WorldWideScience

Sample records for integrated network analysis

  1. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  2. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  3. Semantic web for integrated network analysis in biomedicine.

    Science.gov (United States)

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  4. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  5. Momentum integral network method for thermal-hydraulic transient analysis

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1983-01-01

    A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion

  6. A network analysis of leadership theory : the infancy of integration.

    OpenAIRE

    Meuser, J. D.; Gardner, W. L.; Dinh, J. E.; Hu, J.; Liden, R. C.; Lord, R. G.

    2016-01-01

    We investigated the status of leadership theory integration by reviewing 14 years of published research (2000 through 2013) in 10 top journals (864 articles). The authors of these articles examined 49 leadership approaches/theories, and in 293 articles, 3 or more of these leadership approaches were included in their investigations. Focusing on these articles that reflected relatively extensive integration, we applied an inductive approach and used graphic network analysis as a guide for drawi...

  7. Analysis of Basic Transmission Networks for Integrated Ship Control Systems

    DEFF Research Database (Denmark)

    Hansen, T.N.; Granum-Jensen, M.

    1993-01-01

    Description of a computer network for Integrated Ship Control Systems which is going to be developed as part of an EC-project. Today equipment of different make are not able to communicate with each other because most often each supplier of ISC systems has got their own proprietary network.....

  8. Topology design and performance analysis of an integrated communication network

    Science.gov (United States)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  9. Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks.

    Science.gov (United States)

    Haibe-Kains, Benjamin; Olsen, Catharina; Djebbari, Amira; Bontempi, Gianluca; Correll, Mick; Bouton, Christopher; Quackenbush, John

    2012-01-01

    Genomics provided us with an unprecedented quantity of data on the genes that are activated or repressed in a wide range of phenotypes. We have increasingly come to recognize that defining the networks and pathways underlying these phenotypes requires both the integration of multiple data types and the development of advanced computational methods to infer relationships between the genes and to estimate the predictive power of the networks through which they interact. To address these issues we have developed Predictive Networks (PN), a flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these 'known' interactions together with gene expression data to infer robust gene networks. The PN web application is accessible from http://predictivenetworks.org. The PN code base is freely available at https://sourceforge.net/projects/predictivenets/.

  10. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    Science.gov (United States)

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  11. Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    Science.gov (United States)

    Lee, Nathaniel; Welch, Bryan W.

    2018-01-01

    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.

  12. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  13. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases

    DEFF Research Database (Denmark)

    Bergholdt, R.; Størling, Zenia, Marian; Hansen, Kasper Lage

    2007-01-01

    We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We...... identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases....

  14. Integrative Analysis of the Physical Transport Network into Australia.

    Directory of Open Access Journals (Sweden)

    Robert C Cope

    Full Text Available Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999-2012. Seaborne and air traffic were weighted to calculate a "weighted cumulative impact" score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong, and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights, were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy.

  15. Integration Strategy Is a Key Step in Network-Based Analysis and Dramatically Affects Network Topological Properties and Inferring Outcomes

    Science.gov (United States)

    Jin, Nana; Wu, Deng; Gong, Yonghui; Bi, Xiaoman; Jiang, Hong; Li, Kongning; Wang, Qianghu

    2014-01-01

    An increasing number of experiments have been designed to detect intracellular and intercellular molecular interactions. Based on these molecular interactions (especially protein interactions), molecular networks have been built for using in several typical applications, such as the discovery of new disease genes and the identification of drug targets and molecular complexes. Because the data are incomplete and a considerable number of false-positive interactions exist, protein interactions from different sources are commonly integrated in network analyses to build a stable molecular network. Although various types of integration strategies are being applied in current studies, the topological properties of the networks from these different integration strategies, especially typical applications based on these network integration strategies, have not been rigorously evaluated. In this paper, systematic analyses were performed to evaluate 11 frequently used methods using two types of integration strategies: empirical and machine learning methods. The topological properties of the networks of these different integration strategies were found to significantly differ. Moreover, these networks were found to dramatically affect the outcomes of typical applications, such as disease gene predictions, drug target detections, and molecular complex identifications. The analysis presented in this paper could provide an important basis for future network-based biological researches. PMID:25243127

  16. Towards the integration of social network analysis in an inter-organizational networks perspective

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Waldstrøm, Christian

    This conceptual paper deals with the issue of studying inter-organizational networks while applying social network analysis (SNA). SNA is a widely recognized technique in network research, particularly within intra-organizational settings, while there seems to be a significant gap in the inter......-organizational setting. Based on a literature review of both SNA as a methodology and/or theory and the field of inter-organizational networks, the aim is to gain an overview in order to provide a clear setting for SNA in inter-organizational research....

  17. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    Science.gov (United States)

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  18. Network-assisted crop systems genetics: network inference and integrative analysis.

    Science.gov (United States)

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. atBioNet– an integrated network analysis tool for genomics and biomarker discovery

    Directory of Open Access Journals (Sweden)

    Ding Yijun

    2012-07-01

    Full Text Available Abstract Background Large amounts of mammalian protein-protein interaction (PPI data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. Results atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks. The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. Conclusion atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http

  20. atBioNet--an integrated network analysis tool for genomics and biomarker discovery.

    Science.gov (United States)

    Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-07-20

    Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

  1. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  2. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  3. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    Science.gov (United States)

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  4. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    Science.gov (United States)

    Kwak, Doyeon; Kim, Wonjoon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  5. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    Directory of Open Access Journals (Sweden)

    Doyeon Kwak

    Full Text Available It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  6. Analysis of thevenin equivalent network of a distribution system for solar integration studies

    DEFF Research Database (Denmark)

    Yang, Guangya; Mattesen, Majken; Kjaer, Søren Bækhøj

    2012-01-01

    generations and expected to play a significant role in the future sustainable energy system. Currently one of the main issues for solar integration is the voltage regulation problem in the LV grid, as to the small X/R ratios. Hence, the voltage control techniques developed for the MV and HV networks may need...... to be further evaluated before applied for the LV grid. For the inverter voltage control design, it is useful to develop a realistic Thevenin equivalent model for the grid to ease the analysis. In this paper, case studies are performed based on the analysis of a realistic distribution network for the design...

  7. A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Energy integration is a key solution in chemical process and crude refining industries to minimise external fuel consumption and to face the impact of growing energy crises. Typical energy integration projects can reach a reduction of heating fuels and cold utilities by up to 40% compared with original designs or existing installations. Pinch Analysis is a leading tool and regarded as an efficient method to increase energy efficiency and minimise fuel flow consumptions. It is valid for both natures of design, grassroots and retrofit situations. It can practically be applied to synthesise a HEN (heat exchanger network) or modify an existing preheat train for minimum energy consumption. Heat recovery systems or HENs are networks for exchanging heat between hot and cold process sources. All heat transferred from hot process sources into cold process sinks represent the scope for energy integration. On the other hand, energies required beyond this integrated amount are to be satisfied by external utilities. Graphical representations of Pinch Analysis, such as Composite and Grand Composite Curves are very useful for grassroots designs. Nevertheless, in retrofit situation the analysis is not adequate and besides it is graphically tedious to represent existing exchangers on such graphs. This research proposes a new graphical method for the analysis of heat recovery systems, applicable to HEN retrofit. The new graphical method is based on plotting temperatures of process hot streams versus temperatures of process cold streams. A new graph is constructed for representing existing HENs. For a given network, each existing exchanger is represented by a straight line, whose slope is proportional to the ratio of heat capacities and flows. Further, the length of each exchanger line is related to the heat flow transferred across this exchanger. This new graphical representation can easily identify exchangers across the pinch, Network Pinch, pinching matches and improper placement

  8. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Katrina M Waters

    Full Text Available To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  9. Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.

    2012-03-29

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  10. Design and analysis of heat exchanger networks for integrated Ca-looping systems

    International Nuclear Information System (INIS)

    Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Romeo, Luis M.

    2013-01-01

    Highlights: • Heat integration is essential to minimize energy penalties in calcium looping cycles. • A design and analysis of four heat exchanger networks is stated. • New design with higher power, lower costs and lower destroyed exergy than base case. - Abstract: One of the main challenges of carbon capture and storage technologies deals with the energy penalty associated with CO 2 separation and compression processes. Thus, heat integration plays an essential role in the improvement of these systems’ efficiencies. CO 2 capture systems based on Ca-looping process present a great potential for residual heat integration with a new supercritical power plant. The pinch methodology is applied in this study to define the minimum energy requirements of the process and to design four configurations for the required heat exchanger network. The Second Law of Thermodynamics represents a powerful tool for reducing the energy demand since identifying the exergy losses of the system serves to allocate inefficiencies. In parallel, an economic analysis is required to asses the cost reduction achieved by each configuration. This work presents a combination of pinch methodology with economic and exergetic analyses to select the more appropriate configuration of heat exchanger network. The lower costs and minor destroyed exergy obtained for the best proposed network result in a of 0.91% global energy efficiency increase

  11. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    Science.gov (United States)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  12. Brain Network Analysis: Separating Cost from Topology Using Cost-Integration

    Science.gov (United States)

    Ginestet, Cedric E.; Nichols, Thomas E.; Bullmore, Ed T.; Simmons, Andrew

    2011-01-01

    A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration. PMID:21829437

  13. Brain network analysis: separating cost from topology using cost-integration.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    Full Text Available A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i differences in weighted costs and (ii differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration.

  14. NASA Integrated Network COOP

    Science.gov (United States)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  15. Integrating Entropy and Closed Frequent Pattern Mining for Social Network Modelling and Analysis

    Science.gov (United States)

    Adnan, Muhaimenul; Alhajj, Reda; Rokne, Jon

    The recent increase in the explicitly available social networks has attracted the attention of the research community to investigate how it would be possible to benefit from such a powerful model in producing effective solutions for problems in other domains where the social network is implicit; we argue that social networks do exist around us but the key issue is how to realize and analyze them. This chapter presents a novel approach for constructing a social network model by an integrated framework that first preparing the data to be analyzed and then applies entropy and frequent closed patterns mining for network construction. For a given problem, we first prepare the data by identifying items and transactions, which arc the basic ingredients for frequent closed patterns mining. Items arc main objects in the problem and a transaction is a set of items that could exist together at one time (e.g., items purchased in one visit to the supermarket). Transactions could be analyzed to discover frequent closed patterns using any of the well-known techniques. Frequent closed patterns have the advantage that they successfully grab the inherent information content of the dataset and is applicable to a broader set of domains. Entropies of the frequent closed patterns arc used to keep the dimensionality of the feature vectors to a reasonable size; it is a kind of feature reduction process. Finally, we analyze the dynamic behavior of the constructed social network. Experiments were conducted on a synthetic dataset and on the Enron corpus email dataset. The results presented in the chapter show that social networks extracted from a feature set as frequent closed patterns successfully carry the community structure information. Moreover, for the Enron email dataset, we present an analysis to dynamically indicate the deviations from each user's individual and community profile. These indications of deviations can be very useful to identify unusual events.

  16. Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks.

    Science.gov (United States)

    D'Souza, Mark; Sulakhe, Dinanath; Wang, Sheng; Xie, Bing; Hashemifar, Somaye; Taylor, Andrew; Dubchak, Inna; Conrad Gilliam, T; Maltsev, Natalia

    2017-01-01

    Recent technological advances in genomics allow the production of biological data at unprecedented tera- and petabyte scales. Efficient mining of these vast and complex datasets for the needs of biomedical research critically depends on a seamless integration of the clinical, genomic, and experimental information with prior knowledge about genotype-phenotype relationships. Such experimental data accumulated in publicly available databases should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining.We present an integrated computational platform Lynx (Sulakhe et al., Nucleic Acids Res 44:D882-D887, 2016) ( http://lynx.cri.uchicago.edu ), a web-based database and knowledge extraction engine. It provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization. It gives public access to the Lynx integrated knowledge base (LynxKB) and its analytical tools via user-friendly web services and interfaces. The Lynx service-oriented architecture supports annotation and analysis of high-throughput experimental data. Lynx tools assist the user in extracting meaningful knowledge from LynxKB and experimental data, and in the generation of weighted hypotheses regarding the genes and molecular mechanisms contributing to human phenotypes or conditions of interest. The goal of this integrated platform is to support the end-to-end analytical needs of various translational projects.

  17. Network Based Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate Symptom Genes

    Directory of Open Access Journals (Sweden)

    Xing Li

    2014-01-01

    Full Text Available Background. Symptoms and signs (symptoms in brief are the essential clinical manifestations for individualized diagnosis and treatment in traditional Chinese medicine (TCM. To gain insights into the molecular mechanism of symptoms, we develop a computational approach to identify the candidate genes of symptoms. Methods. This paper presents a network-based approach for the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated symptoms. The method first calculates the similarities between symptoms and diseases based on the symptom-disease relationships retrieved from the PubMed bibliographic database. Then the disease-gene associations and protein-protein interactions are utilized to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated symptoms. Results. The proposed method gets reliable gene rank list with AUC (area under curve 0.616 in classification. Some novel genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the benchmark data set, but have been reported in recent published literatures. Conclusions. Our study demonstrated that by integrating phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes of symptoms.

  18. Integration opportunities for HIV and family planning services in Addis Ababa, Ethiopia: an organizational network analysis.

    Science.gov (United States)

    Thomas, James C; Reynolds, Heidi; Bevc, Christine; Tsegaye, Ademe

    2014-01-18

    Public health resources are often deployed in developing countries by foreign governments, national governments, civil society and the private health clinics, but seldom in ways that are coordinated within a particular community or population. The lack of coordination results in inefficiencies and suboptimal results. Organizational network analysis can reveal how organizations interact with each other and provide insights into means of realizing better public health results from the resources already deployed. Our objective in this study was to identify the missed opportunities for the integration of HIV care and family planning services and to inform future network strengthening. In two sub-cities of Addis Ababa, we identified each organization providing either HIV care or family planning services. We interviewed representatives of each of them about exchanges of clients with each of the others. With network analysis, we identified network characteristics in each sub-city network, such as referral density and centrality; and gaps in the referral patterns. The results were shared with representatives from the organizations. The two networks were of similar size (25 and 26 organizations) and had referral densities of 0.115 and 0.155 out of a possible range from 0 (none) to 1.0 (all possible connections). Two organizations in one sub-city did not refer HIV clients to a family planning organization. One organization in one sub-city and seven in the other offered few HIV services and did not refer clients to any other HIV service provider. Representatives from the networks confirmed the results reflected their experience and expressed an interest in establishing more links between organizations. Because of organizations not working together, women in the two sub-cities were at risk of not receiving needed family planning or HIV care services. Facilitating referrals among a few organizations that are most often working in isolation could remediate the problem, but the

  19. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  20. Performance Analysis of Hierarchical Group Key Management Integrated with Adaptive Intrusion Detection in Mobile ad hoc Networks

    Science.gov (United States)

    2016-04-05

    applications in wireless networks such as military battlefields, emergency response, mobile commerce , online gaming, and collaborative work are based on the...www.elsevier.com/locate/peva Performance analysis of hierarchical group key management integrated with adaptive intrusion detection in mobile ad hoc...Accepted 19 September 2010 Available online 26 September 2010 Keywords: Mobile ad hoc networks Intrusion detection Group communication systems Group

  1. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Science.gov (United States)

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that

  2. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Directory of Open Access Journals (Sweden)

    Jose A Santiago

    Full Text Available Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level.Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP, previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS and the Prognostic Biomarker Study (PROBE, revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients.These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first

  3. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

    Science.gov (United States)

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo

    2014-06-01

    In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both

  4. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods

    Science.gov (United States)

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E.; Re, Matteo

    2014-01-01

    Objective In the context of “network medicine”, gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. Materials and methods We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. Results The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different “informativeness” embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Conclusions Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further

  5. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  6. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marjan Radi

    2014-01-01

    Full Text Available Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  7. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics

    DEFF Research Database (Denmark)

    Papaleo, Elena

    2015-01-01

    that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome...... with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties...... simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations....

  8. Energetic and Exergetic Analysis of Low and Medium Temperature District Heating Network Integration

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can ...... will reduce the amount of water supply from the MTDH network and improve the system energy conversion efficiency. Through the simulation, the system energetic and exergetic efficiencies based on the two network integration approaches were calculated and evaluated.......In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can...... be supplied through upgrading the return water from the MTDH network with a small centralized heat pump. Alternatively, the supply and return water from the MTDH network can be mixed with a shunt at the junction point to supply the LTDH network. Comparing with the second approach, the heat pump system...

  9. Perioperative and ICU Healthcare Analytics within a Veterans Integrated System Network: a Qualitative Gap Analysis.

    Science.gov (United States)

    Mudumbai, Seshadri; Ayer, Ferenc; Stefanko, Jerry

    2017-08-01

    Health care facilities are implementing analytics platforms as a way to document quality of care. However, few gap analyses exist on platforms specifically designed for patients treated in the Operating Room, Post-Anesthesia Care Unit, and Intensive Care Unit (ICU). As part of a quality improvement effort, we undertook a gap analysis of an existing analytics platform within the Veterans Healthcare Administration. The objectives were to identify themes associated with 1) current clinical use cases and stakeholder needs; 2) information flow and pain points; and 3) recommendations for future analytics development. Methods consisted of semi-structured interviews in 2 phases with a diverse set (n = 9) of support personnel and end users from five facilities across a Veterans Integrated Service Network. Phase 1 identified underlying needs and previous experiences with the analytics platform across various roles and operational responsibilities. Phase 2 validated preliminary feedback, lessons learned, and recommendations for improvement. Emerging themes suggested that the existing system met a small pool of national reporting requirements. However, pain points were identified with accessing data in several information system silos and performing multiple manual validation steps of data content. Notable recommendations included enhancing systems integration to create "one-stop shopping" for data, and developing a capability to perform trends analysis. Our gap analysis suggests that analytics platforms designed for surgical and ICU patients should employ approaches similar to those being used for primary care patients.

  10. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  11. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  12. Wellbore Integrity Network

    Energy Technology Data Exchange (ETDEWEB)

    Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  13. Integrated Analysis of Environment-driven Operational Effects in Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Alfred J [ORNL; Perumalla, Kalyan S [ORNL

    2007-07-01

    There is a rapidly growing need to evaluate sensor network functionality and performance in the context of the larger environment of infrastructure and applications in which the sensor network is organically embedded. This need, which is motivated by complex applications related to national security operations, leads to a paradigm fundamentally different from that of traditional data networks. In the sensor networks of interest to us, the network dynamics depend strongly on sensor activity, which in turn is triggered by events in the environment. Because the behavior of sensor networks is sensitive to these driving phenomena, the integrity of the sensed observations, measurements and resource usage by the network can widely vary. It is therefore imperative to accurately capture the environmental phenomena, and drive the simulation of the sensor network operation by accounting fully for the environment effects. In this paper, we illustrate the strong, intimate coupling between the sensor network operation and the driving phenomena in their applications with an example sensor network designed to detect and track gaseous plumes.

  14. Integrative Network Analysis Unveils Convergent Molecular Pathways in Parkinson's Disease and Diabetes

    OpenAIRE

    Santiago, Jose A.; Potashkin, Judith A.

    2013-01-01

    Background Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. ...

  15. Integrating atomistic molecular dynamics simulations, experiments and network analysis to study protein dynamics: strength in unity

    Directory of Open Access Journals (Sweden)

    Elena ePapaleo

    2015-05-01

    Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  16. Cytogenomic Integrative Network Analysis of the Critical Region Associated with Wolf-Hirschhorn Syndrome

    Directory of Open Access Journals (Sweden)

    Thiago Corrêa

    2018-01-01

    Full Text Available Deletions in the 4p16.3 region are associated with Wolf-Hirschhorn syndrome (WHS, a contiguous gene deletion syndrome involving variable size deletions. In this study, we perform a cytogenomic integrative analysis combining classical cytogenetic methods, fluorescence in situ hybridization (FISH, chromosomal microarray analysis (CMA, and systems biology strategies, to establish the cytogenomic profile involving the 4p16.3 critical region and suggest WHS-related intracellular cell signaling cascades. The cytogenetic and clinical patient profiles were evaluated. We characterized 12 terminal deletions, one interstitial deletion, two ring chromosomes, and one classical translocation 4;8. CMA allowed delineation of the deletions, which ranged from 3.7 to 25.6 Mb with breakpoints from 4p16.3 to 4p15.33. Furthermore, the smallest region of overlapping (SRO encompassed seven genes in a terminal region of 330 kb in the 4p16.3 region, suggesting a region of susceptibility to convulsions and microcephaly. Therefore, molecular interaction networks and topological analysis were performed to understand these WHS-related symptoms. Our results suggest that specific cell signaling pathways including dopamine receptor, NAD+ nucleosidase activity, and fibroblast growth factor-activated receptor activity are associated with the diverse pathological WHS phenotypes and their symptoms. Additionally, we identified 29 hub-bottlenecks (H-B nodes with a major role in WHS.

  17. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    Science.gov (United States)

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  18. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    Science.gov (United States)

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  19. Dynamic stability analysis of fractional order leaky integrator echo state neural networks

    Science.gov (United States)

    Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.

    2017-06-01

    The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.

  20. The integrated disease network.

    Science.gov (United States)

    Sun, Kai; Buchan, Natalie; Larminie, Chris; Pržulj, Nataša

    2014-11-01

    The growing body of transcriptomic, proteomic, metabolomic and genomic data generated from disease states provides a great opportunity to improve our current understanding of the molecular mechanisms driving diseases and shared between diseases. The use of both clinical and molecular phenotypes will lead to better disease understanding and classification. In this study, we set out to gain novel insights into diseases and their relationships by utilising knowledge gained from system-level molecular data. We integrated different types of biological data including genome-wide association studies data, disease-chemical associations, biological pathways and Gene Ontology annotations into an Integrated Disease Network (IDN), a heterogeneous network where nodes are bio-entities and edges between nodes represent their associations. We also introduced a novel disease similarity measure to infer disease-disease associations from the IDN. Our predicted associations were systemically evaluated against the Medical Subject Heading classification and a statistical measure of disease co-occurrence in PubMed. The strong correlation between our predictions and co-occurrence associations indicated the ability of our approach to recover known disease associations. Furthermore, we presented a case study of Crohn's disease. We demonstrated that our approach not only identified well-established connections between Crohn's disease and other diseases, but also revealed new, interesting connections consistent with emerging literature. Our approach also enabled ready access to the knowledge supporting these new connections, making this a powerful approach for exploring connections between diseases.

  1. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases

    NARCIS (Netherlands)

    Peters, D. T. J. M.; Raab, J.; Grêaux, K. M.; Stronks, K.; Harting, J.

    2017-01-01

    Background: Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as

  2. Structural integration and performance of inter-sectoral public health-related policy networks : An analysis across policy phases

    NARCIS (Netherlands)

    Peters, Dorothee; Raab, J.; Grêaux, Kimberley M.; Stronks, Karien; Harting, Janneke

    2017-01-01

    Background: Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structure and network characteristics (i.e., composition and integration) and network performance, such

  3. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration.

    Science.gov (United States)

    Straube, Ronny

    2017-12-01

    Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Integrating Micro-level Interactions with Social Network Analysis in Tie Strength Research

    DEFF Research Database (Denmark)

    Torre, Osku; Gupta, Jayesh Prakash; Kärkkäinen, Hannu

    2017-01-01

    of tie strength based on reciprocal interaction from publicly available Facebook data, and suggest that this approach could work as a basis for further tie strength studies. Our approach makes use of weak tie theory, and enables researchers to study micro-level interactions (i.e. discussions, messages......A social tie is a target for ongoing, high-level scientific debate. Measuring the tie strength in social networks has been an important topic for academic studies since Mark Granovetter's seminal papers in 1970's. However, it is still a problematic issue mainly for two reasons: 1) existing tie...... strengthening process in online social networks. Therefore, we suggest a new approach to tie strength research, which focuses on studying communication patterns (edges) more rather than actors (nodes) in a social network. In this paper we build a social network analysis-based approach to enable the evaluation...

  5. Integrating Networking into ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2018-01-01

    Networking is foundational to the ATLAS distributed infrastructure and there are many ongoing activities related to networking both within and outside of ATLAS. We will report on the progress in a number of areas exploring ATLAS's use of networking and our ability to monitor the network, analyze metrics from the network, and tune and optimize application and end-host parameters to make the most effective use of the network. Specific topics will include work on Open vSwitch for production systems, network analytics, FTS testing and tuning, and network problem alerting and alarming.

  6. The use of social network analysis to examine the transmission of Salmonella spp. within a vertically integrated broiler enterprise.

    Science.gov (United States)

    Crabb, Helen Kathleen; Allen, Joanne Lee; Devlin, Joanne Maree; Firestone, Simon Matthew; Stevenson, Mark Anthony; Gilkerson, James Rudkin

    2018-05-01

    To better understand factors influencing infectious agent dispersal within a livestock population information is needed on the nature and frequency of contacts between farm enterprises. This study uses social network analysis to describe the contact network within a vertically integrated broiler poultry enterprise to identify the potential horizontal and vertical transmission pathways for Salmonella spp. Nodes (farms, sheds, production facilities) were identified and the daily movement of commodities (eggs, birds, feed, litter) and people between nodes were extracted from routinely kept farm records. Three time periods were examined in detail, 1- and 8- and 17-weeks of the production cycle and contact networks were described for all movements, and by commodity and production type. All nodes were linked by at least one movement during the study period but network density was low indicating that all potential pathways between nodes did not exist. Salmonella spp. transmission via vertical or horizontal pathways can only occur along directed pathways when those pathways are present. Only two locations (breeder or feed nodes) were identified where the transmission of a single Salmonella spp. clone could theoretically percolate through the network to the broiler or processing nodes. Only the feed transmission pathway directly connected all parts of the network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  8. Integrating networks with Mathematica

    NARCIS (Netherlands)

    Strijkers, R.J.; Meijer, R.J.

    2008-01-01

    We have developed a concept that considers network behavior as a collection of software objects, which can be used or modified in computer programs. The interfaces of these software objects are exposed as web services and enable applications to analyze and manipulate networks, e.g. to find

  9. CRCHD Integrated Networks

    Science.gov (United States)

    INB supports two network-based programs—the National Outreach Network (NON) and the Geographic Management of Cancer Health Disparities Program (GMaP)—as well as advising on women’s health and sexual and gender minority opportunities within and across the NCI.

  10. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  11. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Bossart, P.; Hermanson, Jan; Mazurek, M.

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  12. Integration, mentoring & networking

    DEFF Research Database (Denmark)

    Bloksgaard, Lotte

    KVINFOs mentornetværk har siden 2003 anvendt mentoring og networking med det formål at åbne døre til det danske samfund og arbejdsmarked for kvinder med indvandrer-/flygtningebaggrund. I mentoringdelen matches kvinder med flygtninge- og indvandrerbaggrund (mentees) med kvinder, som er solidt...... KVINFOs mentornetværk, at indsamle og analysere disses erfaringer med at indgå i netværket samt opnå større viden om mentoring og networking som integrationsfremmende metoder....

  13. User Profile Analysis Using an Online Social Network Integrated Quiz Game

    Directory of Open Access Journals (Sweden)

    Yusuf YASLAN

    2017-09-01

    Full Text Available User interest profiling is important for personalized web search, recommendation and retrieval systems. In order to develop a good personalized application one needs to have accurate representation of user profiles. Most of the personalized systems generate interest profiles from user declarations or inferred from cookies or visited web pages. But to achieve a certain result that satisfies the user needs, explicit definition of the user interests is needed. In this paper we propose to obtain interest profiles from a quiz game played by the user where at each play he/she is asked 10 questions from different categories with different difficulty levels. The developed quiz game is integrated to Facebook online social network. By doing so, we had the chance to extract each user’s both explicit Facebook interest profiles and implicit interest profiles from quiz game answers. These profiles are used to extract different features for each user. Both implicit interest profile and explicit interest profile features are evaluated for clustering and interest ranking tasks separately. The experimental results show that the implicit interest profile features have promising results on personalized systems.

  14. An integrative computational analysis provides evidence for FBN1-associated network deregulation in trisomy 21

    Directory of Open Access Journals (Sweden)

    Mireia Vilardell

    2013-06-01

    Although approximately 50% of Down Syndrome (DS patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS. The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS. Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%, such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

  15. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases.

    Science.gov (United States)

    Peters, D T J M; Raab, J; Grêaux, K M; Stronks, K; Harting, J

    2017-12-01

    Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as addressing environmental determinants of health. This study examines these relations in different phases of the policy process. A multiple-case study was performed on four public health-related policy networks. Using a snowball method among network actors, overall and sub-networks per policy phase were identified and the policy sector of each actor was assigned. To operationalise the outcome variable, interventions were classified by the proportion of environmental determinants they addressed. In the overall networks, no relation was found between structural network characteristics and network performance. In most effective cases, the policy development sub-networks were characterised by integration with less interrelations between actors (low cohesion), more equally distributed distances between the actors (low closeness centralisation), and horizontal integration in inter-sectoral cliques. The most effective case had non-public health central actors with less connections in all sub-networks. The results suggest that, to address environmental determinants of health, sub-networks should be inter-sectorally composed in the policy development rather than in the intervention development and implementation phases, and that policy development actors should have the opportunity to connect with other actors, without strong direction from a central actor. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Net of Friends: Investigating Friendship by Integrating Attachment Theory and Social Network Analysis.

    Science.gov (United States)

    Gillath, Omri; Karantzas, Gery C; Selcuk, Emre

    2017-11-01

    The current article focuses on attachment style-an individual difference widely studied in the field of close relationships-and its application to the study of social networks. Specifically, we investigated whether attachment style predicts perception and management of social networks. In Study 1, we examined the associations of attachment style with perceptions of network tie strength and multiplexity. In Studies 2a and 2b, we investigated the association between attachment style and network management skills (initiating, maintaining, and dissolving ties) and whether network management skills mediated the associations of attachment style with network tie strength and multiplexity. In Study 3, experimentally enhancing attachment security made people more likely to initiate and less likely to dissolve social ties (for the latter, especially among those high on avoidance or anxiety). As for maintenance, security priming also increased maintenance; however, mainly among people high on attachment anxiety or low on attachment avoidance.

  17. European networks in structural integrity

    International Nuclear Information System (INIS)

    Crutzen, S.; Davies, M.; Hemsworth, B.; Hurst, R.; Kussmaul, K.

    1994-01-01

    Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC) have the capability to deal problems posed by the operation and ageing of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes now organised in networks. They include utilities, engineering companies, R and D laboratories and Regulatory Bodies. Networks are organised and managed like the successful PISC programme: The Institute for Advanced Materials of JRC plays the role of Operating Agent and Manager of these networks: ENIQ, AMES, NESC, each of them dealing with a specific aspect of fitness for purpose of materials in structural components. There exist strong links between the networks and EC Working Groups on Structural Integrity Codes and Standards. (orig.)

  18. European networks in industrial integrity

    International Nuclear Information System (INIS)

    Crutzen, S.

    1995-01-01

    Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC), have the capability to deal with several of the problems posed by the operation and aging of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes and organized themselves into networks. This article describes the structure and objective of the existing networks. 3 figs

  19. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  20. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  1. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize

    Science.gov (United States)

    Dong, Yongbin; Wang, Qilei; Du, Chunguang; Xiong, Wenwei; Li, Xinyu; Zhu, Sailan; Li, Yuling

    2017-01-01

    Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize. PMID:28837076

  2. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study

    DEFF Research Database (Denmark)

    Gudmundsdottir, Valborg; Pedersen, Helle Krogh; Allebrandt, Karla Viviani

    2018-01-01

    Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin...... secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS...... P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P

  3. Power-Aware Multi-Layer Translucent Network Design: an Integrated OPEX/CAPEX Analysis

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia; Resendo, Leandro C.; Ribeiro, Moisés R. N.

    2014-01-01

    We propose a three-phase network design model minimizing CAPEX and OPEX in IP-over-WDM architectures. By forbidding reconfiguration (accounting for 58\\% of the OPEX) we achieve only 4.2\\% increase in power consumption at no CAPEX expenses.......We propose a three-phase network design model minimizing CAPEX and OPEX in IP-over-WDM architectures. By forbidding reconfiguration (accounting for 58\\% of the OPEX) we achieve only 4.2\\% increase in power consumption at no CAPEX expenses....

  4. Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Vinay Lanke

    2018-05-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder contributing to rapid decline in cognitive function and ultimately dementia. Most cases of AD occur in elderly and later years. There is a growing need for understanding the relationship between aging and AD to identify shared and unique hallmarks associated with the disease in a region and cell-type specific manner. Although genomic studies on AD have been performed extensively, the molecular mechanism of disease progression is still not clear. The major objective of our study is to obtain a higher-order network-level understanding of aging and AD, and their relationship using the hippocampal gene expression profiles of young (20–50 years, aging (70–99 years, and AD (70–99 years. The hippocampus is vulnerable to damage at early stages of AD and altered neurogenesis in the hippocampus is linked to the onset of AD. We combined the weighted gene co-expression network and weighted protein–protein interaction network-level approaches to study the transition from young to aging to AD. The network analysis revealed the organization of co-expression network into functional modules that are cell-type specific in aging and AD. We found that modules associated with astrocytes, endothelial cells and microglial cells are upregulated and significantly correlate with both aging and AD. The modules associated with neurons, mitochondria and endoplasmic reticulum are downregulated and significantly correlate with AD than aging. The oligodendrocytes module does not show significant correlation with neither aging nor disease. Further, we identified aging- and AD-specific interactions/subnetworks by integrating the gene expression with a human protein–protein interaction network. We found dysregulation of genes encoding protein kinases (FYN, SYK, SRC, PKC, MAPK1, ephrin receptors and transcription factors (FOS, STAT3, CEBPB, MYC, NFKβ, and EGR1 in AD. Further, we found genes that encode proteins

  5. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  6. Ecological network analysis: network construction

    NARCIS (Netherlands)

    Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.

    2007-01-01

    Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but

  7. Measuring the degree of integration for an integrated service network

    Directory of Open Access Journals (Sweden)

    Chenglin Ye

    2012-09-01

    Full Text Available Background: Integration involves the coordination of services provided by autonomous agencies and improves the organization and delivery of multiple services for target patients. Current measures generally do not distinguish between agencies' perception and expectation. We propose a method for quantifying the agencies' service integration. Using the data from the Children's Treatment Network (CTN, we aimed to measure the degree of integration for the CTN agencies in York and Simcoe.  Theory and Methods: We quantified the integration by the agreement between perceived and expected levels of involvement and calculated four scores from different perspectives for each agency. We used the average score to measure the global network integration and examined the sensitivity of the global score.  Results: Most agencies' integration scores were less than 65%. As measured by the agreement between every other agency's perception and expectation, the overall integration of CTN in Simcoe and York was 44% (95% CI: 39% - 49% and 52% (95% CI: 48% - 56%, respectively. The sensitivity analysis showed that the global scores were robust.  Conclusion: Our method extends existing measures of integration and possesses a good extent of validity. We can also apply the method in monitoring improvement and linking integration with other outcomes.

  8. Measuring the degree of integration for an integrated service network

    Directory of Open Access Journals (Sweden)

    Chenglin Ye

    2012-09-01

    Full Text Available Background: Integration involves the coordination of services provided by autonomous agencies and improves the organization and delivery of multiple services for target patients. Current measures generally do not distinguish between agencies' perception and expectation. We propose a method for quantifying the agencies' service integration. Using the data from the Children's Treatment Network (CTN, we aimed to measure the degree of integration for the CTN agencies in York and Simcoe. Theory and Methods: We quantified the integration by the agreement between perceived and expected levels of involvement and calculated four scores from different perspectives for each agency. We used the average score to measure the global network integration and examined the sensitivity of the global score. Results: Most agencies' integration scores were less than 65%. As measured by the agreement between every other agency's perception and expectation, the overall integration of CTN in Simcoe and York was 44% (95% CI: 39% - 49% and 52% (95% CI: 48% - 56%, respectively. The sensitivity analysis showed that the global scores were robust. Conclusion: Our method extends existing measures of integration and possesses a good extent of validity. We can also apply the method in monitoring improvement and linking integration with other outcomes. 

  9. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  10. Building secure network by integrated technology

    International Nuclear Information System (INIS)

    An Dehai; Xu Rongsheng; Liu Baoxu

    2000-01-01

    The author introduces a method which can realize the most powerful network security prevention by the network security integrated technologies such as firewall, realtime monitor, network scanner, Web detection and security, etc

  11. Process Modeling, Performance Analysis and Configuration Simulation in Integrated Supply Chain Network Design

    OpenAIRE

    Dong, Ming

    2001-01-01

    Supply chain management has been recently introduced to address the integration of organizational functions ranging from the ordering and receipt of raw materials throughout the manufacturing processes, to the distribution and delivery of products to the customer. Its application demonstrates that this idea enables organizations to achieve higher quality products, better customer service, and lower inventory cost. In order to achieve high performance, supply chain functions must operate ...

  12. Machine-to-Machine networks: integration of M2M networks into companies' administrative networks

    OpenAIRE

    Pointereau, Romain

    2013-01-01

    This analysis will address the technical, economic and regulatory aspects and will identify the position taken by the various market actors. Integration of M2M Networks into Companies' Administrative Networks. Integración de redes M2M en redes administrativas de las empresas. Integració de xarxes M2M en xarxes administratives de les empreses.

  13. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  14. Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens.

    Science.gov (United States)

    Pfau, Madeline L; Purushothaman, Immanuel; Feng, Jian; Golden, Sam A; Aleyasin, Hossein; Lorsch, Zachary S; Cates, Hannah M; Flanigan, Meghan E; Menard, Caroline; Heshmati, Mitra; Wang, Zichen; Ma'ayan, Avi; Shen, Li; Hodes, Georgia E; Russo, Scott J

    2016-01-01

    Adult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process-microRNA (miR) regulation-has yet to be explored. We exposed male and female mice to Subchronic Variable Stress (SCVS), a stress paradigm that produces depression-like behavior in female, but not male, mice, and performed next generation mRNA and miR sequencing on NAc tissue. We applied a combination of differential expression, miR-mRNA network and functional enrichment analyses to characterize the transcriptional and post-transcriptional landscape of sex differences in NAc stress response. We find that male and female mice exhibit largely non-overlapping miR and mRNA profiles following SCVS. The two sexes also show enrichment of different molecular pathways and functions. Collectively, our results suggest that males and females mount fundamentally different transcriptional and post-transcriptional responses to SCVS and engage sex-specific molecular processes following stress. These findings have implications for the pathophysiology and treatment of stress-related disorders in women.

  15. Energy optimization and prediction of complex petrochemical industries using an improved artificial neural network approach integrating data envelopment analysis

    International Nuclear Information System (INIS)

    Han, Yong-Ming; Geng, Zhi-Qiang; Zhu, Qun-Xiong

    2016-01-01

    Graphical abstract: This paper proposed an energy optimization and prediction of complex petrochemical industries based on a DEA-integrated ANN approach (DEA-ANN). The proposed approach utilizes the DEA model with slack variables for sensitivity analysis to determine the effective decision making units (DMUs) and indicate the optimized direction of the ineffective DMUs. Compared with the traditional ANN approach, the DEA-ANN prediction model is effectively verified by executing a linear comparison between all DMUs and the effective DMUs through the standard data source from the UCI (University of California at Irvine) repository. Finally, the proposed model is validated through an application in a complex ethylene production system of China petrochemical industry. Meanwhile, the optimization result and the prediction value are obtained to reduce energy consumption of the ethylene production system, guide ethylene production and improve energy efficiency. - Highlights: • The DEA-integrated ANN approach is proposed. • The DEA-ANN prediction model is effectively verified through the standard data source from the UCI repository. • The energy optimization and prediction framework of complex petrochemical industries based on the proposed method is obtained. • The proposed method is valid and efficient in improvement of energy efficiency in complex petrochemical plants. - Abstract: Since the complex petrochemical data have characteristics of multi-dimension, uncertainty and noise, it is difficult to accurately optimize and predict the energy usage of complex petrochemical systems. Therefore, this paper proposes a data envelopment analysis (DEA) integrated artificial neural network (ANN) approach (DEA-ANN). The proposed approach utilizes the DEA model with slack variables for sensitivity analysis to determine the effective decision making units (DMUs) and indicate the optimized direction of the ineffective DMUs. Compared with the traditional ANN approach, the DEA

  16. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  17. Integrated network design and scheduling problems :

    Energy Technology Data Exchange (ETDEWEB)

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  18. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  19. An Integrative Analysis of Preeclampsia Based on the Construction of an Extended Composite Network Featuring Protein-Protein Physical Interactions and Transcriptional Relationships.

    Directory of Open Access Journals (Sweden)

    Daniel Vaiman

    Full Text Available Preeclampsia (PE is a pregnancy disorder defined by hypertension and proteinuria. This disease remains a major cause of maternal and fetal morbidity and mortality. Defective placentation is generally described as being at the root of the disease. The characterization of the transcriptome signature of the preeclamptic placenta has allowed to identify differentially expressed genes (DEGs. However, we still lack a detailed knowledge on how these DEGs impact the function of the placenta. The tools of network biology offer a methodology to explore complex diseases at a systems level. In this study we performed a cross-platform meta-analysis of seven publically available gene expression datasets comparing non-pathological and preeclamptic placentas. Using the rank product algorithm we identified a total of 369 DEGs consistently modified in PE. The DEGs were used as seeds to build both an extended physical protein-protein interactions network and a transcription factors regulatory network. Topological and clustering analysis was conducted to analyze the connectivity properties of the networks. Finally both networks were merged into a composite network which presents an integrated view of the regulatory pathways involved in preeclampsia and the crosstalk between them. This network is a useful tool to explore the relationship between the DEGs and enable hypothesis generation for functional experimentation.

  20. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Science.gov (United States)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  1. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy

    DEFF Research Database (Denmark)

    So, Jonathan; Pasculescu, Adrian; Dai, Anna Y.

    2015-01-01

    phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL...

  2. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  3. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2018-01-01

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Combating Forest Corruption: the Forest Integrity Network

    NARCIS (Netherlands)

    Gupta, A.; Siebert, U.

    2004-01-01

    This article describes the strategies and activities of the Forest Integrity Network. One of the most important underlying causes of forest degradation is corruption and related illegal logging. The Forest Integrity Network is a timely new initiative to combat forest corruption. Its approach is to

  5. The Genome-Scale Integrated Networks in Microorganisms

    Directory of Open Access Journals (Sweden)

    Tong Hao

    2018-02-01

    Full Text Available The genome-scale cellular network has become a necessary tool in the systematic analysis of microbes. In a cell, there are several layers (i.e., types of the molecular networks, for example, genome-scale metabolic network (GMN, transcriptional regulatory network (TRN, and signal transduction network (STN. It has been realized that the limitation and inaccuracy of the prediction exist just using only a single-layer network. Therefore, the integrated network constructed based on the networks of the three types attracts more interests. The function of a biological process in living cells is usually performed by the interaction of biological components. Therefore, it is necessary to integrate and analyze all the related components at the systems level for the comprehensively and correctly realizing the physiological function in living organisms. In this review, we discussed three representative genome-scale cellular networks: GMN, TRN, and STN, representing different levels (i.e., metabolism, gene regulation, and cellular signaling of a cell’s activities. Furthermore, we discussed the integration of the networks of the three types. With more understanding on the complexity of microbial cells, the development of integrated network has become an inevitable trend in analyzing genome-scale cellular networks of microorganisms.

  6. Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Yuan NJ

    2017-12-01

    Full Text Available Naijun Yuan,1,* Guijuan Zhang,2,* Fengjie Bie,1 Min Ma,1 Yi Ma,3 Xuefeng Jiang,1 Yurong Wang,1,* Xiaoqian Hao1 1College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, 2The First Affiliated Hospital of Jinan University, 3Department of Cellular Biology, Guangdong Province Key Lab of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangdong, China *These authors contributed equally to this work Abstract: Triple negative breast cancer (TNBC is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Currently, there is increasing focus on long non-coding RNAs (lncRNAs, which can act as competing endogenous RNAs (ceRNAs and suppress miRNA functions involved in post-transcriptional regulatory networks in the tumor. Therefore, to investigate specific mechanisms of TNBC carcinogenesis and improve treatment efficiency, we comprehensively integrated expression profiles, including data on mRNAs, lncRNAs and miRNAs obtained from 116 TNBC tissues and 11 normal tissues from The Cancer Genome Atlas. As a result, we selected the threshold with |log2FC|>2.0 and an adjusted p-value >0.05 to obtain the differentially expressed mRNAs, miRNAs and lncRNAs. Hereafter, weighted gene co-expression network analysis was performed to identify the expression characteristics of dysregulated genes. We obtained five co-expression modules and related clinical feature. By means of correlating gene modules with protein–protein interaction network analysis that had identified 22 hub mRNAs which could as hub target genes. Eleven key dysregulated differentially expressed micro RNAs (DEmiRNAs were identified that were significantly associated with the 22 hub potential target genes. Moreover, we found that 14 key differentially expressed lncRNAs could interact with the key DEmiRNAs. Then, the ceRNA crosstalk network of TNBC was

  7. MINET [momentum integral network] code documentation

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Nepsee, T.C.; Guppy, J.G.

    1989-12-01

    The MINET computer code, developed for the transient analysis of fluid flow and heat transfer, is documented in this four-part reference. In Part 1, the MINET models, which are based on a momentum integral network method, are described. The various aspects of utilizing the MINET code are discussed in Part 2, The User's Manual. The third part is a code description, detailing the basic code structure and the various subroutines and functions that make up MINET. In Part 4, example input decks, as well as recent validation studies and applications of MINET are summarized. 32 refs., 36 figs., 47 tabs

  8. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  9. Gene Prioritization by Integrated Analysis of Protein Structural and Network Topological Properties for the Protein-Protein Interaction Network of Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Yashna Paul

    2016-01-01

    Full Text Available Neurological disorders are known to show similar phenotypic manifestations like anxiety, depression, and cognitive impairment. There is a need to identify shared genetic markers and molecular pathways in these diseases, which lead to such comorbid conditions. Our study aims to prioritize novel genetic markers that might increase the susceptibility of patients affected with one neurological disorder to other diseases with similar manifestations. Identification of pathways involving common candidate markers will help in the development of improved diagnosis and treatments strategies for patients affected with neurological disorders. This systems biology study for the first time integratively uses 3D-structural protein interface descriptors and network topological properties that characterize proteins in a neurological protein interaction network, to aid the identification of genes that are previously not known to be shared between these diseases. Results of protein prioritization by machine learning have identified known as well as new genetic markers which might have direct or indirect involvement in several neurological disorders. Important gene hubs have also been identified that provide an evidence for shared molecular pathways in the neurological disease network.

  10. Layered signaling regulatory networks analysis of gene expression involved in malignant tumorigenesis of non-resolving ulcerative colitis via integration of cross-study microarray profiles.

    Science.gov (United States)

    Fan, Shengjun; Pan, Zhenyu; Geng, Qiang; Li, Xin; Wang, Yefan; An, Yu; Xu, Yan; Tie, Lu; Pan, Yan; Li, Xuejun

    2013-01-01

    Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for microarray data analysis is the integration of multiple-studies generated by different groups. In this study, firstly, we modeled a signaling regulatory network associated with colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB) algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered signaling regulatory networks. Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular, membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway, which were responsible for the malignant transition of CRC from the benign UC to the aggressive one. The present study illustrated a standardized normalization approach for cross-study microarray expression data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into colorectal carcinogenesis

  11. Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data.

    Science.gov (United States)

    Farber, Charles R

    2010-11-01

    Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD. © 2010 American Society for Bone and Mineral Research.

  12. Communication Network Analysis Methods.

    Science.gov (United States)

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  13. Design and Analysis of QoS Routing Framework integrated with OLSR protocol for Multimedia Traffic in Mobile Adhoc Networks

    Directory of Open Access Journals (Sweden)

    S. Soni

    2017-06-01

    Full Text Available MANETs (Mobile Ad-hoc Networks is the self organizing wireless structure of mobile hosts. Wireless media is used for communication in MANETs. Considering the developing requirements for multimedia and real-time traffic applications in real world, QoS (Quality-of-Service support is essential in MANETs. But most of the characteristics of MANETs make QoS support a difficult problem. It is challenging to support QoS routing in MANET due to dynamic behavior and mobility of the hosts. The OLSR (Optimized Link State Routing protocol can be efficiently used in MANETs to provide QoS routing because of its dynamic MPR (Multi Point Relay selection criteria and proactive nature. In this paper, a design of QoS routing framework integrated with OLSR protocol is proposed and also analyzed using network simulator. Proposed QoS framework combines a bandwidth estimation algorithm with explicit resource reservation, QoS routing and connection admission control (CAC. OLSR protocol is extended for QoS framework to solve performance issues related to node mobility using cross layer approach. Results after simulation conclude about efficiency of the proposed QoS routing framework.

  14. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology.

    Science.gov (United States)

    Liao, Maoliang; Shang, Haihua; Li, Yazhuo; Li, Tian; Wang, Miao; Zheng, Yanan; Hou, Wenbin; Liu, Changxiao

    2018-06-01

    Quality control of traditional Chinese medicines is currently a great concern, due to the correlation between the quality control indicators and clinic effect is often questionable. According to the "multi-components and multi-targets" property of TCMs, a new special quality and bioactivity evaluation system is urgently needed. Present study adopted an integrated approach to provide new insights relating to uncover quality marker underlying the effects of Alisma orientale (AO) on lipid metabolism. In this paper, guided by the concept of the quality marker (Q-marker), an integrated strategies "effect-compound-target-fingerprint" was established to discovery and screen the potential quality marker of AO based on network pharmacology and chemical analysis. Firstly, a bioactivity evaluation was performed to screen the main active fractions. Then the chemical compositions were rapidly identified by chemical analysis. Next, networks were constructed to illuminate the interactions between these component and their targets for lipid metabolism, and the potential Q-marker of AO was initially screened. Finally, the activity of the Q-markers was validated in vitro. 50% ethanol extract fraction was found to have the strongest lipid-lowering activity. Then, the network pharmacology was used to clarify the unique relationship between the Q-markers and their integral pharmacological action. Combined with the results obtained, five active ingredients in the 50% ethanol extract fraction were given special considerations to be representative Q-markers: Alisol A, Alisol B, Alisol A 23-acetate, Alisol B 23-acetate and Alisol A 24-acetate, respectively. The chromatographic fingerprints based Q-marker was establishment. The integrated Q-marker screen may offer an alternative quality assessment of herbal medicines. Copyright © 2018. Published by Elsevier GmbH.

  15. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    Science.gov (United States)

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  16. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... with the integrated control scheme so as to maximize overall network throughput in the integrated network architecture. To the best of our knowledge no load balancing mechanisms, especially based on the Multi-Point Control Protocol (MPCP) defined in the IEEE 802.3ah, have been proposed so far. The major research...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  17. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  18. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  19. Integration of Rural Community Pharmacies into a Rural Family Medicine Practice-Based Research Network: A Descriptive Analysis

    Directory of Open Access Journals (Sweden)

    Nicholas E. Hagemeier

    2015-01-01

    Full Text Available Purpose: Practice-based research networks (PBRN seek to shorten the gap between research and application in primary patient care settings. Inclusion of community pharmacies in primary care PBRNs is relatively unexplored. Such a PBRN model could improve care coordination and community-based research, especially in rural and underserved areas. The objectives of this study were to: 1 evaluate rural Appalachian community pharmacy key informants’ perceptions of PBRNs and practice-based research; 2 explore key informants’ perceptions of perceived applicability of practice-based research domains; and 3 explore pharmacy key informant interest in PBRN participation. Methods: The sample consisted of community pharmacies within city limits of all Appalachian Research Network (AppNET PBRN communities in South Central Appalachia. A descriptive, cross-sectional, questionnaire-based study was conducted from November 2013 to February 2014. Bivariate and multivariate analyses were conducted to examine associations between key informant and practice characteristics, and PBRN interest and perceptions. Findings: A 47.8% response rate was obtained. Most key informants (88% were very or somewhat interested in participating in AppNET. Enrichment of patient care (82.8%, improved relationships with providers in the community (75.9%, and professional development opportunities (69.0% were perceived by more than two-thirds of respondents to be very beneficial outcomes of PBRN participation. Respondents ranked time constraints (63% and workflow disruptions (20% as the biggest barriers to PBRN participation. Conclusion: Key informants in rural Appalachian community pharmacies indicated interest in PBRN participation. Integration of community pharmacies into existing rural PBRNs could advance community level care coordination and promote improved health outcomes in rural and underserved areas.   Type: Original Research

  20. Trends in Integrated Ship Control Networking

    DEFF Research Database (Denmark)

    Jørgensen, N.; Nielsen, Jens Frederik Dalsgaard

    1997-01-01

    Integrated Ship Control systems can be designed as robust, distributed, autonomous control systems. The EU funded ATOMOS and ATOMOS II projects involves both technical and non technical aspects of this process. A reference modelling concept giving an outline of a generic ISC system covering...... the network and the equipment connected to it, a framework for verification of network functionality and performance by simulation and a general distribution platform for ISC systems, The ATOMOS Network, are results of this work....

  1. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  2. Towards Integrated Marmara Strong Motion Network

    Science.gov (United States)

    Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.

    2009-04-01

    Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.

  3. IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity.

    Science.gov (United States)

    Cheng, Liang; Shi, Hongbo; Wang, Zhenzhen; Hu, Yang; Yang, Haixiu; Zhou, Chen; Sun, Jie; Zhou, Meng

    2016-07-26

    Increasing evidence indicated that long non-coding RNAs (lncRNAs) were involved in various biological processes and complex diseases by communicating with mRNAs/miRNAs each other. Exploiting interactions between lncRNAs and mRNA/miRNAs to lncRNA functional similarity (LFS) is an effective method to explore function of lncRNAs and predict novel lncRNA-disease associations. In this article, we proposed an integrative framework, IntNetLncSim, to infer LFS by modeling the information flow in an integrated network that comprises both lncRNA-related transcriptional and post-transcriptional information. The performance of IntNetLncSim was evaluated by investigating the relationship of LFS with the similarity of lncRNA-related mRNA sets (LmRSets) and miRNA sets (LmiRSets). As a result, LFS by IntNetLncSim was significant positively correlated with the LmRSet (Pearson correlation γ2=0.8424) and LmiRSet (Pearson correlation γ2=0.2601). Particularly, the performance of IntNetLncSim is superior to several previous methods. In the case of applying the LFS to identify novel lncRNA-disease relationships, we achieved an area under the ROC curve (0.7300) in experimentally verified lncRNA-disease associations based on leave-one-out cross-validation. Furthermore, highly-ranked lncRNA-disease associations confirmed by literature mining demonstrated the excellent performance of IntNetLncSim. Finally, a web-accessible system was provided for querying LFS and potential lncRNA-disease relationships: http://www.bio-bigdata.com/IntNetLncSim.

  4. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  5. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    Science.gov (United States)

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  7. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange

    Science.gov (United States)

    Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa

    2018-01-01

    One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.

  8. Integrated workflows for spiking neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Ján eAntolík

    2013-12-01

    Full Text Available The increasing availability of computational resources is enabling more detailed, realistic modelling in computational neuroscience, resulting in a shift towards more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeller's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modellers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity.To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualisation into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organised configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualisation stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modelling studies by relieving the user from manual handling of the flow of metadata between the individual

  9. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  10. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors......Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA......-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  11. Networking of integrated pest management

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Aubertot, Jean Noël; Begg, Graham; Birch, Andrew Nicholas E.; Boonekamp, Piet; Dachbrodt-Saaydeh, Silke; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring; Jensen, Jens Erik; Jørgensen, Lise Nistrup; Kiss, Jozsef; Kudsk, Per; Moonen, Anna Camilla; Rasplus, Jean Yves; Sattin, Maurizio; Streito, Jean Claude; Messéan, Antoine

    2016-01-01

    Integrated pest management (IPM) is facing both external and internal challenges. External challenges include increasing needs to manage pests (pathogens, animal pests and weeds) due to climate change, evolution of pesticide resistance as well as virulence matching host resistance. The complexity

  12. Revealing the Effects of the Herbal Pair of Euphorbia kansui and Glycyrrhiza on Hepatocellular Carcinoma Ascites with Integrating Network Target Analysis and Experimental Validation.

    Science.gov (United States)

    Zhang, Yanqiong; Lin, Ya; Zhao, Haiyu; Guo, Qiuyan; Yan, Chen; Lin, Na

    2016-01-01

    Although the herbal pair of Euphorbia kansui (GS) and Glycyrrhiza (GC) is one of the so-called "eighteen antagonistic medicaments" in Chinese medicinal literature, it is prescribed in a classic Traditional Chinese Medicine (TCM) formula Gansui-Banxia-Tang for cancerous ascites, suggesting that GS and GC may exhibit synergistic or antagonistic effects in different combination designs. Here, we modeled the effects of GS/GC combination with a target interaction network and clarified the associations between the network topologies involving the drug targets and the drug combination effects. Moreover, the "edge-betweenness" values, which is defined as the frequency with which edges are placed on the shortest paths between all pairs of modules in network, were calculated, and the ADRB1-PIK3CG interaction exhibited the greatest edge-betweenness value, suggesting its crucial role in connecting the other edges in the network. Because ADRB1 and PIK3CG were putative targets of GS and GC, respectively, and both had functional interactions with AVPR2 approved as known therapeutic target for ascites, we proposed that the ADRB1-PIK3CG-AVPR2 signal axis might be involved in the effects of the GS-GC combination on ascites. This proposal was further experimentally validated in a H22 hepatocellular carcinoma (HCC) ascites model. Collectively, this systems-level investigation integrated drug target prediction and network analysis to reveal the combination principles of the herbal pair of GS and GC. Experimental validation in an in vivo system provided convincing evidence that different combination designs of GS and GC might result in synergistic or antagonistic effects on HCC ascites that might be partially related to their regulation of the ADRB1-PIK3CG-AVPR2 signal axis.

  13. Considering supply risk for supplier selection using an integrated framework of data envelopment analysis and neural networks

    Directory of Open Access Journals (Sweden)

    Vahid Nourbakhsh

    2013-04-01

    Full Text Available For many years, supplier selection as an important multi-criteria decision has attracted both the researchers and practitioners. Recently, high incidences of natural disasters, terrorism attacks, labor strikes, and other kinds of risks, also known as disruptions, indicate the vulnerability of procurement process to these unpredicted events. In this study, a new framework is introduced to select suppliers while considering the supply risks. In the proposed framework, an expert is asked to determine the reliability of each procurement element (i.e., production, transportation, and communication based on some proposed risk factors. Then, a distinct Multi-Layer Perceptron (MLP network is trained to play the role of the expert opinion for estimating the reliability scores of each procurement. In addition to reliabilities, the Data Envelopment Analysis (DEA is used to take into account the conventional selection criteria: price, delivery, quality, and capacity. A set of Pareto-optimal suppliers is obtained from the combination of efficiencies and reliability scores. Finally, the decision maker is recommended to choose between the non-dominated suppliers. Obtained experiment results indicate the effectiveness of the proposed framework.

  14. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  15. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    Science.gov (United States)

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  16. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  17. Integration of a network aware traffic generation device into a computer network emulation platform

    CSIR Research Space (South Africa)

    Von Solms, S

    2014-07-01

    Full Text Available Flexible, open source network emulation tools can provide network researchers with significant benefits regarding network behaviour and performance. The evaluation of these networks can benefit greatly from the integration of realistic, network...

  18. Content-driven analysis of an online community for smoking cessation: integration of qualitative techniques, automated text analysis, and affiliation networks.

    Science.gov (United States)

    Myneni, Sahiti; Fujimoto, Kayo; Cobb, Nathan; Cohen, Trevor

    2015-06-01

    We identified content-specific patterns of network diffusion underlying smoking cessation in the context of online platforms, with the aim of generating targeted intervention strategies. QuitNet is an online social network for smoking cessation. We analyzed 16 492 de-identified peer-to-peer messages from 1423 members, posted between March 1 and April 30, 2007. Our mixed-methods approach comprised qualitative coding, automated text analysis, and affiliation network analysis to identify, visualize, and analyze content-specific communication patterns underlying smoking behavior. Themes we identified in QuitNet messages included relapse, QuitNet-specific traditions, and cravings. QuitNet members who were exposed to other abstinent members by exchanging content related to interpersonal themes (e.g., social support, traditions, progress) tended to abstain. Themes found in other types of content did not show significant correlation with abstinence. Modeling health-related affiliation networks through content-driven methods can enable the identification of specific content related to higher abstinence rates, which facilitates targeted health promotion.

  19. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  20. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  1. Tools and Models for Integrating Multiple Cellular Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  2. Networks as integrated in research methodologies in PER

    DEFF Research Database (Denmark)

    Bruun, Jesper

    2016-01-01

    of using networks to create insightful maps of learning discussions. To conclude, I argue that conceptual blending is a powerful framework for constructing "mixed methods" methodologies that may integrate diverse theories and other methodologies with network methodologies.......In recent years a number of researchers within the PER community have started using network analysis as a new methodology to extend our understanding of teaching and learning physics by viewing these as complex systems. In this paper, I give examples of social, cognitive, and action mapping...... networks and how they can be analyzed. In so doing I show how a network can be methodologically described as a set of relations between a set of entities, and how a network can be characterized and analyzed as a mathematical object. Then, as an illustrative example, I discuss a relatively new example...

  3. Digital telephony and network integration

    CERN Document Server

    Keiser, Bernhard E

    1995-01-01

    What is "digital telephony"? To the authors, the term digital telephony denotes the technology used to provide a completely digital telecommunication system from end-to-end. This implies the use of digital technology from one end instru­ ment through transmission facilities and switching centers to another end instru­ ment. Digital telephony has become possible only because of the recent and on­ going surge of semiconductor developments, allowing microminiaturization and high reliability along with reduced costs. This book deals with both the future and the present. Thus, the first chapter is entitled, "A Network in Transition." As baselines, Chapters 2 and 11 provide the reader with the present status of teler-hone technology in terms of voice digiti­ zation as well as switching principles. The book is an outgrowth of the authors' consulting and teaching experience in the field since the early 1980s. The book has been written to provide both the engineering student and the practicing engineer a working k...

  4. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  5. Integrated genetic analysis microsystems

    International Nuclear Information System (INIS)

    Lagally, Eric T; Mathies, Richard A

    2004-01-01

    With the completion of the Human Genome Project and the ongoing DNA sequencing of the genomes of other animals, bacteria, plants and others, a wealth of new information about the genetic composition of organisms has become available. However, as the demand for sequence information grows, so does the workload required both to generate this sequence and to use it for targeted genetic analysis. Microfabricated genetic analysis systems are well poised to assist in the collection and use of these data through increased analysis speed, lower analysis cost and higher parallelism leading to increased assay throughput. In addition, such integrated microsystems may point the way to targeted genetic experiments on single cells and in other areas that are otherwise very difficult. Concomitant with these advantages, such systems, when fully integrated, should be capable of forming portable systems for high-speed in situ analyses, enabling a new standard in disciplines such as clinical chemistry, forensics, biowarfare detection and epidemiology. This review will discuss the various technologies available for genetic analysis on the microscale, and efforts to integrate them to form fully functional robust analysis devices. (topical review)

  6. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-06-01

    Full Text Available Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other

  7. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism.

    Science.gov (United States)

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed

  8. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models......Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  9. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  10. Differential neural network configuration during human path integration

    Science.gov (United States)

    Arnold, Aiden E. G. F; Burles, Ford; Bray, Signe; Levy, Richard M.; Iaria, Giuseppe

    2014-01-01

    Path integration is a fundamental skill for navigation in both humans and animals. Despite recent advances in unraveling the neural basis of path integration in animal models, relatively little is known about how path integration operates at a neural level in humans. Previous attempts to characterize the neural mechanisms used by humans to visually path integrate have suggested a central role of the hippocampus in allowing accurate performance, broadly resembling results from animal data. However, in recent years both the central role of the hippocampus and the perspective that animals and humans share similar neural mechanisms for path integration has come into question. The present study uses a data driven analysis to investigate the neural systems engaged during visual path integration in humans, allowing for an unbiased estimate of neural activity across the entire brain. Our results suggest that humans employ common task control, attention and spatial working memory systems across a frontoparietal network during path integration. However, individuals differed in how these systems are configured into functional networks. High performing individuals were found to more broadly express spatial working memory systems in prefrontal cortex, while low performing individuals engaged an allocentric memory system based primarily in the medial occipito-temporal region. These findings suggest that visual path integration in humans over short distances can operate through a spatial working memory system engaging primarily the prefrontal cortex and that the differential configuration of memory systems recruited by task control networks may help explain individual biases in spatial learning strategies. PMID:24808849

  11. Human Systems Integration Assessment of Network Centric Command and Control

    National Research Council Canada - National Science Library

    Quashnock, Dee; Kelly, Richard T; Dunaway, John; Smillie, Robert J

    2004-01-01

    .... FORCEnet is the operational construct and architectural framework for Naval Network Centric Warfare in the information age that integrates warriors, sensors, networks, command and control, platforms...

  12. Functional brain networks underlying detection and integration of disconfirmatory evidence.

    Science.gov (United States)

    Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S

    2015-05-15

    Processing evidence that disconfirms a prior interpretation is a fundamental aspect of belief revision, and has clear social and clinical relevance. This complex cognitive process requires (at minimum) an alerting stage and an integration stage, and in the current functional magnetic resonance imaging (fMRI) study, we used multivariate analysis methodology on two datasets in an attempt to separate these sequentially-activated cognitive stages and link them to distinct functional brain networks. Thirty-nine healthy participants completed one of two versions of an evidence integration experiment involving rating two consecutive animal images, both of which consisted of two intact images of animal faces morphed together at different ratios (e.g., 70/30 bird/dolphin followed by 10/90 bird/dolphin). The two versions of the experiment differed primarily in terms of stimulus presentation and timing, which facilitated functional interpretation of brain networks based on differences in the hemodynamic response shapes between versions. The data were analyzed using constrained principal component analysis for fMRI (fMRI-CPCA), which allows distinct, simultaneously active task-based networks to be separated, and these were interpreted using both temporal (task-based hemodynamic response shapes) and spatial (dominant brain regions) information. Three networks showed increased activity during integration of disconfirmatory relative to confirmatory evidence: (1) a network involved in alerting to the requirement to revise an interpretation, identified as the salience network (dorsal anterior cingulate cortex and bilateral insula); (2) a sensorimotor response-related network (pre- and post-central gyri, supplementary motor area, and thalamus); and (3) an integration network involving rostral prefrontal, orbitofrontal and posterior parietal cortex. These three networks were staggered in their peak activity (alerting, responding, then integrating), but at certain time points (e

  13. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    Science.gov (United States)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  14. Integrating Data and Networks: Human Factors

    Science.gov (United States)

    Chen, R. S.

    2012-12-01

    The development of technical linkages and interoperability between scientific networks is a necessary but not sufficient step towards integrated use and application of networked data and information for scientific and societal benefit. A range of "human factors" must also be addressed to ensure the long-term integration, sustainability, and utility of both the interoperable networks themselves and the scientific data and information to which they provide access. These human factors encompass the behavior of both individual humans and human institutions, and include system governance, a common framework for intellectual property rights and data sharing, consensus on terminology, metadata, and quality control processes, agreement on key system metrics and milestones, the compatibility of "business models" in the short and long term, harmonization of incentives for cooperation, and minimization of disincentives. Experience with several national and international initiatives and research programs such as the International Polar Year, the Group on Earth Observations, the NASA Earth Observing Data and Information System, the U.S. National Spatial Data Infrastructure, the Global Earthquake Model, and the United Nations Spatial Data Infrastructure provide a range of lessons regarding these human factors. Ongoing changes in science, technology, institutions, relationships, and even culture are creating both opportunities and challenges for expanded interoperability of scientific networks and significant improvement in data integration to advance science and the use of scientific data and information to achieve benefits for society as a whole.

  15. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  16. The roles of actors in the host society in the integration of inmigrants associations: a social networks analysis approach

    Directory of Open Access Journals (Sweden)

    José Manuel Gaete Fiscella

    2016-06-01

    Full Text Available This article explores the stages of integration of immigrant associations in Spain according to stock of social capital, specifically, given the relationships established with actors in the environment, and consequently this role is derived for each type of counterpart. The data are drawn from a representative sample consisting of 225 immigrant associations around the country. The results suggest that immigrant associations play cohesive and specific roles with their peers, even achieve certain asymmetries in their favor with certain actors in the host society. On the other hand, native actors host society are distributed in a continuum ranging from the development of specific roles to other multiple, and even contradictory, which, as a whole, ends up drawing a map of complex and diverse opportunities for integration of associations.

  17. Identification of molecular candidates and interaction networks via integrative toxicogenomic analysis in a human cell line following low-dose exposure to the carcinogenic metals cadmium and nickel.

    Science.gov (United States)

    Kwon, Jee Young; Weon, Jong-Il; Koedrith, Preeyaporn; Park, Kang-Sik; Kim, Im Soon; Seo, Young Rok

    2013-09-01

    Cadmium and nickel have been classified as carcinogenic to humans by the World Health Organization's International Agency for Research on Cancer. Given their prevalence in the environment, the fact that cadmium and nickel may cause diseases including cancer even at low doses is a cause for concern. However, the exact mechanisms underlying the toxicological effects induced by low-dose exposure to cadmium and nickel remain to be elucidated. Furthermore, it has recently been recognized that integrative analysis of DNA, mRNA and proteins is required to discover biomarkers and signaling networks relevant to human toxicant exposure. In the present study, we examined the deleterious effects of chronic low-dose exposure of either cadmium or nickel on global profiling of DNA copy number variation, mRNA and proteins. Array comparative genomic hybridization, gene expression microarray and functional proteomics were conducted, and a bioinformatics tool, which predicted signaling pathways, was applied to integrate data for each heavy metal separately and together. We found distinctive signaling networks associated with subchronic low-dose exposure to cadmium and nickel, and identified pathways common to both. ACTB, HSP90AA1, HSPA5 and HSPA8, which are key mediators of pathways related to apoptosis, proliferation and neoplastic processes, were key mediators of the same pathways in low-dose nickel and cadmium exposure in particular. CASP-associated signaling pathways involving CASP3, CASP7 and CASP9 were observed in cadmium-exposed cells. We found that HSP90AA1, one of the main modulators, interacted with HIF1A, AR and BCL2 in nickel-exposed cells. Interestingly, we found that HSP90AA1 was involved in the BCL2-associated apoptotic pathway in the nickel-only data, whereas this gene interacted with several genes functioning in CASP-associated apoptotic signaling in the cadmium-only data. Additionally, JUN and FASN were main modulators in nickel-responsive signaling pathways. Our

  18. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  19. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  20. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  1. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  2. Integrated Job Scheduling and Network Routing

    DEFF Research Database (Denmark)

    Gamst, Mette; Pisinger, David

    2013-01-01

    We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number of resou...... indicate that the algorithm can be used as an actual scheduling algorithm in the Grid or as a tool for analyzing Grid performance when adding extra machines or jobs. © 2012 Wiley Periodicals, Inc.......We consider an integrated job scheduling and network routing problem which appears in Grid Computing and production planning. The problem is to schedule a number of jobs at a finite set of machines, such that the overall profit of the executed jobs is maximized. Each job demands a number...... of resources which must be sent to the executing machine through a network with limited capacity. A job cannot start before all of its resources have arrived at the machine. The scheduling problem is formulated as a Mixed Integer Program (MIP) and proved to be NP-hard. An exact solution approach using Dantzig...

  3. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  4. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi......+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer.......RNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  5. Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and Ferrybox data with a coastal observation network

    Science.gov (United States)

    Volent, Zsolt; Johnsen, Geir; Hovland, Erlend K.; Folkestad, Are; Olsen, Lasse M.; Tangen, Karl; Sørensen, Kai

    2011-01-01

    Monitoring of the coastal environment is vitally important as these areas are of economic value and at the same time highly exposed to anthropogenic influence, in addition to variation of environmental variables. In this paper we show how the combination of bio-optical data from satellites, analysis of water samples, and a ship-mounted automatic flow-through sensor system (Ferrybox) can be used to detect and monitor phytoplankton blooms both spatially and temporally. Chlorophyll a (Chl a) data and turbidity from Ferrybox are combined with remotely sensed Chl a and total suspended matter from the MERIS instrument aboard the satellite ENVISAT (ENVIronmental SATellite) European Space Agency. Data from phytoplankton speciation and enumeration obtained by a national coastal observation network consisting of fish farms and the Norwegian Food Safety Authority are supplemented with data on phytoplankton pigments. All the data sets are then integrated in order to describe phytoplankton bloom dynamics in a Norwegian fjord over a growth season, with particular focus on Emiliania huxleyi. The approach represents a case example of how coastal environmental monitoring can be improved with existing instrument platforms. The objectives of the paper is to present the operative phytoplankton monitoring scheme in Norway, and to present an improved model of how such a scheme can be designed for a large part of the world's coastal areas.

  6. Finding novel relationships with integrated gene-gene association network analysis of Synechocystis sp. PCC 6803 using species-independent text-mining.

    Science.gov (United States)

    Kreula, Sanna M; Kaewphan, Suwisa; Ginter, Filip; Jones, Patrik R

    2018-01-01

    The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already 'known', and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to ( i ) discover novel candidate associations between different genes or proteins in the network, and ( ii ) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.

  7. Integration of metabolomics data into metabolic networks.

    Science.gov (United States)

    Töpfer, Nadine; Kleessen, Sabrina; Nikoloski, Zoran

    2015-01-01

    Metabolite levels together with their corresponding metabolic fluxes are integrative outcomes of biochemical transformations and regulatory processes and they can be used to characterize the response of biological systems to genetic and/or environmental changes. However, while changes in transcript or to some extent protein levels can usually be traced back to one or several responsible genes, changes in fluxes and particularly changes in metabolite levels do not follow such rationale and are often the outcome of complex interactions of several components. The increasing quality and coverage of metabolomics technologies have fostered the development of computational approaches for integrating metabolic read-outs with large-scale models to predict the physiological state of a system. Constraint-based approaches, relying on the stoichiometry of the considered reactions, provide a modeling framework amenable to analyses of large-scale systems and to the integration of high-throughput data. Here we review the existing approaches that integrate metabolomics data in variants of constrained-based approaches to refine model reconstructions, to constrain flux predictions in metabolic models, and to relate network structural properties to metabolite levels. Finally, we discuss the challenges and perspectives in the developments of constraint-based modeling approaches driven by metabolomics data.

  8. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Science.gov (United States)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  9. Functional network integrity presages cognitive decline in preclinical Alzheimer disease.

    Science.gov (United States)

    Buckley, Rachel F; Schultz, Aaron P; Hedden, Trey; Papp, Kathryn V; Hanseeuw, Bernard J; Marshall, Gad; Sepulcre, Jorge; Smith, Emily E; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Chhatwal, Jasmeer P

    2017-07-04

    To examine the utility of resting-state functional connectivity MRI (rs-fcMRI) measurements of network integrity as a predictor of future cognitive decline in preclinical Alzheimer disease (AD). A total of 237 clinically normal older adults (aged 63-90 years, Clinical Dementia Rating 0) underwent baseline β-amyloid (Aβ) imaging with Pittsburgh compound B PET and structural and rs-fcMRI. We identified 7 networks for analysis, including 4 cognitive networks (default, salience, dorsal attention, and frontoparietal control) and 3 noncognitive networks (primary visual, extrastriate visual, motor). Using linear and curvilinear mixed models, we used baseline connectivity in these networks to predict longitudinal changes in preclinical Alzheimer cognitive composite (PACC) performance, both alone and interacting with Aβ burden. Median neuropsychological follow-up was 3 years. Baseline connectivity in the default, salience, and control networks predicted longitudinal PACC decline, unlike connectivity in the dorsal attention and all noncognitive networks. Default, salience, and control network connectivity was also synergistic with Aβ burden in predicting decline, with combined higher Aβ and lower connectivity predicting the steepest curvilinear decline in PACC performance. In clinically normal older adults, lower functional connectivity predicted more rapid decline in PACC scores over time, particularly when coupled with increased Aβ burden. Among examined networks, default, salience, and control networks were the strongest predictors of rate of change in PACC scores, with the inflection point of greatest decline beyond the fourth year of follow-up. These results suggest that rs-fcMRI may be a useful predictor of early, AD-related cognitive decline in clinical research settings. © 2017 American Academy of Neurology.

  10. ISINA: INTEGRAL Source Identification Network Algorithm

    Science.gov (United States)

    Scaringi, S.; Bird, A. J.; Clark, D. J.; Dean, A. J.; Hill, A. B.; McBride, V. A.; Shaw, S. E.

    2008-11-01

    We give an overview of ISINA: INTEGRAL Source Identification Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. First, we introduce the data set and the problems encountered when dealing with images obtained using the coded mask technique. The initial step of source candidate searching is introduced and an initial candidate list is created. A description of the feature extraction on the initial candidate list is then performed together with feature merging for these candidates. Three training and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky. Three independent random forests are built: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain), Czech Republic and Poland, and the participation of Russia and the USA. E-mail: simo@astro.soton.ac.uk

  11. Hydrocarbons in Argentina: networks, territories, integration

    International Nuclear Information System (INIS)

    Carrizo, S.C.

    2003-12-01

    Argentinean hydrocarbons networks have lived a huge reorganizing the structure, after the State reform in the 90's. Activities deregulation and the privatization of YPF and Gas del Estado forced the sector re-concentration, since then dominated by foreign companies, leaded by Repsol YPF. The hydrocarbons federalization contributed to the weakening and un-capitalization loss of wealth of the State. These changes resulted in an increase of the hydrocarbons production allowing to achieve the self-supply. Nevertheless, the expansion of internal networks has not been large enough to ensure the coverage of new requirements. Besides, several infrastructures have been built up to join external markets. National networks are connected to those of near neighboring countries. This integration is an opportunity for the 'South Cone' countries to enhance their potentials. In the country, hydrocarbons territories undergo the reorganizing the structure effects (unemployment, loss of territorial identity, etc). With many difficulties and very different possibilities, those territories, like Comodoro Rivadavia, Ensenada et and Bahia Blanca, look for their re-invention. (author)

  12. Integrated Adversarial Network Theory (iANT)

    Science.gov (United States)

    2011-07-01

    elite networks and governance changes in the 1980s. American Journal of Sociology, 103(1): 1-37. DiMaggio, P. 1986. Structural analysis of...Interorganization contagion in corporate philanthropy . Administrative Science Quarterly, 36(1): 88-105. Gargiulo, M., & Benassi, M. 1999. The dark...1): 7 1-84. Useem, M. 1979. The social organization ofthe American business elite and participation of corporation directors in the governance of

  13. Integrated circuit and method of arbitration in a network on an integrated circuit.

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an integrated circuit and to a method of arbitration in a network on an integrated circuit. According to the invention, a method of arbitration in a network on an integrated circuit is provided, the network comprising a router unit, the router unit comprising a first input

  14. Integrated System for Performance Monitoring of ATLAS TDAQ Network

    CERN Document Server

    Savu, D; The ATLAS collaboration; Martin, B; Sjoen, R; Batraneanu, S; Stancu, S

    2010-01-01

    The ATLAS TDAQ Network consists of three separate networks spanning four levels of the experimental building. Over 200 edge switches and 5 multi-blade chassis routers are used to interconnect 2000 processors, adding up to more than 7000 high speed interfaces. In order to substantially speed-up ad-hoc and post mortem analysis, a scalable, yet flexible, integrated system for monitoring both network statistics and environmental conditions, processor parameters and data taking characteristics was required. For successful up-to-the-minute monitoring, information from many SNMP compliant devices, independent databases and custom APIs was gathered, stored and displayed in an optimal way. Easy navigation and compact aggregation of multiple data sources were the main requirements; characteristics not found in any of the tested products, either open-source or commercial. This paper describes how performance, scalability and display issues were addressed and what challenges the project faced during development and deplo...

  15. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  16. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  17. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  18. WATER NETWORK INTEGRATION IN RAW SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Junior Lorenzo Llanes

    2017-07-01

    Full Text Available One of the main process industries in Cuba is that of the sugarcane. Among the characteristics of this industry is the high demand of water in its processes. In this work a study of water integration was carried out from the different operations of the production process of raw sugar, in order to reduce the fresh water consumption. The compound curves of sources and demands were built, which allowed the determination of the minimum water requirement of the network (1587,84 m3/d, as well as the amount of effluent generated (0,35 m3/tcane.The distribution scheme of fresh water and water reuse among different operations were obtained from the nearest neighbor algorithm. From considering new quality constrains was possible to eliminate the external water consumption, as well as to reduce the amount of effluent in a 37% in relation to the initial constrains.

  19. Biomarker Gene Signature Discovery Integrating Network Knowledge

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    2012-02-01

    Full Text Available Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches.

  20. An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Arunachalam Vinayagam

    2016-09-01

    Full Text Available Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and metabolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network surrounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phosphoproteomics, we demonstrate that ∼10% of interacting proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by identifying regulatory roles for the Protein Phosphatase 2A (PP2A and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network.

  1. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  2. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  3. NIF ICCS network design and loading analysis

    International Nuclear Information System (INIS)

    Tietbohl, G; Bryant, R

    1998-01-01

    The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)

  4. Data Farming Process and Initial Network Analysis Capabilities

    Directory of Open Access Journals (Sweden)

    Gary Horne

    2016-01-01

    Full Text Available Data Farming, network applications and approaches to integrate network analysis and processes to the data farming paradigm are presented as approaches to address complex system questions. Data Farming is a quantified approach that examines questions in large possibility spaces using modeling and simulation. It evaluates whole landscapes of outcomes to draw insights from outcome distributions and outliers. Social network analysis and graph theory are widely used techniques for the evaluation of social systems. Incorporation of these techniques into the data farming process provides analysts examining complex systems with a powerful new suite of tools for more fully exploring and understanding the effect of interactions in complex systems. The integration of network analysis with data farming techniques provides modelers with the capability to gain insight into the effect of network attributes, whether the network is explicitly defined or emergent, on the breadth of the model outcome space and the effect of model inputs on the resultant network statistics.

  5. Exploratory social network analysis with Pajek. - 2nd ed.

    NARCIS (Netherlands)

    de Nooy, W.; Mrvar, A.; Batagelj, V.

    2011-01-01

    This is an extensively revised and expanded second edition of the successful textbook on social network analysis integrating theory, applications, and network analysis using Pajek. The main structural concepts and their applications in social research are introduced with exercises. Pajek software

  6. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  7. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks.

    Science.gov (United States)

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J

    2015-05-14

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  8. State-related functional integration and functional segregation brain networks in schizophrenia.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D

    2013-11-01

    Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.

  9. Integrating Social Networks in Teaching in Higher Education

    Science.gov (United States)

    Abousoliman, Onsy

    2017-01-01

    In response to the emerging and swiftly developing digital tools, this dissertation investigated integrating a specific category of these tools, social networks, in teaching in higher education. The study focused on exploring how social networks integration might impact the teaching/learning process and on investigating the challenges that could…

  10. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  11. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  12. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  13. A joint classification method to integrate scientific and social networks

    NARCIS (Netherlands)

    Neshati, Mahmood; Asgari, Ehsaneddin; Hiemstra, Djoerd; Beigy, Hamid

    In this paper, we address the problem of scientific-social network integration to find a matching relationship between members of these networks. Utilizing several name similarity patterns and contextual properties of these networks, we design a focused crawler to find high probable matching pairs,

  14. Boolean integration. [applied to switching network synthesis

    Science.gov (United States)

    Tucker, J. H.; Tapia, M. A.; Bennett, A. W.

    1976-01-01

    This paper presents the necessary and sufficient conditions for a given differential expression to be compatibly integrable and it presents the necessary and sufficient conditions for a given expression to be exactly integrable. Methods are given for integrating a differential expression when it is exactly integrable and when it is compatibly integrable. The physical interpretation is given of the integral of order k, of a differential expression, and it is shown that any differential expression of the proper form is integrable by parts.

  15. Integration versus Outsourcing in Stable Industry Equilibrium with Communication Networks

    OpenAIRE

    Okamoto, Yusuke

    2006-01-01

    For the selection of a firm's structure between vertical integration and arm's-length outsourcing, the importance of the thickness of the market had been emphasized in the previous literature. Here we take account of communication networks such as telephone, telex, fax, and the Internet. By doing so, we could illustrate the relationship between communication networks and the make-or-buy decision. With communication network technology differing in each type of firm, both vertically integrated ...

  16. Classification Method in Integrated Information Network Using Vector Image Comparison

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2014-05-01

    Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.

  17. TNF-α inhibits trophoblast integration into endothelial cellular networks.

    Science.gov (United States)

    Xu, B; Nakhla, S; Makris, A; Hennessy, A

    2011-03-01

    Preeclampsia has been linked to shallow trophoblast invasion and failure of uterine spiral artery transformation. Interaction between trophoblast cells and maternal uterine endothelium is critically important for this remodelling. The aim of our study was to investigate the effect of TNF-α on the interactions of trophoblast-derived JEG-3 cells into capillary-like cellular networks. We have employed an in vitro trophoblast-endothelial cell co-culture model to quantify trophoblast integration into endothelial cellular networks and to investigate the effects of TNF-α. Controlled co-cultures were also treated with anti-TNF-α antibody (5 μg/ml) to specifically block the effect of TNF-α. The invasion was evaluated by performing quantitative PCR (Q-PCR) to analyse gene expression of matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, integrins (α(1)β(1) and α(6)β(4)), plasminogen activator inhibitor (PAI)-1, E-cadherin and VE-cadherin. JEG-3 cell integration into endothelial networks was significantly inhibited by exogenous TNF-α. The inhibition was observed in the range of 0.2-5 ng/ml, to a maximum 56% inhibition at the highest concentration. This inhibition was reversed by anti-TNF-α antibody. Q-PCR analysis showed that mRNA expression of integrins α(1)β(1) and MMP-2 was significantly decreased. VE-cadherin mRNA expression was significantly up-regulated (32-80%, p integration into maternal endothelial cellular networks, and this process involves the inhibition of MMP-2 and a failure of integrins switch from α(6)β(4) to α(1)β(1.) These molecular correlations reflect the changes identified in human preeclampsia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Integration of 100% Micro-Distributed Energy Resources in the Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    You, Shi; Segerberg, Helena

    2014-01-01

    of heat pumps (HPs) and plug-in electric vehicles (PEVs) at 100% penetration level on a representative urban residential low voltage (LV) distribution network of Denmark are investigated by performing a steady-state load flow analysis through an integrated simulation setup. Three DERs integration...... oriented integration strategies, having 100% integration of DER in the provided LV network is feasible.......The existing electricity infrastructure may to a great extent limit a high penetration of the micro-sized Distributed Energy Resources (DERs), due to the physical bottlenecks, e.g. thermal capacitates of cables, transformers and the voltage limitations. In this study, the integration impacts...

  19. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  20. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  1. Complexity and network dynamics in physiological adaptation: an integrated view.

    Science.gov (United States)

    Baffy, György; Loscalzo, Joseph

    2014-05-28

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.

  2. Wireless Integrated Network Sensors Next Generation

    National Research Council Canada - National Science Library

    Merrill, William

    2004-01-01

    ..., autonomous networking, and distributed operations for wireless networked sensor systems. Multiple types of sensor systems were developed and provided including capabilities for acoustic, seismic, passive infrared detection, and visual imaging...

  3. Students' network integration vs. persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  4. Integrating Network Management for Cloud Computing Services

    Science.gov (United States)

    2015-06-01

    Backend Distributed Datastore High-­‐level   Objec.ve   Network   Policy   Perf.   Metrics   SNAT  IP   Alloca.on   Controller...azure.microsoft.com/. 114 [16] Microsoft Azure ExpressRoute. http://azure.microsoft.com/en-us/ services/expressroute/. [17] Mobility and Networking...Networking Technologies, Services, and Protocols; Performance of Computer and Commu- nication Networks; Mobile and Wireless Communications Systems

  5. Integrated Optoelectronic Networks for Application-Driven Multicore Computing

    Science.gov (United States)

    2017-05-08

    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  6. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  7. End-to-End Traffic Flow Modeling of the Integrated SCaN Network

    Science.gov (United States)

    Cheung, K.-M.; Abraham, D. S.

    2012-05-01

    In this article, we describe the analysis and simulation effort of the end-to-end traffic flow for the Integrated Space Communications and Navigation (SCaN) Network. Using the network traffic derived for the 30-day period of July 2018 from the Space Communications Mission Model (SCMM), we generate the wide-area network (WAN) bandwidths of the ground links for different architecture options of the Integrated SCaN Network. We also develop a new analytical scheme to model the traffic flow and buffering mechanism of a store-and-forward network. It is found that the WAN bandwidth of the Integrated SCaN Network is an important differentiator of different architecture options, as the recurring circuit costs of certain architecture options can be prohibitively high.

  8. AN OVERVIEW OF UMTS AND WIMAX NETWORKS INTEGRATION

    Directory of Open Access Journals (Sweden)

    Dewi Wirastuti

    2010-12-01

    Full Text Available This paper gives an overview of the network integration of UMTS (Universal Mobile TelecommunicationSystem with WiMAX (Wordwide Interoperability of Microwave Access. A few proposed interworking solutionsand seamless integration of both networks are explained. The best architecture and key procedures that will enablethe integration both networks and handover mechanism for the seamless mobility are presented. Considering thetrend of the current network evolution, which is the convergence between the telecommunications and broadcastworlds, an integration of mobile WiMAX with present 2G, 2.5G or 3G accesses into a homogeneous architecturegoes a long way to achieve the reality of mobile broadband networks. With the advent of mobile WiMAX, a mobilebroadband wireless access solution and based on all-IP (Internet Protocol based OFDMA (Orthogonal FrequencyDivision Multiple Access technology, an UMTS-WiMAX

  9. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  10. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  11. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops.

    Science.gov (United States)

    Chen, Zhaojin; Zheng, Yuan; Ding, Chuanyu; Ren, Xuemin; Yuan, Jian; Sun, Feng; Li, Yuying

    2017-11-01

    Two energy crops (maize and soybean) were used in the remediation of cadmium-contaminated soils. These crops were used because they are fast growing, have a large biomass and are good sources for bioenergy production. The total accumulation of cadmium in maize and soybean plants was 393.01 and 263.24μg pot -1 , respectively. The rhizosphere bacterial community composition was studied by MiSeq sequencing. Phylogenetic analysis was performed using 16S rRNA gene sequences. The rhizosphere bacteria were divided into 33 major phylogenetic groups according to phyla. The dominant phylogenetic groups included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes. Based on principal component analysis (PCA) and unweighted pair group with arithmetic mean (UPGMA) analysis, we found that the bacterial community was influenced by cadmium addition and bioenergy cropping. Three molecular ecological networks were constructed for the unplanted, soybean- and maize-planted bacterial communities grown in 50mgkg -1 cadmium-contaminated soils. The results indicated that bioenergy cropping increased the complexity of the bacterial community network as evidenced by a higher total number of nodes, the average geodesic distance (GD), the modularity and a shorter geodesic distance. Proteobacteria and Acidobacteria were the keystone bacteria connecting different co-expressed operational taxonomic units (OTUs). The results showed that bioenergy cropping altered the topological roles of individual OTUs and keystone populations. This is the first study to reveal the effects of bioenergy cropping on microbial interactions in the phytoremediation of cadmium-contaminated soils by network reconstruction. This method can greatly enhance our understanding of the mechanisms of plant-microbe-metal interactions in metal-polluted ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ties that Bind: A Social Network Approach To Understanding Student Integration and Persistence.

    Science.gov (United States)

    Thomas, Scott L.

    2000-01-01

    This study used a social network paradigm to examine college student integration of 329 college freshmen at a private liberal arts college. Analysis of the structural aspects of students' on-campus associations found differential effects of various social network characteristics on student commitment and persistence. (DB)

  13. Integration of genomic information with biological networks using Cytoscape.

    Science.gov (United States)

    Bauer-Mehren, Anna

    2013-01-01

    Cytoscape is an open-source software for visualizing, analyzing, and modeling biological networks. This chapter explains how to use Cytoscape to analyze the functional effect of sequence variations in the context of biological networks such as protein-protein interaction networks and signaling pathways. The chapter is divided into five parts: (1) obtaining information about the functional effect of sequence variation in a Cytoscape readable format, (2) loading and displaying different types of biological networks in Cytoscape, (3) integrating the genomic information (SNPs and mutations) with the biological networks, and (4) analyzing the effect of the genomic perturbation onto the network structure using Cytoscape built-in functions. Finally, we briefly outline how the integrated data can help in building mathematical network models for analyzing the effect of the sequence variation onto the dynamics of the biological system. Each part is illustrated by step-by-step instructions on an example use case and visualized by many screenshots and figures.

  14. Transition Towards An Integrated Network Organisation

    DEFF Research Database (Denmark)

    Mykhaylenko, Alona; Wæhrens, Brian Vejrum

    2016-01-01

    , with particular attention to the role played by the home base (HB) organisation in this evolution. The research is focused on the intra-organisational global network and uses a longitudinal single-case study. Findings depict the transition as being enabled by the interaction between HB knowledge about......Management of internationally dispersed and networked operations has been in the focus of research attention. However, the existing studies underestimate the incrementality of changes shaping such organisations. This work investigates how organisations evolve into network structures...... the organization, and its reconfiguration decisions. Implications are also discussed regarding process drivers and the role of HB in the network organization....

  15. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  16. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  17. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.

    2007-01-01

    of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules......Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context...... and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape....

  18. Magnets and Seekers: A Network Perspective on Academic Integration inside Two Residential Communities

    Science.gov (United States)

    Smith, Rachel A.

    2015-01-01

    Residential learning communities aim to foster increased academic and social integration, ideally leading to greater student success. However, the concept of academic integration is often conceptualized and measured at the individual level, rather than the theoretically more consistent community level. Network analysis provides a paradigm and…

  19. Integrated topology optimisation of multi-energy networks

    NARCIS (Netherlands)

    Mazairac, L.A.J.; Salenbien, R.; Vanhoudt, D.; Desmedt, J.; Vries, de B.

    2015-01-01

    Multi-carrier hybrid energy distribution net- works provide flexibility in case of network malfunctions, energy shortages and price fluctuations through energy conversion and storage. Therefore hybrid networks can cope with large-scale integration of distributed and intermittent renewable energy

  20. FUZZY NEURAL NETWORK FOR OBJECT IDENTIFICATION ON INTEGRATED CIRCUIT LAYOUTS

    Directory of Open Access Journals (Sweden)

    A. A. Doudkin

    2015-01-01

    Full Text Available Fuzzy neural network model based on neocognitron is proposed to identify layout objects on images of topological layers of integrated circuits. Testing of the model on images of real chip layouts was showed a highеr degree of identification of the proposed neural network in comparison to base neocognitron.

  1. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  2. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  3. Integrating Network Awareness in ATLAS Distributed Computing Using the ANSE Project

    CERN Document Server

    Klimentov, Alexei; The ATLAS collaboration; Petrosyan, Artem; Batista, Jorge Horacio; Mc Kee, Shawn Patrick

    2015-01-01

    A crucial contributor to the success of the massively scaled global computing system that delivers the analysis needs of the LHC experiments is the networking infrastructure upon which the system is built. The experiments have been able to exploit excellent high-bandwidth networking in adapting their computing models for the most efficient utilization of resources. New advanced networking technologies now becoming available such as software defined networking hold the potential of further leveraging the network to optimize workflows and dataflows, through proactive control of the network fabric on the part of high level applications such as experiment workload management and data management systems. End to end monitoring of networks using perfSONAR combined with data flow performance metrics further allows applications to adapt based on real time conditions. We will describe efforts underway in ATLAS on integrating network awareness at the application level, particularly in workload management, building upon ...

  4. European Extremely Large Telescope (E-ELT) availability stochastic model: integrating failure mode and effect analysis (FMEA), influence diagram, and Bayesian network together

    Science.gov (United States)

    Verzichelli, Gianluca

    2016-08-01

    An Availability Stochastic Model for the E-ELT has been developed in GeNIE. The latter is a Graphical User Interface (GUI) for the Structural Modeling, Inference, and Learning Engine (SMILE), originally distributed by the Decision Systems Laboratory from the University of Pittsburgh, and now being a product of Bayes Fusion, LLC. The E-ELT will be the largest optical/near-infrared telescope in the world. Its design comprises an Alt-Azimuth mount reflecting telescope with a 39-metre-diameter segmented primary mirror, a 4-metre-diameter secondary mirror, a 3.75-metre-diameter tertiary mirror, adaptive optics and multiple instruments. This paper highlights how a Model has been developed for an earlier on assessment of the Telescope Avail- ability. It also describes the modular structure and the underlying assumptions that have been adopted for developing the model and demonstrates the integration of FMEA, Influence Diagram and Bayesian Network elements. These have been considered for a better characterization of the Model inputs and outputs and for taking into account Degraded-based Reliability (DBR). Lastly, it provides an overview of how the information and knowledge captured in the model may be used for an earlier on definition of the Failure, Detection, Isolation and Recovery (FDIR) Control Strategy and the Telescope Minimum Master Equipment List (T-MMEL).

  5. Network constrained wind integration on Vancouver Island

    International Nuclear Information System (INIS)

    Maddaloni, Jesse D.; Rowe, Andrew M.; Kooten, G. Cornelis van

    2008-01-01

    The aim of this study is to determine the costs and carbon emissions associated with operating a hydro-dominated electricity generation system (Vancouver Island, Canada) with varying degrees of wind penetration. The focus is to match the wind resource, system demand and abilities of extant generating facilities on a temporal basis, resulting in an operating schedule that minimizes system cost over a given period. This is performed by taking the perspective of a social planner who desires to find the lowest-cost mix of new and existing generation facilities. Unlike other studies, this analysis considers variable efficiency for thermal and hydro-generators, resulting in a fuel cost that varies with respect to generator part load. Since this study and others have shown that wind power may induce a large variance on existing dispatchable generators, forcing more frequent operation at reduced part load, inclusion of increased fuel cost at part load is important when investigating wind integration as it can significantly reduce the economic benefits of utilizing low-cost wind. Results indicate that the introduction of wind power may reduce system operating costs, but this depends heavily on whether the capital cost of the wind farm is considered. For the Vancouver Island mix with its large hydro-component, operating cost was reduced by a maximum of 15% at a wind penetration of 50%, with a negligible reduction in operating cost when the wind farm capital cost was included

  6. Correct integration of compressors and expanders in above ambient heat exchanger networks

    International Nuclear Information System (INIS)

    Fu, Chao; Gundersen, Truls

    2016-01-01

    The Appropriate Placement concept (also referred to as Correct Integration) is fundamental in Pinch Analysis. The placement of reactors, distillation columns, evaporators, heat pumps and heat engines in heat exchanger networks is well established. The placement of pressure changing equipment such as compressors and expanders is complex and less discussed in literature. A major difficulty is that both heat and work (not only heat) are involved. The integration of compressors and expanders separately into heat exchanger networks was recently investigated. A set of theorems were proposed for assisting the design. The problem is even more complex when both compressors and expanders are to be integrated. An important concern is about the sequence of integration with compressors and expanders, i.e. should compressors or expanders be implemented first. This problem is studied and a new theorem is formulated related to the Correct Integration of both compressors and expanders in above ambient heat exchanger networks. The objective is to minimize exergy consumption for the integrated processes. A graphical design methodology is developed for the integration of compressors and expanders into heat exchanger networks above ambient temperature. - Highlights: • The correct integration of compressors and expanders in heat exchanger networks is studied. • A theorem is proposed for heat integration between compressors and expanders. • The total exergy consumption is minimized.

  7. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  8. Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics.

    Directory of Open Access Journals (Sweden)

    István A Kovács

    Full Text Available BACKGROUND: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. METHODOLOGY/PRINCIPAL FINDINGS: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1 determine persvasively overlapping modules with high resolution; (2 uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3 allow the determination of key network nodes and (4 help to predict network dynamics. CONCLUSIONS/SIGNIFICANCE: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.

  9. On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

    KAUST Repository

    Shakir, Muhammad

    2012-06-01

    Heterogeneous networks are an attractive means of expanding mobile network capacity. A heterogeneous network is typically composed of multiple radio access technologies (RATs) where the base stations are transmitting with variable power. In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro-femto cellular networks and derive the area spectral efficiency of the proposed two tier Heterogeneous network. We consider the deployment of femtocell base stations around the edge of the macrocell such that this configuration is referred to as femto-on-edge (FOE) configuration. Moreover, FOE configuration mandates reduction in intercell interference due to the mobile users which are located around the edge of the macrocell since these femtocell base stations are low-power nodes which has significantly lower transmission power than macrocell base stations. We present a mathematical analysis to calculate the instantaneous carrier to interference ratio (CIR) of the desired mobile user in macro and femto cellular networks and determine the total area spectral efficiency of the Heterogeneous network. Details of the simulation processes are included to support the analysis and show the efficacy of the proposed deployment. It has been shown that the proposed setup of the Heterogeneous network offers higher area spectral efficiency which aims to fulfill the expected demand of the future mobile users. © 2012 IEEE.

  10. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...

  11. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  12. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  13. Structural reliability calculation method based on the dual neural network and direct integration method.

    Science.gov (United States)

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  14. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  15. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  16. Integration of omic networks in a developmental atlas of maize.

    Science.gov (United States)

    Walley, Justin W; Sartor, Ryan C; Shen, Zhouxin; Schmitz, Robert J; Wu, Kevin J; Urich, Mark A; Nery, Joseph R; Smith, Laurie G; Schnable, James C; Ecker, Joseph R; Briggs, Steven P

    2016-08-19

    Coexpression networks and gene regulatory networks (GRNs) are emerging as important tools for predicting functional roles of individual genes at a system-wide scale. To enable network reconstructions, we built a large-scale gene expression atlas composed of 62,547 messenger RNAs (mRNAs), 17,862 nonmodified proteins, and 6227 phosphoproteins harboring 31,595 phosphorylation sites quantified across maize development. Networks in which nodes are genes connected on the basis of highly correlated expression patterns of mRNAs were very different from networks that were based on coexpression of proteins. Roughly 85% of highly interconnected hubs were not conserved in expression between RNA and protein networks. However, networks from either data type were enriched in similar ontological categories and were effective in predicting known regulatory relationships. Integration of mRNA, protein, and phosphoprotein data sets greatly improved the predictive power of GRNs. Copyright © 2016, American Association for the Advancement of Science.

  17. AS Migration and Optimization of the Power Integrated Data Network

    Science.gov (United States)

    Zhou, Junjie; Ke, Yue

    2018-03-01

    In the transformation process of data integration network, the impact on the business has always been the most important reference factor to measure the quality of network transformation. With the importance of the data network carrying business, we must put forward specific design proposals during the transformation, and conduct a large number of demonstration and practice to ensure that the transformation program meets the requirements of the enterprise data network. This paper mainly demonstrates the scheme of over-migrating point-to-point access equipment in the reconstruction project of power data comprehensive network to migrate the BGP autonomous domain to the specified domain defined in the industrial standard, and to smooth the intranet OSPF protocol Migration into ISIS agreement. Through the optimization design, eventually making electric power data network performance was improved on traffic forwarding, traffic forwarding path optimized, extensibility, get larger, lower risk of potential loop, the network stability was improved, and operational cost savings, etc.

  18. Integration of Satellite and Terrestrial Networks at JPL

    Science.gov (United States)

    Pinck, D. S.

    1995-01-01

    This presentation focuses on the activities at JPL on the integration of satellite and terrestrial networks for mobile and personal communications. Activities fall into two categories: 1)advanced systems work, and 2)laboratory and field experimentation. Results of a workshop held at JPL on PCS integration and interoperability will be presented. Experiments will be described.

  19. Integrated Circuit Chip Improves Network Efficiency

    Science.gov (United States)

    2008-01-01

    Prior to 1999 and the development of SpaceWire, a standard for high-speed links for computer networks managed by the European Space Agency (ESA), there was no high-speed communications protocol for flight electronics. Onboard computers, processing units, and other electronics had to be designed for individual projects and then redesigned for subsequent projects, which increased development periods, costs, and risks. After adopting the SpaceWire protocol in 2000, NASA implemented the standard on the Swift mission, a gamma ray burst-alert telescope launched in November 2004. Scientists and developers on the James Webb Space Telescope further developed the network version of SpaceWire. In essence, SpaceWire enables more science missions at a lower cost, because it provides a standard interface between flight electronics components; new systems need not be custom built to accommodate individual missions, so electronics can be reused. New protocols are helping to standardize higher layers of computer communication. Goddard Space Flight Center improved on the ESA-developed SpaceWire by enabling standard protocols, which included defining quality of service and supporting plug-and-play capabilities. Goddard upgraded SpaceWire to make the routers more efficient and reliable, with features including redundant cables, simultaneous discrete broadcast pulses, prevention of network blockage, and improved verification. Redundant cables simplify management because the user does not need to worry about which connection is available, and simultaneous broadcast signals allow multiple users to broadcast low-latency side-band signal pulses across the network using the same resources for data communication. Additional features have been added to the SpaceWire switch to prevent network blockage so that more robust networks can be designed. Goddard s verification environment for the link-and-switch implementation continuously randomizes and tests different parts, constantly anticipating

  20. CATHENA 4. A thermalhydraulics network analysis code

    International Nuclear Information System (INIS)

    Aydemir, N.U.; Hanna, B.N.

    2009-01-01

    Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)

  1. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  2. Analysis of a Statistical Relationship Between Dose and Error Tallies in Semiconductor Digital Integrated Circuits for Application to Radiation Monitoring Over a Wireless Sensor Network

    Science.gov (United States)

    Colins, Karen; Li, Liqian; Liu, Yu

    2017-05-01

    Mass production of widely used semiconductor digital integrated circuits (ICs) has lowered unit costs to the level of ordinary daily consumables of a few dollars. It is therefore reasonable to contemplate the idea of an engineered system that consumes unshielded low-cost ICs for the purpose of measuring gamma radiation dose. Underlying the idea is the premise of a measurable correlation between an observable property of ICs and radiation dose. Accumulation of radiation-damage-induced state changes or error events is such a property. If correct, the premise could make possible low-cost wide-area radiation dose measurement systems, instantiated as wireless sensor networks (WSNs) with unshielded consumable ICs as nodes, communicating error events to a remote base station. The premise has been investigated quantitatively for the first time in laboratory experiments and related analyses performed at the Canadian Nuclear Laboratories. State changes or error events were recorded in real time during irradiation of samples of ICs of different types in a 60Co gamma cell. From the error-event sequences, empirical distribution functions of dose were generated. The distribution functions were inverted and probabilities scaled by total error events, to yield plots of the relationship between dose and error tallies. Positive correlation was observed, and discrete functional dependence of dose quantiles on error tallies was measured, demonstrating the correctness of the premise. The idea of an engineered system that consumes unshielded low-cost ICs in a WSN, for the purpose of measuring gamma radiation dose over wide areas, is therefore tenable.

  3. A service integration platform for collaborative networks

    NARCIS (Netherlands)

    Osorio, A. L.; Afsarmanesh, H.; Camarinha-Matos, L.M.

    2011-01-01

    Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to

  4. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  5. Message Integrity Model for Wireless Sensor Networks

    Science.gov (United States)

    Qleibo, Haider W.

    2009-01-01

    WSNs are susceptible to a variety of attacks. These attacks vary in the way they are performed and executed; they include but not limited to node capture, physical tampering, denial of service, and message alteration. It is of paramount importance to protect gathered data by WSNs and defend the network against illegal access and malicious…

  6. Value Creation Through Integrated Networks and Convergence

    Energy Technology Data Exchange (ETDEWEB)

    De Martini, Paul; Taft, Jeffrey D.

    2015-04-01

    Customer adoption of distributed energy resources and public policies are driving changes in the uses of the distribution system. A system originally designed and built for one-way energy flows from central generating facilities to end-use customers is now experiencing injections of energy from customers anywhere on the grid and frequent reversals in the direction of energy flow. In response, regulators and utilities are re-thinking the design and operations of the grid to create more open and transactive electric networks. This evolution has the opportunity to unlock significant value for customers and utilities. Alternatively, failure to seize this potential may instead lead to an erosion of value if customers seek to defect and disconnect from the system. This paper will discuss how current grid modernization investments may be leveraged to create open networks that increase value through the interaction of intelligent devices on the grid and prosumerization of customers. Moreover, even greater value can be realized through the synergistic effects of convergence of multiple networks. This paper will highlight examples of the emerging nexus of non-electric networks with electricity.

  7. Integrating job scheduling and constrained network routing

    DEFF Research Database (Denmark)

    Gamst, Mette

    2010-01-01

    This paper examines the NP-hard problem of scheduling jobs on resources such that the overall profit of executed jobs is maximized. Job demand must be sent through a constrained network to the resource before execution can begin. The problem has application in grid computing, where a number...

  8. Meditation is associated with increased brain network integration.

    Science.gov (United States)

    van Lutterveld, Remko; van Dellen, Edwin; Pal, Prasanta; Yang, Hua; Stam, Cornelis Jan; Brewer, Judson

    2017-09-01

    This study aims to identify novel quantitative EEG measures associated with mindfulness meditation. As there is some evidence that meditation is associated with higher integration of brain networks, we focused on EEG measures of network integration. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators performed a basic meditation practice that supported effortless awareness, which is an important quality of experience related to mindfulness practices, while their EEG was recorded. Experienced meditators performed a self-selected meditation practice that supported effortless awareness. Network integration was analyzed with maximum betweenness centrality and leaf fraction (which both correlate positively with network integration) as well as with diameter and average eccentricity (which both correlate negatively with network integration), based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences between groups were assessed using repeated-measures ANOVA for the theta (4-8 Hz), alpha (8-13 Hz) and lower beta (13-20 Hz) frequency bands. Maximum betweenness centrality was significantly higher in experienced meditators than in novices (P = 0.012) in the alpha band. In the same frequency band, leaf fraction showed a trend toward being significantly higher in experienced meditators than in novices (P = 0.056), while diameter and average eccentricity were significantly lower in experienced meditators than in novices (P = 0.016 and P = 0.028 respectively). No significant differences between groups were observed for the theta and beta frequency bands. These results show that alpha band functional network topology is better integrated in experienced meditators than in novice meditators during meditation. This novel finding provides the rationale to investigate the temporal relation between measures of functional connectivity network integration and meditation quality, for example using

  9. Integrative biological analysis for neuropsychopharmacology.

    Science.gov (United States)

    Emmett, Mark R; Kroes, Roger A; Moskal, Joseph R; Conrad, Charles A; Priebe, Waldemar; Laezza, Fernanda; Meyer-Baese, Anke; Nilsson, Carol L

    2014-01-01

    Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.

  10. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  11. Predicting Protein Function via Semantic Integration of Multiple Networks.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  12. Integration of SPS with utility system networks

    Energy Technology Data Exchange (ETDEWEB)

    Kaupang, B.M.

    1980-06-01

    This paper will discuss the integration of SPS power in electric utility power systems. Specifically treated will be the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power and the impacts on the electric utility system from utilizing SPS power to serve part of the system load.

  13. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  14. Solutions Network Formulation Report. Integration of OMI and TES Aerosol Products into the EPA Regional Planning Organizations' FASTNET Aerosol Tracking and Analysis Tool

    Science.gov (United States)

    Knowlton, Kelly; Andrews, Jane C.

    2006-01-01

    Every year, more than 280 million visitors tour our Nation s most treasured parks and wilderness areas. Unfortunately, many visitors are unable to see the spectacular vistas they expect because of white or brown haze in the air. Most of this haze is not natural; it is air pollution, carried by the wind often hundreds of miles from its origin. Some of the pollutants have been linked to serious health problems, such as asthma and other lung disorders, and even premature death. In addition, nitrates and sulfates contribute to acid rain formation, which contaminates rivers and lakes and erodes buildings and historical monuments. The U.S. Environmental Protection Agency RPOs (Regional Planning Organizations) have been tasked with monitoring and determining the nature and origin of haze in Class I scenic areas, and finding ways to reduce haze in order to improve visibility in these areas. The RPOs have developed an Internet-based air quality DST (Decision Support Tool) called FASTNET (Fast Aerosol Sensing Tools for Natural Event Tracking). While FASTNET incorporates a few satellite datasets, most of the data utilized by this DST comes from ground-based instrument networks. The problem is that in many areas the sensors are sparsely located, with long distances between them, causing difficulties in tracking haze over the United States, determining its source, and analyzing its content. Satellite data could help to fill in the data gaps and to supplement and verify ground-recorded air quality data. Although satellite data are now being used for air quality research applications, such data are not routinely used for environmental decision support, in part because of limited resources, difficulties with interdisciplinary data interpretation, and the need for advanced inter-agency partnerships. As a result, the validation and verification of satellite data for air quality operational system applications has been limited This candidate solution evaluates the usefulness of OMI

  15. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  16. Integrating Subjective Trust into Networked Infrastructures

    Science.gov (United States)

    2009-04-22

    architectural framework for hexperimenting wit trust. • Use of semantic technologies incorporated into h b id b d t t t ta y r - ase rus managemen ...Language for Operation PI Persistent Identifier PILOW P i t t Id tifi T blers s en en er a es PINL Persistent Identifier Networking Layer SBIR Small...Investigate and propose an architecture to determine/measure and convey th t t l l f th i l t ie rus eve o e var ous e emen s n a distributed or

  17. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  18. Integration of SPS with utility system networks

    Science.gov (United States)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  19. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  20. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  1. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  2. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  3. Integrated Environment for Ubiquitous Healthcare and Mobile IPv6 Networks

    Science.gov (United States)

    Cagalaban, Giovanni; Kim, Seoksoo

    The development of Internet technologies based on the IPv6 protocol will allow real-time monitoring of people with health deficiencies and improve the independence of elderly people. This paper proposed a ubiquitous healthcare system for the personalized healthcare services with the support of mobile IPv6 networks. Specifically, this paper discusses the integration of ubiquitous healthcare and wireless networks and its functional requirements. This allow an integrated environment where heterogeneous devices such a mobile devices and body sensors can continuously monitor patient status and communicate remotely with healthcare servers, physicians, and family members to effectively deliver healthcare services.

  4. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  5. Network integration of distributed power generation

    Science.gov (United States)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  6. Integrated Telecom And Data Ring Network

    Science.gov (United States)

    Maaloe, Jens

    1985-08-01

    The NKT Tele-Ringnet is a combined digital telephone and data network based on a fibre optical ring topology. The purpose of NKT Tele-Ringnet is to carry telephone and data communication as a digital PABX does. However, the optical system is not based on individual lines to a central mother exchange. It is a ringnet with an 8 Mbit/s transmission rate interconnecting simple telephone concentrators. The advantage is that all the telephone and data traffic can be multidropped over a large campus. In addition the signals are carried by an optical dual fibre cable which has many advantages compared with conventional cobber cables, i.e. low attenuation, large noise immunity, no electromagnetic radiation, small size and low weight.

  7. Integrating Information Networks for Collective Planetary Stewardship

    Science.gov (United States)

    Tiwari, A.

    2016-12-01

    Responsible behaviour resulting from climate literacy in global environmental movement is limited to policy and planning institutions in the Global South, while remaining absent for ends-user. Thus, planetary stewardship exists only at earth system boundaries where pressures sink to the local scale while ethics remains afloat. Existing citizen participation is restricted within policy spheres, appearing synonymous to enforcements in social psychology. Much, accounted reason is that existing information mechanisms operate mostly through linear exchanges between institutions and users, therefore reinforcing only hierarchical relationships. This study discloses such relationships that contribute to broad networking gaps through information demand assessment of stakeholders in a dozen development projects based in South Asia. Two parameters widely used for this purpose are: a. Feedback: Ends-user feedback to improve consumption literacy of climate sensitive resources (through consumption displays, billing, advisory services ecolabelling, sensors) and, b. Institutional Policy: Rewarding punishing to enforce desired behaviour (subsidies, taxation). Research answered: 1. Who gets the information (Equity in Information Distribution)? As existing information publishing mechanisms are designed by and for analysts, 2. How information translates to climate action Transparency of Execution)? Findings suggested that climate goals manifested in economic policy, than environmental policy, have potential clear short-term benefits and costs, and coincide with people's economic goals Also grassroots roles for responsible behaviour are empowered with presence of end user information. Barier free climate communication process and decision making is ensured among multiplicity of stakeholders with often conflicting perspectives. Research finds significance where collaboration among information networks can better translate regional policies into local action for climate adaptation and

  8. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  9. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  10. Integration Of An MR Image Network Into A Clinical PACS

    Science.gov (United States)

    Ratib, Osman M.; Mankovich, Nicholas J.; Taira, Ricky K.; Cho, Paul S.; Huang, H. K.

    1988-06-01

    A direct link between a clinical pediatric PACS module and a FONAR MRI image network was implemented. The original MR network combines together the MR scanner, a remote viewing station and a central archiving station. The pediatric PACS directly connects to the archiving unit through an Ethernet TCP-IP network adhering to FONAR's protocol. The PACS communication software developed supports the transfer of patient studies and the patient information directly from the MR archive database to the pediatric PACS. In the first phase of our project we developed a package to transfer data between a VAX-111750 and the IBM PC I AT-based MR archive database through the Ethernet network. This system served as a model for PACS-to-modality network communication. Once testing was complete on this research network, the software and network hardware was moved to the clinical pediatric VAX for full PACS integration. In parallel to the direct transmission of digital images to the Pediatric PACS, a broadband communication system in video format was developed for real-time broadcasting of images originating from the MR console to 8 remote viewing stations distributed in the radiology department. These analog viewing stations allow the radiologists to directly monitor patient positioning and to select the scan levels during a patient examination from remote locations in the radiology department. This paper reports (1) the technical details of this implementation, (2) the merits of this network development scheme, and (3) the performance statistics of the network-to-PACS interface.

  11. Towards integrated crisis support of regional emergency networks.

    Science.gov (United States)

    Caro, D H

    1999-01-01

    Emergency and crisis management pose multidimensional information systems challenges for communities across North America. In the quest to reduce mortality and morbidity risks and to increase the level of crisis preparedness, regional emergency management networks have evolved. Integrated Crisis Support Systems (ICSS) are enabling information technologies that assist emergency managers by enhancing the ability to strategically manage and control these regional emergency networks efficiently and effectively. This article underscores the ICCS development, control and leadership issues and their promising implications for regional emergency management networks.

  12. NETWORK CULTURE - INTEGRAL PART OF NEW VALUES OF CIVIL SOCIETY

    OpenAIRE

    Vyacheslav Vladimirovich Sukhanov

    2014-01-01

    New technologies not only improve working conditions or communication, they are also bringing new values to  the society. This article discusses the concept of «network culture», which is now perceived by society as an integral part of values that can only exist in a civil society. We can research ( find)   this kind of society in modern time period in Russia. The article analyzes the meaning of communication, how to use it, development processes in network media.  Nowadays network culture an...

  13. Explicit integration with GPU acceleration for large kinetic networks

    International Nuclear Information System (INIS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  14. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

    International Nuclear Information System (INIS)

    Guidry, M W; Hix, W R; Billings, J J

    2013-01-01

    In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

  15. Artificial neural network for violation analysis

    International Nuclear Information System (INIS)

    Zhang, Z.; Polet, P.; Vanderhaegen, F.; Millot, P.

    2004-01-01

    Barrier removal (BR) is a safety-related violation, and it can be analyzed in terms of benefits, costs, and potential deficits. In order to allow designers to integrate BR into the risk analysis during the initial design phase or during re-design work, we propose a connectionist method integrating self-organizing maps (SOM). The basic SOM is an artificial neural network that, on the basis of the information contained in a multi-dimensional space, generates a space of lesser dimensions. Three algorithms--Unsupervised SOM, Supervised SOM, and Hierarchical SOM--have been developed to permit BR classification and prediction in terms of the different criteria. The proposed method can be used, on the one hand, to foresee/predict the possibility level of a new/changed barrier (prospective analysis), and on the other hand, to synthetically regroup/rearrange the BR of a given human-machine system (retrospective analysis). We applied this method to the BR analysis of an experimental railway simulator, and our preliminary results are presented here

  16. Construction of functional linkage gene networks by data integration.

    Science.gov (United States)

    Linghu, Bolan; Franzosa, Eric A; Xia, Yu

    2013-01-01

    Networks of functional associations between genes have recently been successfully used for gene function and disease-related research. A typical approach for constructing such functional linkage gene networks (FLNs) is based on the integration of diverse high-throughput functional genomics datasets. Data integration is a nontrivial task due to the heterogeneous nature of the different data sources and their variable accuracy and completeness. The presence of correlations between data sources also adds another layer of complexity to the integration process. In this chapter we discuss an approach for constructing a human FLN from data integration and a subsequent application of the FLN to novel disease gene discovery. Similar approaches can be applied to nonhuman species and other discovery tasks.

  17. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  18. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  19. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  20. Neurostimulation options for failed back surgery syndrome: The need for rational and objective measurements. Proposal of an international clinical network using an integrated database and health economic analysis: the PROBACK network.

    Science.gov (United States)

    Rigoard, P; Slavin, K

    2015-03-01

    In the context of failed back surgery syndrome (FBSS) treatment, the current practice in neurostimulation varies from center-to-center and most clinical decisions are based on an individual diagnosis. Neurostimulation evaluation tools and pain relief assessment are of major concern, as they now constitute one of the main biases of clinical trials. Moreover, the proliferation of technological devices, in a fertile and unsatisfied market, fosters and only furthers the confusion. There are three options available to apply scientific debates to our daily neurostimulation practice: intentional ignorance, standardized evidence-based practice or alternative data mining approach. In view of the impossibility of conducting multiple randomized clinical trials comparing various devices, one by one, the proposed concept would be to redefine the indications and the respective roles of the various spinal cord and peripheral nerve stimulation devices with large-scale computational modeling/data mining approach, by conducting a multicenter prospective database registry, supported by a clinician's global network called "PROBACK". We chose to specifically analyze 6 parameters: device coverage performance/coverage selectivity/persistence of the long-term electrical response (technical criteria) and comparative mapping of patient pain relief/persistence of the long-term clinical response/safety and complications occurrence (clinical criteria). Two types of analysis will be performed: immediate analysis (including cost analysis) and computational analysis, i.e. demonstration of the robustness of certain correlations of variables, in order to extract response predictors. By creating an international prospective database, the purpose of the PROBACK project was to set up a process of extraction and comparative analysis of data derived from the selection, implantation and follow-up of FBSS patients candidates for implanted neurostimulation. This evaluation strategy should help to change

  1. A Temporal-Causal Modelling Approach to Integrated Contagion and Network Change in Social Networks

    NARCIS (Netherlands)

    Blankendaal, Romy; Parinussa, Sarah; Treur, Jan

    2016-01-01

    This paper introduces an integrated temporal-causal model for dynamics in social networks addressing the contagion principle by which states are affected mutually, and both the homophily principle and the more-becomes-more principle by which connections are adapted over time. The integrated model

  2. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism.

    Science.gov (United States)

    Wang, Na; Wang, Ruoqing; Wang, Renkai; Tian, Yongsheng; Shao, Changwei; Jia, Xiaodong; Chen, Songlin

    2017-01-01

    Albinism, a phenomenon characterized by pigmentation deficiency on the ocular side of Japanese flounder (Paralichthys olivaceus), has caused significant damage. Limited mRNA and microRNA (miRNA) information is available on fish pigmentation deficiency. In this study, a high-throughput sequencing strategy was employed to identify the mRNA and miRNAs involved in P. olivaceus albinism. Based on P. olivaceus genome, RNA-seq identified 21,787 know genes and 711 new genes by transcripts assembly. Of those, 235 genes exhibited significantly different expression pattern (fold change ≥2 or ≤0.5 and q-value≤0.05), including 194 down-regulated genes and 41 up-regulated genes in albino versus normally pigmented individuals. These genes were enriched to 81 GO terms and 9 KEGG pathways (p≤0.05). Among those, the pigmentation related pathways-Melanogenesis and tyrosine metabolism were contained. High-throughput miRNA sequencing identified a total of 475 miRNAs, including 64 novel miRNAs. Furthermore, 33 differentially expressed miRNAs containing 13 up-regulated and 20 down-regulated miRNAs were identified in albino versus normally pigmented individuals (fold change ≥1.5 or ≤0.67 and p≤0.05). The next target prediction discovered a variety of putative target genes, of which, 134 genes including Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), Microphthalmia-associated transcription factor (MITF) were overlapped with differentially expressed genes derived from RNA-seq. These target genes were significantly enriched to 254 GO terms and 103 KEGG pathways (p<0.001). Of those, tyrosine metabolism, lysosomes, phototransduction pathways, etc., attracted considerable attention due to their involvement in regulating skin pigmentation. Expression patterns of differentially expressed mRNA and miRNAs were validated in 10 mRNA and 10 miRNAs by qRT-PCR. With high-throughput mRNA and miRNA sequencing and analysis, a series of interested mRNA and miRNAs involved in fish

  3. Validation of network communicability metrics for the analysis of brain structural networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Andreotti

    Full Text Available Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

  4. Integrated situational awareness for cyber attack detection, analysis, and mitigation

    Science.gov (United States)

    Cheng, Yi; Sagduyu, Yalin; Deng, Julia; Li, Jason; Liu, Peng

    2012-06-01

    Real-time cyberspace situational awareness is critical for securing and protecting today's enterprise networks from various cyber threats. When a security incident occurs, network administrators and security analysts need to know what exactly has happened in the network, why it happened, and what actions or countermeasures should be taken to quickly mitigate the potential impacts. In this paper, we propose an integrated cyberspace situational awareness system for efficient cyber attack detection, analysis and mitigation in large-scale enterprise networks. Essentially, a cyberspace common operational picture will be developed, which is a multi-layer graphical model and can efficiently capture and represent the statuses, relationships, and interdependencies of various entities and elements within and among different levels of a network. Once shared among authorized users, this cyberspace common operational picture can provide an integrated view of the logical, physical, and cyber domains, and a unique visualization of disparate data sets to support decision makers. In addition, advanced analyses, such as Bayesian Network analysis, will be explored to address the information uncertainty, dynamic and complex cyber attack detection, and optimal impact mitigation issues. All the developed technologies will be further integrated into an automatic software toolkit to achieve near real-time cyberspace situational awareness and impact mitigation in large-scale computer networks.

  5. Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure

    International Nuclear Information System (INIS)

    Xu, Xin; Cui, Qiang

    2017-01-01

    This paper focuses on evaluating airline energy efficiency, which is firstly divided into four stages: Operations Stage, Fleet Maintenance Stage, Services Stage and Sales Stage. The new four-stage network structure of airline energy efficiency is a modification of existing models. A new approach, integrated with Network Epsilon-based Measure and Network Slacks-based Measure, is applied to assess the overall energy efficiency and divisional efficiency of 19 international airlines from 2008 to 2014. The influencing factors of airline energy efficiency are analyzed through the regression analysis. The results indicate the followings: 1. The integrated model can identify the benchmarking airlines in the overall system and stages. 2. Most airlines' energy efficiencies keep steady during the period, except for some sharply fluctuations. The efficiency decreases mainly centralized in the year 2008–2011, affected by the financial crisis in the USA. 3. The average age of fleet is positively correlated with the overall energy efficiency, and each divisional efficiency has different significant influencing factors. - Highlights: • An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure is developed. • 19 airlines' energy efficiencies are evaluated. • Garuda Indonesia has the highest overall energy efficiency.

  6. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  7. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  8. Dynamic state estimation for distribution networks with renewable energy integration

    NARCIS (Netherlands)

    Nguyen, P.H.; Venayagamoorthy, G.K.; Kling, W.L.; Ribeiro, P.F.

    2013-01-01

    The massive integration of variable and unpredictable Renewable Energy Sources (RES) and new types of load consumptions increases the dynamic and uncertain nature of the electricity grid. Emerging interests have focused on improving the monitoring capabilities of network operators so that they can

  9. Integral inventory control in spare parts networks with capacity restrictions

    NARCIS (Netherlands)

    Sleptchenko, Andrei

    2002-01-01

    Integral inventory control of repairable items in service networks can result in a significant gain compared to traditional local control mechanisms, in terms of both efficiency and customer service. Research on quantitative decision support models has yielded various useful results. However, in

  10. Value Systems Alignment Analysis in Collaborative Networked Organizations Management

    Directory of Open Access Journals (Sweden)

    Patricia Macedo

    2017-11-01

    Full Text Available The assessment of value systems alignment can play an important role in the formation and evolution of collaborative networks, contributing to reduce potential risks of collaboration. For this purpose, an assessment tool is proposed as part of a collaborative networks information system, supporting both the formation and evolution of long-term strategic alliances and goal-oriented networks. An implementation approach for value system alignment analysis is described, which is intended to assist managers in virtual and networked organizations management. The implementation of the assessment and analysis methods is supported by a set of software services integrated in the information system that supports the management of the networked organizations. A case study in the solar energy sector was conducted, and the data collected through this study allow us to confirm the practical applicability of the proposed methods and the software services.

  11. BiologicalNetworks 2.0 - an integrative view of genome biology data

    Directory of Open Access Journals (Sweden)

    Ponomarenko Julia

    2010-12-01

    Full Text Available Abstract Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other and their relations (interactions, co-expression, co-citations, and other. The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org.

  12. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  13. Vertical integration and organizational networks in health care.

    Science.gov (United States)

    Robinson, J C; Casalino, L P

    1996-01-01

    This paper documents the growing linkages between primary care-centered medical groups and specialists and between physicians and hospitals under managed care. We evaluate the two alternative forms of organizational coordination: "vertical integration," based on unified ownership, and "virtual integration," based on contractual networks. Excess capacity and the need for investment capital are major short-term determinants of these vertical versus virtual integration decisions in health care. In the longer term, the principal determinants are economies of scale, risk-bearing ability, transaction costs, and the capacity for innovation in methods of managing care.

  14. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    Science.gov (United States)

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different

  15. Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems

    International Nuclear Information System (INIS)

    Santos, Sérgio F.; Fitiwi, Desta Z.; Cruz, Marco R.M.; Cabrita, Carlos M.P.; Catalão, João P.S.

    2017-01-01

    Highlights: • A dynamic and multi-objective stochastic mixed integer linear programming model is developed. • A new mechanism to quantify the impacts of network flexibility and ESS deployments on RES integration is presented. • Optimal integration of ESSs dramatically increases the level and the optimal exploitation of renewable DGs. • As high as 90% of RES integration level may be possible in distribution network systems. • Joint DG and ESS installations along with optimal network reconfiguration greatly contribute to voltage stability. - Abstract: Nowadays, there is a wide consensus about integrating more renewable energy sources-RESs to solve a multitude of global concerns such as meeting an increasing demand for electricity, reducing energy security and heavy dependence on fossil fuels for energy production, and reducing the overall carbon footprint of power production. Framed in this context, the coordination of RES integration with energy storage systems (ESSs), along with the network’s switching capability and/or reinforcement, is expected to significantly improve system flexibility, thereby increasing the capability of the system in accommodating large-scale RES power. Hence, this paper presents a novel mechanism to quantify the impacts of network switching and/or reinforcement as well as deployment of ESSs on the level of renewable power integrated in the system. To carry out this analysis, a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model is developed, which jointly takes the optimal deployment of RES-based DGs and ESSs into account in coordination with distribution network reinforcement and/or reconfiguration. The IEEE 119-bus test system is used as a case study. Numerical results clearly show the capability of ESS deployment in dramatically increasing the level of renewable DGs integrated in the system. Although case-dependent, the impact of network reconfiguration on RES power integration is not

  16. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  17. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  18. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  19. Control strategies for power distribution networks with electric vehicles integration

    DEFF Research Database (Denmark)

    Hu, Junjie

    of electrical energy. A smart grid can also be dened as an electricity network that can intelligently integrate the actions of all users connected to it - generators, consumers and those that do both - in order to eciently deliver sustainable, economic and secure electricity supplies. This thesis focuses...... of the ii market. To build a complete solution for integration of EVs into the distribution network, a price coordinated hierarchical scheduling system is proposed which can well characterize the involved actors in the smart grid. With this system, we demonstrate that it is possible to schedule the charging......Demand side resources, like electric vehicles (EVs), can become integral parts of a smart grids because instead of just consuming power they are capable of providing valuable services to power systems. EVs can be used to balance the intermittent renewable energy resources such as wind and solar...

  20. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  1. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon's blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology.

    Directory of Open Access Journals (Sweden)

    Haiyu Xu

    Full Text Available Traditional Chinese medicine (TCM is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME, and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment.

  2. Integrated sequence analysis. Final report

    International Nuclear Information System (INIS)

    Andersson, K.; Pyy, P.

    1998-02-01

    The NKS/RAK subprojet 3 'integrated sequence analysis' (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term 'methodology' denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  3. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    Science.gov (United States)

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Service network design of bike sharing systems analysis and optimization

    CERN Document Server

    Vogel, Patrick

    2016-01-01

    This monograph presents a tactical planning approach for service network design in metropolitan areas. Designing the service network requires the suitable aggregation of demand data as well as the anticipation of operational relocation decisions. To this end, an integrated approach of data analysis and mathematical optimization is introduced. The book also includes a case study based on real-world data to demonstrate the benefit of the proposed service network design approach. The target audience comprises primarily research experts in the field of traffic engineering, but the book may also be beneficial for graduate students.

  5. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  6. Abnormal functional integration across core brain networks in migraine without aura.

    Science.gov (United States)

    Yu, Dahua; Yuan, Kai; Luo, Lin; Zhai, Jinquan; Bi, Yanzhi; Xue, Ting; Ren, Xiaoying; Zhang, Ming; Ren, Guoyin; Lu, Xiaoqi

    2017-01-01

    As a complex subjective experience, pain processing may be related to functional integration among intrinsic connectivity networks of migraine patients without aura. However, few study focused on the pattern alterations in the intrinsic connectivity networks of migraine patients without aura. Thirty-one migraine patients without aura and 31 age- and education-matched healthy controls participated in this study. After identifying the default mode network, central executive network and salience network as core intrinsic connectivity networks by using independent component analysis, functional connectivity, and effective connectivity during the resting state were used to investigate the abnormalities in intrinsic connectivity network interactions. Migraine patients without aura showed decreased functional connectivity among intrinsic connectivity networks compared with healthy controls. The strength of causal influences from the right frontoinsular cortex to the right anterior cingulate cortex became weaker, and the right frontoinsular cortex to the right medial prefrontal cortex became stronger in migraine patients without aura. These changes suggested that the salience network may play a major role in the pathophysiological features of migraine patients without aura and helped us to synthesize previous findings into an aberrant network dynamical framework.

  7. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  8. Perspectives and limitations of QKD integration in metropolitan area networks.

    Science.gov (United States)

    Aleksic, Slavisa; Hipp, Florian; Winkler, Dominic; Poppe, Andreas; Schrenk, Bernhard; Franzl, Gerald

    2015-04-20

    Quantum key distribution (QKD) systems have already reached a reasonable level of maturity. However, a smooth integration and a wide adoption of commercial QKD systems in metropolitan area networks has still remained challenging because of technical and economical obstacles. Mainly the need for dedicated fibers and the strong dependence of the secret key rate on both loss budget and background noise in the quantum channel hinder a practical, flexible and robust implementation of QKD in current and next-generation optical metro networks. In this paper, we discuss these obstacles and present approaches to share existing fiber infrastructures among quantum and classical channels. Particularly, a proposal for a smooth integration of QKD in optical metro networks, which implies removing spurious background photons caused by optical transmitters, amplifiers and nonlinear effects in fibers, is presented and discussed. We determine and characterize impairments on quantum channels caused by many classical telecom channels at practically used power levels coexisting within the same fiber. Extensive experimental results are presented and indicate that a practical integration of QKD in conventional optical metro networks is possible.

  9. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  10. A 40 GHz fully integrated circuit with a vector network analyzer and a coplanar-line-based detection area for circulating tumor cell analysis using 65 nm CMOS technology

    Science.gov (United States)

    Nakanishi, Taiki; Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    A 40-GHz fully integrated CMOS-based circuit for circulating tumor cells (CTC) analysis, consisting of an on-chip vector network analyzer (VNA) and a highly sensitive coplanar-line-based detection area is presented in this paper. In this work, we introduce a fully integrated architecture that eliminates unwanted parasitic effects. The proposed analyzer was designed using 65 nm CMOS technology, and SPICE and MWS simulations were used to validate its operation. The simulation confirmed that the proposed circuit can measure S-parameter shifts resulting from the addition of various types of tumor cells to the detection area, the data of which are provided in a previous study: the |S 21| values for HepG2, A549, and HEC-1-A cells are -0.683, -0.580, and -0.623 dB, respectively. Additionally, the measurement demonstrated an S-parameters reduction of -25.7% when a silicone resin was put on the circuit. Hence, the proposed system is expected to contribute to cancer diagnosis.

  11. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  12. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  13. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  14. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  15. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    Science.gov (United States)

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  16. Integrated healthcare networks' performance: a growth curve modeling approach.

    Science.gov (United States)

    Wan, Thomas T H; Wang, Bill B L

    2003-05-01

    This study examines the effects of integration on the performance ratings of the top 100 integrated healthcare networks (IHNs) in the United States. A strategic-contingency theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. To create a database for the panel study, the top 100 IHNs selected by the SMG Marketing Group in 1998 were followed up in 1999 and 2000. The data were merged with the Dorenfest data on information system integration. A growth curve model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' performance in 1998 and their subsequent rankings in the consecutive years were analyzed. IHNs' initial performance scores were positively influenced by network size, number of affiliated physicians and profit margin, and were negatively associated with average length of stay and technical efficiency. The continuing high performance, judged by maintaining higher performance scores, tended to be enhanced by the use of more managerial or executive decision-support systems. Future studies should include time-varying operational indicators to serve as predictors of network performance.

  17. Fast mapping rapidly integrates information into existing memory networks.

    Science.gov (United States)

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2014-12-01

    Successful learning involves integrating new material into existing memory networks. A learning procedure known as fast mapping (FM), thought to simulate the word-learning environment of children, has recently been linked to distinct neuroanatomical substrates in adults. This idea has suggested the (never-before tested) hypothesis that FM may promote rapid incorporation into cortical memory networks. We test this hypothesis here in 2 experiments. In our 1st experiment, we introduced 50 participants to 16 unfamiliar animals and names through FM or explicit encoding (EE) and tested participants on the training day, and again after sleep. Learning through EE produced strong declarative memories, without immediate lexical competition, as expected from slow-consolidation models. Learning through FM, however, led to almost immediate lexical competition, which continued to the next day. Additionally, the learned words began to prime related concepts on the day following FM (but not EE) training. In a 2nd experiment, we replicated the lexical integration results and determined that presenting an already-known item during learning was crucial for rapid integration through FM. The findings presented here indicate that learned items can be integrated into cortical memory networks at an accelerated rate through fast mapping. The retrieval of a related known concept, in order to infer the target of the FM question, is critical for this effect. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. OzFlux data: network integration from collection to curation

    Directory of Open Access Journals (Sweden)

    P. Isaac

    2017-06-01

    Full Text Available Measurement of the exchange of energy and mass between the surface and the atmospheric boundary-layer by the eddy covariance technique has undergone great change in the last 2 decades. Early studies of these exchanges were confined to brief field campaigns in carefully controlled conditions followed by months of data analysis. Current practice is to run tower-based eddy covariance systems continuously over several years due to the need for continuous monitoring as part of a global effort to develop local-, regional-, continental- and global-scale budgets of carbon, water and energy. Efficient methods of processing the increased quantities of data are needed to maximise the time available for analysis and interpretation. Standardised methods are needed to remove differences in data processing as possible contributors to observed spatial variability. Furthermore, public availability of these data sets assists with undertaking global research efforts. The OzFlux data path has been developed (i to provide a standard set of quality control and post-processing tools across the network, thereby facilitating inter-site integration and spatial comparisons; (ii to increase the time available to researchers for analysis and interpretation by reducing the time spent collecting and processing data; (iii to propagate both data and metadata to the final product; and (iv to facilitate the use of the OzFlux data by adopting a standard file format and making the data available from web-based portals. Discovery of the OzFlux data set is facilitated through incorporation in FLUXNET data syntheses and the publication of collection metadata via the RIF-CS format. This paper serves two purposes. The first is to describe the data sets, along with their quality control and post-processing, for the other papers of this Special Issue. The second is to provide an example of one solution to the data collection and curation challenges that are encountered by similar flux

  19. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  20. Atypical language laterality is associated with large-scale disruption of network integration in children with intractable focal epilepsy.

    Science.gov (United States)

    Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter

    2015-04-01

    Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  2. Social networking in nursing education: integrative literature review.

    Science.gov (United States)

    Kakushi, Luciana Emi; Évora, Yolanda Dora Martinez

    2016-01-01

    to identify the use of social networking in nursing education. integrative literature review in the databases: LILACS, IBECS, Cochrane, BDENF, SciELO, CINAHL, Scopus, PubMed, CAPES Periodicals Portal and Web of Science, using the descriptors: social networking and nursing education and the keywords: social networking sites and nursing education, carried out in April 2015. of the 489 articles found, only 14 met the inclusion and exclusion criteria. Most studies were published after 2013 (57%), originating from the United States and United Kingdom (77.8%). It was observed the use of social networking among nursing students, postgraduate students, mentors and nurses, in undergraduate programmes, hybrid education (blended-learning) and in interprofessional education. The social networking sites used in the teaching and learning process were Facebook (42.8%), Ning (28.5%), Twitter (21.4%) and MySpace (7.1%), by means of audios, videos, quizzes, animations, forums, guidance, support, discussions and research group. few experiences of the use of social networking in nursing education were found and their contributions show the numerous benefits and difficulties faced, providing resourses for the improvement and revaluation of their use in the teaching and learning process.

  3. Contingent approach to Internet-based supply network integration

    Science.gov (United States)

    Ho, Jessica; Boughton, Nick; Kehoe, Dennis; Michaelides, Zenon

    2001-10-01

    The Internet is playing an increasingly important role in enhancing the operations of supply networks as many organizations begin to recognize the benefits of Internet- enabled supply arrangements. However, the developments and applications to-date do not extend significantly beyond the dyadic model, whereas the real advantages are to be made with the external and network models to support a coordinated and collaborative based approach. The DOMAIN research group at the University of Liverpool is currently defining new Internet- enabled approaches to enable greater collaboration across supply chains. Different e-business models and tools are focusing on different applications. Using inappropriate e- business models, tools or techniques will bring negative results instead of benefits to all the tiers in the supply network. Thus there are a number of issues to be considered before addressing Internet based supply network integration, in particular an understanding of supply chain management, the emergent business models and evaluating the effects of deploying e-business to the supply network or a particular tier. It is important to utilize a contingent approach to selecting the right e-business model to meet the specific supply chain requirements. This paper addresses the issues and provides a case study on the indirect materials supply networks.

  4. Social networking in nursing education: integrative literature review

    Directory of Open Access Journals (Sweden)

    Luciana Emi Kakushi

    Full Text Available Abstract Objective: to identify the use of social networking in nursing education. Method: integrative literature review in the databases: LILACS, IBECS, Cochrane, BDENF, SciELO, CINAHL, Scopus, PubMed, CAPES Periodicals Portal and Web of Science, using the descriptors: social networking and nursing education and the keywords: social networking sites and nursing education, carried out in April 2015. Results: of the 489 articles found, only 14 met the inclusion and exclusion criteria. Most studies were published after 2013 (57%, originating from the United States and United Kingdom (77.8%. It was observed the use of social networking among nursing students, postgraduate students, mentors and nurses, in undergraduate programmes, hybrid education (blended-learning and in interprofessional education. The social networking sites used in the teaching and learning process were Facebook (42.8%, Ning (28.5%, Twitter (21.4% and MySpace (7.1%, by means of audios, videos, quizzes, animations, forums, guidance, support, discussions and research group. Conclusion: few experiences of the use of social networking in nursing education were found and their contributions show the numerous benefits and difficulties faced, providing resourses for the improvement and revaluation of their use in the teaching and learning process.

  5. Social networks in nursing work processes: an integrative literature review

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Mesquita

    Full Text Available Abstract OBJECTIVE To identify and analyze the available evidence in the literature on the use of social networks in nursing work processes. METHOD An integrative review of the literature conducted in PubMed, CINAHL, EMBASE and LILACS databases in January 2016, using the descriptors social media, social networking, nursing, enfermagem, redes sociais, mídias sociais, and the keyword nursing practice, without year restriction. RESULTS The sample consisted of 27 international articles which were published between 2011 and 2016. The social networks used were Facebook (66.5%, Twitter (30% and WhatsApp (3.5%. In 70.5% of the studies, social networks were used for research purposes, in 18.5% they were used as a tool aimed to assist students in academic activities, and in 11% for executing interventions via the internet. CONCLUSION Nurses have used social networks in their work processes such as Facebook, Twitter and WhatsApp to research, teach and watch. The articles show several benefits in using such tools in the nursing profession; however, ethical considerations regarding the use of social networks deserve further discussion.

  6. Integrated sequence analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.; Pyy, P

    1998-02-01

    The NKS/RAK subprojet 3 `integrated sequence analysis` (ISA) was formulated with the overall objective to develop and to test integrated methodologies in order to evaluate event sequences with significant human action contribution. The term `methodology` denotes not only technical tools but also methods for integration of different scientific disciplines. In this report, we first discuss the background of ISA and the surveys made to map methods in different application fields, such as man machine system simulation software, human reliability analysis (HRA) and expert judgement. Specific event sequences were, after the surveys, selected for application and testing of a number of ISA methods. The event sequences discussed in the report were cold overpressure of BWR, shutdown LOCA of BWR, steam generator tube rupture of a PWR and BWR disturbed signal view in the control room after an external event. Different teams analysed these sequences by using different ISA and HRA methods. Two kinds of results were obtained from the ISA project: sequence specific and more general findings. The sequence specific results are discussed together with each sequence description. The general lessons are discussed under a separate chapter by using comparisons of different case studies. These lessons include areas ranging from plant safety management (design, procedures, instrumentation, operations, maintenance and safety practices) to methodological findings (ISA methodology, PSA,HRA, physical analyses, behavioural analyses and uncertainty assessment). Finally follows a discussion about the project and conclusions are presented. An interdisciplinary study of complex phenomena is a natural way to produce valuable and innovative results. This project came up with structured ways to perform ISA and managed to apply the in practice. The project also highlighted some areas where more work is needed. In the HRA work, development is required for the use of simulators and expert judgement as

  7. Functional Interaction Network Construction and Analysis for Disease Discovery.

    Science.gov (United States)

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  8. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  9. Securing Digital Images Integrity using Artificial Neural Networks

    Science.gov (United States)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  10. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Science.gov (United States)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  11. Social network approaches to leadership: an integrative conceptual review.

    Science.gov (United States)

    Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S

    2015-05-01

    Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.

  12. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  13. Integration of Bacterial Small RNAs in Regulatory Networks.

    Science.gov (United States)

    Nitzan, Mor; Rehani, Rotem; Margalit, Hanah

    2017-05-22

    Small RNAs (sRNAs) are central regulators of gene expression in bacteria, controlling target genes posttranscriptionally by base pairing with their mRNAs. sRNAs are involved in many cellular processes and have unique regulatory characteristics. In this review, we discuss the properties of regulation by sRNAs and how it differs from and combines with transcriptional regulation. We describe the global characteristics of the sRNA-target networks in bacteria using graph-theoretic approaches and review the local integration of sRNAs in mixed regulatory circuits, including feed-forward loops and their combinations, feedback loops, and circuits made of an sRNA and another regulator, both derived from the same transcript. Finally, we discuss the competition effects in posttranscriptional regulatory networks that may arise over shared targets, shared regulators, and shared resources and how they may lead to signal propagation across the network.

  14. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  15. Nanosensors-Cellphone Integration for Extended Chemical Sensing Network

    Science.gov (United States)

    Li, Jing

    2011-01-01

    This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.

  16. Adaptive Moving Object Tracking Integrating Neural Networks And Intelligent Processing

    Science.gov (United States)

    Lee, James S. J.; Nguyen, Dziem D.; Lin, C.

    1989-03-01

    A real-time adaptive scheme is introduced to detect and track moving objects under noisy, dynamic conditions including moving sensors. This approach integrates the adaptiveness and incremental learning characteristics of neural networks with intelligent reasoning and process control. Spatiotemporal filtering is used to detect and analyze motion, exploiting the speed and accuracy of multiresolution processing. A neural network algorithm constitutes the basic computational structure for classification. A recognition and learning controller guides the on-line training of the network, and invokes pattern recognition to determine processing parameters dynamically and to verify detection results. A tracking controller acts as the central control unit, so that tracking goals direct the over-all system. Performance is benchmarked against the Widrow-Hoff algorithm, for target detection scenarios presented in diverse FLIR image sequences. Efficient algorithm design ensures that this recognition and control scheme, implemented in software and commercially available image processing hardware, meets the real-time requirements of tracking applications.

  17. Networked Social Reproduction: Crises in the Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Elise Danielle Thorburn

    2016-07-01

    Full Text Available This paper argues that the means of communication are sites for, and aspects of, social reproduction. In contemporary capitalism, motivated as it is by new, networked digital technologies, social reproduction is increasingly virtualised through the means of communication. Although recent political struggles have demonstrated how networked technologies can liberate social reproduction from the profit motive and from commodifying impulses, the tendency is to invoke and accelerate socially reproductive crises—crises in the capacity to reproduce ourselves both daily and intergenerationally. These crises have psychic and corporeal impacts, and intensify Tronti’s “social factory” thesis of capital’s technical composition. In order to develop modes and means of liberatory communication in the integrated circuit it is necessary to untangle and chart both the pathways and outcomes of the crises networked social reproduction invokes.

  18. Increasing cellular coverage within integrated terrestrial/satellite mobile networks

    Science.gov (United States)

    Castro, Jonathan P.

    1995-01-01

    When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.

  19. Energy in Southeast Asia: from Networks to Markets Integration

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-01-01

    Southeast Asia is one of the world's most dynamic regions and experiences strong economic and energy demand growth rates. In this context, the Association of Southeast Asian Nations (ASEAN) is seeking to interconnect the electric grids and gas networks of the countries through two initiatives, the Asean Power Grid and the Trans-Asean Gas Pipeline, in order to pool resources and optimize energy markets integration in the region

  20. Local Health Integration Networks: Build on their purpose.

    Science.gov (United States)

    MacLeod, Hugh

    2015-11-01

    This article provides a high-level overview on the creation of Local Health Integration Networks (LHINs) and illustrates the complexities involved in their implementation. To understand regional structures such as LHINs, one must understand the context in which design and execution takes place. The article ends with a commentary on how Ontario is performing post-LHINs and discusses next steps. © 2015 The Canadian College of Health Leaders.

  1. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  2. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Dam, van J.C.J.; Schaap, P.J.; Martins dos Santos, V.A.P.; Suarez Diez, M.

    2014-01-01

    Background: Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each

  3. Integrative Workflows for Metagenomic Analysis

    Directory of Open Access Journals (Sweden)

    Efthymios eLadoukakis

    2014-11-01

    Full Text Available The rapid evolution of all sequencing technologies, described by the term Next Generation Sequencing (NGS, have revolutionized metagenomic analysis. They constitute a combination of high-throughput analytical protocols, coupled to delicate measuring techniques, in order to potentially discover, properly assemble and map allelic sequences to the correct genomes, achieving particularly high yields for only a fraction of the cost of traditional processes (i.e. Sanger. From a bioinformatic perspective, this boils down to many gigabytes of data being generated from each single sequencing experiment, rendering the management or even the storage, critical bottlenecks with respect to the overall analytical endeavor. The enormous complexity is even more aggravated by the versatility of the processing steps available, represented by the numerous bioinformatic tools that are essential, for each analytical task, in order to fully unveil the genetic content of a metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial, quality control of raw data to exceptionally complex protein annotation procedures, requesting a high level of expertise for their proper application or the neat implementation of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires grand computational resources, imposing as the sole realistic solution, the utilization of cloud computing infrastructures. In this review article we discuss different, integrative, bioinformatic solutions available, which address the aforementioned issues, by performing a critical assessment of the available automated pipelines for data management, quality control and annotation of metagenomic data, embracing various, major sequencing technologies and applications.

  4. Integrated network for structural integrity monitoring of critical components in nuclear facilities, RIMIS

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2008-01-01

    The round table aims to join specialists working in the research area of the Romanian R and D Institutes and Universities involved in structural integrity assessment of materials, especially those working in the nuclear field, together with the representatives of the end user, the Cernavoda NPP. This scientific event will offer the opportunity to disseminate the theoretical, experimental and modelling activities, carried out to date, in the framework of the National Program 'Research of Excellence', Module I 2006-2008, managed by the National Authority for Scientific Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities, RIMIS, the project has two main objectives: 1. - to elaborate a procedure applicable to the structural integrity assessment of critical components used in Romanian nuclear facilities (CANDU type Reactor, Hydrogen Isotopes Separation installations); 2. - to integrate the national networking into a similar one of European level, and to enhance the scientific significance of Romanian R and D organisations as well as to increase the contribution in solving major issues of the nuclear field. The topics of the round table will be focused on: 1. Development of a Structural Integrity Assessment Methodology applicable to the nuclear facilities components; 2. Experimental investigation methods and procedures; 3. Numeric simulation of nuclear components behaviour; 4. Further activities to finalize the assessment procedure. Also participations and contributions to sustain the activity in the European Network NULIFE, FP6 will be discussed. (authors)

  5. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  6. Noise Analysis studies with neural networks

    International Nuclear Information System (INIS)

    Seker, S.; Ciftcioglu, O.

    1996-01-01

    Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)

  7. Integrated multimedia information system on interactive CATV network

    Science.gov (United States)

    Lee, Meng-Huang; Chang, Shin-Hung

    1998-10-01

    In the current CATV system architectures, they provide one- way delivery of a common menu of entertainment to all the homes through the cable network. Through the technologies evolution, the interactive services (or two-way services) can be provided in the cable TV systems. They can supply customers with individualized programming and support real- time two-way communications. With a view to the service type changed from the one-way delivery systems to the two-way interactive systems, `on demand services' is a distinct feature of multimedia systems. In this paper, we present our work of building up an integrated multimedia system on interactive CATV network in Shih Chien University. Besides providing the traditional analog TV programming from the cable operator, we filter some channels to reserve them as our campus information channels. In addition to the analog broadcasting channel, the system also provides the interactive digital multimedia services, e.g. Video-On- Demand (VOD), Virtual Reality, BBS, World-Wide-Web, and Internet Radio Station. These two kinds of services are integrated in a CATV network by the separation of frequency allocation for the analog broadcasting service and the digital interactive services. Our ongoing work is to port our previous work of building up a VOD system conformed to DAVIC standard (for inter-operability concern) on Ethernet network into the current system.

  8. Integrated Radiation Analysis and Design Tools

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Radiation Analysis and Design Tools (IRADT) Project develops and maintains an integrated tool set that collects the current best practices, databases,...

  9. PAVECHECK : integrating deflection and GPR for network condition surveys.

    Science.gov (United States)

    2009-01-01

    The PAVECHECK data integration and analysis system was developed to merge Falling Weight : Deflectometer (FWD) and Ground Penetrating Radar (GPR) data together with digital video images of : surface conditions. In this study Global Positioning System...

  10. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  11. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  12. NET European Network on Neutron Techniques Standardization for Structural Integrity

    International Nuclear Information System (INIS)

    Youtsos, A.

    2004-01-01

    Improved performance and safety of European energy production systems is essential for providing safe, clean and inexpensive electricity to the citizens of the enlarged EU. The state of the art in assessing internal stresses, micro-structure and defects in welded nuclear components -as well as their evolution due to complex thermo-mechanical loads and irradiation exposure -needs to be improved before relevant structural integrity assessment code requirements can safely become less conservative. This is valid for both experimental characterization techniques and predictive numerical algorithms. In the course of the last two decades neutron methods have proven to be excellent means for providing valuable information required in structural integrity assessment of advanced engineering applications. However, the European industry is hampered from broadly using neutron research due to lack of harmonised and standardized testing methods. 35 European major industrial and research/academic organizations have joined forces, under JRC coordination, to launch the NET European Network on Neutron Techniques Standardization for Structural Integrity in May 2002. The NET collaborative research initiative aims at further development and harmonisation of neutron scattering methods, in support of structural integrity assessment. This is pursued through a number of testing round robin campaigns on neutron diffraction and small angle neutron scattering - SANS and supported by data provided by other more conventional destructive and non-destructive methods, such as X-ray diffraction and deep and surface hole drilling. NET also strives to develop more reliable and harmonized simulation procedures for the prediction of residual stress and damage in steel welded power plant components. This is pursued through a number of computational round robin campaigns based on advanced FEM techniques, and on reliable data obtained by such novel and harmonized experimental methods. The final goal of

  13. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  14. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  15. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    OpenAIRE

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major d...

  16. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  17. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  18. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  19. Integrating network ecology with applied conservation: a synthesis and guide to implementation.

    Science.gov (United States)

    Kaiser-Bunbury, Christopher N; Blüthgen, Nico

    2015-07-10

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University

  20. Integration and the performance of healthcare networks: do integration strategies enhance efficiency, profitability, and image?

    Directory of Open Access Journals (Sweden)

    Thomas T.H. Wan

    2001-06-01

    Full Text Available Purpose: This study examines the integration effects on efficiency and financial viability of the top 100 integrated healthcare networks (IHNs in the United States. Theory: A contingency- strategic theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. Methods: The lists of the top 100 IHNs ranked in two years, 1998 and 1999, by the SMG Marketing Group were merged to create a database for the study. Multiple indicators were used to examine the relationship between IHNs' characteristics and their performance in efficiency and financial viability. A path analytical model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' images, represented by attaining ranking among the top 100 in two consecutive years, were analysed. Results and conclusion: No positive associations were found between integration and network performance in efficiency or profits. Longitudinal data are needed to investigate the effect of integration on healthcare networks' financial performance.

  1. An integrated artificial neural networks approach for predicting global radiation

    International Nuclear Information System (INIS)

    Azadeh, A.; Maghsoudi, A.; Sohrabkhani, S.

    2009-01-01

    This article presents an integrated artificial neural network (ANN) approach for predicting solar global radiation by climatological variables. The integrated ANN trains and tests data with multi layer perceptron (MLP) approach which has the lowest mean absolute percentage error (MAPE). The proposed approach is particularly useful for locations where no available measurement equipment. Also, it considers all related climatological and meteorological parameters as input variables. To show the applicability and superiority of the integrated ANN approach, monthly data were collected for 6 years (1995-2000) in six nominal cities in Iran. Separate model for each city is considered and the quantity of solar global radiation in each city is calculated. Furthermore an integrated ANN model has been introduced for prediction of solar global radiation. The acquired results of the integrated model have shown high accuracy of about 94%. The results of the integrated model have been compared with traditional angstrom's model to show its considerable accuracy. Therefore, the proposed approach can be used as an efficient tool for prediction of solar radiation in the remote and rural locations with no direct measurement equipment.

  2. Integrated minicomputer alpha analysis system

    International Nuclear Information System (INIS)

    Vasilik, D.G.; Coy, D.E.; Seamons, M.; Henderson, R.W.; Romero, L.L.; Thomson, D.A.

    1978-01-01

    Approximately 1,000 stack and occupation air samples from plutonium and uranium facilities at LASL are analyzed daily. The concentrations of radio-nuclides in air are determined by measuring absolute alpha activities of particulates collected on air sample filter media. The Integrated Minicomputer Pulse system (IMPULSE) is an interface between many detectors of extremely simple design and a Digital Equipment Corporation (DEC) PDP-11/04 minicomputer. The detectors are photomultiplier tubes faced with zinc sulfide (ZnS). The average detector background is approximately 0.07 cpm. The IMPULSE system includes two mainframes, each of which can hold up to 64 detectors. The current hardware configuration includes 64 detectors in one mainframe and 40 detectors in the other. Each mainframe contains a minicomputer with 28K words of Random Access Memory. One minicomputer controls the detectors in both mainframes. A second computer was added for fail-safe redundancy and to support other laboratory computer requirements. The main minicomputer includes a dual floppy disk system and a dual DEC 'RK05' disk system for mass storage. The RK05 facilitates report generation and trend analysis. The IMPULSE hardware provides for passage of data from the detectors to the computer, and for passage of status and control information from the computer to the detector stations

  3. VitisNet: "Omics" integration through grapevine molecular networks.

    Directory of Open Access Journals (Sweden)

    Jérôme Grimplet

    Full Text Available BACKGROUND: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet. METHODOLOGY/PRINCIPAL FINDINGS: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024 genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 "Metabolic", 15 "Genetic Information Processing", 12 "Environmental Information Processing", 3 "Cellular Processes", 21 "Transport", and 80 "Transcription Factors". The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. CONCLUSIONS/SIGNIFICANCE: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome

  4. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  5. Improving the Reliability of Network Metrics in Structural Brain Networks by Integrating Different Network Weighting Strategies into a Single Graph

    Directory of Open Access Journals (Sweden)

    Stavros I. Dimitriadis

    2017-12-01

    Full Text Available Structural brain networks estimated from diffusion MRI (dMRI via tractography have been widely studied in healthy controls and patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost fully-weighted. Here, we scanned five healthy participants five times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROI from the Automated Anatomical Labeling (AAL template. The edges were weighted according to nine different methods. We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an Integrated Weighted Structural Brain Network (ISWBN. Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of: (a intra-class correlation coefficient (ICC of well-known network metrics, both node-wise and per network level; and (b the recognition accuracy of each subject compared to the remainder of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject, after first applying our proposed topological filtering scheme. Based on a threshold where the network level ICC should be >0.90, our findings revealed that six out of nine NWS lead to unreliable results at the network level, while all nine NWS were unreliable at the node level. In comparison, our proposed ISWBN performed as well as the best performing individual NWS at the network level, and the ICC was higher compared to all individual NWS at the node

  6. Changes in the topology of gene expression networks by human immunodeficiency virus type 1 (HIV-1) integration in macrophages.

    Science.gov (United States)

    Soto-Girón, María Juliana; García-Vallejo, Felipe

    2012-01-01

    One key step of human immunodeficiency virus type 1 (HIV-1) infection is the integration of its viral cDNA. This process is mediated through complex networks of host-virus interactions that alter several normal cell functions of the host. To study the complexity of disturbances in cell gene expression networks by HIV-1 integration, we constructed a network of human macrophage genes located close to chromatin regions rich in proviruses. To perform the network analysis, we selected 28 genes previously identified as the target of cDNA integration and their transcriptional profiles were obtained from GEO Profiles (NCBI). A total of 2770 interactions among the 28 genes located around the HIV-1 proviruses in human macrophages formed a highly dense main network connected to five sub-networks. The overall network was significantly enriched by genes associated with signal transduction, cellular communication and regulatory processes. To simulate the effects of HIV-1 integration in infected macrophages, five genes with the most number of interaction in the normal network were turned off by putting in zero the correspondent expression values. The HIV-1 infected network showed changes in its topology and alteration in the macrophage functions reflected in a re-programming of biosynthetic and general metabolic process. Understanding the complex virus-host interactions that occur during HIV-1 integration, may provided valuable genomic information to develop new antiviral treatments focusing on the management of some specific gene expression networks associated with viral integration. This is the first gene network which describes the human macrophages genes interactions related with HIV-1 integration. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  8. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  9. An Integrative Bioinformatics Framework for Genome-scale Multiple Level Network Reconstruction of Rice

    Directory of Open Access Journals (Sweden)

    Liu Lili

    2013-06-01

    Full Text Available Understanding how metabolic reactions translate the genome of an organism into its phenotype is a grand challenge in biology. Genome-wide association studies (GWAS statistically connect genotypes to phenotypes, without any recourse to known molecular interactions, whereas a molecular mechanistic description ties gene function to phenotype through gene regulatory networks (GRNs, protein-protein interactions (PPIs and molecular pathways. Integration of different regulatory information levels of an organism is expected to provide a good way for mapping genotypes to phenotypes. However, the lack of curated metabolic model of rice is blocking the exploration of genome-scale multi-level network reconstruction. Here, we have merged GRNs, PPIs and genome-scale metabolic networks (GSMNs approaches into a single framework for rice via omics’ regulatory information reconstruction and integration. Firstly, we reconstructed a genome-scale metabolic model, containing 4,462 function genes, 2,986 metabolites involved in 3,316 reactions, and compartmentalized into ten subcellular locations. Furthermore, 90,358 pairs of protein-protein interactions, 662,936 pairs of gene regulations and 1,763 microRNA-target interactions were integrated into the metabolic model. Eventually, a database was developped for systematically storing and retrieving the genome-scale multi-level network of rice. This provides a reference for understanding genotype-phenotype relationship of rice, and for analysis of its molecular regulatory network.

  10. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  11. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  12. Modeling and Simulation of Handover Scheme in Integrated EPON-WiMAX Networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars

    2011-01-01

    In this paper, we tackle the seamless handover problem in integrated optical wireless networks. Our model applies for the convergence network of EPON and WiMAX and a mobilityaware signaling protocol is proposed. The proposed handover scheme, Integrated Mobility Management Scheme (IMMS), is assisted...... by enhancing the traditional MPCP signaling protocol, which cooperatively collects mobility information from the front-end wireless network and makes centralized bandwidth allocation decisions in the backhaul optical network. The integrated network architecture and the joint handover scheme are simulated using...... OPNET modeler. Results show validation of the protocol, i.e., integrated handover scheme gains better network performances....

  13. Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network

    International Nuclear Information System (INIS)

    Hwangbo, Soonho; Lee, In-Beum; Han, Jeehoon

    2014-01-01

    Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network

  14. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  15. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  16. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  17. Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks

    Science.gov (United States)

    Dâmaso, Antônio; Maciel, Paulo

    2017-01-01

    Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way. PMID:29113078

  18. Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Antônio Dâmaso

    2017-11-01

    Full Text Available Power consumption is a primary interest in Wireless Sensor Networks (WSNs, and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way.

  19. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  20. Probabilistic Inference of Biological Networks via Data Integration

    Directory of Open Access Journals (Sweden)

    Mark F. Rogers

    2015-01-01

    Full Text Available There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links. Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We evaluate various pairwise kernels to establish which are most informative and compare individual kernel accuracies with accuracies for weighted combinations. By associating a probability measure with classifier predictions, we enable cautious classification, which can increase accuracy by restricting predictions to high-confidence instances, and data cleaning that can mitigate the influence of mislabeled training instances. Although one pairwise kernel (the tensor product pairwise kernel appears to work best, different kernels may contribute complimentary information about interactions: experiments in S. cerevisiae (yeast reveal that a weighted combination of pairwise kernels applied to different types of data yields the highest predictive accuracy. Combined with cautious classification and data cleaning, we can achieve predictive accuracies of up to 99.6%.

  1. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  2. Communication Network Integration and Group Uniformity in a Complex Organization.

    Science.gov (United States)

    Danowski, James A.; Farace, Richard V.

    This paper contains a discussion of the limitations of research on group processes in complex organizations and the manner in which a procedure for network analysis in on-going systems can reduce problems. The research literature on group uniformity processes and on theoretical models of these processes from an information processing perspective…

  3. A local network integrated into a balloon-borne apparatus

    Science.gov (United States)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  4. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  5. Analysis of FOXO transcriptional networks

    NARCIS (Netherlands)

    van der Vos, K.E.

    2010-01-01

    The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In

  6. [Comprehensive system integration and networking in operating rooms].

    Science.gov (United States)

    Feußner, H; Ostler, D; Kohn, N; Vogel, T; Wilhelm, D; Koller, S; Kranzfelder, M

    2016-12-01

    A comprehensive surveillance and control system integrating all devices and functions is a precondition for realization of the operating room of the future. Multiple proprietary integrated operation room systems are currently available with a central user interface; however, they only cover a relatively small part of all functionalities. Internationally, there are at least three different initiatives to promote a comprehensive systems integration and networking in the operating room: the Japanese smart cyber operating theater (SCOT), the American medical device plug-and-play interoperability program (MDPnP) and the German secure and dynamic networking in operating room and hospital (OR.NET) project supported by the Federal Ministry of Education and Research. Within the framework of the internationally advanced OR.NET project, prototype solution approaches were realized, which make short-term and mid-term comprehensive data retrieval systems probable. An active and even autonomous control of the medical devices by the surveillance and control system (closed loop) is expected only in the long run due to strict regulatory barriers.

  7. Survivable integrated grooming in multi-granularity optical networks

    Science.gov (United States)

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun

    2012-05-01

    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  8. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...

  9. Designing a Fuzzy Strategic Integrated Multiechelon Agile Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Morteza Abbasi

    2013-01-01

    Full Text Available This paper integrates production, distribution and logistics activities at the strategic decision making level, where the objective is to design a multiechelon supply chain network considering agility as a key design criterion. A network with five echelons of supply chains including suppliers, plants, distribution centers, cross-docks, and customer zones is addressed in this paper. The problem has been mathematically formulated as a biobjective optimization model that aims to minimize the cost (fixed and variable and maximize the plant flexibility and volume flexibility. A novel multiobjective parallel simulating annealing algorithm (MOPSA is proposed to obtain the Pareto-optimal solutions of the problem. The performance of the proposed solution algorithm is compared with two well-known metaheuristics, namely, nondominated sorting genetic algorithm (NSGA-II and Pareto archive evolution strategy (PAES. Computational results show that MOPSA outperforms the other metaheuristics.

  10. Impact and Cost Evaluation of Electric Vehicle Integration on Medium Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Cheng, Lin; Pineau, Ulysse

    2013-01-01

    This paper presents the analysis of the impact of electric vehicle (EV) integration on medium voltage (MV) distribution networks and the cost evaluation of replacing the overloaded grid components. A number of EV charging scenarios have been studied. A 10 kV grid from the Bornholm Island...... in the city area has been used to carry out case studies. The case study results show that the secondary transformers are the bottleneck of the MV distribution networks and the increase of EV penetration leads to the overloading of secondary transformers. The cost of the transformer replacement has been...

  11. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    Science.gov (United States)

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  12. The RETAIN project: DICOM teleradiology over an ATM-based network. Radiological Examinations Transfer on an ATM Integrated Network.

    Science.gov (United States)

    Heautot, J F; Eichelberg, M; Gibaud, B; Tréguier, C; Lemoine, D; Scarabin, J M; Piqueras, J; Carsin, M; Gandon, Y

    2000-01-01

    The RETAIN project (Radiological Examinations Transfer on an ATM Integrated Network) has aimed at testing videoconferencing and DICOM image transfers to get advice about difficult radiological cases over an asynchronous transfer mode (ATM)-based network, which affords a more comfortable interface than narrow-band networks and allows exchange of complete image series using the DICOM format of studies. For this purpose, an experimental ATM network was applied between six university hospitals in four different countries. An assessment of the functionalities of the system was performed by means of log-file analysis, video recording of the sessions and forms filled out by the participants at the end of each session. Questionnaires were answered by the users at the end of the project to bring out perspectives of utilisation and added value. We discussed 43 cases during 20 sessions. For technical or organisational problems, only 20 of the 36 planned sessions took place. The throughput over ATM (10.5 Mbit/s, 20 times faster than six ISDN B-channels) was adequate. Despite the experimental configuration of the network, the system was considered as satisfactory by all the physicians. In 72 % of the sessions, the expected result (answer to the question) was gained. By common consent, videoconferencing was unanimously regarded as a prominent tool in improving the interaction quality. Asynchronous transfer mode is an efficient method for fast transferring of radiologic examinations in DICOM format and for discussing them through high-quality videoconferencing.

  13. 1st International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2013-01-01

    This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...

  14. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  15. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....

  16. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...

  17. Integration of social networks in the teaching and learning process

    Directory of Open Access Journals (Sweden)

    Cynthia Dedós Reyes

    2015-09-01

    Full Text Available In this research we explored the integration of social media in the process of learning and teaching, in a private higher education institution, in Puerto Rico. Attention was given to the perspectives of teachers and students. The participants —9 part-time teachers and 118 students— were selected based on availability. The results showed that teachers and students alike use social the network You Tube for academic purposes; and use Facebook, Twitter, and blogs for social purposes and entertainment. Results also revealed that there is no significant contrast between the perspectives of teachers and students digital immigrants.

  18. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  19. Complex Behavior in an Integrate-and-Fire Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Lin Min; Chen Tianlun

    2005-01-01

    Based on our previously pulse-coupled integrate-and-fire neuron model in small world networks, we investigate the complex behavior of electroencephalographic (EEG)-like activities produced by such a model. We find EEG-like activities have obvious chaotic characteristics. We also analyze the complex behaviors of EEG-like signals, such as spectral analysis, reconstruction of the phase space, the correlation dimension, and so on.

  20. The integration of weighted human gene association networks based on link prediction.

    Science.gov (United States)

    Yang, Jian; Yang, Tinghong; Wu, Duzhi; Lin, Limei; Yang, Fan; Zhao, Jing

    2017-01-31

    Physical and functional interplays between genes or proteins have important biological meaning for cellular functions. Some efforts have been made to construct weighted gene association meta-networks by integrating multiple biological resources, where the weight indicates the confidence of the interaction. However, it is found that these existing human gene association networks share only quite limited overlapped interactions, suggesting their incompleteness and noise. Here we proposed a workflow to construct a weighted human gene association network using information of six existing networks, including two weighted specific PPI networks and four gene association meta-networks. We applied link prediction algorithm to predict possible missing links of the networks, cross-validation approach to refine each network and finally integrated the refined networks to get the final integrated network. The common information among the refined networks increases notably, suggesting their higher reliability. Our final integrated network owns much more links than most of the original networks, meanwhile its links still keep high functional relevance. Being used as background network in a case study of disease gene prediction, the final integrated network presents good performance, implying its reliability and application significance. Our workflow could be insightful for integrating and refining existing gene association data.

  1. Ubiquitous Integrity via Network Integration and Parallelism—Sustaining Pedestrian/Bike Urbanism

    Directory of Open Access Journals (Sweden)

    Li-Yen Hsu

    2013-08-01

    Full Text Available Nowadays, due to the concern regarding environmental issues, establishing pedestrian/bike friendly urbanism is widely encouraged. To promote safety-assured, mobile communication environments, efficient, reliable maintenance, and information integrity need to be designed, especially in highly possibly interfered places. For busy traffic areas, regular degree-3 dedicated short range communication (DSRC networks are safety and information featured with availability, reliability, and maintainability in paths of multi-lanes. For sparsely populated areas, probes of wireless sensors are rational, especially if sensor nodes can be organized to enhance security, reliability, and flexibility. Applying alternative network topologies, such as spider-webs, generalized honeycomb tori, and cube-connected cycles, for comparing and analyzing is proposed in DSRC and cellular communications to enhance integrity in communications.

  2. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  3. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  4. Problems in mathematical analysis III integration

    CERN Document Server

    Kaczor, W J

    2003-01-01

    We learn by doing. We learn mathematics by doing problems. This is the third volume of Problems in Mathematical Analysis. The topic here is integration for real functions of one real variable. The first chapter is devoted to the Riemann and the Riemann-Stieltjes integrals. Chapter 2 deals with Lebesgue measure and integration. The authors include some famous, and some not so famous, integral inequalities related to Riemann integration. Many of the problems for Lebesgue integration concern convergence theorems and the interchange of limits and integrals. The book closes with a section on Fourier series, with a concentration on Fourier coefficients of functions from particular classes and on basic theorems for convergence of Fourier series. The book is primarily geared toward students in analysis, as a study aid, for problem-solving seminars, or for tutorials. It is also an excellent resource for instructors who wish to incorporate problems into their lectures. Solutions for the problems are provided in the boo...

  5. Ontology-supported research on vaccine efficacy, safety and integrative biological networks.

    Science.gov (United States)

    He, Yongqun

    2014-07-01

    While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.

  6. Trimming of mammalian transcriptional networks using network component analysis

    Directory of Open Access Journals (Sweden)

    Liao James C

    2010-10-01

    Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm

  7. Unveiling network-based functional features through integration of gene expression into protein networks.

    Science.gov (United States)

    Jalili, Mahdi; Gebhardt, Tom; Wolkenhauer, Olaf; Salehzadeh-Yazdi, Ali

    2018-06-01

    Decoding health and disease phenotypes is one of the fundamental objectives in biomedicine. Whereas high-throughput omics approaches are available, it is evident that any single omics approach might not be adequate to capture the complexity of phenotypes. Therefore, integrated multi-omics approaches have been used to unravel genotype-phenotype relationships such as global regulatory mechanisms and complex metabolic networks in different eukaryotic organisms. Some of the progress and challenges associated with integrated omics studies have been reviewed previously in comprehensive studies. In this work, we highlight and review the progress, challenges and advantages associated with emerging approaches, integrating gene expression and protein-protein interaction networks to unravel network-based functional features. This includes identifying disease related genes, gene prioritization, clustering protein interactions, developing the modules, extract active subnetworks and static protein complexes or dynamic/temporal protein complexes. We also discuss how these approaches contribute to our understanding of the biology of complex traits and diseases. This article is part of a Special Issue entitled: Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Social networks in nursing work processes: an integrative literature review.

    Science.gov (United States)

    Mesquita, Ana Cláudia; Zamarioli, Cristina Mara; Fulquini, Francine Lima; Carvalho, Emilia Campos de; Angerami, Emilia Luigia Saporiti

    2017-03-20

    To identify and analyze the available evidence in the literature on the use of social networks in nursing work processes. An integrative review of the literature conducted in PubMed, CINAHL, EMBASE and LILACS databases in January 2016, using the descriptors social media, social networking, nursing, enfermagem, redes sociais, mídias sociais, and the keyword nursing practice, without year restriction. The sample consisted of 27 international articles which were published between 2011 and 2016. The social networks used were Facebook (66.5%), Twitter (30%) and WhatsApp (3.5%). In 70.5% of the studies, social networks were used for research purposes, in 18.5% they were used as a tool aimed to assist students in academic activities, and in 11% for executing interventions via the internet. Nurses have used social networks in their work processes such as Facebook, Twitter and WhatsApp to research, teach and watch. The articles show several benefits in using such tools in the nursing profession; however, ethical considerations regarding the use of social networks deserve further discussion. Identificar e analisar as evidências disponíveis na literatura sobre a utilização de redes sociais nos processos de trabalho em enfermagem. Revisão integrativa da literatura realizada em janeiro de 2016, nas bases de dados PubMed, CINAHL, EMBASE e LILACS, com os descritores social media, social networking, nursing, enfermagem, redes sociais, mídias sociais e a palavra-chave nursing practice, sem restrição de ano. A amostra foi composta por 27 artigos, os quais foram publicados entre 2011 e 2016, todos internacionais. As redes sociais utilizadas foram o Facebook (66,5%), o Twitter (30%) e o WhatsApp (3,5%). Em 70,5% dos estudos as redes sociais foram utilizadas para fins de pesquisa, em 18,5% como ferramenta para auxiliar estudantes nas atividades acadêmicas, e em 11% para a realização de intervenções via internet. Em seus processos de trabalho, os enfermeiros têm utilizado

  9. Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence.

    Science.gov (United States)

    Vakhtin, Andrei A; Ryman, Sephira G; Flores, Ranee A; Jung, Rex E

    2014-12-01

    The refinement of localization of intelligence in the human brain is converging onto a distributed network that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high) were compared between the RPM and rest conditions. The regions involved in the networks that were found to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions, right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that functional brain networks are more stable than previously thought, and maintain their general features across resting state and engagement in a complex cognitive task. The described spatial and functional connectivity alterations that such components undergo during fluid reasoning provide a network-wise framework of the P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings of intelligence. Published by Elsevier Inc.

  10. Constructing an integrated gene similarity network for the identification of disease genes.

    Science.gov (United States)

    Tian, Zhen; Guo, Maozu; Wang, Chunyu; Xing, LinLin; Wang, Lei; Zhang, Yin

    2017-09-20

    Discovering novel genes that are involved human diseases is a challenging task in biomedical research. In recent years, several computational approaches have been proposed to prioritize candidate disease genes. Most of these methods are mainly based on protein-protein interaction (PPI) networks. However, since these PPI networks contain false positives and only cover less half of known human genes, their reliability and coverage are very low. Therefore, it is highly necessary to fuse multiple genomic data to construct a credible gene similarity network and then infer disease genes on the whole genomic scale. We proposed a novel method, named RWRB, to infer causal genes of interested diseases. First, we construct five individual gene (protein) similarity networks based on multiple genomic data of human genes. Then, an integrated gene similarity network (IGSN) is reconstructed based on similarity network fusion (SNF) method. Finally, we employee the random walk with restart algorithm on the phenotype-gene bilayer network, which combines phenotype similarity network, IGSN as well as phenotype-gene association network, to prioritize candidate disease genes. We investigate the effectiveness of RWRB through leave-one-out cross-validation methods in inferring phenotype-gene relationships. Results show that RWRB is more accurate than state-of-the-art methods on most evaluation metrics. Further analysis shows that the success of RWRB is benefited from IGSN which has a wider coverage and higher reliability comparing with current PPI networks. Moreover, we conduct a comprehensive case study for Alzheimer's disease and predict some novel disease genes that supported by literature. RWRB is an effective and reliable algorithm in prioritizing candidate disease genes on the genomic scale. Software and supplementary information are available at http://nclab.hit.edu.cn/~tianzhen/RWRB/ .

  11. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  12. Australian national networked tele-test facility for integrated systems

    Science.gov (United States)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  13. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  14. Simulated, Emulated, and Physical Investigative Analysis (SEPIA) of networked systems.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, David P.; Van Leeuwen, Brian P.; McDonald, Michael James; Onunkwo, Uzoma A.; Tarman, Thomas David; Urias, Vincent E.

    2009-09-01

    This report describes recent progress made in developing and utilizing hybrid Simulated, Emulated, and Physical Investigative Analysis (SEPIA) environments. Many organizations require advanced tools to analyze their information system's security, reliability, and resilience against cyber attack. Today's security analysis utilize real systems such as computers, network routers and other network equipment, computer emulations (e.g., virtual machines) and simulation models separately to analyze interplay between threats and safeguards. In contrast, this work developed new methods to combine these three approaches to provide integrated hybrid SEPIA environments. Our SEPIA environments enable an analyst to rapidly configure hybrid environments to pass network traffic and perform, from the outside, like real networks. This provides higher fidelity representations of key network nodes while still leveraging the scalability and cost advantages of simulation tools. The result is to rapidly produce large yet relatively low-cost multi-fidelity SEPIA networks of computers and routers that let analysts quickly investigate threats and test protection approaches.

  15. Hybrid modeling and empirical analysis of automobile supply chain network

    Science.gov (United States)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  16. The Vehicle Integrated Performance Analysis Experience: Reconnecting With Technical Integration

    Science.gov (United States)

    McGhee, D. S.

    2006-01-01

    Very early in the Space Launch Initiative program, a small team of engineers at MSFC proposed a process for performing system-level assessments of a launch vehicle. Aimed primarily at providing insight and making NASA a smart buyer, the Vehicle Integrated Performance Analysis (VIPA) team was created. The difference between the VIPA effort and previous integration attempts is that VIPA a process using experienced people from various disciplines, which focuses them on a technically integrated assessment. The foundations of VIPA s process are described. The VIPA team also recognized the need to target early detailed analysis toward identifying significant systems issues. This process is driven by the T-model for technical integration. VIPA s approach to performing system-level technical integration is discussed in detail. The VIPA process significantly enhances the development and monitoring of realizable project requirements. VIPA s assessment validates the concept s stated performance, identifies significant issues either with the concept or the requirements, and then reintegrates these issues to determine impacts. This process is discussed along with a description of how it may be integrated into a program s insight and review process. The VIPA process has gained favor with both engineering and project organizations for being responsive and insightful

  17. NETWORK CULTURE - INTEGRAL PART OF NEW VALUES OF CIVIL SOCIETY

    Directory of Open Access Journals (Sweden)

    Vyacheslav Vladimirovich Sukhanov

    2014-06-01

    Full Text Available New technologies not only improve working conditions or communication, they are also bringing new values to  the society. This article discusses the concept of «network culture», which is now perceived by society as an integral part of values that can only exist in a civil society. We can research ( find   this kind of society in modern time period in Russia. The article analyzes the meaning of communication, how to use it, development processes in network media.  Nowadays network culture and its influence on society are almost in all spheres of state and society, as well as changes in perception of information and content generation process. Development of the Internet and Internet technologies largely set the tone for  the development of popular culture and allows you to store or to influence the national culture. Internet press today is and example which shows us, how this kind of tool can be used to influence on citizens.DOI: http://dx.doi.org/10.12731/2218-7405-2014-3-6

  18. Integrated logistic support analysis system

    International Nuclear Information System (INIS)

    Carnicero Iniguez, E.J.; Garcia de la Sen, R.

    1993-01-01

    Integrating logic support into a system results in a large volume of information having to be managed which can only be achieved with the help of computer applications. Both past experience and growing needs in such tasks have led Emperesarios Agrupados to undertake an ambitious development project which is described in this paper. (author)

  19. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  20. Crawling Facebook for Social Network Analysis Purposes

    OpenAIRE

    Catanese, Salvatore A.; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo; Provetti, Alessandro

    2011-01-01

    We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that w...

  1. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  2. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    Directory of Open Access Journals (Sweden)

    Raja Jurdak

    2008-11-01

    Full Text Available Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  3. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    Science.gov (United States)

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  4. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...

  5. Complexity and network dynamics in physiological adaptation: An integrated view

    OpenAIRE

    Baffy, Gyorgy; Loscalzo, Joseph

    2014-01-01

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of t...

  6. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    Directory of Open Access Journals (Sweden)

    Ilan Kelman

    Full Text Available This study integrates quantitative social network analysis (SNA and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  7. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    Science.gov (United States)

    Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  8. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks

    Science.gov (United States)

    Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007

  9. Network Analysis in Community Psychology: Looking Back, Looking Forward

    OpenAIRE

    Neal, Zachary P.; Neal, Jennifer Watling

    2017-01-01

    Highlights Network analysis is ideally suited for community psychology research because it focuses on context. Use of network analysis in community psychology is growing. Network analysis in community psychology has employed some potentially problematic practices. Recommended practices are identified to improve network analysis in community psychology.

  10. Integrative Analysis of Omics Big Data.

    Science.gov (United States)

    Yu, Xiang-Tian; Zeng, Tao

    2018-01-01

    The diversity and huge omics data take biology and biomedicine research and application into a big data era, just like that popular in human society a decade ago. They are opening a new challenge from horizontal data ensemble (e.g., the similar types of data collected from different labs or companies) to vertical data ensemble (e.g., the different types of data collected for a group of person with match information), which requires the integrative analysis in biology and biomedicine and also asks for emergent development of data integration to address the great changes from previous population-guided to newly individual-guided investigations.Data integration is an effective concept to solve the complex problem or understand the complicate system. Several benchmark studies have revealed the heterogeneity and trade-off that existed in the analysis of omics data. Integrative analysis can combine and investigate many datasets in a cost-effective reproducible way. Current integration approaches on biological data have two modes: one is "bottom-up integration" mode with follow-up manual integration, and the other one is "top-down integration" mode with follow-up in silico integration.This paper will firstly summarize the combinatory analysis approaches to give candidate protocol on biological experiment design for effectively integrative study on genomics and then survey the data fusion approaches to give helpful instruction on computational model development for biological significance detection, which have also provided newly data resources and analysis tools to support the precision medicine dependent on the big biomedical data. Finally, the problems and future directions are highlighted for integrative analysis of omics big data.

  11. Developing integrated crop knowledge networks to advance candidate gene discovery.

    Science.gov (United States)

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  12. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    Science.gov (United States)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  13. Containment integrity analysis under accidents

    International Nuclear Information System (INIS)

    Lin Chengge; Zhao Ruichang; Liu Zhitao

    2010-01-01

    Containment integrity analyses for current nuclear power plants (NPPs) mainly focus on the internal pressure caused by design basis accidents (DBAs). In addition to the analyses of containment pressure response caused by DBAs, the behavior of containment during severe accidents (SAs) are also evaluated for AP1000 NPP. Since the conservatism remains in the assumptions,boundary conditions and codes, margin of the results of containment integrity analyses may be overestimated. Along with the improvements of the knowledge to the phenomena and process of relevant accidents, the margin overrated can be appropriately reduced by using the best estimate codes combined with the uncertainty methods, which could be beneficial to the containment design and construction of large passive plants (LPP) in China. (authors)

  14. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, F.; Abouabdellah, A.

    2016-07-01

    Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Network modeling by combining Petri and Bayesian network. Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Demands are independent from returns. Model can only be used on nonperishable products. Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Bayesian network with a cycle combined with the Petri Network. (Author)

  15. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    Directory of Open Access Journals (Sweden)

    Faycal Mimouni

    2016-04-01

    Full Text Available Purpose: Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Design/methodology/approach: Network modeling by combining Petri and Bayesian network. Findings: Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Research limitations/implications: Demands are independent from returns. Practical implications: Model can only be used on nonperishable products. Social implications: Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Originality/value: Bayesian network with a cycle combined with the Petri Network.

  16. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  17. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  18. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  19. Developing an effective adaptive monitoring network to support integrated coastal management in a multiuser nature reserve

    Directory of Open Access Journals (Sweden)

    Pim Vugteveen

    2015-03-01

    Full Text Available We elaborate the necessary conceptual and strategic elements for developing an effective adaptive monitoring network to support Integrated Coastal Management (ICM in a multiuser nature reserve in the Dutch Wadden Sea Region. We discuss quality criteria and enabling actions essential to accomplish and sustain monitoring excellence to support ICM. The Wadden Sea Long-Term Ecosystem Research project (WaLTER was initiated to develop an adaptive monitoring network and online data portal to better understand and support ICM in the Dutch Wadden Sea Region. Our comprehensive approach integrates ecological and socioeconomic data and links research-driven and policy-driven monitoring for system analysis using indicators of pressures, state, benefits, and responses. The approach and concepts we elaborated are transferable to other coastal regions to accomplish ICM in complex social-ecological systems in which scientists, multisectoral stakeholders, resource managers, and governmental representatives seek to balance long-term ecological, economic, and social objectives within natural limits.

  20. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  1. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Integration of gene expression and methylation to unravel biological networks in glioblastoma patients.

    Science.gov (United States)

    Gadaleta, Francesco; Bessonov, Kyrylo; Van Steen, Kristel

    2017-02-01

    The vast amount of heterogeneous omics data, encompassing a broad range of biomolecular information, requires novel methods of analysis, including those that integrate the available levels of information. In this work, we describe Regression2Net, a computational approach that is able to integrate gene expression and genomic or methylation data in two steps. First, penalized regressions are used to build Expression-Expression (EEnet) and Expression-Genomic or Expression-Methylation (EMnet) networks. Second, network theory is used to highlight important communities of genes. When applying our approach, Regression2Net to gene expression and methylation profiles for individuals with glioblastoma multiforme, we identified, respectively, 284 and 447 potentially interesting genes in relation to glioblastoma pathology. These genes showed at least one connection in the integrated networks ANDnet and XORnet derived from aforementioned EEnet and EMnet networks. Although the edges in ANDnet occur in both EEnet and EMnet, the edges in XORnet occur in EMnet but not in EEnet. In-depth biological analysis of connected genes in ANDnet and XORnet revealed genes that are related to energy metabolism, cell cycle control (AATF), immune system response, and several cancer types. Importantly, we observed significant overrepresentation of cancer-related pathways including glioma, especially in the XORnet network, suggesting a nonignorable role of methylation in glioblastoma multiforma. In the ANDnet, we furthermore identified potential glioma suppressor genes ACCN3 and ACCN4 linked to the NBPF1 neuroblastoma breakpoint family, as well as numerous ABC transporter genes (ABCA1, ABCB1) suggesting drug resistance of glioblastoma tumors. © 2016 WILEY PERIODICALS, INC.

  3. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  4. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  5. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  6. The Knowledge-Integrated Network Biomarkers Discovery for Major Adverse Cardiac Events

    Science.gov (United States)

    Jin, Guangxu; Zhou, Xiaobo; Wang, Honghui; Zhao, Hong; Cui, Kemi; Zhang, Xiang-Sun; Chen, Luonan; Hazen, Stanley L.; Li, King; Wong, Stephen T. C.

    2010-01-01

    The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein–protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein–protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction. PMID:18665624

  7. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  8. Reconstruction, visualization and explorative analysis of human pluripotency network

    Directory of Open Access Journals (Sweden)

    Priyanka Narad

    2017-09-01

    Full Text Available Identification of genes/proteins involved in pluripotency and their inter-relationships is important for understanding the induction/loss and maintenance of pluripotency. With the availability of large volume of data on interaction/regulation of pluripotency scattered across a large number of biological databases and hundreds of scientific journals, it is required a systematic integration of data which will create a complete view of pluripotency network. Describing and interpreting such a network of interaction and regulation (i.e., stimulation and inhibition links are essential tasks of computational biology, an important first step in systems-level understanding of the underlying mechanisms of pluripotency. To address this, we have assembled a network of 166 molecular interactions, stimulations and inhibitions, based on a collection of research data from 147 publications, involving 122 human genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its Apps (formerly called "Plugins". The network includes the core circuit of OCT4 (POU5F1, SOX2 and NANOG, its periphery (such as STAT3, KLF4, UTF1, ZIC3, and c-MYC, connections to upstream signaling pathways (such as ACTIVIN, WNT, FGF, and BMP, and epigenetic regulators (such as L1TD1, LSD1 and PRC2. We describe the general properties of the network and compare it with other literature-based networks. Gene Ontology (GO analysis is being performed to find out the over-represented GO terms in the network. We use several expression datasets to condense the network to a set of network links that identify the key players (genes/proteins and the pathways involved in transition from one state of pluripotency to other state (i.e., native to primed state, primed to non-pluripotent state and pluripotent to non-pluripotent state.

  9. Network architectures and protocols for the integration of ACTS and ISDN

    Science.gov (United States)

    Chitre, D. M.; Lowry, P. A.

    1992-01-01

    A close integration of satellite networks and the integrated services digital network (ISDN) is essential for satellite networks to carry ISDN traffic effectively. This also shows how a given (pre-ISDN) satellite network architecture can be enhanced to handle ISDN signaling and provide ISDN services. It also describes the functional architecture and high-level protocols that could be implemented in the NASA Advanced Communications Technology Satellite (ACTS) low burst rate communications system to provide ISDN services.

  10. Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks.

    Science.gov (United States)

    Zhou, Xuezhong; Liu, Baoyan; Wu, Zhaohui; Feng, Yi

    2007-10-01

    The amount of biomedical data in different disciplines is growing at an exponential rate. Integrating these significant knowledge sources to generate novel hypotheses for systems biology research is difficult. Traditional Chinese medicine (TCM) is a completely different discipline, and is a complementary knowledge system to modern biomedical science. This paper uses a significant TCM bibliographic literature database in China, together with MEDLINE, to help discover novel gene functional knowledge. We present an integrative mining approach to uncover the functional gene relationships from MEDLINE and TCM bibliographic literature. This paper introduces TCM literature (about 50,000 records) as one knowledge source for constructing literature-based gene networks. We use the TCM diagnosis, TCM syndrome, to automatically congregate the related genes. The syndrome-gene relationships are discovered based on the syndrome-disease relationships extracted from TCM literature and the disease-gene relationships in MEDLINE. Based on the bubble-bootstrapping and relation weight computing methods, we have developed a prototype system called MeDisco/3S, which has name entity and relation extraction, and online analytical processing (OLAP) capabilities, to perform the integrative mining process. We have got about 200,000 syndrome-gene relations, which could help generate syndrome-based gene networks, and help analyze the functional knowledge of genes from syndrome perspective. We take the gene network of Kidney-Yang Deficiency syndrome (KYD syndrome) and the functional analysis of some genes, such as CRH (corticotropin releasing hormone), PTH (parathyroid hormone), PRL (prolactin), BRCA1 (breast cancer 1, early onset) and BRCA2 (breast cancer 2, early onset), to demonstrate the preliminary results. The underlying hypothesis is that the related genes of the same syndrome will have some biological functional relationships, and will constitute a functional network. This paper presents

  11. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Directory of Open Access Journals (Sweden)

    Schuchardt Georg K.

    2016-12-01

    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  12. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  13. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  14. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  15. A framework for integration of heterogeneous medical imaging networks.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  16. Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2014-06-01

    Full Text Available In this paper, we will propose the neural networks integrated circuit (NNIC which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K.

  17. Integrating generation and transmission networks reliability for unit commitment solution

    International Nuclear Information System (INIS)

    Jalilzadeh, S.; Shayeghi, H.; Hadadian, H.

    2009-01-01

    This paper presents a new method with integration of generation and transmission networks reliability for the solution of unit commitment (UC) problem. In fact, in order to have a more accurate assessment of system reserve requirement, in addition to unavailability of generation units, unavailability of transmission lines are also taken into account. In this way, evaluation of the required spinning reserve (SR) capacity is performed by applying reliability constraints based on loss of load probability and expected energy not supplied (EENS) indices. Calculation of the above parameters is accomplished by employing a novel procedure based on the linear programming which it also minimizes them to achieve optimum level of the SR capacity and consequently a cost-benefit reliability constrained UC schedule. In addition, a powerful solution technique called 'integer-coded genetic algorithm (ICGA)' is being used for the solution of the proposed method. Numerical results on the IEEE reliability test system show that the consideration of transmission network unavailability has an important influence on reliability indices of the UC schedules

  18. Integrative cluster analysis in bioinformatics

    CERN Document Server

    Abu-Jamous, Basel; Nandi, Asoke K

    2015-01-01

    Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o

  19. An Integrated Solution for Performing Thermo-fluid Conjugate Analysis

    Science.gov (United States)

    Kornberg, Oren

    2009-01-01

    A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.

  20. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate

  1. Diversity Performance Analysis on Multiple HAP Networks

    Science.gov (United States)

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  2. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  3. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

    Science.gov (United States)

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-12-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η(2) (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    NARCIS (Netherlands)

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic

  5. Mixed Methods Analysis of Enterprise Social Networks

    DEFF Research Database (Denmark)

    Behrendt, Sebastian; Richter, Alexander; Trier, Matthias

    2014-01-01

    The increasing use of enterprise social networks (ESN) generates vast amounts of data, giving researchers and managerial decision makers unprecedented opportunities for analysis. However, more transparency about the available data dimensions and how these can be combined is needed to yield accurate...

  6. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  7. Monterey Bay National Marine Sanctuary: Sanctuary Integrated Monitoring Network (SIMoN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sanctuary Integrated Monitoring Network (SIMoN) is an integrated, long-term program that takes an ecosystem approach to identify and understand changes to the...

  8. Integral data analysis for resonance parameters determination

    International Nuclear Information System (INIS)

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications

  9. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  10. Integrated Hydrologic Science and Environmental Engineering Observatory: CLEANER's Vision for the WATERS Network

    Science.gov (United States)

    Montgomery, J. L.; Minsker, B. S.; Schnoor, J.; Haas, C.; Bonner, J.; Driscoll, C.; Eschenbach, E.; Finholt, T.; Glass, J.; Harmon, T.; Johnson, J.; Krupnik, A.; Reible, D.; Sanderson, A.; Small, M.; van Briesen, J.

    2006-05-01

    With increasing population and urban development, societies grow more and more concerned over balancing the need to maintain adequate water supplies with that of ensuring the quality of surface and groundwater resources. For example, multiple stressors such as overfishing, runoff of nutrients from agricultural fields and confined animal feeding lots, and pathogens in urban stormwater can often overwhelm a single water body. Mitigating just one of these problems often depends on understanding how it relates to others and how stressors can vary in temporal and spatial scales. Researchers are now in a position to answer questions about multiscale, spatiotemporally distributed hydrologic and environmental phenomena through the use of remote and embedded networked sensing technologies. It is now possible for data streaming from sensor networks to be integrated by a rich cyberinfrastructure encompassing the innovative computing, visualization, and information archiving strategies needed to cope with the anticipated onslaught of data, and to turn that data around in the form of real-time water quantity and quality forecasting. Recognizing this potential, NSF awarded $2 million to a coalition of 12 institutions in July 2005 to establish the CLEANER Project Office (Collaborative Large-Scale Engineering Analysis Network for Environmental Research; http://cleaner.ncsa.uiuc.edu). Over the next two years the project office, in coordination with CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.; http://www.cuahsi.org), will work together to develop a plan for a WATer and Environmental Research Systems Network (WATERS Network), which is envisioned to be a collaborative scientific exploration and engineering analysis network, using high performance tools and infrastructure, to transform our scientific understanding of how water quantity, quality, and related earth system processes are affected by natural and human-induced changes to the environment

  11. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  12. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks

    Directory of Open Access Journals (Sweden)

    Gorka Zamora-López

    2010-03-01

    Full Text Available Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration. The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i modular organisation (facilitating the segregation, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information.

  13. The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network

    DEFF Research Database (Denmark)

    Liu, Guodong; Marras, Antonio; Nielsen, Jens

    2014-01-01

    regulatory information is necessary to improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux balance analysis-based metabolic model......Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the concentrations of metabolic enzymes. Thus, integration of the transcriptional....... While many large-scale TRN reconstructions have been reported for yeast, these reconstructions still need to be improved regarding the functionality and dynamic property of the regulatory interactions. In addition, mathematical modeling approaches need to be further developed to efficiently integrate...

  14. Network analysis for the visualization and analysis of qualitative data.

    Science.gov (United States)

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  16. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    Science.gov (United States)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  17. IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis.

    Science.gov (United States)

    Zhang, Fan; Drabier, Renee

    2012-01-01

    Next-Generation Sequencing (NGS) technologies and Genome-Wide Association Studies (GWAS) generate millions of reads and hundreds of datasets, and there is an urgent need for a better way to accurately interpret and distill such large amounts of data. Extensive pathway and network analysis allow for the discovery of highly significant pathways from a set of disease vs. healthy samples in the NGS and GWAS. Knowledge of activation of these processes will lead to elucidation of the complex biological pathways affected by drug treatment, to patient stratification studies of new and existing drug treatments, and to understanding the underlying anti-cancer drug effects. There are approximately 141 biological human pathway resources as of Jan 2012 according to the Pathguide database. However, most currently available resources do not contain disease, drug or organ specificity information such as disease-pathway, drug-pathway, and organ-pathway associations. Systematically integrating pathway, disease, drug and organ specificity together becomes increasingly crucial for understanding the interrelationships between signaling, metabolic and regulatory pathway, drug action, disease susceptibility, and organ specificity from high-throughput omics data (genomics, transcriptomics, proteomics and metabolomics). We designed the Integrated Pathway Analysis Database for Systematic Enrichment Analysis (IPAD, http://bioinfo.hsc.unt.edu/ipad), defining inter-association between pathway, disease, drug and organ specificity, based on six criteria: 1) comprehensive pathway coverage; 2) gene/protein to pathway/disease/drug/organ association; 3) inter-association between pathway, disease, drug, and organ; 4) multiple and quantitative measurement of enrichment and inter-association; 5) assessment of enrichment and inter-association analysis with the context of the existing biological knowledge and a "gold standard" constructed from reputable and reliable sources; and 6) cross-linking of

  18. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Science.gov (United States)

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  19. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration.

    Science.gov (United States)

    Arneson, Douglas; Bhattacharya, Anindya; Shu, Le; Mäkinen, Ville-Petteri; Yang, Xia

    2016-09-09

    Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development. To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server ( http://mergeomics. idre.ucla.edu/ ). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use. Our Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators

  20. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  1. Specific and Complete Local Integration of Patterns in Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Martin Biehl

    2017-05-01

    Full Text Available We present a first formal analysis of specific and complete local integration. Complete local integration was previously proposed as a criterion for detecting entities or wholes in distributed dynamical systems. Such entities in turn were conceived to form the basis of a theory of emergence of agents within dynamical systems. Here, we give a more thorough account of the underlying formal measures. The main contribution is the disintegration theorem which reveals a special role of completely locally integrated patterns (what we call ι-entities within the trajectories they occur in. Apart from proving this theorem we introduce the disintegration hierarchy and its refinement-free version as a way to structure the patterns in a trajectory. Furthermore, we construct the least upper bound and provide a candidate for the greatest lower bound of specific local integration. Finally, we calculate the ι -entities in small example systems as a first sanity check and find that ι -entities largely fulfil simple expectations.

  2. Preliminary Integrated Safety Analysis Status Report

    International Nuclear Information System (INIS)

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  3. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  4. Integrated Multimedia Based Intelligent Group Decision Support System for Electrical Power Network

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Saxena

    2002-05-01

    Full Text Available Electrical Power Network in recent time requires an intelligent, virtual environment based decision process for the coordination of all its individual elements and the interrelated tasks. Its ultimate goal is to achieve maximum productivity and efficiency through the efficient and effective application of generation, transmission, distribution, pricing and regulatory systems. However, the complexity of electrical power network and the presence of conflicting multiple goals and objectives postulated by various groups emphasized the need of an intelligent group decision support system approach in this field. In this paper, an Integrated Multimedia based Intelligent Group Decision Support System (IM1GDSS is presented, and its main components are analyzed and discussed. In particular attention is focused on the Data Base, Model Base, Central Black Board (CBB and Multicriteria Futuristic Decision Process (MFDP module. The model base interacts with Electrical Power Network Load Forecasting and Planning (EPNLFP Module; Resource Optimization, Modeling and Simulation (ROMAS Module; Electrical Power Network Control and Evaluation Process (EPNCAEP Module, and MFDP Module through CBB for strategic planning, management control, operational planning and transaction processing. The richness of multimedia channels adds a totally new dimension in a group decision making for Electrical Power Network. The proposed IMIGDSS is a user friendly, highly interactive group decision making system, based on efficient intelligent and multimedia communication support for group discussions, retrieval of content and multi criteria decision analysis.

  5. Integration of video and radiation analysis data

    International Nuclear Information System (INIS)

    Menlove, H.O.; Howell, J.A.; Rodriguez, C.A.; Eccleston, G.W.; Beddingfield, D.; Smith, J.E.; Baumgart, C.W.

    1995-01-01

    For the past several years, the integration of containment and surveillance (C/S) with nondestructive assay (NDA) sensors for monitoring the movement of nuclear material has focused on the hardware and communications protocols in the transmission network. Little progress has been made in methods to utilize the combined C/S and NDA data for safeguards and to reduce the inspector time spent in nuclear facilities. One of the fundamental problems in the integration of the combined data is that the two methods operate in different dimensions. The C/S video data is spatial in nature; whereas, the NDA sensors provide radiation levels versus time data. The authors have introduced a new method to integrate spatial (digital video) with time (radiation monitoring) information. This technology is based on pattern recognition by neural networks, provides significant capability to analyze complex data, and has the ability to learn and adapt to changing situations. This technique has the potential of significantly reducing the frequency of inspection visits to key facilities without a loss of safeguards effectiveness

  6. Data integration aids understanding of butterfly-host plant networks.

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-06

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  7. Data integration aids understanding of butterfly–host plant networks

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  8. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    Science.gov (United States)

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  9. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  10. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  11. Integrability of dynamical systems algebra and analysis

    CERN Document Server

    Zhang, Xiang

    2017-01-01

    This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.

  12. On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

    KAUST Repository

    Shakir, Muhammad; Alouini, Mohamed-Slim

    2012-01-01

    . In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro

  13. Integration of offshore wind farms into the local distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, R.D. [and others

    2003-07-01

    This report summarises the results of a study developing static and dynamic models for a doubly-fed induction generator and the integration of the models into the commercially available and widely used power system analysis computer programme IPSA. Details are given of connection studies involving fixed speed, variable speed and double-fed induction machines; the development of optimal power flow and use of the Optimal Power Flow (OPF) tool; and voltage control studies. The system and offshore connection, connection studies and policies, technical problems, stability connection studies for wind farms with synchronous generators and transient stability connection studies for fixed speed and doubly-fed induction generators are discussed along with the integration of OPF into IPSA.

  14. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  15. Strategic Analysis of Technology Integration at Allstream

    OpenAIRE

    Brown, Jeff

    2011-01-01

    Innovation has been defined as the combination of invention and commercialization. Invention without commercialization is rarely, if ever, profitable. For the purposes of this paper the definition of innovation will be further expanded into the concept of technology integration. Successful technology integration not only includes new technology introduction, but also the operationalization of the new technology within each business unit of the enterprise. This paper conducts an analysis of Al...

  16. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    Science.gov (United States)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.