    2017-09-30

    NoiseMap and the Aviation Environmental Design Tool (AEDT) both use an integrated modeling approach to calculate aircraft noise in and around an airfield. Both models also employ the same general overall approach by using airfield operational data, s...

  16. An aerodynamic noise propagation model for wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2005-01-01

    A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from temperat......A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from...... temperature and airflow. At a given receiver point, the sound pressure is corrected by taking into account these propagation effects. As an overall assumption, the noise field generated by the wind turbine is simplified as a point source placed at the hub height of the wind turbine. This assumtion...... is reasonable, for the receiver is located in the far field, at distances from the wind turbine that are much longer than the diameter of the rotor....

  17. Development of Seasonal ARIMA Models for Traffic Noise Forecasting

    Directory of Open Access Journals (Sweden)

    Guarnaccia Claudio

    2017-01-01

    Full Text Available In this paper, a time series analysis approach is adopted to monitor and predict a traffic noise levels dataset, measured in a site of Messina, Italy. In general, acoustical noise shows a high prediction complexity, since its slope is strongly related to the variability of the sources and to intrinsic randomness. In the analysed site the predominant source is road traffic, that has a periodic and non-stationary behaviour. The study of the time evolution of this hazardous agent is very useful to assess the impact to human health and activities. The time series models adopted in this paper are of the stochastic seasonal ARIMA class; these types of model are based on the strong periodicity registered in the acoustical equivalent levels. The observed periodicity is related to the highly variability of urban traffic in the different days of the week. Three different seasonal ARIMA models are proposed and calibrated on a rich dataset of 800 sound level measurements. The predictive capabilities of these techniques are encouraging. The implemented models show a good forecasting performances in terms of low residuals, i.e. difference between observed and estimated noise values. The residuals are analysed by means of statistical indexes, plots and tests.

  18. An experimental evaluation of a new approach to aircraft noise modelling

    NARCIS (Netherlands)

    Roo, F. de; Salomons, E.M.

    2008-01-01

    Common engineering models for aircraft noise, such as INM, yield noise levels by interpolation of Noise Power Distance (NPD) tables. In the European project Imagine (2004 - 2006), a different approach was proposed: the source is characterized by an emission spectrum and the received noise spectrum

  19. Identification of BWR feedwater control system using autoregressive integrated model

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Andoh, Yasumasa; Yamamoto, Fumiaki; Idesawa, Masato; Itoh, Kazuo.

    1983-01-01

    With the view of contributing toward more reliable interpretation of noise behavior under normal operating conditions, which is essential for correct detection and/or diagnosis of incipient anomalies in nuclear power plants by noise analysis technique, studies has been undertaken of the noise behavior in a BWR feedwater control system, with use made of a multivariate autoregressive modeling technique. Noise propagation mechanisms as well as open- and closed-loop responses in the system are identified from noise data by a method in which an autoregressive integrated model is introduced. The closed-loop responses obtained with this method are compared with transient data from an actual test, and confirmed to be reliable in estimating semi-quantitative features. Other analyses performed with this model also yield results that appear most reasonable in their physical characteristics. These results have demonstrated the effectiveness of the noise analyses technique based on the autoregressive integrated model for evaluating and diagnosing the performance of feedwater control systems. (author)

  20. Identification of multivariate models for noise analysis of nuclear plant

    International Nuclear Information System (INIS)

    Zwingelstein, G.C.; Upadhyaya, B.R.

    1979-01-01

    During the normal operation of a pressurized water reactor, neutron noise analysis with multivariate autoregressive procedures in a valuable diagnostic tool to extract dynamic characteristics for incipient failure detection. The first part of the paper will describe in details the equations for estimating the multivariate autoregressive model matrices and the structure of various matrices. The matrices are estimated by solving a set of matrix operations, called Yule-Walker equations. The selection of optimal model order will also be discussed. Once the optimal parameter set is obtained, simple and fast calculations are used to determine the auto power spectral density, cross spectra, coherence function, phase. In addition the spectra may be decomposed into components being contributed from different noise sources. An application using neutron flux data collected on a nuclear plant will illustrate the efficiency of the method

  1. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...

  2. Noise Simulations of the High-Lift Common Research Model

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Vatsa, Veer N.; O'Connell, Matthew D.; Duda, Benjamin; Fares, Ehab

    2017-01-01

    The PowerFLOW(TradeMark) code has been used to perform numerical simulations of the high-lift version of the Common Research Model (HL-CRM) that will be used for experimental testing of airframe noise. Time-averaged surface pressure results from PowerFLOW(TradeMark) are found to be in reasonable agreement with those from steady-state computations using FUN3D. Surface pressure fluctuations are highest around the slat break and nacelle/pylon region, and synthetic array beamforming results also indicate that this region is the dominant noise source on the model. The gap between the slat and pylon on the HL-CRM is not realistic for modern aircraft, and most nacelles include a chine that is absent in the baseline model. To account for those effects, additional simulations were completed with a chine and with the slat extended into the pylon. The case with the chine was nearly identical to the baseline, and the slat extension resulted in higher surface pressure fluctuations but slightly reduced radiated noise. The full-span slat geometry without the nacelle/pylon was also simulated and found to be around 10 dB quieter than the baseline over almost the entire frequency range. The current simulations are still considered preliminary as changes in the radiated acoustics are still being observed with grid refinement, and additional simulations with finer grids are planned.

  3. Edgeworth Expansion Based Model for the Convolutional Noise pdf

    Directory of Open Access Journals (Sweden)

    Yonatan Rivlin

    2014-01-01

    Full Text Available Recently, the Edgeworth expansion up to order 4 was used to represent the convolutional noise probability density function (pdf in the conditional expectation calculations where the source pdf was modeled with the maximum entropy density approximation technique. However, the applied Lagrange multipliers were not the appropriate ones for the chosen model for the convolutional noise pdf. In this paper we use the Edgeworth expansion up to order 4 and up to order 6 to model the convolutional noise pdf. We derive the appropriate Lagrange multipliers, thus obtaining new closed-form approximated expressions for the conditional expectation and mean square error (MSE as a byproduct. Simulation results indicate hardly any equalization improvement with Edgeworth expansion up to order 4 when using optimal Lagrange multipliers over a nonoptimal set. In addition, there is no justification for using the Edgeworth expansion up to order 6 over the Edgeworth expansion up to order 4 for the 16QAM and easy channel case. However, Edgeworth expansion up to order 6 leads to improved equalization performance compared to the Edgeworth expansion up to order 4 for the 16QAM and hard channel case as well as for the case where the 64QAM is sent via an easy channel.

  4. A minimal model of burst-noise induced bistability.

    Directory of Open Access Journals (Sweden)

    Johannes Falk

    Full Text Available We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of the Schlögl model, which is a chemical reaction system with only one type of molecule. The strength of the intrinsic noise is varied without changing the deterministic description by introducing bursts in the autocatalytic production step. We study the transitions between monostable and bistable behavior in this system by evaluating the number of maxima of the stationary probability distribution. We find that changing the size of bursts can destroy and even induce saddle-node bifurcations. This means that a bursty production of molecules can qualitatively change the dynamics of a chemical reaction system even when the deterministic description remains unchanged.

  5. Modeling temperature noise in a fast-reactor pile

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    To observe partial overlapping of the heat carrier cross section in piles, leading to local temperature rise or boiling of the sodium, provision is made for individual monitoring of the fuel assemblies with respect to the output temperature. Since the deviation of the mean flow rate through the pile and the output temperature is slight with this anomaly, the temperature fluctuations may provide a more informative index. The change in noise characteristics with partial overlapping of the cross sections occurs because of strong distortion of the temperature profile in the overlap region. The turbulent flow in the upper part of the pile transforms this nonuniformity into temperature pulsations which may be recorded by a sensor at the pile output. In this paper the characteristics of temperature noise are studied for various pile conditions and sensor locations by statistical modeling

  6. Cross-band noise model refinement for transform domain Wyner–Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2012-01-01

    TDWZ video coding trails that of conventional video coding solutions, mainly due to the quality of side information, inaccurate noise modeling and loss in the final coding step. The major goal of this paper is to enhance the accuracy of the noise modeling, which is one of the most important aspects...... influencing the coding performance of DVC. A TDWZ video decoder with a novel cross-band based adaptive noise model is proposed, and a noise residue refinement scheme is introduced to successively update the estimated noise residue for noise modeling after each bit-plane. Experimental results show...... that the proposed noise model and noise residue refinement scheme can improve the rate-distortion (RD) performance of TDWZ video coding significantly. The quality of the side information modeling is also evaluated by a measure of the ideal code length....

  7. Spectral Noise Logging for well integrity analysis in the mineral water well in Asselian aquifer

    Directory of Open Access Journals (Sweden)

    R.R. Kantyukov

    2017-06-01

    Full Text Available This paper describes a mineral water well with decreasing salinity level according to lab tests. A well integrity package including Spectral Noise Logging (SNL, High-Precision Temperature (HPT logging and electromagnetic defectoscopy (EmPulse was performed in the well which allowed finding casing leaks and fresh water source. In the paper all logging data were thoroughly analyzed and recommendation for workover was mentioned. The SNL-HPT-EmPulse survey allowed avoiding well abandonment.

  8. Integrability of the Rabi Model

    International Nuclear Information System (INIS)

    Braak, D.

    2011-01-01

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  9. Weberized Mumford-Shah Model with Bose-Einstein Photon Noise

    International Nuclear Information System (INIS)

    Shen Jianhong; Jung, Yoon-Mo

    2006-01-01

    Human vision works equally well in a large dynamic range of light intensities, from only a few photons to typical midday sunlight. Contributing to such remarkable flexibility is a famous law in perceptual (both visual and aural) psychology and psychophysics known as Weber's Law. The current paper develops a new segmentation model based on the integration of Weber's Law and the celebrated Mumford-Shah segmentation model (Comm. Pure Appl. Math., vol. 42, pp. 577-685, 1989). Explained in detail are issues concerning why the classical Mumford-Shah model lacks light adaptivity, and why its 'weberized' version can more faithfully reflect human vision's superior segmentation capability in a variety of illuminance conditions from dawn to dusk. It is also argued that the popular Gaussian noise model is physically inappropriate for the weberization procedure. As a result, the intrinsic thermal noise of photon ensembles is introduced based on Bose and Einstein's distributions in quantum statistics, which turns out to be compatible with weberization both analytically and computationally. The current paper focuses on both the theory and computation of the weberized Mumford-Shah model with Bose-Einstein noise. In particular, Ambrosio-Tortorelli's Γ-convergence approximation theory is adapted (Boll. Un. Mat. Ital. B, vol. 6, pp. 105-123, 1992), and stable numerical algorithms are developed for the associated pair ofnonlinear Euler-Lagrange PDEs

  10. Modelling and mitigation of wheel squeal noise amplitude

    Science.gov (United States)

    Meehan, Paul A.; Liu, Xiaogang

    2018-01-01

    The prediction of vibration amplitude and sound pressure level of wheel squeal noise is investigated using a concise mathematical model that is verified with measurements from both a rolling contact two disk test rig and a field case study. The model is used to perform an energy-based analysis to determine a closed form solution to the steady state limit cycle amplitude of creep and vibration oscillations during squealing. The analytical solution compares well with a numerical solution using an experimentally tuned creep curve with full nonlinear shape. The predicted squeal sound level trend also compares well with that recorded at various crabbing velocities (proportional to angle of attack) for the test rig at different rolling speeds. In addition, further verification is performed against many field recordings of wheel squeal on a sharp curve of 300 m. A comparison with a simplified modified result from Rudd [1] is also provided and highlights the accuracy and advantages of the present efficient model. The analytical solution provides insight into why the sound pressure level of squeal noise increases with crabbing velocity (or angle of attack) as well as how the amplitude is affected by the critical squeal parameters including a detailed investigation of modal damping. Finally, the efficient model is used to perform a parametric investigation into means of achieving a 6 dB decrease in squeal noise. The results highlight the primary importance of crabbing velocity (and angle of attack) as well as the creep curve parameters that may be controlled using third body control (ie friction modifiers). The results concur with experimental and field observations and provide important theoretical insight into the useful mechanisms of mitigating wheel squeal and quantifying their relative merits.

  11. IMMIGRANTS’ INTEGRATION MODELS

    Directory of Open Access Journals (Sweden)

    CARMEN UZLĂU

    2012-05-01

    Full Text Available In the context of the European population aging trend, and while the birth rate is still at a low level, the immigrants may contribute to the support of the EU economy and to finance the national social protection systems. But this would be possible only if they have been fully integrated in the host countries, the integration policies being a task of the national governments. The European Union may still offer support and stimulation through financing, policies coordination and good practices exchange facilitation. The new measures should encourage local level actions, including cooperation between local authorities, employers, migrants’ organizations, service providers and local population. Within the EU, there live 20.1 million immigrants (approximately 4% of the entire population coming from outside European area. An important element of the common EU policy on immigration is the one regarding the development of a policy on immigrants’ integration, which should provide a fair treatment within the member states, and guarantee rights and obligations comparable with the ones of the Union citizens.

  12. Which coordinate system for modelling path integration?

    Science.gov (United States)

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd

  13. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  14. Speech understanding in noise with integrated in-ear and muff-style hearing protection systems

    Directory of Open Access Journals (Sweden)

    Sharon M Abel

    2011-01-01

    Full Text Available Integrated hearing protection systems are designed to enhance free field and radio communications during military operations while protecting against the damaging effects of high-level noise exposure. A study was conducted to compare the effect of increasing the radio volume on the intelligibility of speech over the radios of two candidate systems, in-ear and muff-style, in 85-dBA speech babble noise presented free field. Twenty normal-hearing, English-fluent subjects, half male and half female, were tested in same gender pairs. Alternating as talker and listener, their task was to discriminate consonant-vowel-consonant syllables that contrasted either the initial or final consonant. Percent correct consonant discrimination increased with increases in the radio volume. At the highest volume, subjects achieved 79% with the in-ear device but only 69% with the muff-style device, averaged across the gender of listener/talker pairs and consonant position. Although there was no main effect of gender, female listener/talkers showed a 10% advantage for the final consonant and male listener/talkers showed a 1% advantage for the initial consonant. These results indicate that normal hearing users can achieve reasonably high radio communication scores with integrated in-ear hearing protection in moderately high-level noise that provides both energetic and informational masking. The adequacy of the range of available radio volumes for users with hearing loss has yet to be determined.

  15. Gravitational interactions of integrable models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1995-10-01

    We couple non-linear σ-models to Liouville gravity, showing that integrability properties of symmetric space models still hold for the matter sector. Using similar arguments for the fermionic counterpart, namely Gross-Neveu-type models, we verify that such conclusions must also hold for them, as recently suggested. (author). 18 refs

  16. Adaptive Noise Model for Transform Domain Wyner-Ziv Video using Clustering of DCT Blocks

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    The noise model is one of the most important aspects influencing the coding performance of Distributed Video Coding. This paper proposes a novel noise model for Transform Domain Wyner-Ziv (TDWZ) video coding by using clustering of DCT blocks. The clustering algorithm takes advantage of the residual...... modelling. Furthermore, the proposed cluster level noise model is adaptively combined with a coefficient level noise model in this paper to robustly improve coding performance of TDWZ video codec up to 1.24 dB (by Bjøntegaard metric) compared to the DISCOVER TDWZ video codec....... information of all frequency bands, iteratively classifies blocks into different categories and estimates the noise parameter in each category. The experimental results show that the coding performance of the proposed cluster level noise model is competitive with state-ofthe- art coefficient level noise...

  17. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  18. Light aircraft sound transmission studies - Noise reduction model

    Science.gov (United States)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1987-01-01

    Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.

  19. Integrated Debugging of Modelica Models

    Directory of Open Access Journals (Sweden)

    Adrian Pop

    2014-04-01

    Full Text Available The high abstraction level of equation-based object-oriented (EOO languages such as Modelica has the drawback that programming and modeling errors are often hard to find. In this paper we present integrated static and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those problems. The goal is an integrated debugging framework that combines classical debugging techniques with special techniques for equation-based languages partly based on graph visualization and interaction. To our knowledge, this is the first Modelica debugger that supports both equation-based transformational and algorithmic code debugging in an integrated fashion.

  20. Nonlinear unitary quantum collapse model with self-generated noise

    Science.gov (United States)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  1. A model for measurement of noise in CCD digital-video cameras

    International Nuclear Information System (INIS)

    Irie, K; Woodhead, I M; McKinnon, A E; Unsworth, K

    2008-01-01

    This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing

  2. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing....... A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model....

  3. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  4. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    Science.gov (United States)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  5. Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits

    International Nuclear Information System (INIS)

    Qian Li-Bo; Xia Yin-Shui; Zhu Zhang-Ming; Ding Rui-Xue; Yang Yin-Tang

    2014-01-01

    Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three-dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 mV and 379 mV reductions in the peak noise voltage, respectively

  6. Integrated Medical Model – Chest Injury Model

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Medical Capability (ExMC) Element of NASA's Human Research Program (HRP) developed the Integrated Medical Model (IMM) to forecast the resources...

  7. MOSFET LF noise under Large Signal Excitation: Measurement, Modelling and Application

    NARCIS (Netherlands)

    van der Wel, A.P.

    2005-01-01

    Regarding LF noise in MOSFETs, it is noted that the MOSFET is a surface channel device. Both n and p-channel devices exhibit similar low frequency (LF) noise behaviour that can be explained by a carrier number fluctuation model (section 3.5). LF noise in MOSFETs is predominantly caused by Random

  8. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    Science.gov (United States)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  9. Design and modeling of Faraday cages for substrate noise isolation

    Science.gov (United States)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  10. The integrated economic model

    International Nuclear Information System (INIS)

    Syrota, J.; Cirelli, J.F.; Brimont, S.; Lyle, C.; Nossent, G.; Moraleda, P.

    2005-01-01

    The setting up of the European energy market has triggered a radical change of the context within with the energy players operated. The natural markets of the incumbent operators, which were formerly demarcated by national and even regional borders, have extended to at least the scale of the European Union. In addition to their geographical development strategy, gas undertakings are diversifying their portfolios towards both upstream as well as downstream activities of the gas chain, and/or extending their offers to other energies and services. Energy players' strategies are rather complex and sometimes give the impression that of being based on contradictory decisions. Some operators widen their field of operations, whereas others specialize in a limited number of activities. This Round Table provides an opportunity to compare business models as adopted by the major gas undertakings in response to structural changes observed in various countries over recent years

  11. Noise-Induced Transition in a Voltage-Controlled Oscillator Neuron Model

    International Nuclear Information System (INIS)

    Xie Huizhang; Liu Xuemei; Li Zhibing; Ai Baoquan; Liu Lianggang

    2008-01-01

    In the presence of Gaussian white noise, we study the properties of voltage-controlled oscillator neuron model and discuss the effects of the additive and multiplicative noise. It is found that the additive noise can accelerate and counterwork the firing of neuron, which depends on the value of central frequency of neuron itself, while multiplicative noise can induce the continuous change or mutation of membrane potential

  12. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    OpenAIRE

    Chun Lu; Qiang Ma; Xiaohua Ding

    2015-01-01

    This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solut...

  13. Adaptive Autoregressive Model for Reduction of Noise in SPECT

    Directory of Open Access Journals (Sweden)

    Reijo Takalo

    2015-01-01

    Full Text Available This paper presents improved autoregressive modelling (AR to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM reconstruction images (AR-OSEM-AR method. The performance of this method was compared with filtered back projection (FBP preceded by Butterworth filtering (BW-FBP method and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method. A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR% and the full width at half maximum (FWHM of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.

  14. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  15. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  16. Cognitive-Motivational Determinants of Residents’ Civic Engagement and Health (Inequities in the Context of Noise Action Planning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Natalie Riedel

    2017-05-01

    Full Text Available The Environmental Noise Directive expects residents to be actively involved in localising and selecting noise abatement interventions during the noise action planning process. Its intervention impact is meant to be homogeneous across population groups. Against the background of social heterogeneity and environmental disparities, however, the impact of noise action planning on exposure to traffic-related noise and its health effects is unlikely to follow homogenous distributions. Until now, there has been no study evaluating the impact of noise action measures on the social distribution of traffic-related noise exposure and health outcomes. We develop a conceptual (logic model on cognitive-motivational determinants of residents’ civic engagement and health (inequities by integrating arguments from the Model on household’s Vulnerability to the local Environment, the learned helplessness model in environmental psychology, the Cognitive Activation Theory of Stress, and the reserve capacity model. Specifically, we derive four hypothetical patterns of cognitive-motivational determinants yielding different levels of sustained physiological activation and expectancies of civic engagement. These patterns may help us understand why health inequities arise in the context of noise action planning and learn how to transform noise action planning into an instrument conducive to health equity. While building on existing frameworks, our conceptual model will be tested empirically in the next stage of our research process.

  17. Cognitive-Motivational Determinants of Residents' Civic Engagement and Health (Inequities) in the Context of Noise Action Planning: A Conceptual Model.

    Science.gov (United States)

    Riedel, Natalie; van Kamp, Irene; Köckler, Heike; Scheiner, Joachim; Loerbroks, Adrian; Claßen, Thomas; Bolte, Gabriele

    2017-05-30

    The Environmental Noise Directive expects residents to be actively involved in localising and selecting noise abatement interventions during the noise action planning process. Its intervention impact is meant to be homogeneous across population groups. Against the background of social heterogeneity and environmental disparities, however, the impact of noise action planning on exposure to traffic-related noise and its health effects is unlikely to follow homogenous distributions. Until now, there has been no study evaluating the impact of noise action measures on the social distribution of traffic-related noise exposure and health outcomes. We develop a conceptual (logic) model on cognitive-motivational determinants of residents' civic engagement and health (inequities) by integrating arguments from the Model on household's Vulnerability to the local Environment, the learned helplessness model in environmental psychology, the Cognitive Activation Theory of Stress, and the reserve capacity model. Specifically, we derive four hypothetical patterns of cognitive-motivational determinants yielding different levels of sustained physiological activation and expectancies of civic engagement. These patterns may help us understand why health inequities arise in the context of noise action planning and learn how to transform noise action planning into an instrument conducive to health equity. While building on existing frameworks, our conceptual model will be tested empirically in the next stage of our research process.

  18. Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Deok-Soon An

    2013-01-01

    Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.

  19. Enabling model customization and integration

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2003-09-01

    Until fairly recently, the idea of dynamic model content and presentation were treated synonymously. For example, if one was to take a data flow network, which captures the dynamics of a target system in terms of the flow of data through nodal operators, then one would often standardize on rectangles and arrows for the model display. The increasing web emphasis on XML, however, suggests that the network model can have its content specified in an XML language, and then the model can be represented in a number of ways depending on the chosen style. We have developed a formal method, based on styles, that permits a model to be specified in XML and presented in 1D (text), 2D, and 3D. This method allows for customization and personalization to exert their benefits beyond e-commerce, to the area of model structures used in computer simulation. This customization leads naturally to solving the bigger problem of model integration - the act of taking models of a scene and integrating them with that scene so that there is only one unified modeling interface. This work focuses mostly on customization, but we address the integration issue in the future work section.

  20. Developing Integrated Care: Towards a development model for integrated care

    NARCIS (Netherlands)

    M.M.N. Minkman (Mirella)

    2012-01-01

    textabstractThe thesis adresses the phenomenon of integrated care. The implementation of integrated care for patients with a stroke or dementia is studied. Because a generic quality management model for integrated care is lacking, the study works towards building a development model for integrated

  1. An approximate fractional Gaussian noise model with computational cost

    KAUST Repository

    Sørbye, Sigrunn H.

    2017-09-18

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood-based approach is ${\\\\mathcal O}(n^{2})$, exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to ${\\\\mathcal O}(n^{3})$. This paper presents an approximate fGn model of ${\\\\mathcal O}(n)$ computational cost, both with direct or indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four components. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

  2. Development of an advanced noise propagation model for noise optimization in wind farm

    DEFF Research Database (Denmark)

    Barlas, Emre

    2017-01-01

    Increasing demand in renewable energy has resulted in large wind energy deployment. Even though wind turbines are among the most environmentally friendly way of generating electricity, the noise emitted by them is one of the main obstacles for further installation. Wind farm developers rely...... wind directions or time of the day). The latter causes turbines to be located at less resourceful sites in advance. Both of these scenarios increase the cost of energy. Hence there is a need for more accurate noise mapping tools. The thesis addresses this issue via development of a new tool based...... field sound pressure levels are addressed both in steady and unsteady manner. Enhanced far fields amplitude modulation is observed and associated with the wake dynamics and the rotating blades. Lastly, the developed tool is used for an onshore wind farm noise prediction taking the terrain and the flow...

  3. New readout integrated circuit using continuous time fixed pattern noise correction

    Science.gov (United States)

    Dupont, Bertrand; Chammings, G.; Rapellin, G.; Mandier, C.; Tchagaspanian, M.; Dupont, Benoit; Peizerat, A.; Yon, J. J.

    2008-04-01

    LETI has been involved in IRFPA development since 1978; the design department (LETI/DCIS) has focused its work on new ROIC architecture since many years. The trend is to integrate advanced functions into the CMOS design to achieve cost efficient sensors production. Thermal imaging market is today more and more demanding of systems with instant ON capability and low power consumption. The purpose of this paper is to present the latest developments of fixed pattern noise continuous time correction. Several architectures are proposed, some are based on hardwired digital processing and some are purely analog. Both are using scene based algorithms. Moreover a new method is proposed for simultaneous correction of pixel offsets and sensitivities. In this scope, a new architecture of readout integrated circuit has been implemented; this architecture is developed with 0.18μm CMOS technology. The specification and the application of the ROIC are discussed in details.

  4. Modeling Random Telegraph Noise Under Switched Bias Conditions Using Cyclostationary RTS Noise

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Vandamme, L.K.J.; Nauta, Bram

    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF

  5. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    Directory of Open Access Journals (Sweden)

    Chang Hao Chen

    2014-01-01

    Full Text Available Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  6. Effect of Correlated Noises in a Genetic Model

    International Nuclear Information System (INIS)

    Li, Zhang; Li, Cao

    2010-01-01

    The Stratonovich stochastic differential equation is used to analyze genotype selection in the presence of correlated Gaussian white noises. We study the steady state properties of the genotype selection and discuss the effects of the correlated noises. It is found that the degree of correlation of the noises can be used to select one type of genes from another type of mixing genes. The strong selection of genes caused by a large value of multiplicative noise intensity can be weakened by the intensive negative correlation. (general)

  7. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  8. Moment stability for a predator–prey model with parametric dichotomous noises

    International Nuclear Information System (INIS)

    Jin Yan-Fei

    2015-01-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator–prey model with parametric dichotomous noises. Using the Shapiro–Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. (paper)

  9. Challenges in horizontal model integration.

    Science.gov (United States)

    Kolczyk, Katrin; Conradi, Carsten

    2016-03-11

    Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling effort and increase the acceptance of the combined model in the field. Obtaining a combined model can be challenging, especially if the submodels are large and/or come from different working groups (as is generally the case, when models stored in established repositories are used). To support this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model. The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling pathways (EGF and NGF) from the BioModels Database.

  10. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    Science.gov (United States)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and

  11. Noise level in neonatal incubators: A comparative study of three models.

    Science.gov (United States)

    Fernández Zacarías, F; Beira Jiménez, J L; Bustillo Velázquez-Gaztelu, P J; Hernández Molina, R; Lubián López, Simón

    2018-04-01

    Preterm infants usually have to spend a long time in an incubator, excessive noise in which can have adverse physiological and psychological effects on neonates. In fact, incubator noise levels typically range from 45 to 70 dB but differences in this respect depend largely on the noise measuring method used. The primary aim of this work was to assess the extent to which noise in an incubator comes from its own fan and how efficiently the incubator can isolate external noise. Three different incubator models were characterized for acoustic performance by measuring their internal noise levels in an anechoic chamber, and also for noise isolation efficiency by using a pink noise source in combination with an internal and an external microphone that were connected to an SVAN958 noise analyzer. The incubators studied produced continuous equivalent noise levels of 53.5-58 dB and reduced external noise by 5.2-10.4 dB. A preterm infant in an incubator is exposed to noise levels clearly exceeding international recommendations even though such levels usually comply with the limit set in the standard IEC60601-2-19: 2009 (60 dBA) under normal conditions of use. Copyright © 2018. Published by Elsevier B.V.

  12. Spontaneous fluctuations in a zero-noise model of flocking

    Science.gov (United States)

    Chakraborty, Abhijit; Bhattacharya, Kunal

    2016-11-01

    Investigations into the complex structure and dynamics of collectively moving groups of living organisms have provided valuable insights. Understanding the emergent features, especially, the origin of fluctuations, appears to be challenging in the current scheme of models. It has been argued that flocks are poised at criticality. We present a two-dimensional self-propelled particle model where neighbourhoods and forces are defined through topology-based rules. The attractive forces are modeled in order to maintain cohesion in the flock in open-boundary conditions. We find that fluctuations occur spontaneously in the absence of any external noise. For certain values of the parameters the flock shows a high degree of order as well as scale-free decay of spatial correlations in velocity and speed. We characterize the dynamical behaviour of the system using the Lyapunov spectrum. Largest exponents being positive but small in magnitude suggest that the apparent high susceptibility may result from the system operating near the borderline of order and chaos.

  13. Finite frequency current noise in the Holstein model

    Science.gov (United States)

    Stadler, P.; Rastelli, G.; Belzig, W.

    2018-05-01

    We investigate the effects of local vibrational excitations in the nonsymmetrized current noise S (ω ) of a nanojunction. For this purpose, we analyze a simple model—the Holstein model—in which the junction is described by a single electronic level that is coupled to two metallic leads and to a single vibrational mode. Using the Keldysh Green's function technique, we calculate the nonsymmetrized current noise to the leading order in the charge-vibration interaction. For the noise associated to the latter, we identify distinct terms corresponding to the mean-field noise and the vertex correction. The mean-field result can be further divided into an elastic correction to the noise and in an inelastic correction, the second one being related to energy exchange with the vibration. To illustrate the general behavior of the noise induced by the charge-vibration interaction, we consider two limit cases. In the first case, we assume a strong coupling of the dot to the leads with an energy-independent transmission, whereas in the second case we assume a weak tunneling coupling between the dot and the leads such that the transport occurs through a sharp resonant level. We find that the noise associated to the vibration-charge interaction shows a complex pattern as a function of the frequency ω and of the transmission function or of the dot's energy level. Several transitions from enhancement to suppression of the noise occurs in different regions, which are determined, in particular, by the vibrational frequency. Remarkably, in the regime of an energy-independent transmission, the zero-order elastic noise vanishes at perfect transmission and at positive frequency, whereas the noise related to the charge-vibration interaction remains finite, enabling the analysis of the pure vibrational-induced current noise.

  14. A combined aeroelastic-aeroacoustic model for wind turbine noise: Verification and analysis of field measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    In this paper, semi-empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in-house aeroelastic code HAWC2 commonly used for wind turbine load calculations...... and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources...... and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured....

  15. A path integral approach to the Hodgkin-Huxley model

    Science.gov (United States)

    Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando

    2017-11-01

    To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.

  16. Percolation model of excess electrical noise in transition-edge sensors

    International Nuclear Information System (INIS)

    Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Chervenak, J.; Gwynne Crowder, S.; Fallows, S.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.E.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R N ) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation

  17. Controlling Decoherence in Superconducting Qubits: Phenomenological Model and Microscopic Origin of 1/f Noise

    Science.gov (United States)

    2011-04-28

    quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux noise which...and quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux...metallic nanomechanical resonators, Phys. Rev. B 81, 184112 (2010). 3) L. Faoro, A. Kitaev and L. B. Ioffe, Quasiparticle poisoning and Josephson current

  18. A critical review of principal traffic noise models: Strategies and implications

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in [Apex Level Standards and Industrial Metrology Division, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India); Maji, Sagar [Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042 (India)

    2014-04-01

    The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety of solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.

  19. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing

    2017-07-05

    Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive

  20. Integrated modeling: a look back

    Science.gov (United States)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  1. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  2. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  3. A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Tieyong Zeng

    2013-01-01

    In this paper, a new variational model for restoring blurred images with multiplicative noise is proposed. Based on the statistical property of the noise, a quadratic penalty function technique is utilized in order to obtain a strictly convex model under a mild condition, which guarantees...

  4. New Hybrid Variational Recovery Model for Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Zeng, Tieyong

    2013-01-01

    A new hybrid variational model for recovering blurred images in the presence of multiplicative noise is proposed. Inspired by previous work on multiplicative noise removal, an I-divergence technique is used to build a strictly convex model under a condition that ensures the uniqueness...

  5. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo; Takahashi, Ryoichi.

    1994-01-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author)

  6. Integrated model of destination competitiveness

    Directory of Open Access Journals (Sweden)

    Armenski Tanja

    2011-01-01

    Full Text Available The aim of this paper is to determine the weakest point of Serbian destination competitiveness as a tourist destination in comparation with its main competitors. The paper is organized as follows. The short introduction of the previous research on the destination competitiveness is followed by description of the Integrated model of destination competitiveness (Dwyer et al, 2003 that was used as the main reference framework. Section three is devoted to the description of the previous studies on competitiveness of Serbian tourism, while section four outlines the statistical methodology employed in this study and presents and interprets the empirical results. The results showed that Serbia is more competitive in its natural, cultural and created resources than in destination management while, according to the Integrated model, Serbia is less competitive in demand conditions that refer to the image and awareness of the destination itself.

  7. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics, as given by Haldane, allows for a statistical interaction between distinguishable particles (multi-species statistics). The thermodynamic quantities for such statistics ca be evaluated exactly. The explicit expressions for the cluster coefficients are presented. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models. The interesting questions of generalizing this correspondence onto the higher-dimensional and the multi-species cases remain essentially open

  8. Analytical high frequency GaN HEMT model for noise simulations

    Science.gov (United States)

    Eshetu Muhea, Wondwosen; Mulugeta Yigletu, Fetene; Lazaro, Antonio; Iñiguez, Benjamin

    2017-12-01

    A compact high frequency model for AlGaN/GaN HEMT device valid for noise simulations is presented in this paper. The model is developed based on active transmission line approach and linear two port noise theory that makes it applicable for quasi static as well as non-quasi static device operation. The effects of channel length modulation and velocity saturation are discussed. Moreover, the effect of the gate leakage current on the noise performance of the device is investigated. It is shown that there is an apparent increase in noise generated in the device due to the gate current related shot noise. The common noise figures of merit for HFET are calculated and verified with experimental data.

  9. Operational modeling of dose and noise for computed tomography in a pediatric hospital

    International Nuclear Information System (INIS)

    Miller Clemente, Rafael A.; Perez Diaz, Marlen; Mora Reyes, Yudel; Rodriguez Garlobo, Maikel; Castillo Salazar, Rafael

    2008-01-01

    Noise becomes a critical factor in Computed Tomography (CT) because most detailed applications on soft tissue show a low contrast nature. Noise establishes an inferior limit to the contrast detectable by the observer. Various pixel noise models had been devised taking into account operational parameters on Single and Multi Detector Slice CT. The aim of this work was to obtain a predictive operational model for image noise addressed to pediatric protocols, taking into account scanning factors with a Single Slice CT unit dedicated to pediatric applications. A multiple linear regression model is proposed to predict noise in images of uniform phantoms equivalent to head and abdomen. A model for reported volumetric Computed Tomography Dose Index (CTDI VOL ) was obtained too for tradeoffs analysis approaching optimization purposes in pediatric applications. Eight independent variables were considered: phantom diameter, reconstruction mode, tube current, tube kVp, collimation, Field of View (FOV), reconstruction filter, and post processing filter. Results show good agreement with measurements, with adjusted coefficients of multiple determination of 0.936 and 0.744 for noise and CTDI VOL models respectively. Tube current, object diameter, collimation and reconstruction filters were the most influencing variables. The model application contributes to identify each factor's influence enhancing the operational possibilities approaching optimization of noise and dose tradeoffs. Acceptable noise levels and optimization strategies can be devised from models obtained towards lower tube current values combined with greater slice thickness and kVp taking into account the doses to pediatric patients. (author)

  10. Stochastic resonance in a gain-noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Mei; Cao Li; Wu Da-Jin

    2007-01-01

    Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR)separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ and the deterministic steady-state intensity I0.In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of τand λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.

  11. Predictive modelling of noise level generated during sawing of rocks ...

    Indian Academy of Sciences (India)

    This paper presents an experimental and statistical study on noise level generated .... hardness were determined according to related ISRM (1981) suggested methods. Thin section ..... tistical Package for the Social Sciences). Additionally, the ...

  12. Modelling of excess noise attnuation by grass and forest | Onuu ...

    African Journals Online (AJOL)

    , guinea grass (panicum maximum) and forest which comprises iroko (milicia ezcelea) and white afara (terminalia superba) trees in the ratio of 2:1 approximately. Excess noise attenuation spectra have been plotted for the grass and forest for ...

  13. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics that was given by Haldane admits a 'statistical interaction' between distinguishable particles (multispecies statistics). For such statistics, thermodynamic quantities can be evaluated exactly; explicit expressions are presented here for cluster coefficients. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models of the Calogero-Sutherland type. The interesting questions of generalizing this correspondence to the higher-dimensional and the multispecies cases remain essentially open; however, our results provide some hints as to searches for the models in question

  14. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  15. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  16. Integrated low noise low power interface for neural bio-potentials recording and conditioning

    Science.gov (United States)

    Bottino, Emanuele; Martinoia, Sergio; Valle, Maurizio

    2005-06-01

    The recent progress in both neurobiology and microelectronics suggests the creation of new, powerful tools to investigate the basic mechanisms of brain functionality. In particular, a lot of efforts are spent by scientific community to define new frameworks devoted to the analysis of in-vitro cultured neurons. One possible approach is recording their spiking activity to monitor the coordinated cellular behaviour and get insights about neural plasticity. Due to the nature of neurons action-potentials, when considering the design of an integrated microelectronic-based recording system, a number of problems arise. First, one would desire to have a high number of recording sites (i.e. several hundreds): this poses constraints on silicon area and power consumption. In this regard, our aim is to integrate-through on-chip post-processing techniques-hundreds of bio-compatible microsensors together with CMOS standard-process low-power (i.e. some tenths of uW per channel) conditioning electronics. Each recording channel is provided with sampling electronics to insure synchronous recording so that, for example, cross-correlation between signals coming from different sites can be performed. Extra-cellular potentials are in the range of [50-150] uV, so a comparison in terms of noise-efficiency was carried out among different architectures and very low-noise pre-amplification electronics (i.e. less than 5 uVrms) was designed. As spikes measurements are made with respect to the voltage of a reference electrode, we opted for an AC-coupled differential-input preamplifier provided with band-pass filtering capability. To achieve this, we implemented large time-constant (up to seconds) integrated components in the preamp feedback path. Thus, we got rid also of random slow-drifting DC-offsets and common mode signals. The paper will present our achievements in the design and implementation of a fully integrated bio-abio interface to record neural spiking activity. In particular

  17. Scaling model for a speed-dependent vehicle noise spectrum

    Directory of Open Access Journals (Sweden)

    Giovanni Zambon

    2017-06-01

    Full Text Available Considering the well-known features of the noise emitted by moving sources, a number of vehicle characteristics such as speed, unladen mass, engine size, year of registration, power and fuel were recorded in a dedicated monitoring campaign performed in three different places, each characterized by different number of lanes and the presence of nearby reflective surfaces. A full database of 144 vehicles (cars was used to identify statistically relevant features. In order to compare the vehicle transit noise in different environmental condition, all 1/3-octave band spectra were normalized and analysed. Unsupervised clustering algorithms were employed to group together spectrum levels with similar profiles. Our results corroborate the well-known fact that speed is the most relevant characteristic to discriminate between different vehicle noise spectrum. In keeping with this fact, we present a new approach to predict analytically noise spectra for a given vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit the normalized average spectrum profile at different speeds. This approach can be useful for predicting vehicle speed based purely on its noise spectrum pattern. The present work is complementary to the accurate analysis of noise sources based on the beamforming technique.

  18. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    Booth, T.

    2000-01-01

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  19. Noise Localization Method for Model Tests in a Large Cavitation Tunnel Using a Hydrophone Array

    Directory of Open Access Journals (Sweden)

    Cheolsoo Park

    2016-02-01

    Full Text Available Model tests are performed in order to predict the noise level of a full ship and to control its noise signature. Localizing noise sources in the model test is therefore an important research subject along with measuring noise levels. In this paper, a noise localization method using a hydrophone array in a large cavitation tunnel is presented. The 45-channel hydrophone array was designed using a global optimization technique for noise measurement. A set of noise experiments was performed in the KRISO (Korea Research Institute of Ships & Ocean Engineering large cavitation tunnel using scaled models, including a ship with a single propeller, a ship with twin propellers and an underwater vehicle. The incoherent broadband processors defined based on the Bartlett and the minimum variance (MV processors were applied to the measured data. The results of data analysis and localization are presented in the paper. Finally, it is shown that the mechanical noise, as well as the propeller noise can be successfully localized using the proposed localization method.

  20. Improved virtual channel noise model for transform domain Wyner-Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2009-01-01

    Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...... coding is proposed, which utilizes cross-band correlation to estimate the Laplacian parameters more accurately. Experimental results show that the proposed noise model can improve the rate-distortion (RD) performance....

  1. Cotangent Models for Integrable Systems

    Science.gov (United States)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  2. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  3. Comparison of Langevin and Markov channel noise models for neuronal signal generation.

    Science.gov (United States)

    Sengupta, B; Laughlin, S B; Niven, J E

    2010-01-01

    The stochastic opening and closing of voltage-gated ion channels produce noise in neurons. The effect of this noise on the neuronal performance has been modeled using either an approximate or Langevin model based on stochastic differential equations or an exact model based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+ and K+, or only K+ voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas, and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and nonspiking membranes. Even with increasing numbers of channels, the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels.

  4. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis

    Science.gov (United States)

    Ryashko, Lev

    2018-03-01

    A phenomenon of the noise-induced oscillatory multistability in glycolysis is studied. As a basic deterministic skeleton, we consider the two-dimensional Higgins model. The noise-induced generation of mixed-mode stochastic oscillations is studied in various parametric zones. Probabilistic mechanisms of the stochastic excitability of equilibria and noise-induced splitting of randomly forced cycles are analysed by the stochastic sensitivity function technique. A parametric zone of supersensitive Canard-type cycles is localized and studied in detail. It is shown that the generation of mixed-mode stochastic oscillations is accompanied by the noise-induced transitions from order to chaos.

  5. Theory of fluctuations and parametric noise in a point nuclear reactor model

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; San Miguel, M.; Sancho, J.M.

    1984-01-01

    We present a joint description of internal fluctuations and parametric noise in a point nuclear reactor model in which delayed neutrons and a detector are considered. We obtain kinetic equations for the first moments and define effective kinetic parameters which take into account the effect of parametric Gaussian white noise. We comment on the validity of Langevin approximations for this problem. We propose a general method to deal with weak but otherwise arbitrary non-white parametric noise. Exact kinetic equations are derived for Gaussian non-white noise. (author)

  6. Thirty years of progress in applications and modeling of ocean ambient noise

    Science.gov (United States)

    Siderius, Martin; Buckingham, Michael J.

    2012-11-01

    Ambient noise in the ocean is a stochastic process, which traditionally was considered to be a nuisance, since it reduced the detectability of sonar signals of interest. However, over the last thirty years, it has come to be recognized that the ambient noise itself contains useful information about the ocean and ocean processes. To extract the information, various inversion procedures have been developed, based upon which a number of practical applications of the ambient noise have evolved. Since naturally generated ambient noise is always present in the ocean, it has the advantage of being non-invasive and non-damaging to marine life, including marine mammals. In this article, a summary of the commonly encountered ambient noise models is offered, along with the associated inversion procedures, and some of the more recent applications of the ambient noise are highlighted.

  7. Development of a wind farm noise propagation prediction model - project progress to date

    International Nuclear Information System (INIS)

    Robinson, P.; Bullmore, A.; Bass, J.; Sloth, E.

    1998-01-01

    This paper describes a twelve month measurement campaign which is part of a European project (CEC Project JOR3-CT95-0051) with the aim to substantially reduce the uncertainties involved in predicting environmentally radiated noise levels from wind farms (1). This will be achieved by comparing noise levels measure at varying distances from single and multiple sources over differing complexities of terrain with those predicted using a number of currently adopted sound propagation models. Specific objectives within the project are to: establish the important parameters controlling the propagation of wind farm noise to the far field; develop a planning tool for predicting wind farm noise emission levels under practically encountered conditions; place confidence limits on the upper and lower bounds of the noise levels predicted, thus enabling developers to quantify the risk whether noise emission from wind farms will cause nuisance to nearby residents. (Author)

  8. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2015-09-01

    Full Text Available This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solution and obtains its explicit expression. Sufficient conditions for extinction are established as well as nonpersistence in the mean, weak persistence and stochastic permanence. The threshold between weak persistence and extinction is obtained.

  9. Inclusive integral evaluation for mammograms using the hierarchical fuzzy integral (HFI) model

    International Nuclear Information System (INIS)

    Amano, Takashi; Yamashita, Kazuya; Arao, Shinichi; Kitayama, Akira; Hayashi, Akiko; Suemori, Shinji; Ohkura, Yasuhiko

    2000-01-01

    Physical factors (physically evaluated values) and psychological factors (fuzzy measurements) of breast x-ray images were comprehensively evaluated by applying breast x-ray images to an extended stratum-type fuzzy integrating model. In addition, x-ray images were evaluated collectively by integrating the quality (sharpness, graininess, and contrast) of x-ray images and three representative shadows (fibrosis, calcification, tumor) in the breast x-ray images. We selected the most appropriate system for radiography of the breast from three kinds of intensifying screens and film systems for evaluation by this method and investigated the relationship between the breast x-ray images and noise equivalent quantum number, which is called the overall physical evaluation method, and between the breast x-ray images and psychological evaluation by a visual system with a stratum-type fuzzy integrating model. We obtained a linear relationship between the breast x-ray image and noise-equivalent quantum number, and linearity between the breast x-ray image and psychological evaluation by the visual system. Therefore, the determination of fuzzy measurement, which is a scale for fuzzy evaluation of psychological factors of the observer, and physically evaluated values with a stratum-type fuzzy integrating model enabled us to make a comprehensive evaluation of x-ray images that included both psychological and physical aspects. (author)

  10. An architecture for integration of multidisciplinary models

    DEFF Research Database (Denmark)

    Belete, Getachew F.; Voinov, Alexey; Holst, Niels

    2014-01-01

    Integrating multidisciplinary models requires linking models: that may operate at different temporal and spatial scales; developed using different methodologies, tools and techniques; different levels of complexity; calibrated for different ranges of inputs and outputs, etc. On the other hand......, Enterprise Application Integration, and Integration Design Patterns. We developed an architecture of a multidisciplinary model integration framework that brings these three aspects of integration together. Service-oriented-based platform independent architecture that enables to establish loosely coupled...

  11. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    Science.gov (United States)

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  12. Effect of noise on defect chaos in a reaction-diffusion model.

    Science.gov (United States)

    Wang, Hongli; Ouyang, Qi

    2005-06-01

    The influence of noise on defect chaos due to breakup of spiral waves through Doppler and Eckhaus instabilities is investigated numerically with a modified Fitzhugh-Nagumo model. By numerical simulations we show that the noise can drastically enhance the creation and annihilation rates of topological defects. The noise-free probability distribution function for defects in this model is found not to fit with the previously reported squared-Poisson distribution. Under the influence of noise, the distributions are flattened, and can fit with the squared-Poisson or the modified-Poisson distribution. The defect lifetime and diffusive property of defects under the influence of noise are also checked in this model.

  13. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    Science.gov (United States)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  14. An analytical model for studying noise effects in PWR type reactors

    International Nuclear Information System (INIS)

    Meyer, K.

    1975-10-01

    An analytical model based on the one-group diffusion method is described. It has been used for calculating the axial dependence of the spectral density of the ionization chamber noise supposing a site-independent stationary neutron flux distribution. Coolant inlet temperature fluctuations are considered as noise sources. (author)

  15. Model based monitoring of urban traffic noise : Field test results for road side and shielded sides

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Lutgendorf, D.; Wessels, P.W.; Basten, T.G.H.

    2012-01-01

    Urban traffic noise can be a major issue for people and (local) governments. On a local scale the use of measurements is increasing, especially when measures or changes to the local infrastructure are proposed. However, measuring (only) urban traffic noise is a challenging task. By using a model

  16. White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these

  17. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies

    International Nuclear Information System (INIS)

    Morley, D.W.; Hoogh, K. de; Fecht, D.; Fabbri, F.; Bell, M.; Goodman, P.S.; Elliott, P.; Hodgson, S.; Hansell, A.L.; Gulliver, J.

    2015-01-01

    The EU-FP7-funded BioSHaRE project is using individual-level data pooled from several national cohort studies in Europe to investigate the relationship of road traffic noise and health. The detailed input data (land cover and traffic characteristics) required for noise exposure modelling are not always available over whole countries while data that are comparable in spatial resolution between different countries is needed for harmonised exposure assessment. Here, we assess the feasibility using the CNOSSOS-EU road traffic noise prediction model with coarser input data in terms of model performance. Starting with a model using the highest resolution datasets, we progressively introduced lower resolution data over five further model runs and compared noise level estimates to measurements. We conclude that a low resolution noise model should provide adequate performance for exposure ranking (Spearman's rank = 0.75; p < 0.001), but with relatively large errors in predicted noise levels (RMSE = 4.46 dB(A)). - Highlights: • The first implementation of CNOSSOS-EU for national scale noise exposure assessment. • Road traffic noise model performance with varying resolution of inputs is assessed. • Model performance is good with low resolution inputs (r_s = 0.75). • This model will be applied in epidemiological studies of European cohorts. - The CNOSSOS-EU road traffic noise model estimates can be used for international scale exposure assessment when parameterised with freely available low resolution covering a large geographic area.

  18. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  19. Reactor noise diagnostics based on multivariate autoregressive modeling: Application to LOFT [Loss-of-Fluid-Test] reactor process noise

    International Nuclear Information System (INIS)

    Gloeckler, O.; Upadhyaya, B.R.

    1987-01-01

    Multivariate noise analysis of power reactor operating signals is useful for plant diagnostics, for isolating process and sensor anomalies, and for automated plant monitoring. In order to develop a reliable procedure, the previously established techniques for empirical modeling of fluctuation signals in power reactors have been improved. Application of the complete algorithm to operational data from the Loss-of-Fluid-Test (LOFT) Reactor showed that earlier conjectures (based on physical modeling) regarding the perturbation sources in a Pressurized Water Reactor (PWR) affecting coolant temperature and neutron power fluctuations can be systematically explained. This advanced methodology has important implication regarding plant diagnostics, and system or sensor anomaly isolation. 6 refs., 24 figs

  20. The Realistic Versus the Spherical Head Model in EEG Dipole Source Analysis in the Presence of Noise

    National Research Council Canada - National Science Library

    Vanrumste, Bart

    2001-01-01

    .... For 27 electrodes, an EEG epoch of one time sample and spatially white Gaussian noise we found that the importance of the realistic head model over the spherical head model reduces by increasing the noise level.

  1. Source modelling of train noise - Literature review and some initial measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuetao; Jonasson, Hans; Holmberg, Kjell

    2000-07-01

    A literature review of source modelling of railway noise is reported. Measurements on a special test rig at Surahammar and on the new railway line between Arlanda and Stockholm City are reported and analyzed. In the analysis the train is modelled as a number of point sources with or without directivity and each source is combined with analytical sound propagation theory to predict the sound propagation pattern best fitting the measured data. Wheel/rail rolling noise is considered to be the most important noise source. The rolling noise can be modelled as an array of moving point sources, which have a dipole-like horizontal directivity and some kind of vertical directivity. In general it is necessary to distribute the point sources on several heights. Based on our model analysis the source heights for the rolling noise should be below the wheel axles and the most important height is about a quarter of wheel diameter above the railheads. When train speeds are greater than 250 km/h aerodynamic noise will become important and even dominant. It may be important for low frequency components only if the train speed is less than 220 km/h. Little data are available for these cases. It is believed that aerodynamic noise has dipole-like directivity. Its spectrum depends on many factors: speed, railway system, type of train, bogies, wheels, pantograph, presence of barriers and even weather conditions. Other sources such as fans, engine, transmission and carriage bodies are at most second order noise sources, but for trains with a diesel locomotive engine the engine noise will be dominant if train speeds are less than about 100 km/h. The Nord 2000 comprehensive model for sound propagation outdoors, together with the source model that is based on the understandings above, can suitably handle the problems of railway noise propagation in one-third octave bands although there are still problems left to be solved.

  2. Modeling Microbunching from Shot Noise Using Vlasov Solvers

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco; Zholents, Alexander

    2008-01-01

    Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a 2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the beam delivery systems for x-ray FELs and present an application to FERMI(at)Elettra. We discuss, in particular, the impact of the spreader design on microbunching

  3. Modeling signal-to-noise ratio of otoacoustic emissions in workers exposed to different industrial noise levels

    Directory of Open Access Journals (Sweden)

    Parvin Nassiri

    2016-01-01

    Full Text Available Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE. Distortion-product otoacoustic emissions (DPOAEs assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR of OAEs in different frequencies based on the two variables of sound pressure level (SPL and exposure time. Materials and Methods: This case–control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05. Only in signal pressure levels of 88 dBA with an interval time of 10:30–11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038. The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041. The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001. Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the

  4. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  5. Changing beliefs about leisure noise: using health promotion models to investigate young people's engagement with, and attitudes towards, hearing health.

    Science.gov (United States)

    Gilliver, Megan; Beach, Elizabeth Francis; Williams, Warwick

    2015-04-01

    To investigate factors influencing young people's motivation to reduce their leisure noise exposure, and protect their hearing health. Questionnaires were conducted online to investigate young people's hearing health attitudes and behaviour. Items were developed using an integrated health promotion approach. The stage of change model was used to group participants in relation to their engagement with noise reduction behaviour. The health belief model was used to compare each group's perceptions of susceptibility and severity of hearing loss, as well as the benefits and barriers to noise reduction. Results are presented for 1196 young Australians aged between 18 and 35 years. Participants' engagement with noise reduction behaviour was used to assign them to stage of change groupings: Maintenance (11%), Action (28%), Contemplation (14%), or Pre-contemplation (43%). Each group's responses to health belief model items highlighted key differences across the different stages of engagement. Future hearing health promotion may benefit from tailoring intervention activities to best suit the stage of change of individuals. Different information may be useful at each stage to best support and motivate young people to look after their hearing health.

  6. Iterative integral parameter identification of a respiratory mechanics model.

    Science.gov (United States)

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  7. Iterative integral parameter identification of a respiratory mechanics model

    Directory of Open Access Journals (Sweden)

    Schranz Christoph

    2012-07-01

    Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  8. Qualitative Analysis of Integration Adapter Modeling

    OpenAIRE

    Ritter, Daniel; Holzleitner, Manuel

    2015-01-01

    Integration Adapters are a fundamental part of an integration system, since they provide (business) applications access to its messaging channel. However, their modeling and configuration remain under-represented. In previous work, the integration control and data flow syntax and semantics have been expressed in the Business Process Model and Notation (BPMN) as a semantic model for message-based integration, while adapter and the related quality of service modeling were left for further studi...

  9. The Impact of Noise Models on Capacity Performance of Distribution Broadband over Power Lines Networks

    Directory of Open Access Journals (Sweden)

    Athanasios G. Lazaropoulos

    2016-01-01

    Full Text Available This paper considers broadband potential of distribution Broadband over Power Lines (BPL networks when different well-known noise models of the BPL literature are applied. The contribution of this paper is twofold. First, the seven most representative and used noise models of the BPL literature are synopsized in this paper. With reference to this set, the broadband performance of a great number of distribution BPL topologies either Overhead (OV or Underground (UN, either Medium-Voltage (MV or Low-Voltage (LV, is investigated in terms of suitable capacity metrics. Second, based on the proposed capacity metrics, a comparative capacity analysis is performed among various well-validated noise models. Through the careful study of its results, it is demonstrated that during capacity computations of distribution BPL networks, the flat Additive White Gaussian Noise (FL noise model can be comfortably assumed as an efficient noise model either in 3–30 MHz or in 3–88 MHz frequency range since its capacity differences with the other well-proven noise models are negligible.

  10. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  11. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  12. modelling traffic noise level on roadside traders at wurukum market

    African Journals Online (AJOL)

    HOD

    . This leads to poor planning and traffic control strategies within the town to reduce ... embark on a study to assess the level of noise pollution .... industrial products such as cement, fuel, timber, water, waste, etc ... used for a manual traffic count.

  13. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Moustafa Ahmed

    2014-01-01

    Full Text Available This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN. We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser.

  14. Output power PDF of a saturated semiconductor optical amplifier: Second-order noise contributions by path integral method

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper; Tromborg, Bjarne

    2007-01-01

    We have developed a second-order small-signal model for describing the nonlinear redistribution of noise in a saturated semiconductor optical amplifier. In this paper, the details of the model are presented. A numerical example is used to compare the model to statistical simulations. We show that...

  15. INM Integrated Noise Model Version 2. Programmer’s Guide

    Science.gov (United States)

    1979-09-01

    CURVA-*1RE C ’P - RADIANS "F ARC IELT - ANILE RETWEEr T^OSISITVE X DIPECTION ArD A LINE JOINING THE CEV𔄁E "F THE CURVE WITH THE BrGINNING OF THE...E TkD!E rOP GENF1 INTEPPOIATIO’l C IELT - RATIC CF PrgEfl SETTIVIP TC THAT REQUIRED PCR FINAL C" Pt’r TYP A"TIT"’nE C E"D - END fF "ST"TCrIC’: %O!IE

  16. The Role of Flow Diagnostic Techniques in Fan and Open Rotor Noise Modeling

    Science.gov (United States)

    Envia, Edmane

    2016-01-01

    A principal source of turbomachinery noise is the interaction of the rotating and stationary blade rows with the perturbations in the airstream through the engine. As such, a lot of research has been devoted to the study of the turbomachinery noise generation mechanisms. This is particularly true of fan and open rotors, both of which are the major contributors to the overall noise output of modern aircraft engines. Much of the research in fan and open rotor noise has been focused on developing theoretical models for predicting their noise characteristics. These models, which run the gamut from the semi-empirical to fully computational ones, are, in one form or another, informed by the description of the unsteady flow-field in which the propulsors (i.e., the fan and open rotors) operate. Not surprisingly, the fidelity of the theoretical models is dependent, to a large extent, on capturing the nuances of the unsteady flowfield that have a direct role in the noise generation process. As such, flow diagnostic techniques have proven to be indispensible in identifying the shortcoming of theoretical models and in helping to improve them. This presentation will provide a few examples of the role of flow diagnostic techniques in assessing the fidelity and robustness of the fan and open rotor noise prediction models.

  17. Noise variation by compressive stress on the model core of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Masato, E-mail: mizokami.g76.masato@jp.nssmc.com; Kurosaki, Yousuke

    2015-05-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise.

  18. Noise variation by compressive stress on the model core of power transformers

    International Nuclear Information System (INIS)

    Mizokami, Masato; Kurosaki, Yousuke

    2015-01-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise

  19. An instantaneous spatiotemporal model to predict a bicyclist's Black Carbon exposure based on mobile noise measurements

    Science.gov (United States)

    Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc

    2013-11-01

    Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand direct measurement of particulate matter concentration remains expensive. This paper proposes to use in-traffic noise measurements in combination with geographical and meteorological information for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and easier to perform than mobile air pollution measurements and can easily be used in participatory sensing campaigns. The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical knowledge on the emission of noise and BC, the low frequency engine related noise and the difference between high frequency and low frequency noise that indicates the traffic speed, are introduced in the model. In addition, it is shown that splitting BC in a local and a background component significantly improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle trips. The predicted average exposure over a single trip correlates with measurements with a Pearson coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the difference between high and low frequency noise and a street canyon index expressing local air pollution dispersion properties.

  20. Design and test results of a low-noise readout integrated circuit for high-energy particle detectors

    International Nuclear Information System (INIS)

    Zhang Mingming; Chen Zhongjian; Zhang Yacong; Lu Wengao; Ji Lijiu

    2010-01-01

    A low-noise readout integrated circuit for high-energy particle detector is presented. The noise of charge sensitive amplifier was suppressed by using single-side amplifier and resistors as source degeneration. Continuous-time semi-Gaussian filter is chosen to avoid switch noise. The peaking time of pulse shaper and the gain can be programmed to satisfy multi-application. The readout integrated circuit has been designed and fabricated using a 0.35 μm double-poly triple-metal CMOS technology. Test results show the functions of the readout integrated circuit are correct. The equivalent noise charge with no detector connected is 500-700 e in the typical mode, the gain is tunable within 13-130 mV/fC and the peaking time varies from 0.7 to 1.6 μs, in which the average gain is about 20.5 mV/fC, and the linearity reaches 99.2%. (authors)

  1. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  2. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  3. Road traffic noise prediction model for heterogeneous traffic based on ASJ-RTN Model 2008 with consideration of horn

    Science.gov (United States)

    Hustim, M.; Arifin, Z.; Aly, S. H.; Ramli, M. I.; Zakaria, R.; Liputo, A.

    2018-04-01

    This research aimed to predict the noise produced by the traffic in the road network in Makassar City using ASJ-RTN Model 2008 by calculating the horn sound. Observations were taken at 37 survey points on road side. The observations were conducted at 06.00 - 18.00 and 06.00 - 21.00 which research objects were motorcycle (MC), light vehicle (LV) and heavy vehicle (HV). The observed data were traffic volume, vehicle speed, number of horn and traffic noise using Sound Level Meter Tenmars TM-103. The research result indicates that prediction noise model by calculating the horn sound produces the average noise level value of 78.5 dB having the Pearson’s correlation and RMSE of 0.95 and 0.87. Therefore, ASJ-RTN Model 2008 prediction model by calculating the horn sound is said to be sufficiently good for predicting noise level.

  4. Development of in-vehicle noise prediction models for Mumbai Metropolitan Region, India

    Directory of Open Access Journals (Sweden)

    Vishal Konbattulwar

    2016-08-01

    Full Text Available Traffic noise is one of the major sources of noise pollution in metropolitan regions causing various health hazards (e.g., long-term sleep disturbance, increase in blood pressure, physical tension, etc.. In this research, noise prediction models, which can measure the noise level experienced by the commuters while driving or traveling by motorized vehicles in the Mumbai Metropolitan Region, India, were developed. These models were developed by conducting a comprehensive study of various factors (e.g., vehicle speed, traffic volume and road characteristics, etc. affecting the levels of concentration of noise. A widespread data collection was done by conducting road trips of total length of 403.80 km via different modes of transport, such as air-conditioned (A/C car, non A/C car, bus and intermediate public transport (i.e., traditional 3-wheeler autos. Multiple regression analyses were performed to develop a functional relation between equivalent noise levels experienced by passengers while traveling (which was considered as a dependent variable and explanatory variables such as traffic characteristics, vehicle class, vehicle speed, various other location characteristics, etc. Noise levels are generally higher in the vicinity of intersections and signalized junctions. Independent data sets (for each mode of transport were used to validate the developed models. It was noted that maximum differences between observed and estimated values from the model were within the range of ±7.8% of the observed value.

  5. Swept-sine noise-induced damage as a hearing loss model for preclinical assays

    Directory of Open Access Journals (Sweden)

    Lorena eSanz

    2015-02-01

    Full Text Available Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (violet noises to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 inhibitors P17 and P144 on noise-induced hearing loss. CBA mice were exposed to violet swept-sine noise with different frequency ranges (2-20 or 9-13 kHz and levels (105 or 120 dB SPL for 30 minutes. Mice were evaluated by auditory brainstem response and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by violet swept-sine noise depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9-13 kHz noise caused an auditory threshold shift in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of noise-induced hearing loss, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair.

  6. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  7. Non-white noise in fMRI: Does modelling have an impact?

    DEFF Research Database (Denmark)

    Lund, Torben Ellegaard; Madsen, Kristoffer Hougaard; Sidaros, Karam

    2006-01-01

    are typically modelled as an autoregressive (AR) process. In this paper, we propose an alternative approach: Nuisance Variable Regression (NVR). By inclusion of confounding effects in a general linear model (GLM), we first confirm that the spatial distribution of the various fMRI noise sources is similar......The sources of non-white noise in Blood Oxygenation Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) are many. Familiar sources include low-frequency drift due to hardware imperfections, oscillatory noise due to respiration and cardiac pulsation and residual movement artefacts...

  8. Modeling speech intelligibility based on the signal-to-noise envelope power ratio

    DEFF Research Database (Denmark)

    Jørgensen, Søren

    of modulation frequency selectivity in the auditory processing of sound with a decision metric for intelligibility that is based on the signal-to-noise envelope power ratio (SNRenv). The proposed speech-based envelope power spectrum model (sEPSM) is demonstrated to account for the effects of stationary...... through three commercially available mobile phones. The model successfully accounts for the performance across the phones in conditions with a stationary speech-shaped background noise, whereas deviations were observed in conditions with “Traffic” and “Pub” noise. Overall, the results of this thesis...

  9. Topological quantum theories and integrable models

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O.

    1991-01-01

    The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit

  10. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    Science.gov (United States)

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  11. Stochastic model for detection of signals in noise

    OpenAIRE

    Klein, Stanley A.; Levi, Dennis M.

    2009-01-01

    Fifty years ago Birdsall, Tanner, and colleagues made rapid progress in developing signal detection theory into a powerful psychophysical tool. One of their major insights was the utility of adding external noise to the signals of interest. These methods have been enhanced in recent years by the addition of multipass and classification-image methods for opening up the black box. There remain a number of as yet unresolved issues. In particular, Birdsall developed a theorem that large amounts o...

  12. National Oceanic and Atmospheric Administration's Cetacean and Sound Mapping Effort: Continuing Forward with an Integrated Ocean Noise Strategy.

    Science.gov (United States)

    Harrison, Jolie; Ferguson, Megan; Gedamke, Jason; Hatch, Leila; Southall, Brandon; Van Parijs, Sofie

    2016-01-01

    To help manage chronic and cumulative impacts of human activities on marine mammals, the National Oceanic and Atmospheric Administration (NOAA) convened two working groups, the Underwater Sound Field Mapping Working Group (SoundMap) and the Cetacean Density and Distribution Mapping Working Group (CetMap), with overarching effort of both groups referred to as CetSound, which (1) mapped the predicted contribution of human sound sources to ocean noise and (2) provided region/time/species-specific cetacean density and distribution maps. Mapping products were presented at a symposium where future priorities were identified, including institutionalization/integration of the CetSound effort within NOAA-wide goals and programs, creation of forums and mechanisms for external input and funding, and expanded outreach/education. NOAA is subsequently developing an ocean noise strategy to articulate noise conservation goals and further identify science and management actions needed to support them.

  13. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  14. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    Science.gov (United States)

    2015-06-01

    of JP-8 and a Fischer- Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 116(1): 239-248. Gallinat, J...AFRL-RH-WP-TR-2015-0084 IN VITRO STUDIES AND PRELIMINARY MATHEMATICAL MODEL FOR JET FUEL AND NOISE INDUCED AUDITORY IMPAIRMENT...April 2014 – September 2014 4. TITLE AND SUBTITLE In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory

  15. Total Variation Based Parameter-Free Model for Impulse Noise Removal

    DEFF Research Database (Denmark)

    Sciacchitano, Federica; Dong, Yiqiu; Andersen, Martin Skovgaard

    2017-01-01

    We propose a new two-phase method for reconstruction of blurred images corrupted by impulse noise. In the first phase, we use a noise detector to identify the pixels that are contaminated by noise, and then, in the second phase, we reconstruct the noisy pixels by solving an equality constrained...... total variation minimization problem that preserves the exact values of the noise-free pixels. For images that are only corrupted by impulse noise (i. e., not blurred) we apply the semismooth Newton's method to a reduced problem, and if the images are also blurred, we solve the equality constrained...... reconstruction problem using a first-order primal-dual algorithm. The proposed model improves the computational efficiency (in the denoising case) and has the advantage of being regularization parameter-free. Our numerical results suggest that the method is competitive in terms of its restoration capabilities...

  16. Moment stability for a predator-prey model with parametric dichotomous noises

    Science.gov (United States)

    Jin, Yan-Fei

    2015-06-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. Project supported by the National Natural Science Foundation of China (Grant No. 11272051).

  17. Dynamical response of the Ising model to the time dependent magnetic field with white noise

    Science.gov (United States)

    Akıncı, Ümit

    2018-03-01

    The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.

  18. Land Use Regression Modeling of Outdoor Noise Exposure in Informal Settlements in Western Cape, South Africa.

    Science.gov (United States)

    Sieber, Chloé; Ragettli, Martina S; Brink, Mark; Toyib, Olaniyan; Baatjies, Roslyn; Saucy, Apolline; Probst-Hensch, Nicole; Dalvie, Mohamed Aqiel; Röösli, Martin

    2017-10-20

    In low- and middle-income countries, noise exposure and its negative health effects have been little explored. The present study aimed to assess the noise exposure situation in adults living in informal settings in the Western Cape Province, South Africa. We conducted continuous one-week outdoor noise measurements at 134 homes in four different areas. These data were used to develop a land use regression (LUR) model to predict A-weighted day-evening-night equivalent sound levels (L den ) from geographic information system (GIS) variables. Mean noise exposure during day (6:00-18:00) was 60.0 A-weighted decibels (dB(A)) (interquartile range 56.9-62.9 dB(A)), during night (22:00-6:00) 52.9 dB(A) (49.3-55.8 dB(A)) and average L den was 63.0 dB(A) (60.1-66.5 dB(A)). Main predictors of the LUR model were related to road traffic and household density. Model performance was low (adjusted R 2 = 0.130) suggesting that other influences than those represented in the geographic predictors are relevant for noise exposure. This is one of the few studies on the noise exposure situation in low- and middle-income countries. It demonstrates that noise exposure levels are high in these settings.

  19. Land Use Regression Modeling of Outdoor Noise Exposure in Informal Settlements in Western Cape, South Africa

    Science.gov (United States)

    Sieber, Chloé; Ragettli, Martina S.; Toyib, Olaniyan; Baatjies, Roslyn; Saucy, Apolline; Probst-Hensch, Nicole; Dalvie, Mohamed Aqiel; Röösli, Martin

    2017-01-01

    In low- and middle-income countries, noise exposure and its negative health effects have been little explored. The present study aimed to assess the noise exposure situation in adults living in informal settings in the Western Cape Province, South Africa. We conducted continuous one-week outdoor noise measurements at 134 homes in four different areas. These data were used to develop a land use regression (LUR) model to predict A-weighted day-evening-night equivalent sound levels (Lden) from geographic information system (GIS) variables. Mean noise exposure during day (6:00–18:00) was 60.0 A-weighted decibels (dB(A)) (interquartile range 56.9–62.9 dB(A)), during night (22:00–6:00) 52.9 dB(A) (49.3–55.8 dB(A)) and average Lden was 63.0 dB(A) (60.1–66.5 dB(A)). Main predictors of the LUR model were related to road traffic and household density. Model performance was low (adjusted R2 = 0.130) suggesting that other influences than those represented in the geographic predictors are relevant for noise exposure. This is one of the few studies on the noise exposure situation in low- and middle-income countries. It demonstrates that noise exposure levels are high in these settings. PMID:29053590

  20. Noise propagation in resolution modeled PET imaging and its impact on detectability

    International Nuclear Information System (INIS)

    Rahmim, Arman; Tang, Jing

    2013-01-01

    Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance. (paper)

  1. Cascaded analysis of signal and noise propagation through a heterogeneous breast model

    International Nuclear Information System (INIS)

    Mainprize, James G.; Yaffe, Martin J.

    2010-01-01

    Purpose: The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the ''power law'' filter used to generate the texture of the tissue distribution. Methods: A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. Results: As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Conclusions: Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  2. Quantifying the Effects of Noise on Diffuse Interface Models: Cahn-Hilliard-Cook equations

    Science.gov (United States)

    Pfeifer, Spencer; Ganapathysubramanian, Baskar

    2015-03-01

    We present an investigation into the dynamics of phase separation through numerical simulations of the Cahn-Hilliard-Cook (CHC) equation. This model is an extension of the well-known Cahn- Hilliard equation, perturbed by an additive white noise. Studies have shown that random fluctuations are critical for proper resolution of physical phenomena. This is especially true for phase critical systems. We explore the transient behavior of the solution space for varying levels of noise. This is enabled by our massively scalable finite element-based numerical framework. We briefly examine the interplay between noise level and discretization (spatial and temporal) in obtaining statistically consistent solutions. We show that the added noise accelerates progress towards phase separation, but retards dynamics throughout subsequent coarsening. We identify a scaling exponent relating morphology metrics with the level of noise. We observe a very clear scaling effect of finite domain size, which is observed to be offset by increasing levels of noise. Domain scaling reveals a clear microstructural asymmetry at various stages of the evolution for lower noise levels. In contrast, higher noise levels tend to produce more uniform morphologies.

  3. Integrating ambient noise with GIS for a new perspective on volcano imaging and monitoring: The case study of Mt. Etna

    Science.gov (United States)

    Guardo, R.; De Siena, L.

    2017-11-01

    The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.

  4. Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies

    Science.gov (United States)

    Jukić, Tomislav; Brandl, Paul; Zimmermann, Horst

    2018-04-01

    The excess noise of avalanche photodiodes (APDs) integrated in a high-voltage (HV) CMOS process and in a pin-photodiode CMOS process, both with 0.35-μm structure sizes, is described. A precise excess noise measurement technique is applied using a laser source, a spectrum analyzer, a voltage source, a current meter, a cheap transimpedance amplifier, and a personal computer with a MATLAB program. In addition, usage for on-wafer measurements is demonstrated. The measurement technique is verified with a low excess noise APD as a reference device with known ratio k = 0.01 of the impact ionization coefficients. The k-factor of an APD developed in HV CMOS is determined more accurately than known before. In addition, it is shown that the excess noise of the pin-photodiode CMOS APD depends on the optical power for avalanche gains above 35 and that modulation doping can suppress this power dependence. Modulation doping, however, increases the excess noise.

  5. Testing periodically integrated autoregressive models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    1997-01-01

    textabstractPeriodically integrated time series require a periodic differencing filter to remove the stochastic trend. A non-periodic integrated time series needs the first-difference filter for similar reasons. When the changing seasonal fluctuations for the non-periodic integrated series can be

  6. Experimental validation of the twins prediction program for rolling noise. Pt.1: description of the model and method

    NARCIS (Netherlands)

    Thompson, D.J.; Hemsworth, B.; Vincent, N.

    1996-01-01

    The C163 Expert Committee of the European Rail Research Institute (ERRI) concerned with Railway Noise, has been developing theoretical models for the generation of wheel/rail rolling noise. These models have been brought together into a software package, called TWINS ("Track-Wheel Interaction Noise

  7. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

    Science.gov (United States)

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-09-05

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.

  8. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    Science.gov (United States)

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  9. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    Science.gov (United States)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  10. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  11. V/STOL Rotary Propulsor Noise Prediction Model Update and Evaluation.

    Science.gov (United States)

    1979-12-01

    Noise as Observed on and Jacques the Bertin Aerotrain July 1976 JSV 54(2) 3) Hoch, Berthelot Use of the Bertin Aerotrain for the Investigation July 1976...Atencio G.E. X376-B Jots 2 Drevet, et al Aerotrain - G.E. J85 9 Jaeck Wind Tunnel - G.E. J85 Nozzles 13 Pacbian, et al Wind Tunnel Model Jet 23 Brooks...Calculat6d Full-Scale Jet Noise Data Base Item 2. - This paper presents measurements made of the noise from a J85 engine installed on the Aerotrain . Data

  12. Noise effects on the health status in a dynamic failure model for living organisms

    Science.gov (United States)

    Kang, H.; Jo, J.; Choi, M. Y.; Choi, J.; Yoon, B.-G.

    2007-03-01

    We study internal and external noise effects on the healthy-unhealthy transition and related phenomena in a dynamic failure model for living organisms. It is found that internal noise makes the system weaker, leading to breakdown under smaller stress. The discontinuous healthy-unhealthy transition in a system with global load sharing below a critical point is naturally explained in terms of the bistability for the health status. External noise present in constant stress gives similar results; further, it induces resonance in response to periodic stress, regardless of load transfer. In the case of local load sharing, such periodic stress is revealed more hazardous than the constant stress.

  13. Measurement, characterization, and modeling of noise in staring infrared focal plane arrays

    International Nuclear Information System (INIS)

    Scribner, D.A.; Kruer, M.R.; Gridley, C.J.; Sarkady, K.

    1987-01-01

    An account is given of selected methods for the measurement and characterization of spatial and temporal noise in staring focal plane arrays (FPAs), in order to demonstrate how these results can be used in simulations and analytic models to predict the performance of selected staring sensors. Attention is given to MIR FPAs applicable to the detection and tracking of point sources, and to the ways in which these spatial and temporal noise measurements can be incorporated into simulations and sensors having staring FPAs. Methods for predicting the performance of selected staring sensor systems are derivable from spatial and temporal noise values. 13 references

  14. Effects of Perfectly Correlated and Anti-Correlated Noise in a Logistic Growth Model

    International Nuclear Information System (INIS)

    Zhang Li; Cao Li

    2011-01-01

    The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to analyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in both cases, the increase of the multiplicative noise intensity cause tumor cell extinction. In the perfectly anti-correlated case, the stationary probability distribution as a function of tumor cell population exhibit two extrema. (general)

  15. Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors

    International Nuclear Information System (INIS)

    Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J.

    2014-01-01

    Highlights: • A DES of a turbocharger compressor working at peak pressure point is performed. • In-duct pressure signals are measured in a steady flow rig with 3-sensor arrays. • Pressure spectra comparison is performed as a validation for the numerical model. • A suitable comparison methodology is developed, relying on pressure decomposition. • Whoosh noise at outlet duct is detected in experimental and numerical spectra. - Abstract: Centrifugal compressors working in the surge side of the map generate a broadband noise in the range of 1–3 kHz, named as whoosh noise. This noise is perceived at strongly downsized engines operating at particular conditions (full load, tip-in and tip-out maneuvers). A 3-dimensional CFD model of a centrifugal compressor is built to analyze fluid phenomena related to whoosh noise. A detached eddy simulation is performed with the compressor operating at the peak pressure point of 160 krpm. A steady flow rig mounted on an anechoic chamber is used to obtain experimental measurements as a means of validation for the numerical model. In-duct pressure signals are obtained in addition to standard averaged global variables. The numerical simulation provides global variables showing excellent agreement with experimental measurements. Pressure spectra comparison is performed to assess noise prediction capability of numerical model. The influence of the type and position of the virtual pressure probes is evaluated. Pressure decomposition is required by the simulations to obtain meaningful spectra. Different techniques for obtaining pressure components are analyzed. At the simulated conditions, a broadband noise in 1–3 kHz frequency band is detected in the experimental measurements. This whoosh noise is also captured by the numerical model

  16. Effects of noise on a computational model for disease states of mood disorders

    Science.gov (United States)

    Tobias Huber, Martin; Krieg, Jürgen-Christian; Braun, Hans Albert; Moss, Frank

    2000-03-01

    Nonlinear dynamics are currently proposed to explain the progressive course of recurrent mood disorders starting with isolated episodes and ending with accelerated irregular (``chaotic") mood fluctuations. Such a low-dimensional disease model is attractive because of its principal accordance with biological disease models, i.e. the kindling and biological rhythms model. However, most natural systems are nonlinear and noisy and several studies in the neuro- and physical sciences have demonstrated interesting cooperative behaviors arising from interacting random and deterministic dynamics. Here, we consider the effects of noise on a recent neurodynamical model for the timecourse of affective disorders (Huber et al.: Biological Psychiatry 1999;46:256-262). We describe noise effects on temporal patterns and mean episode frequencies of various in computo disease states. Our simulations demonstrate that noise can cause unstructured randomness or can maximize periodic order. The frequency of episode occurence can increase with noise but it can also remain unaffected or even can decrease. We show further that noise can make visible bifurcations before they would normally occur under deterministic conditions and we quantify this behavior with a recently developed statistical method. All these effects depend critically on both, the dynamic state and the noise intensity. Implications for neurobiology and course of mood disorders are discussed.

  17. Results from an acoustic modelling study of seismic airgun survey noise in Queen Charlotte Basin

    Energy Technology Data Exchange (ETDEWEB)

    MacGillivray, A.O.; Chapman, N.R. [Victoria Univ., BC (Canada). School of Earth and Ocean Sciences

    2005-12-07

    An acoustic modelling study was conducted to examine seismic survey noise propagation in the Queen Charlotte Basin (QCB) and better understand the physical aspects of sound transmission. The study results are intended to help determine the potential physiological and behavioural effects of airgun noise on marine mammals and fish. The scope of the study included a numerical simulation of underwater sound transmission in QCB in areas where oil and gas exploration activities may be conducted; a forecast of received noise levels by combining acoustic transmission loss computations with acoustic source levels representative of seismic exploration activity and, the use of received forecasts to estimate zones of impact for marine mammals. The critical environmental parameters in the QCB are the bathymetry of the ocean, the sound speed profile in the water and the geoacoustic profile of the seabed. The RAM acoustic propagation model developed by the United States Naval Research Laboratory was used to compute acoustic transmission loss in the QCB. The source level and directionality of the seismic array was determined by a full-waveform array source signature model. This modelling study of noise propagation from seismic surveys revealed several key findings. Among them, it showed that received noise levels in the water are affected by the source location, array orientation and the shape of the sound speed profile with respect to water depth. It also showed that noise levels are lowest in shallow bathymetry. 30 refs., 5 tabs., 13 figs.

  18. Using models in Integrated Ecosystem Assessment of coastal areas

    Science.gov (United States)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  19. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  20. On estimation of the noise variance in high-dimensional linear models

    OpenAIRE

    Golubev, Yuri; Krymova, Ekaterina

    2017-01-01

    We consider the problem of recovering the unknown noise variance in the linear regression model. To estimate the nuisance (a vector of regression coefficients) we use a family of spectral regularisers of the maximum likelihood estimator. The noise estimation is based on the adaptive normalisation of the squared error. We derive the upper bound for the concentration of the proposed method around the ideal estimator (the case of zero nuisance).

  1. Median Filter Noise Reduction of Image and Backpropagation Neural Network Model for Cervical Cancer Classification

    Science.gov (United States)

    Wutsqa, D. U.; Marwah, M.

    2017-06-01

    In this paper, we consider spatial operation median filter to reduce the noise in the cervical images yielded by colposcopy tool. The backpropagation neural network (BPNN) model is applied to the colposcopy images to classify cervical cancer. The classification process requires an image extraction by using a gray level co-occurrence matrix (GLCM) method to obtain image features that are used as inputs of BPNN model. The advantage of noise reduction is evaluated by comparing the performances of BPNN models with and without spatial operation median filter. The experimental result shows that the spatial operation median filter can improve the accuracy of the BPNN model for cervical cancer classification.

  2. Modeling of pH Dependent Electrochemical Noise in Ion Sensitive Field Effect Transistors ISFET

    Directory of Open Access Journals (Sweden)

    M. P. Das

    2013-02-01

    Full Text Available pH ISFETs are very important sensor for in vivo continuous monitoring application of physiological and environmental system. The accuracy of Ion Sensitive Field Effect Transistor (ISFET output measurement is greatly affected by the presences of noise, drift and slow response of the device. Although the noise analysis of ISFET so far performed in different literature relates only to sources originated from Field Effect Transistor (FET structure which are almost constant for a particular device, the pH dependent electrochemical noise has not been substantially explored and analyzed. In this paper we have investigated the low frequency pH dependent electrochemical noise that originates from the ionic conductance of the electrode-electrolyte-Field Effect Transistor structure of the device and that the noise depends on the concentration of the electrolyte and 1/f in nature. The statistical and frequency analysis of this electrochemical noise of a commercial ISFET sensor, under room temperature has been performed for six different pH values ranging from pH2 to pH9.2. We have also proposed a concentration dependent a/f & b/f2 model of the noise with different values of the coefficients a, b.

  3. Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy (Conference Presentation)

    Science.gov (United States)

    DuBose, Theodore B.; Milanfar, Peyman; Izatt, Joseph A.; Farsiu, Sina

    2016-03-01

    The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.

  4. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  5. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  6. Stochastic resonance and noise delayed extinction in a model of two competing species

    Science.gov (United States)

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  7. Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.

    Science.gov (United States)

    Mao, Tianqi; Wang, Zhaocheng; Wang, Qi

    2017-01-23

    Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.

  8. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  9. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  10. Performance of FHWA model for predicting traffic noise: a case study of metropolitan city, Lucknow (India

    Directory of Open Access Journals (Sweden)

    J. B. Srivastava

    2009-09-01

    Full Text Available Industrial and transport activities are the two major sources of noise pollution in any metropolitan city. Lucknow city, the capital of the largest populated state Uttar Pradesh in India has an area of 310 sq. km and is rapidly growing as a commercial, industrial and trading centre of northern India. The population of Lucknow city as per census 2001 is 22.45 Lacs. It is expected that by the year 2021 it will make 45 Lacs. The total vehicle population in Lucknow city on 31 March 2008, was nearly 1 million with almost 80% two wheelers, 12% cars, 1.36% three wheelers, 0.45% buses etc. A study was carried out to assess the existing status of noise levels and its impacts on the environment with a possibility of further expansion of the city. Ambient noise levels were measured at different locations selected on the basis of land use such as silence, heavy traffic and residential and commercial zones. It was found that noise levels at all selected locations were much higher (75–90 dB than the prescribed limits. The observed traffic volume and data on road geometry were used to predict noise levels using Federal Highway Administration Agency (FHWA model and the calculated noise levels were compared with the observed levels for checking the suitability of this model for predicting the future levels. It was established that the results obtained by FHWA model were very close to the observed noise levels and that the model was suitable to be used for other similar metropolitan cities in India.

  11. Compact modelling of InAlN/GaN HEMT for low noise applications

    International Nuclear Information System (INIS)

    Sakalas, P; Šimukovič, A; Matulionis, A; Piotrowicz, S; Jardel, O; Delage, S L; Mukherjee, A

    2014-01-01

    This paper presents results of high-frequency noise modelling of InAlN/GaN high electron mobility transistors (HEMTs) with different formulations of the minimum noise figure NF min . Current–voltage characteristics and s-parameters of 0.15 μm gate length and 2 × 75 μm gate width InAlN/GaN HEMTs were measured at room temperature in a wide frequency range (300 MHz to 50 GHz) and bias range (V GS from −4.8 to 1 V and V DS from 0 to 21 V). Both the EEHEMT1 and Angelov GaN compact models yielded excellent agreement for transfer and output characteristics, transconductance g m , and f T , f max. High-frequency noise parameters NF min , R n , Γ OPT of InAlN/GaN HEMT were measured in 8–50 GHz frequency band. Noise formulation within the EEHEMT1 model underestimates the measured NF min and R n . The well known three-parameter PRC noise model is in a better agreement with the measured data but neglects the shot noise resulting from the gate leakage. The inductive degenerated source matching method and EEHEMT1 were used to design a single stage LNA operated at 8 GHz frequency. A 10 dB gain with an input reflection of −12 dB with a 2.5 dB of noise factor were obtained at 8 GHz. (paper)

  12. Evaluation and Modelling of Traffic Noise on the Asian Highway in Golestan National Park, Iran

    Directory of Open Access Journals (Sweden)

    Gharibi Shiva

    2016-01-01

    Full Text Available The increasing number of vehicles on Iran’s highways and major roads has led to an increase in noise levels. As a result, traffic is now considered a main source of noise pollution. This paper reports on the modelling of traffic noise levels in Golestan National Park, Golestan using vehicle data and other environmental features. For the evaluation of noise and the recording of independent environmental variables, Sampling stations were selected using a systematic-random method at 76 points at various distances and between 0-250 meters from the road. At each sampling point, traffic flow (number and speed of vehicles, number of horn beeps was measured for 15 minutes from 8 am to 8 pm. Simultaneously other environmental variables were assessed, including the geometry of the road surface and location conditions .The best multivariable regression based on the correlation coefficient (R and the coefficient of determination (R2 was achieved. The R-square (73% and the adjusted R-square (68% of the regression equation were 73% and 68% respectively. The results of modelling show that the most important variables affecting noise pollution are distance from the road, roughness coefficient, speed of medium-weight vehicles, relative humidity, and height and number of light vehicles. There is a negative correlation with distance from the road and noise pollution.The accuracy of the model was found to be about ±5 dB. Therefore, the model is suggested for the prediction of traffic noise on the Asian Highway in Golestan National Park.

  13. Comment on ``Correlated noise in a logistic growth model''

    Science.gov (United States)

    Behera, Anita; O'Rourke, S. Francesca C.

    2008-01-01

    We argue that the results published by Ai [Phys. Rev. E 67, 022903 (2003)] on “correlated noise in logistic growth” are not correct. Their conclusion that, for larger values of the correlation parameter λ , the cell population is peaked at x=0 , which denotes a high extinction rate, is also incorrect. We find the reverse behavior to their results, that increasing λ promotes the stable growth of tumor cells. In particular, their results for the steady-state probability, as a function of cell number, at different correlation strengths, presented in Figs. 1 and 2 of their paper show different behavior than one would expect from the simple mathematical expression for the steady-state probability. Additionally, their interpretation that at small values of cell number the steady-state probability increases as the correlation parameter is increased is also questionable. Another striking feature in their Figs. 1 and 3 is that, for the same values of the parameters λ and α , their simulation produces two different curves, both qualitatively and quantitatively.

  14. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  15. Traffic noise in shielded urban areas: comparison of experimental data with model results

    NARCIS (Netherlands)

    Randrianoelina, A.; Salomons, E.M.

    2008-01-01

    Noise maps of cities are commonly produced with rather simple engineering models for sound propagation. These models may be inaccurate in complex urban situations, in particular in situations with street canyons. Street canyons are urban areas that are partly or completely enclosed by buildings, for

  16. An Analytical Model for Spectral Peak Frequency Prediction of Substrate Noise in CMOS Substrates

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.

    2013-01-01

    This paper proposes an analytical model describing the generation of switching current noise in CMOS substrates. The model eliminates the need for SPICE simulations in existing methods by conducting a transient analysis on a generic CMOS inverter and approximating the switching current waveform us...

  17. Low frequency noise from wind turbines mechanisms of generation and its modelling

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    competitive designs compared with the upwind threebladed rotor. The simulation package comprises an aeroelastic time simulation code HAWC2 and an acoustic low frequency noise (LFN) prediction model. Computed time traces of rotor thrust and rotor torque from the aeroelastic model are input to the acoustic...

  18. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Tang, Jie [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  19. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    Science.gov (United States)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  20. Computer Modelling of Functional Aspects of Noise in Endogenously Oscillating Neurons

    Science.gov (United States)

    Huber, M. T.; Dewald, M.; Voigt, K.; Braun, H. A.; Moss, F.

    1998-03-01

    Membrane potential oscillations are a widespread feature of neuronal activity. When such oscillations operate close to the spike-triggering threshold, noise can become an essential property of spike-generation. According to that, we developed a minimal Hodgkin-Huxley-type computer model which includes a noise term. This model accounts for experimental data from quite different cells ranging from mammalian cortical neurons to fish electroreceptors. With slight modifications of the parameters, the model's behavior can be tuned to bursting activity, which additionally allows it to mimick temperature encoding in peripheral cold receptors including transitions to apparently chaotic dynamics as indicated by methods for the detection of unstable periodic orbits. Under all conditions, cooperative effects between noise and nonlinear dynamics can be shown which, beyond stochastic resonance, might be of functional significance for stimulus encoding and neuromodulation.

  1. Assessment of physiological noise modelling methods for functional imaging of the spinal cord.

    Science.gov (United States)

    Kong, Yazhuo; Jenkinson, Mark; Andersson, Jesper; Tracey, Irene; Brooks, Jonathan C W

    2012-04-02

    The spinal cord is the main pathway for information between the central and the peripheral nervous systems. Non-invasive functional MRI offers the possibility of studying spinal cord function and central sensitisation processes. However, imaging neural activity in the spinal cord is more difficult than in the brain. A significant challenge when dealing with such data is the influence of physiological noise (primarily cardiac and respiratory), and currently there is no standard approach to account for these effects. We have previously studied the various sources of physiological noise for spinal cord fMRI at 1.5T and proposed a physiological noise model (PNM) (Brooks et al., 2008). An alternative de-noising strategy, selective averaging filter (SAF), was proposed by Deckers et al. (2006). In this study we reviewed and implemented published physiological noise correction methods at higher field (3T) and aimed to find the optimal models for gradient-echo-based BOLD acquisitions. Two general techniques were compared: physiological noise model (PNM) and selective averaging filter (SAF), along with regressors designed to account for specific signal compartments and physiological processes: cerebrospinal fluid (CSF), motion correction (MC) parameters, heart rate (HR), respiration volume per time (RVT), and the associated cardiac and respiratory response functions. Functional responses were recorded from the cervical spinal cord of 18 healthy subjects in response to noxious thermal and non-noxious punctate stimulation. The various combinations of models and regressors were compared in three ways: the model fit residuals, regression model F-tests and the number of activated voxels. The PNM was found to outperform SAF in all three tests. Furthermore, inclusion of the CSF regressor was crucial as it explained a significant amount of signal variance in the cord and increased the number of active cord voxels. Whilst HR, RVT and MC explained additional signal (noise) variance

  2. Improvement of TNO type trailing edge noise models

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Aagaard Madsen, Helge

    2016-01-01

    . It is computed by solving a Poisson equation which includes flow turbulence cross correlation terms. Previously published TNO type models used the assumption of Blake to simplify the Poisson equation. This paper shows that the simplification should not be used. We present a new model which fully models...

  3. Improvement of TNO type trailing edge noise models

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Aagaard Madsen, Helge

    2017-01-01

    . It is computed by solving a Poisson equation which includes flow turbulence cross correlation terms. Previously published TNO type models used the assumption of Blake to simplify the Poisson equation. This paper shows that the simplification should not be used. We present a new model which fully models...

  4. MEASURING INFORMATION INTEGR-ATION MODEL FOR CAD/CMM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A CAD/CMM workpiece modeling system based on IGES file is proposed. The modeling system is implemented by using a new method for labelling the tolerance items of 3D workpiece. The concept-"feature face" is used in the method. First the CAD data of workpiece are extracted and recognized automatically. Then a workpiece model is generated, which is the integration of pure 3D geometry form with its corresponding inspection items. The principle of workpiece modeling is also presented. At last, the experiment results are shown and correctness of the model is certified.

  5. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    Energy Technology Data Exchange (ETDEWEB)

    Racle, Julien; Hatzimanikatis, Vassily, E-mail: vassily.hatzimanikatis@epfl.ch [Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne (Switzerland); Stefaniuk, Adam Jan [Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-07-28

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  6. A gate current 1/f noise model for GaN/AlGaN HEMTs

    International Nuclear Information System (INIS)

    Liu Yu'an; Zhuang Yiqi

    2014-01-01

    This work presents a theoretical and experimental study on the gate current 1/f noise in AlGaN/GaN HEMTs. Based on the carrier number fluctuation in the two-dimensional electron gas channel of AlGaN/GaN HEMTs, a gate current 1/f noise model containing a trap-assisted tunneling current and a space charge limited current is built. The simulation results are in good agreement with the experiment. Experiments show that, if V g < V x (critical gate voltage of dielectric relaxation), gate current 1/f noise comes from the superimposition of trap-assisted tunneling RTS (random telegraph noise), while V g > V x , gate current 1/f noise comes from not only the trap-assisted tunneling RTS, but also the space charge limited current RTS. This indicates that the gate current 1/f noise of the GaN-based HEMTs device is sensitive to the interaction of defects and the piezoelectric relaxation. It provides a useful characterization tool for deeper information about the defects and their evolution in AlGaN/GaN HEMTs. (semiconductor devices)

  7. Teacher Models of Technology Integration.

    Science.gov (United States)

    Peterman, Leinda

    2003-01-01

    Provides examples of best practices in technology integration from five Technology Innovation Challenge Grant (TICG) programs, funded through the Department of Education to meet the No Child Left Behind technology goals. Highlights include professional development activities in Louisiana and New Mexico; collaborative learning applications; and…

  8. Robustness of digitally modulated signal features against variation in HF noise model

    Directory of Open Access Journals (Sweden)

    Shoaib Mobien

    2011-01-01

    Full Text Available Abstract High frequency (HF band has both military and civilian uses. It can be used either as a primary or backup communication link. Automatic modulation classification (AMC is of an utmost importance in this band for the purpose of communications monitoring; e.g., signal intelligence and spectrum management. A widely used method for AMC is based on pattern recognition (PR. Such a method has two main steps: feature extraction and classification. The first step is generally performed in the presence of channel noise. Recent studies show that HF noise could be modeled by Gaussian or bi-kappa distributions, depending on day-time. Therefore, it is anticipated that change in noise model will have impact on features extraction stage. In this article, we investigate the robustness of well known digitally modulated signal features against variation in HF noise. Specifically, we consider temporal time domain (TTD features, higher order cumulants (HOC, and wavelet based features. In addition, we propose new features extracted from the constellation diagram and evaluate their robustness against the change in noise model. This study is targeting 2PSK, 4PSK, 8PSK, 16QAM, 32QAM, and 64QAM modulations, as they are commonly used in HF communications.

  9. Electrocardiogram (ECG Signal Modeling and Noise Reduction Using Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    F. Bagheri

    2013-02-01

    Full Text Available The Electrocardiogram (ECG signal is one of the diagnosing approaches to detect heart disease. In this study the Hopfield Neural Network (HNN is applied and proposed for ECG signal modeling and noise reduction. The Hopfield Neural Network (HNN is a recurrent neural network that stores the information in a dynamic stable pattern. This algorithm retrieves a pattern stored in memory in response to the presentation of an incomplete or noisy version of that pattern. Computer simulation results show that this method can successfully model the ECG signal and remove high-frequency noise.

  10. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  11. Open source integrated modeling environment Delta Shell

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  12. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  13. Deterministic decomposition and seasonal ARIMA time series models applied to airport noise forecasting

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Tepedino, Carmine

    2017-06-01

    One of the most hazardous physical polluting agents, considering their effects on human health, is acoustical noise. Airports are a strong source of acoustical noise, due to the airplanes turbines, to the aero-dynamical noise of transits, to the acceleration or the breaking during the take-off and landing phases of aircrafts, to the road traffic around the airport, etc.. The monitoring and the prediction of the acoustical level emitted by airports can be very useful to assess the impact on human health and activities. In the airports noise scenario, thanks to flights scheduling, the predominant sources may have a periodic behaviour. Thus, a Time Series Analysis approach can be adopted, considering that a general trend and a seasonal behaviour can be highlighted and used to build a predictive model. In this paper, two different approaches are adopted, thus two predictive models are constructed and tested. The first model is based on deterministic decomposition and is built composing the trend, that is the long term behaviour, the seasonality, that is the periodic component, and the random variations. The second model is based on seasonal autoregressive moving average, and it belongs to the stochastic class of models. The two different models are fitted on an acoustical level dataset collected close to the Nice (France) international airport. Results will be encouraging and will show good prediction performances of both the adopted strategies. A residual analysis is performed, in order to quantify the forecasting error features.

  14. Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics.

    Science.gov (United States)

    Tuckwell, H C; Toubiana, L; Vibert, J F

    2000-05-01

    We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only

  15. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    Science.gov (United States)

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  16. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  17. An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series

    Directory of Open Access Journals (Sweden)

    Stavros-Richard G. Christopoulos

    2017-01-01

    Full Text Available Recently, the study of the coherent noise model has led to a simple (binary prediction algorithm for the forthcoming earthquake magnitude in aftershock sequences. This algorithm is based on the concept of natural time and exploits the complexity exhibited by the coherent noise model. Here, using the relocated catalogue from Southern California Seismic Network for 1981 to June 2011, we evaluate the application of this algorithm for the aftershocks of strong earthquakes of magnitude M≥6. The study is also extended by using the Global Centroid Moment Tensor Project catalogue to the case of the six strongest earthquakes in the Earth during the last almost forty years. The predictor time series exhibits the ubiquitous 1/f noise behavior.

  18. On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution

    Science.gov (United States)

    Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein

    2017-12-01

    One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.

  19. A Cucker--Smale Model with Noise and Delay

    KAUST Repository

    Erban, Radek

    2016-08-09

    A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior

  20. A Cucker--Smale Model with Noise and Delay

    KAUST Repository

    Erban, Radek; Haskovec, Jan; Sun, Yongzheng

    2016-01-01

    A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior

  1. Aircrafts' taxi noise. Sound power level and directivity frequency band results

    NARCIS (Netherlands)

    Asensio, C.; Pavón, I.; Ruiz, M.; Pagan Munoz, Raul; Recuero, M.

    2009-01-01

    When noise mapping airports, the main noise sources are take offs and landings. But aircrafts' taxi noise can also be important, and should be considered, for instance when there are residential buildings near the airport's terminal. Main prediction tools, like Integrated Noise Model (INM), do not

  2. Measurement system for wind turbine acoustic noise assessment based on IEC standard and Qin′s model

    Institute of Scientific and Technical Information of China (English)

    Sun Lei; Qin Shuren; Bo Lin; Xu Liping; Stephan Joeckel

    2008-01-01

    A novel measurement system specially used in noise emission assessment and verification of wind turbine generator systems is presented that complies with specifications given in IEC 61400-11 to ensure the process consistency and accuracy. Theory elements of the calculation formula used for the sound power level of wind turbine have been discussed for the first time, and detailed calculation procedure of tonality and audibility integrating narrowband analysis and psychoacoustics is described. With a microphone and two PXI cards inserted into a PC, this system is designed in Qin′s model using VMIDS development system. Benefiting from the virtual instrument architecture, it′s the first time that all assessment process have been integrated into an organic whole, which gives full advantages of its efficiency, price, and facility. Mass experiments show that its assessment results accord with the ones given by MEASNET member.

  3. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    Science.gov (United States)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which

  4. Measurement and modelling of noise emission of road vehicles for use in prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, H.G.

    2000-07-01

    The road vehicle as sound source has been studied within a wide frequency range. Well defined measurements have been carried out on moving and stationary vehicles. Measurement results have been checked against theoretical simulations. A Nordtest measurement method to obtain input data for prediction methods has been proposed and tested in four different countries. The effective sound source of a car has its centre close to the nearest wheels. For trucks this centre seems to be closer to the centre of the car. The vehicle as sound source is directional both in the vertical and the horizontal plane. The difference between SEL and L{sub pFmax} during a pass-by varies with frequency. At low frequencies interference effects between correlated sources may be the problem. At high frequencies the directivity of tyre/road noise affects the result. The time when L{sub pFmax} is obtained varies with frequency. Thus traditional maximum measurements are not suitable for frequency band applications. The measurements support the fact that the tyre/road noise source is very low. Measurements on a stationary vehicle indicate that the engine source is also very low. Engine noise is screened by the body of the car. The ground attenuation, also at short distances, will be significant whenever we use low microphone positions and have some 'soft' ground in between. Unless all measurements are restricted to propagation over 'hard' surfaces only it is necessary to use rather high microphone positions. The Nordtest method proposed will yield a reproducibility standard deviation of 1-3 dB depending on frequency. High frequencies are more accurate. In order to get accurate results at low frequencies large numbers of vehicles are required. To determine the sound power level from pass-by measurement requires a proper source and propagation model. As these models may change it is recommended to measure and report both SEL and L{sub pFmax} normalized to a specified distance.

  5. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

  6. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

  7. Model Identification of Integrated ARMA Processes

    Science.gov (United States)

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  8. Social Ecological Model Analysis for ICT Integration

    Science.gov (United States)

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  9. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste...... Pressure Level (SPL).......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...... of unsteady flow around it and time dependent source characteristics. For the acoustics modelling we employ the Parabolic Equation (PE) method while Large Eddy Simulation (LES) as well as synthetically generated turbulence fields are used to generate the medium flow upon which sound propagates. Unsteady...

  10. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  11. Numerical modelling of the pump-to-signal relative intensity noise ...

    Indian Academy of Sciences (India)

    An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump fibre optical parametric amplifiers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the field, this model takes into account the fibre loss, pump depletion as well as the gain ...

  12. Modeling and diagnostic techniques applicable to the analysis of pressure noise in pressurized water reactors and pressure-sensing systems

    International Nuclear Information System (INIS)

    Mullens, J.A.; Thie, J.A.

    1984-01-01

    Pressure noise data from a PWR are interpreted by means of a computer-implemented model. The model's parameters, namely hydraulic impedances and noise sources, are either calculated or deduced from fits to data. Its accuracy is encouraging and raises the possibility of diagnostic assistance for nuclear plant monitoring. A number of specific applications of pressure noise in the primary system of a PWR and in a pressure sensing system are suggested

  13. Comparison of the iPCoD and DEPONS models for modelling population consequences of noise on harbour porpoises

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Harwood, John

    Two different frameworks have been developed to assess the potential effects of noise associated with offshore renewable energy developments on harbour porpoise populations: The Interim Population Consequences of Disturbance (iPCoD) and Disturbance Effects of Noise on the Harbour Porpoise...... Population in the North Sea (DEPONS). Although both models simulate population dynamics based on the birth and survival rates of individual animals, they model survival in a different way. iPCoD uses average survival rates derived from data from North Sea animals. In the DEPONS model, survival emerges from...

  14. Physical model of nonlinear noise with application to BWR stability

    International Nuclear Information System (INIS)

    March-Leuba, J.; Perez, R.B.

    1983-01-01

    Within the framework of the present model it is shown that the BWR reactor cannot be unstable in the linear sense, but rather it executes limited power oscillations of a magnitude that depends on the operating conditions. The onset of these oscillations can be diagnosed by the decrease in stochasticity in the power traces and by the appearance of harmonics in the PSD

  15. A calculation model for the noise from steel railway bridges

    NARCIS (Netherlands)

    Janssens, M.H.A.; Thompson, D.J.

    1996-01-01

    The sound level of a train crossing a steel railway bridge is usually about 10 dB higher than on plain track. In the Netherlands there are many such bridges which, for practical reasons, cannot be replaced by more intrinsically quiet concrete bridges. A computational model is described for the

  16. Corrected Statistical Energy Analysis Model for Car Interior Noise

    Directory of Open Access Journals (Sweden)

    A. Putra

    2015-01-01

    Full Text Available Statistical energy analysis (SEA is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure. For an acoustic space where significant absorptive materials are present, direct field component from the sound source dominates the total sound field rather than a reverberant field, where the latter becomes the basis in constructing the conventional SEA model. Such environment can be found in a car interior and thus a corrected SEA model is proposed here to counter this situation. The model is developed by eliminating the direct field component from the total sound field and only the power after the first reflection is considered. A test car cabin was divided into two subsystems and by using a loudspeaker as a sound source, the power injection method in SEA was employed to obtain the corrected coupling loss factor and the damping loss factor from the corrected SEA model. These parameters were then used to predict the sound pressure level in the interior cabin using the injected input power from the engine. The results show satisfactory agreement with the directly measured SPL.

  17. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    International Nuclear Information System (INIS)

    Zhang Yu; Wang Guangyi; Lu Xinmiao; Hu Yongcai; Xu Jiangtao

    2016-01-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. (paper)

  18. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  19. Acoustic fMRI noise : Linear time-invariant system model

    NARCIS (Netherlands)

    Sierra, Carlos V. Rizzo; Versluis, Maarten J.; Hoogduin, Johannes M.; Duifhuis, Hendrikus (Diek)

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic

  20. Aircraft interior noise models - Sidewall trim, stiffened structures, and cabin acoustics with floor partition

    Science.gov (United States)

    Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.

    1983-01-01

    As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.

  1. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  2. Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires

    DEFF Research Database (Denmark)

    Møller, Jesper; Diaz-Avalos, Carlos

    Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable fo...... dataset consisting of 2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal log-Gaussian Cox point process model, and likelihood-based methods are discussed to some extent....

  3. Integrable lattice models and quantum groups

    International Nuclear Information System (INIS)

    Saleur, H.; Zuber, J.B.

    1990-01-01

    These lectures aim at introducing some basic algebraic concepts on lattice integrable models, in particular quantum groups, and to discuss some connections with knot theory and conformal field theories. The list of contents is: Vertex models and Yang-Baxter equation; Quantum sl(2) algebra and the Yang-Baxter equation; U q sl(2) as a symmetry of statistical mechanical models; Face models; Face models attached to graphs; Yang-Baxter equation, braid group and link polynomials

  4. A comparative study of time series modeling methods for reactor noise analysis

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Shigeno, Kei; Sugiyama, Kazusuke

    1978-01-01

    Two modeling algorithms were developed to study at-power reactor noise as a multi-input, multi-output process. A class of linear, discrete time description named autoregressive-moving average model was used as a compact mathematical expression of the objective process. One of the model estimation (modeling) algorithms is based on the theory of Kalman filtering, and the other on a conjugate gradient method. By introducing some modifications in the formulation of the problem, realization of the practically usable algorithms was made feasible. Through the testing with several simulation models, reliability and effectiveness of these algorithms were confirmed. By applying these algorithms to experimental data obtained from a nuclear power plant, interesting knowledge about the at-power reactor noise was found out. (author)

  5. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    Directory of Open Access Journals (Sweden)

    Xu Li

    Full Text Available BACKGROUND: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL. The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2S has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2S in cochlear blood flow regulation and noise protection. METHODOLOGY/PRINCIPAL FINDINGS: The gene and protein expression of the H(2S synthetase cystathionine-γ-lyase (CSE in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP, NaHS or DL-propargylglycine (PPG were locally administered. Local sodium hydrosulfide (NaHS significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR, cochlear scanning electron microscope (SEM and outer hair cell (OHC count. The highest percentage of OHC loss occurred in the PPG group. CONCLUSIONS/SIGNIFICANCE: Our results suggest that H(2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  6. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Science.gov (United States)

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  7. Restoring the encoding properties of a stochastic neuron model by an exogenous noise

    Science.gov (United States)

    Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela

    2015-01-01

    Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed. PMID:25999845

  8. Restoring the encoding properties of a stochastic neuron model by an exogenous noise

    Directory of Open Access Journals (Sweden)

    Alessandra ePaffi

    2015-05-01

    Full Text Available Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed.

  9. Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fai, L. C.

    2018-02-01

    We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.

  10. Numerical Investigation on Vortex-Structure Interaction Generating Aerodynamic Noises for Rod-Airfoil Models

    Directory of Open Access Journals (Sweden)

    FeiFei Liu

    2017-01-01

    Full Text Available In past several decades, vortex-structure interaction generated aerodynamic noise became one of the main concerns in aircraft design. In order to understand the mechanism, the acoustic analogy method combined with the RANS-based nonlinear acoustics solver (NLAS is investigated. The numerical method is firstly evaluated by the experiment data of the classic rod-airfoil model. Compared with the traditional analogy methods, the RANS/NLAS can capture the nonlinear aerodynamic noise more accurately with lower gird requirements. Then different rod-airfoil configurations were simulated to investigate the aeroacoustic interaction effects. The numerical results are in good agreement with those of the earlier experimental research. It is found that the vortex-shedding crash to the airfoil is the main reason for the noise generation which is dependent on the configurations, distance, and flow conditions.

  11. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise

    Directory of Open Access Journals (Sweden)

    Loreen eHertäg

    2014-09-01

    Full Text Available Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing a mathematical description as simple as possible. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF which consists of two differential equations for the membrane potential (V and an adaptation current (w. Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the $w$ variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  12. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise.

    Science.gov (United States)

    Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas

    2014-01-01

    Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  13. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness.

    Science.gov (United States)

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a similar level of monaural

  14. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  15. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  16. Integrated WiFi/PDR/Smartphone Using an Adaptive System Noise Extended Kalman Filter Algorithm for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-02-01

    Full Text Available Wireless signal strength is susceptible to the phenomena of interference, jumping, and instability, which often appear in the positioning results based on Wi-Fi field strength fingerprint database technology for indoor positioning. Therefore, a Wi-Fi and PDR (pedestrian dead reckoning real-time fusion scheme is proposed in this paper to perform fusing calculation by adaptively determining the dynamic noise of a filtering system according to pedestrian movement (straight or turning, which can effectively restrain the jumping or accumulation phenomena of wireless positioning and the PDR error accumulation problem. Wi-Fi fingerprint matching typically requires a quite high computational burden: To reduce the computational complexity of this step, the affinity propagation clustering algorithm is adopted to cluster the fingerprint database and integrate the information of the position domain and signal domain of respective points. An experiment performed in a fourth-floor corridor at the School of Environment and Spatial Informatics, China University of Mining and Technology, shows that the traverse points of the clustered positioning system decrease by 65%–80%, which greatly improves the time efficiency. In terms of positioning accuracy, the average error is 4.09 m through the Wi-Fi positioning method. However, the positioning error can be reduced to 2.32 m after integration of the PDR algorithm with the adaptive noise extended Kalman filter (EKF.

  17. The effects of noise on binocular rivalry waves: a stochastic neural field model

    International Nuclear Information System (INIS)

    Webber, Matthew A; Bressloff, Paul C

    2013-01-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction–diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. (paper)

  18. Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model

    Directory of Open Access Journals (Sweden)

    Ying Du

    2014-01-01

    Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.

  19. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  20. The effects of noise on binocular rivalry waves: a stochastic neural field model

    KAUST Repository

    Webber, Matthew A

    2013-03-12

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.

  1. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    Science.gov (United States)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  2. Integrated modeling and analysis methodology for precision pointing applications

    Science.gov (United States)

    Gutierrez, Homero L.

    2002-07-01

    Space-based optical systems that perform tasks such as laser communications, Earth imaging, and astronomical observations require precise line-of-sight (LOS) pointing. A general approach is described for integrated modeling and analysis of these types of systems within the MATLAB/Simulink environment. The approach can be applied during all stages of program development, from early conceptual design studies to hardware implementation phases. The main objective is to predict the dynamic pointing performance subject to anticipated disturbances and noise sources. Secondary objectives include assessing the control stability, levying subsystem requirements, supporting pointing error budgets, and performing trade studies. The integrated model resides in Simulink, and several MATLAB graphical user interfaces (GUI"s) allow the user to configure the model, select analysis options, run analyses, and process the results. A convenient parameter naming and storage scheme, as well as model conditioning and reduction tools and run-time enhancements, are incorporated into the framework. This enables the proposed architecture to accommodate models of realistic complexity.

  3. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  4. Realized wavelet-based estimation of integrated variance and jumps in the presence of noise

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Vácha, Lukáš

    2015-01-01

    Roč. 15, č. 8 (2015), s. 1347-1364 ISSN 1469-7688 R&D Projects: GA ČR GA13-32263S EU Projects: European Commission 612955 - FINMAP Grant - others:GA ČR(CZ) GA13-24313S Institutional support: RVO:67985556 Keywords : quadratic variation * realized variance * jumps * market microstructure noise * wavelets Subject RIV: AH - Economics Impact factor: 0.794, year: 2015 http://library.utia.cas.cz/separaty/2014/E/barunik-0434203.pdf

  5. The mirrors model: macroscopic diffusion without noise or chaos

    International Nuclear Information System (INIS)

    Chiffaudel, Yann; Lefevere, Raphaël

    2016-01-01

    Before stating our main result, we first clarify through classical examples the status of the laws of macroscopic physics as laws of large numbers. We next consider the mirrors model in a finite d-dimensional domain and connected to particles reservoirs at fixed chemical potentials. The dynamics is purely deterministic and non-ergodic but takes place in a random environment. We study the macroscopic current of particles in the stationary regime. We show first that when the size of the system goes to infinity, the behaviour of the stationary current of particles is governed by the proportion of orbits crossing the system. This allows us to formulate a necessary and sufficient condition on the distribution of the set of orbits that ensures the validity of Fick’s law. Using this approach, we show that Fick’s law relating the stationary macroscopic current of particles to the concentration difference holds in three dimensions and above. The negative correlations between crossing orbits play a key role in the argument. (letter)

  6. Hybrid model decomposition of speech and noise in a radial basis function neural model framework

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe

    1994-01-01

    The aim of the paper is to focus on a new approach to automatic speech recognition in noisy environments where the noise has either stationary or non-stationary statistical characteristics. The aim is to perform automatic recognition of speech in the presence of additive car noise. The technique...

  7. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  8. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  9. Boundary layer measurements of the NACA0015 and implications for noise modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2011-01-15

    A NACA0015 airfoil section instrumented with an array of high frequency microphones flush-mounted beneath its surface was measured in the wind tunnel at LM Wind Power in Lunderskov. Various inflow speeds and angles of attack were investigated. In addition, a hot-wire device system was used to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with CFD results. A relative good agreement is observed, though a few discrepancies also appear. Comparisons of surface pressure fluctuations spectra are used to analyze and improve trailing edge noise modeling by the so-called TNO model. Finally, a pair of hot-wires were placed on each side of the trailing edge in order to measure the radiated trailing edge noise. However, there is no strong evidence that such noise could be measured in the higher frequency range. Nevertheless, low-frequency noise could be measured and related to the presence of the airfoil but its origin is unclear. (Author)

  10. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  11. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  12. Integrated Heat Air & Moisture Modeling and control

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2007-01-01

    The paper presents a recently developed Heat Air & Moisture Laboratory in SimuLink. The simulation laboratory facilitates the integration of the following models: (1) a whole building model; (2) Heating Venting and Air-Conditioning and primary systems; (3) 2D indoor airflow, 3D Heat Air & Moisture

  13. Development of a generalized integral jet model

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Kessler, A.; Markert, Frank

    2017-01-01

    Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational requireme......Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational...... requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models, however, are not suited to handle transient releases, such as releases from pressurized equipment, where the initially high release rate decreases rapidly with time. Further, on gas ignition, a second...... model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...

  14. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  15. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip

    2015-03-01

    The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Conceptual model of integrated apiarian consultancy

    OpenAIRE

    Bodescu, Dan; Stefan, Gavril; Paveliuc Olariu, Codrin; Magdici, Maria

    2010-01-01

    The socio-economic field researches have indicated the necessity of realizing an integrated consultancy service for beekeepers that will supply technical-economic solutions with a practical character for ensuring the lucrativeness and viability of the apiaries. Consequently, an integrated apiarian consultancy model has been built holding the following features: it realizes the diagnosis of the meliferous resources and supplies solutions for its optimal administration; it realizes the technica...

  17. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  18. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...

  19. Noise source analysis of nuclear ship Mutsu plant using multivariate autoregressive model

    International Nuclear Information System (INIS)

    Hayashi, K.; Shimazaki, J.; Shinohara, Y.

    1996-01-01

    The present study is concerned with the noise sources in N.S. Mutsu reactor plant. The noise experiments on the Mutsu plant were performed in order to investigate the plant dynamics and the effect of sea condition and and ship motion on the plant. The reactor noise signals as well as the ship motion signals were analyzed by a multivariable autoregressive (MAR) modeling method to clarify the noise sources in the reactor plant. It was confirmed from the analysis results that most of the plant variables were affected mainly by a horizontal component of the ship motion, that is the sway, through vibrations of the plant structures. Furthermore, the effect of ship motion on the reactor power was evaluated through the analysis of wave components extracted by a geometrical transform method. It was concluded that the amplitude of the reactor power oscillation was about 0.15% in normal sea condition, which was small enough for safe operation of the reactor plant. (authors)

  20. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model

    Directory of Open Access Journals (Sweden)

    Jae-Hun Lee

    2016-07-01

    Full Text Available Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically.

  1. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  2. Maximum Correntropy Criterion Kalman Filter for α-Jerk Tracking Model with Non-Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Bowen Hou

    2017-11-01

    Full Text Available As one of the most critical issues for target track, α -jerk model is an effective maneuver target track model. Non-Gaussian noises always exist in the track process, which usually lead to inconsistency and divergence of the track filter. A novel Kalman filter is derived and applied on α -jerk tracking model to handle non-Gaussian noise. The weighted least square solution is presented and the standard Kalman filter is deduced firstly. A novel Kalman filter with the weighted least square based on the maximum correntropy criterion is deduced. The robustness of the maximum correntropy criterion is also analyzed with the influence function and compared with the Huber-based filter, and, moreover, the kernel size of Gaussian kernel plays an important role in the filter algorithm. A new adaptive kernel method is proposed in this paper to adjust the parameter in real time. Finally, simulation results indicate the validity and the efficiency of the proposed filter. The comparison study shows that the proposed filter can significantly reduce the noise influence for α -jerk model.

  3. Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2012-01-01

    Silicon Photomultipliers (SiPM), also called Solid State Photomultipliers (SSPM), are based on Geiger mode avalanche breakdown that is limited by a strong negative feedback. An SSPM can detect and resolve single photons due to the high gain and ultra-low excess noise of avalanche multiplication in this mode. Crosstalk and afterpulsing processes associated with the high gain introduce specific excess noise and deteriorate the photon number resolution of the SSPM. The probabilistic features of these processes are widely studied because of its significance for the SSPM design, characterization, optimization and application, but the process modeling is mostly based on Monte Carlo simulations and numerical methods. In this study, crosstalk is considered to be a branching Poisson process, and analytical models of probability distribution and excess noise factor (ENF) of SSPM signals based on the Borel distribution as an advance on the geometric distribution models are presented and discussed. The models are found to be in a good agreement with the experimental probability distributions for dark counts and a few photon spectrums in a wide range of fired pixels number as well as with observed super-linear behavior of crosstalk ENF.

  4. A rod-airfoil experiment as a benchmark for broadband noise modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, M.C. [Ecole Centrale de Lyon, Laboratoire de Mecanique des Fluides et d' Acoustique, Ecully Cedex (France); Universite Claude Bernard/Lyon I, Villeurbanne Cedex (France); Boudet, J.; Michard, M. [Ecole Centrale de Lyon, Laboratoire de Mecanique des Fluides et d' Acoustique, Ecully Cedex (France); Casalino, D. [Ecole Centrale de Lyon, Laboratoire de Mecanique des Fluides et d' Acoustique, Ecully Cedex (France); Fluorem SAS, Ecully Cedex (France)

    2005-07-01

    A low Mach number rod-airfoil experiment is shown to be a good benchmark for numerical and theoretical broadband noise modeling. The benchmarking approach is applied to a sound computation from a 2D unsteady-Reynolds-averaged Navier-Stokes (U-RANS) flow field, where 3D effects are partially compensated for by a spanwise statistical model and by a 3D large eddy simulation. The experiment was conducted in the large anechoic wind tunnel of the Ecole Centrale de Lyon. Measurements taken included particle image velocity (PIV) around the airfoil, single hot wire, wall pressure coherence, and far field pressure. These measurements highlight the strong 3D effects responsible for spectral broadening around the rod vortex shedding frequency in the subcritical regime, and the dominance of the noise generated around the airfoil leading edge. The benchmarking approach is illustrated by two examples: the validation of a stochastical noise generation model applied to a 2D U-RANS computation; the assessment of a 3D LES computation using a new subgrid scale (SGS) model coupled to an advanced-time Ffowcs-Williams and Hawkings sound computation. (orig.)

  5. Integrated Modelling - the next steps (Invited)

    Science.gov (United States)

    Moore, R. V.

    2010-12-01

    Integrated modelling (IM) has made considerable advances over the past decade but it has not yet been taken up as an operational tool in the way that its proponents had hoped. The reasons why will be discussed in Session U17. This talk will propose topics for a research and development programme and suggest an institutional structure which, together, could overcome the present obstacles. Their combined aim would be first to make IM into an operational tool useable by competent public authorities and commercial companies and, in time, to see it evolve into the modelling equivalent of Google Maps, something accessible and useable by anyone with a PC or an iphone and an internet connection. In a recent study, a number of government agencies, water authorities and utilities applied integrated modelling to operational problems. While the project demonstrated that IM could be used in an operational setting and had benefit, it also highlighted the advances that would be required for its widespread uptake. These were: greatly improving the ease with which models could be a) made linkable, b) linked and c) run; developing a methodology for applying integrated modelling; developing practical options for calibrating and validating linked models; addressing the science issues that arise when models are linked; extending the range of modelling concepts that can be linked; enabling interface standards to pass uncertainty information; making the interface standards platform independent; extending the range of platforms to include those for high performance computing; developing the concept of modelling components as web services; separating simulation code from the model’s GUI, so that all the results from the linked models can be viewed through a single GUI; developing scenario management systems so that that there is an audit trail of the version of each model and dataset used in each linked model run. In addition to the above, there is a need to build a set of integrated

  6. Consistent modelling of wind turbine noise propagation from source to receiver

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine...... propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine....... and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound...

  7. Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise

    Science.gov (United States)

    Paekivi, S.; Mankin, R.; Rekker, A.

    2017-10-01

    We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.

  8. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu

    2018-03-19

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment\\'s results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  9. Model and observations of Schottky-noise suppression in a cold heavy-ion beam.

    Science.gov (United States)

    Danared, H; Källberg, A; Rensfelt, K-G; Simonsson, A

    2002-04-29

    Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions.

  10. The signal-to-noise analysis of the Little-Hopfield model revisited

    International Nuclear Information System (INIS)

    Bolle, D; Blanco, J Busquets; Verbeiren, T

    2004-01-01

    Using the generating functional analysis an exact recursion relation is derived for the time evolution of the effective local field of the fully connected Little-Hopfield model. It is shown that, by leaving out the feedback correlations arising from earlier times in this effective dynamics, one precisely finds the recursion relations usually employed in the signal-to-noise approach. The consequences of this approximation as well as the physics behind it are discussed. In particular, it is pointed out why it is hard to notice the effects, especially for model parameters corresponding to retrieval. Numerical simulations confirm these findings. The signal-to-noise analysis is then extended to include all correlations, making it a full theory for dynamics at the level of the generating functional analysis. The results are applied to the frequently employed extremely diluted (a)symmetric architectures and to sequence processing networks

  11. Recursive Subspace Identification of AUV Dynamic Model under General Noise Assumption

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs is proposed in this paper. Due to the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a Hammerstein model with nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration, the identification problem is concerned as an errors-in-variables (EIV one which means that the identification procedure is under general noise assumption. In order to make the algorithm recursively, propagator method (PM based subspace approach is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

  12. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu; Chaaban, Anas; Shen, Chao; Elgala, Hany; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment's results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  13. Integrated facilities modeling using QUEST and IGRIP

    International Nuclear Information System (INIS)

    Davis, K.R.; Haan, E.R.

    1995-01-01

    A QUEST model and associated detailed IGRIP models were developed and used to simulate several workcells in a proposed Plutonium Storage Facility (PSF). The models are being used by team members assigned to the program to improve communication and to assist in evaluating concepts and in performing trade-off studies which will result in recommendations and a final design. The model was designed so that it could be changed easily. The added flexibility techniques used to make changes easily are described in this paper in addition to techniques for integrating the QUEST and IGRIP products. Many of these techniques are generic in nature and can be applied to any modeling endeavor

  14. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  15. An integrative model of organizational safety behavior.

    Science.gov (United States)

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  16. Asymmetry between ON and OFF α ganglion cells of mouse retina: integration of signal and noise from synaptic inputs.

    Science.gov (United States)

    Freed, Michael A

    2017-11-15

    Bipolar and amacrine cells presynaptic to the ON sustained α cell of mouse retina provide currents with a higher signal-to-noise power ratio (SNR) than those presynaptic to the OFF sustained α cell. Yet the ON cell loses proportionately more SNR from synaptic inputs to spike output than the OFF cell does. The higher SNR of ON bipolar cells at the beginning of the ON pathway compensates for losses incurred by the ON ganglion cell, and improves the processing of positive contrasts. ON and OFF pathways in the retina include functional pairs of neurons that, at first glance, appear to have symmetrically similar responses to brightening and darkening, respectively. Upon careful examination, however, functional pairs exhibit asymmetries in receptive field size and response kinetics. Until now, descriptions of how light-adapted retinal circuitry maintains a preponderance of signal over the noise have not distinguished between ON and OFF pathways. Here I present evidence of marked asymmetries between members of a functional pair of sustained α ganglion cells in the mouse retina. The ON cell exhibited a proportionately greater loss of signal-to-noise power ratio (SNR) from its presynaptic arrays to its postsynaptic currents. Thus the ON cell combines signal and noise from its presynaptic arrays of bipolar and amacrine cells less efficiently than the OFF cell does. Yet the inefficiency of the ON cell is compensated by its presynaptic arrays providing a higher SNR than the arrays presynaptic to the OFF cell, apparently to improve visual processing of positive contrasts. Dynamic clamp experiments were performed that introduced synaptic conductances into ON and OFF cells. When the amacrine-modulated conductance was removed, the ON cell's spike train exhibited an increase in SNR. The OFF cell, however, showed the opposite effect of removing amacrine input, which was a decrease in SNR. Thus ON and OFF cells have different modes of synaptic integration with direct effects on

  17. Modern model of integrated corporate communication

    Directory of Open Access Journals (Sweden)

    Milica Slijepčević

    2018-03-01

    Full Text Available The main purpose of this paper is to present the modern model of integrated corporate communication. Beside this, the authors will describe the changes occurring in the corporate environment and importance of changing the model of corporate communication. This paper also discusses the importance of implementation of the suggested model, the use of new media and effects of these changes on corporations. The approach used in this paper is the literature review. The authors explore the importance of implementation of the suggested model and the new media in corporate communication, both internal and external, addressing all the stakeholders and communication contents. The paper recommends implementation of a modern model of integrated corporate communication as a response to constant development of the new media and generation changes taking place. Practical implications: the modern model of integrated corporate communication can be used as an upgrade of the conventional communication models. This modern model empowers companies to sustain and build up the existing relationships with stakeholders, and to find out and create new relationships with stakeholders who were previously inaccessible and invisible.

  18. On Training Bi-directional Neural Network Language Model with Noise Contrastive Estimation

    OpenAIRE

    He, Tianxing; Zhang, Yu; Droppo, Jasha; Yu, Kai

    2016-01-01

    We propose to train bi-directional neural network language model(NNLM) with noise contrastive estimation(NCE). Experiments are conducted on a rescore task on the PTB data set. It is shown that NCE-trained bi-directional NNLM outperformed the one trained by conventional maximum likelihood training. But still(regretfully), it did not out-perform the baseline uni-directional NNLM.

  19. Analysis of the background noise of field effect transistors in MOS complementary technology and application in the construction of a current-sensitive integrated amplifier

    International Nuclear Information System (INIS)

    Beuville, E.

    1989-10-01

    A low noise amplifier for use in high energy physics is developed. The origin and the mechanisms of the noise in MOSFET transistors is carried out with the aim of minimizing such effects in amplifiers. The research is applied in the construction of a current-sensitive integrated amplifier. The time scale continuous filtering principle is used and allows the detection of particles arriving in the counter in a random distribution. The rules which must be taken into account in the construction of an analog integrated circuit are shown [fr

  20. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  1. CTBT integrated verification system evaluation model supplement

    International Nuclear Information System (INIS)

    EDENBURN, MICHAEL W.; BUNTING, MARCUS; PAYNE, ARTHUR C. JR.; TROST, LAWRENCE C.

    2000-01-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0

  2. Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation

    Directory of Open Access Journals (Sweden)

    M. Morzfeld

    2012-06-01

    Full Text Available Implicit particle filtering is a sequential Monte Carlo method for data assimilation, designed to keep the number of particles manageable by focussing attention on regions of large probability. These regions are found by minimizing, for each particle, a scalar function F of the state variables. Some previous implementations of the implicit filter rely on finding the Hessians of these functions. The calculation of the Hessians can be cumbersome if the state dimension is large or if the underlying physics are such that derivatives of F are difficult to calculate, as happens in many geophysical applications, in particular in models with partial noise, i.e. with a singular state covariance matrix. Examples of models with partial noise include models where uncertain dynamic equations are supplemented by conservation laws with zero uncertainty, or with higher order (in time stochastic partial differential equations (PDE or with PDEs driven by spatially smooth noise processes. We make the implicit particle filter applicable to such situations by combining gradient descent minimization with random maps and show that the filter is efficient, accurate and reliable because it operates in a subspace of the state space. As an example, we consider a system of nonlinear stochastic PDEs that is of importance in geomagnetic data assimilation.

  3. Renewed mer model of integral management

    Directory of Open Access Journals (Sweden)

    Janko Belak

    2015-12-01

    Full Text Available Background: The research work on entrepreneurship, enterprise's policy and management, which started in 1992, successfully continued in the following years. Between 1992 and 2011, more than 400 academics and other researchers have participated in research work (MER research program whose main orientation has been the creation of their own model of integral management. Results: In past years, academics (researchers and authors of published papers from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Byelorussia, Canada, the Czech Republic, Croatia, Estonia, France, Germany, Hungary, Italy, Poland, Romania, Russia, the Slovak Republic, Slovenia, Switzerland, Ukraine, and the US have cooperated in MER programs, coming from more than fifty institutions. Thus, scientific doctrines of different universities influenced the development of the MER model which is based on both horizontal and vertical integration of the enterprises' governance and management processes, instruments and institutions into a consistently operating unit. Conclusions: The presented MER model is based on the multi-layer integration of governance and management with an enterprise and its environment, considering the fundamental desires for the enterprises' existence and, thus, their quantitative as well as qualitative changes. The process, instrumental, and institutional integrity of the governance and management is also the initial condition for the implementation of all other integration factors.

  4. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...... approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects...

  5. Towards an integrated model of international migration

    Directory of Open Access Journals (Sweden)

    Douglas S. MASSEY

    2012-12-01

    Full Text Available Demographers have yet to develop a suitable integrated model of international migration and consequently have been very poor at forecasting immigration. This paper outlines the basic elements of an integrated model and surveys recent history to suggest the key challenges to model construction. A comprehensive theory must explain the structural forces that create a supply of people prone to migrate internationally, the structural origins of labour demand in receiving countries, the motivations of those who respond to these forces by choosing to migrate internationally, the growth and structure of transnational networks that arise to support international movement, the behaviour states in response to immigrant flows, and the influence of state actions on the behaviour of migrants. Recent history suggests that a good model needs to respect the salience of markets, recognize the circularity of migrant flows, appreciate the power of feedback effects, and be alert unanticipated consequences of policy actions.

  6. Quiver gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  7. Topological matter, integrable models and fusion rings

    International Nuclear Information System (INIS)

    Nemeschansky, D.; Warner, N.P.

    1992-01-01

    We show how topological G k /G k models can be embedded into the topological matter models that are obtained by perturbing the twisted N = 2 supersymmetric, hermitian symmetric, coset models. In particular, this leads to an embedding of the fusion ring of G as a sub-ring of the perturbed, chiral primary ring. The perturbation of the twisted N = 2 model that leads to the fusion ring is also shown to lead to an integrable N = 2 supersymmetric field theory when the untwisted N = 2 superconformal field theory is perturbed by the same operator and its hermitian conjugate. (orig.)

  8. Towards an Integrative Model of Knowledge Transfer

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call of the Eu......This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call...... business and academia, and implementing the respective legislature are enduring. The research objectives were to explore (i) the process of knowledge transfer in universities, including the nature of tensions, obstacles and incentives, (ii) the relationships between key stakeholders in the KT market...... of the emergent integrative model of knowledge transfer. In an attempt to bring it to a higher level of generalizability, the integrative model of KT is further conceptualized from a ‘sociology of markets’ perspective resulting in an emergent architecture of a single market for knowledge. Future research...

  9. International Summit on Integrated Environmental Modeling

    Science.gov (United States)

    This report describes the International Summit on Integrated Environmental Modeling (IEM), held in Washington, DC 7th-9th December 2010. The meeting brought together 57 scientists and managers from leading US and European government and non-governmental organizations, universitie...

  10. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

  11. Rethinking School Bullying: Towards an Integrated Model

    Science.gov (United States)

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  12. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  13. Structured Spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires

    DEFF Research Database (Denmark)

    Møller, Jesper; Diaz-Avalos, Carlos

    2010-01-01

    Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable fo...... data set consisting of 2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal log-Gaussian Cox point process model, and likelihood-based methods are discussed to some extent....

  14. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data

    DEFF Research Database (Denmark)

    Kamruzzaman, M.; Lutz, Th.; Würz, W.

    2012-01-01

    This paper describes an extensive assessment and a step by step validation of different turbulent boundary-layer trailing-edge noise prediction schemes developed within the European Union funded wind energy project UpWind. To validate prediction models, measurements of turbulent boundary-layer pr...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd.......-layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re  =  2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...

  15. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    Science.gov (United States)

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  16. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    Directory of Open Access Journals (Sweden)

    Feibiao Zhan

    2017-11-01

    Full Text Available Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  17. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    Science.gov (United States)

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  19. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Science.gov (United States)

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  20. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

    KAUST Repository

    Reyes, Juan Carlos De los; Schö nlieb, Carola-Bibiane

    2013-01-01

    We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.

  1. A noise model for the Brazilian gravitational wave detector 'Mario Schenberg'

    International Nuclear Information System (INIS)

    Frajuca, Carlos; Ribeiro, Kilder L; Andrade, Luiz A; Aguiar, Odylio D; Magalhaes, Nadja S; Jr, Rubens de Melo Marinho

    2004-01-01

    'Mario Schenberg' is a spherical resonant-mass gravitational wave (GW) detector that will be part of a GW detection array of three detectors. The other two will be built in Italy and in The Netherlands. Their resonant frequencies will be around 3.2 kHz with a bandwidth of about 200 Hz. This range of frequencies is new in a field where the typical frequencies lay below 1 kHz, making the development of the mechanical system much more complex. In this work, a noise model of the detector is presented, where all main sources of noise were taken into account. The final goal is to calculate the expected sensitivity of the detector, analysing which parameters must be changed to improve this

  2. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

    KAUST Repository

    Reyes, Juan Carlos De los

    2013-11-01

    We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.

  3. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  4. Mass generation in perturbed massless integrable models

    International Nuclear Information System (INIS)

    Controzzi, D.; Mussardo, G.

    2005-01-01

    We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induce the confinement of the massless particles in the perturbed theory

  5. Paradox of integration-A computational model

    Science.gov (United States)

    Krawczyk, Małgorzata J.; Kułakowski, Krzysztof

    2017-02-01

    The paradoxical aspect of integration of a social group has been highlighted by Blau (1964). During the integration process, the group members simultaneously compete for social status and play the role of the audience. Here we show that when the competition prevails over the desire of approval, a sharp transition breaks all friendly relations. However, as was described by Blau, people with high status are inclined to bother more with acceptance of others; this is achieved by praising others and revealing her/his own weak points. In our model, this action smooths the transition and improves interpersonal relations.

  6. Integrated assessment models of global climate change

    International Nuclear Information System (INIS)

    Parson, E.A.; Fisher-Vanden, K.

    1997-01-01

    The authors review recent work in the integrated assessment modeling of global climate change. This field has grown rapidly since 1990. Integrated assessment models seek to combine knowledge from multiple disciplines in formal integrated representations; inform policy-making, structure knowledge, and prioritize key uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly between socio-economic and bio-physical processes. They may combine simplified representations of the socio-economic determinants of greenhouse gas emissions, the atmosphere and oceans, impacts on human activities and ecosystems, and potential policies and responses. The authors summarize current projects, grouping them according to whether they emphasize the dynamics of emissions control and optimal policy-making, uncertainty, or spatial detail. They review the few significant insights that have been claimed from work to date and identify important challenges for integrated assessment modeling in its relationships to disciplinary knowledge and to broader assessment seeking to inform policy- and decision-making. 192 refs., 2 figs

  7. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.

    Science.gov (United States)

    Jayachandran, V; Bonilha, M W

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  8. A discrete model on Sierpinski gasket substrate for a conserved current equation with a conservative noise

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Jin Min

    2012-01-01

    A conserved discrete model on the Sierpinski gasket substrate is studied. The interface width W in the model follows the Family–Vicsek dynamic scaling form with growth exponent β ≈ 0.0542, roughness exponent α ≈ 0.240 and dynamic exponent z ≈ 4.42. They satisfy a scaling relation α + z = 2z rw , where z rw is the random walk exponent of the fractal substrate. Also, they are in a good agreement with the predicted values of a fractional Langevin equation where η c is a conservative noise. (paper)

  9. Analytical modeling of the structureborne noise path on a small twin-engine aircraft

    Science.gov (United States)

    Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.

    1988-01-01

    The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.

  10. Validation of a power-law noise model for simulating small-scale breast tissue

    International Nuclear Information System (INIS)

    Reiser, I; Edwards, A; Nishikawa, R M

    2013-01-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. (paper)

  11. COGMIR: A computer model for knowledge integration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.X.

    1988-01-01

    This dissertation explores some aspects of knowledge integration, namely, accumulation of scientific knowledge and performing analogical reasoning on the acquired knowledge. Knowledge to be integrated is conveyed by paragraph-like pieces referred to as documents. By incorporating some results from cognitive science, the Deutsch-Kraft model of information retrieval is extended to a model for knowledge engineering, which integrates acquired knowledge and performs intelligent retrieval. The resulting computer model is termed COGMIR, which stands for a COGnitive Model for Intelligent Retrieval. A scheme, named query invoked memory reorganization, is used in COGMIR for knowledge integration. Unlike some other schemes which realize knowledge integration through subjective understanding by representing new knowledge in terms of existing knowledge, the proposed scheme suggests at storage time only recording the possible connection of knowledge acquired from different documents. The actual binding of the knowledge acquired from different documents is deferred to query time. There is only one way to store knowledge and numerous ways to utilize the knowledge. Each document can be represented as a whole as well as its meaning. In addition, since facts are constructed from the documents, document retrieval and fact retrieval are treated in a unified way. When the requested knowledge is not available, query invoked memory reorganization can generate suggestion based on available knowledge through analogical reasoning. This is done by revising the algorithms developed for document retrieval and fact retrieval, and by incorporating Gentner's structure mapping theory. Analogical reasoning is treated as a natural extension of intelligent retrieval, so that two previously separate research areas are combined. A case study is provided. All the components are implemented as list structures similar to relational data-bases.

  12. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  13. Toward an Integrative Model of Global Business Strategy

    DEFF Research Database (Denmark)

    Li, Xin

    fragmentation-integration-fragmentation-integration upward spiral. In response to the call for integrative approach to strategic management research, we propose an integrative model of global business strategy that aims at integrating not only strategy and IB but also the different paradigms within the strategy...... field. We also discuss the merit and limitation of our model....

  14. Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-09-01

    Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.

  15. Deterministic analysis of extrinsic and intrinsic noise in an epidemiological model.

    Science.gov (United States)

    Bayati, Basil S

    2016-05-01

    We couple a stochastic collocation method with an analytical expansion of the canonical epidemiological master equation to analyze the effects of both extrinsic and intrinsic noise. It is shown that depending on the distribution of the extrinsic noise, the master equation yields quantitatively different results compared to using the expectation of the distribution for the stochastic parameter. This difference is incident to the nonlinear terms in the master equation, and we show that the deviation away from the expectation of the extrinsic noise scales nonlinearly with the variance of the distribution. The method presented here converges linearly with respect to the number of particles in the system and exponentially with respect to the order of the polynomials used in the stochastic collocation calculation. This makes the method presented here more accurate than standard Monte Carlo methods, which suffer from slow, nonmonotonic convergence. In epidemiological terms, the results show that extrinsic fluctuations should be taken into account since they effect the speed of disease breakouts and that the gamma distribution should be used to model the basic reproductive number.

  16. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  17. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    International Nuclear Information System (INIS)

    Dautta, Manik; Faruque, Rumana Binte; Islam, Rakibul

    2016-01-01

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (R_d) and the Probability of Detection (P_d) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.

  18. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  19. Global noise studies for CMS Tracker upgrade

    CERN Document Server

    Arteche, F; Echevarria, I; Iglesias, M; Rivetta, C; Vila, I; 10.1088/1748-0221/5/12/C12029

    2010-01-01

    The characterization of the noise emissions of DC-DC converters at system level is critical to optimize the design of the detector and define rules for the integration strategy. This paper presents the impedance effects on the noise emissions of DC-DC converters at system level. Conducted and radiated noise emissions at the input and at the output from DC-DC converters have been simulated for different types of power network and FEE impedances. System aspects as granularity, stray capacitances of the system and different working conditions of the DC-DC converters are presented too. This study has been carried out using simulation models of noise emissions of DC-DC converters in the real scenario. The results of these studies show important recommendations and criteria to be applied to integrate the DC-DC converters and decrease the system noise level

  20. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  1. On the significance of the noise model for the performance of a linear MPC in closed-loop operation

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Boiroux, Dimitri; Mahmoudi, Zeinab

    2016-01-01

    This paper discusses the significance of the noise model for the performance of a Model Predictive Controller when operating in closed-loop. The process model is parametrized as a continuous-time (CT) model and the relevant sampled-data filtering and control algorithms are developed. Using CT...... models typically means less parameters to identify. Systematic tuning of such controllers is discussed. Simulation studies are conducted for linear time-invariant systems showing that choosing a noise model of low order is beneficial for closed-loop performance. (C) 2016, IFAC (International Federation...

  2. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  3. Pedagogic process modeling: Humanistic-integrative approach

    Directory of Open Access Journals (Sweden)

    Boritko Nikolaj M.

    2007-01-01

    Full Text Available The paper deals with some current problems of modeling the dynamics of the subject-features development of the individual. The term "process" is considered in the context of the humanistic-integrative approach, in which the principles of self education are regarded as criteria for efficient pedagogic activity. Four basic characteristics of the pedagogic process are pointed out: intentionality reflects logicality and regularity of the development of the process; discreteness (stageability in dicates qualitative stages through which the pedagogic phenomenon passes; nonlinearity explains the crisis character of pedagogic processes and reveals inner factors of self-development; situationality requires a selection of pedagogic conditions in accordance with the inner factors, which would enable steering the pedagogic process. Offered are two steps for singling out a particular stage and the algorithm for developing an integrative model for it. The suggested conclusions might be of use for further theoretic research, analyses of educational practices and for realistic predicting of pedagogical phenomena. .

  4. Site descriptive modelling - strategy for integrated evaluation

    International Nuclear Information System (INIS)

    Andersson, Johan

    2003-02-01

    The current document establishes the strategy to be used for achieving sufficient integration between disciplines in producing Site Descriptive Models during the Site Investigation stage. The Site Descriptive Model should be a multidisciplinary interpretation of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and ecosystems using site investigation data from deep bore holes and from the surface as input. The modelling comprise the following iterative steps, evaluation of primary data, descriptive and quantitative modelling (in 3D), overall confidence evaluation. Data are first evaluated within each discipline and then the evaluations are checked between the disciplines. Three-dimensional modelling (i.e. estimating the distribution of parameter values in space and its uncertainty) is made in a sequence, where the geometrical framework is taken from the geological model and in turn used by the rock mechanics, thermal and hydrogeological modelling etc. The three-dimensional description should present the parameters with their spatial variability over a relevant and specified scale, with the uncertainty included in this description. Different alternative descriptions may be required. After the individual discipline modelling and uncertainty assessment a phase of overall confidence evaluation follows. Relevant parts of the different modelling teams assess the suggested uncertainties and evaluate the feedback. These discussions should assess overall confidence by, checking that all relevant data are used, checking that information in past model versions is considered, checking that the different kinds of uncertainty are addressed, checking if suggested alternatives make sense and if there is potential for additional alternatives, and by discussing, if appropriate, how additional measurements (i.e. more data) would affect confidence. The findings as well as the modelling results are to be documented in a Site Description

  5. MULTI SENSOR DATA INTEGRATION FOR AN ACCURATE 3D MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    S. Chhatkuli

    2015-05-01

    Full Text Available The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other’s weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  6. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    Science.gov (United States)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation

  7. Integrated Modelling in CRUCIAL Science Education

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and

  8. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    Science.gov (United States)

    Schiffer, Christian; Jacobsen, Bo; Balling, Niels

    2014-05-01

    There are several reasons why a real-data receiver function differs from the theoretical receiver function in a 1D model representing the stratification under the seismometer. Main reasons are ambient noise, spectral deficiencies in the impinging P-waveform, and wavefield propagation in laterally varying velocity variations. We present a rapid "2.5D" modelling approach which takes these aspects into account, so that a given 3D velocity model of the crust and uppermost mantle can be tested more realistically against observed recordings from seismometer arrays. Each recorded event at each seismometer is simulated individually through the following steps: A 2D section is extracted from the 3D model along the direction towards the hypocentre. A properly slanted plane or curved impulsive wavefront is propagated through this 2D section, resulting in noise free and spectrally complete synthetic seismometer data. The real vertical component signal is taken as a proxy of the real impingent wavefield, so by convolution and subsequent addition of real ambient noise recorded just before the P-arrival we get synthetic vertical and horizontal component data which very closely match the spectral signal content and signal to noise ratio of this specific recording. When these realistic synthetic data undergo exactly the same receiver function estimation and subsequent graphical display we get a much more realistic image to compare to the real-data receiver functions. We applied this approach to the Central Fjord area in East Greenland (Schiffer et al., 2013), where a 3D velocity model of crust and uppermost mantle was adjusted to receiver functions from 2 years of seismometer recordings and wide angle crustal profiles (Schlindwein and Jokat, 1999; Voss and Jokat, 2007). Computationally this substitutes tens or hundreds of heavy 3D computations with hundreds or thousands of single-core 2D computations which parallelize very efficiently on common multicore systems. In perspective

  9. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  10. Generation of synthetic Kinect depth images based on empirical noise model

    DEFF Research Database (Denmark)

    Iversen, Thorbjørn Mosekjær; Kraft, Dirk

    2017-01-01

    The development, training and evaluation of computer vision algorithms rely on the availability of a large number of images. The acquisition of these images can be time-consuming if they are recorded using real sensors. An alternative is to rely on synthetic images which can be rapidly generated....... This Letter describes a novel method for the simulation of Kinect v1 depth images. The method is based on an existing empirical noise model from the literature. The authors show that their relatively simple method is able to provide depth images which have a high similarity with real depth images....

  11. Modelling the influence of noise of the image sensor for blood cells recognition in computer microscopy

    Science.gov (United States)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.

    2017-12-01

    The first stage of diagnostics of blood cancer is the analysis of blood smears. The application of decision-making support systems would reduce the subjectivity of the diagnostic process and avoid errors, resulting in often irreversible changes in the patient's condition. In this regard, the solution of this problem requires the use of modern technology. One of the tools of the program classification of blood cells are texture features, and the task of finding informative among them is promising. The paper investigates the effect of noise of the image sensor to informative texture features with application of methods of mathematical modelling.

  12. Recursive Bayesian estimation of autoregressive model with uniform noise using approximation by parallelotopes

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Jirsa, Ladislav

    2017-01-01

    Roč. 31, č. 8 (2017), s. 1184-1192 ISSN 0890-6327 R&D Projects: GA MŠk 7D12004 Institutional support: RVO:67985556 Keywords : approximate parameter estimation * ARX model * Bayesian estimation * bounded noise * Kullback-Leibler divergence * parallelotope Subject RIV: BC - Control Systems Theory OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 1.708, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/pavelkova-0472081.pdf

  13. State and parameter estimation of state-space model with entry-wise correlated uniform noise

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Kárný, Miroslav

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf

  14. Displacement-noise-free gravitational-wave detection with a single Fabry-Perot cavity: A toy model

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Vyatchanin, Sergey P.

    2008-01-01

    We propose a detuned Fabry-Perot cavity, pumped through both the mirrors, as a toy model of the gravitational-wave (GW) detector partially free from displacement noise of the test masses. It is demonstrated that the noise of cavity mirrors can be eliminated, but the one of lasers and detectors cannot. The isolation of the GW signal from displacement noise of the mirrors is achieved in a proper linear combination of the cavity output signals. The construction of such a linear combination is possible due to the difference between the reflected and transmitted output signals of detuned cavity. We demonstrate that in low-frequency region the obtained displacement-noise-free response signal is much stronger than the f gw 3 -limited sensitivity of displacement-noise-free interferometers recently proposed by S. Kawamura and Y. Chen. However, the loss of the resonant gain in the noise cancelation procedure results is the sensitivity limitation of our toy model by displacement noise of lasers and detectors

  15. Integrated Model for E-Learning Acceptance

    Science.gov (United States)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  16. MODELS OF TECHNOLOGY ADOPTION: AN INTEGRATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    Andrei OGREZEANU

    2015-06-01

    Full Text Available The interdisciplinary study of information technology adoption has developed rapidly over the last 30 years. Various theoretical models have been developed and applied such as: the Technology Acceptance Model (TAM, Innovation Diffusion Theory (IDT, Theory of Planned Behavior (TPB, etc. The result of these many years of research is thousands of contributions to the field, which, however, remain highly fragmented. This paper develops a theoretical model of technology adoption by integrating major theories in the field: primarily IDT, TAM, and TPB. To do so while avoiding mess, an approach that goes back to basics in independent variable type’s development is proposed; emphasizing: 1 the logic of classification, and 2 psychological mechanisms behind variable types. Once developed these types are then populated with variables originating in empirical research. Conclusions are developed on which types are underpopulated and present potential for future research. I end with a set of methodological recommendations for future application of the model.

  17. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2014-01-01

    – The OLI and the UIP models fail to include corporate entrepreneurship and managerial psychology in their analyses. We suggest that regulatory focus theory unifies the managerial strategic choice between position logic and opportunity logic. In addition, host country institutions affect this managerial......Purpose – This paper aims to critically review the ownership, location and internalization (OLI) model and the Uppsala internationalization process (UIP) framework. We suggest that the inclusion of concepts such as corporate entrepreneurship, host country institutions and regulatory focus...... in an integrated framework helps to explain firm internationalization. Design/methodology/approach – This paper is based on a review of the literature on the OLI and UIP models. In addition, it presents a conceptual model that encompasses corporate entrepreneurship, regulatory focus and institutions. Findings...

  18. Modeling quantum noise of phosphors used in medical X-ray imaging detectors

    CERN Document Server

    Kalivas, N; Cavouras, D; Costaridou, L; Nomicos, C D; Panayiotakis, G S

    1999-01-01

    The noise properties of the granular phosphor screens, which are utilized in X-ray imaging detectors, are studied in terms of the quantum noise transfer function (QNTF). An analytical model, taking into account the effect of K-characteristic X-rays reabsorption within the phosphor material and the optical properties of the phosphor, was developed. The optical properties of the phosphor material required by the model were obtained from literature, except for the optical diffusion length (sigma) that was determined by data fitting and was found to be 26 cm sup 2 /g. The deviation between theoretical and experimental data is sigma depended. Specifically for sigma=26 cm sup 2 /g and sigma=25 cm sup 2 /g the respective deviations between experimental and predicted results were 0.698% and -1.597%. However for relative differences in sigma more than 15% from the value 26 cm sup 2 /g, the corresponding deviations exceed by 6 times the value of 0.698%. The model was tested via comparison to experimental results obtain...

  19. Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.

    Science.gov (United States)

    Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo

    2017-07-01

    Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.

  20. A GEM-TPC prototype with low-Noise highly integrated front-end electronics for linear collider studies

    CERN Document Server

    Kappler, Steffen; Kaminski, Jochen; Ledermann, Bernhard; Müller, Thomas; Ronan, Michael T; Ropelewski, Leszek; Sauli, Fabio; Settles, Ronald

    2004-01-01

    Connected to the linear collider project, studies on the readout of time projection chambers (TPCs) based on the gas electron multiplier (GEM) are ongoing. Higher granularity and intrinsically suppressed ion feedback are the major advantages of this technology. After a short discussion of these issues, we present the design of a small and very flexible TPC prototype, whose cylindrical drift volume can be equipped with endcaps of different gas detector types. An endcap with multi-GEM readout is currently set up and successfully operated with a low-noise highly integrated front-end electronics. We discuss results of measurements with this system in high intensity particle beams at CERN, where 99.3 plus or minus 0.2% single-pad-row efficiency could be achieved at an effective gain of 2.5 multiplied by 10**3 only, and spatial resolutions down to 63 plus or minus 3 mum could be demonstrated. Finally, these results are extrapolated to the high magnetic field in a linear collider TPC. 5 Refs.