WorldWideScience

Sample records for integrated municipal waste

  1. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  2. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes

    International Nuclear Information System (INIS)

    Ionescu, Gabriela; Rada, Elena Cristina; Ragazzi, Marco; Mărculescu, Cosmin; Badea, Adrian; Apostol, Tiberiu

    2013-01-01

    Highlights: • Appropriate solution for MSW management in new and future EU countries. • Decrease of landfill disposal applying an Integrated MSW approach. • Technological impediments and environmental assessment. - Abstract: In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities

  3. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    International Nuclear Information System (INIS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-01-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval

  4. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Science.gov (United States)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  5. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Energy Technology Data Exchange (ETDEWEB)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  6. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  7. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  8. Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Johannes G., E-mail: jp.aht.p3@gmail.com [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Arce-Jaque, Joan [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Ravena, Neil; Villamor, Salome P. [General Service Office, City Government, Iloilo City (Philippines)

    2012-11-15

    The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

  9. Liberalisation of municipal waste handling

    DEFF Research Database (Denmark)

    Busck, Ole Gunni

    2006-01-01

    for improved performance of municipal waste management. The study stresses the need for training and guidance of municipal administrators. Highlighting ‘best practice’ examples the study shows, however, that it is perfectly possible to end up with quality service on contract. It takes a mixture of careful...... of price reductions in stead of quality demands in both environmental and working environmental terms. A recent study showed major deficits in the capacities of the municipalities to administer qualitative requirements in the tender process and to manage the contracts as an integral part of a scheme...... forces and low quality performance. By assuming responsibility, setting and following up on high quality standards the tender instrument presents an additional instrument to legislation and market based means to institutionalize more sustainable practices in waste management...

  10. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  11. Methods for assessing the sustainability of integrated municipal waste management and energy supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoranen, M.

    2009-07-01

    The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU's Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: Formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste

  12. Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making

    Energy Technology Data Exchange (ETDEWEB)

    He, Li, E-mail: li.he@iseis.org [MOE Key Laboratory of Regional Energy Systems Optimization, S and C Academy of Energy and Environmental Research, North China Electric Power University, Beijing 102206 (China); Huang, G.H.; Lu, Hongwei [MOE Key Laboratory of Regional Energy Systems Optimization, S and C Academy of Energy and Environmental Research, North China Electric Power University, Beijing 102206 (China)

    2011-10-15

    Highlights: {yields} We used bilevel analysis to treat two objectives at different levels. {yields} The model can identify allocation schemes for waste flows. {yields} The model can support waste timing, sizing, and siting for facility expansions. {yields} The model can estimate minimized total management cost and GHG emissions. - Abstract: Recent studies indicated that municipal solid waste (MSW) is a major contributor to global warming due to extensive emissions of greenhouse gases (GHGs). However, most of them focused on investigating impacts of MSW on GHG emission amounts. This study presents two mixed integer bilevel decision-making models for integrated municipal solid waste management and GHG emissions control: MGU-MCL and MCU-MGL. The MGU-MCL model represents a top-down decision process, with the environmental sectors at the national level dominating the upper-level objective and the waste management sectors at the municipal level providing the lower-level objective. The MCU-MGL model implies a bottom-up decision process where municipality plays a leading role. Results from the models indicate that: the top-down decisions would reduce metric tonne carbon emissions (MTCEs) by about 59% yet increase about 8% of the total management cost; the bottom-up decisions would reduce MTCE emissions by about 13% but increase the total management cost very slightly; on-site monitoring and downscaled laboratory experiments are still required for reducing uncertainty in GHG emission rate from the landfill facility.

  13. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) and industrial powder wastes by cold-bonding pelletization

    NARCIS (Netherlands)

    Tang, P.; Brouwers, H.J.H.

    2017-01-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0–2 mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination

  14. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    Science.gov (United States)

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  15. Global warming factor of municipal solid waste management in Europe

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Clavreul, Julie; Christensen, Thomas Højlund

    2009-01-01

    The global warming factor (GWF; CO2-eq. tonne—1 waste) performance of municipal waste management has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007...

  16. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  17. Developing a holistic strategy for integrated waste management within municipal planning: Challenges, policies, solutions and perspectives for Hellenic municipalities in the zero-waste, low-cost direction

    International Nuclear Information System (INIS)

    Zotos, G.; Karagiannidis, A.; Zampetoglou, S.; Malamakis, A.; Antonopoulos, I.-S.; Kontogianni, S.; Tchobanoglous, G.

    2009-01-01

    The present position paper addresses contemporary waste management options, weaknesses and opportunities faced by Hellenic local authorities. It focuses on state-of-the-art, tested as well as innovative, environmental management tools on a municipal scale and identifies a range of different collaboration schemes between local authorities and related service providers. Currently, a policy implementation gap is still experienced among Hellenic local authorities; it appears that administration at the local level is inadequate to manage and implement many of the general policies proposed; identify, collect, monitor and assess relevant data; and safeguard efficient and effective implementation of MSWM practices in the framework of integrated environmental management as well. This shortfall is partly due to the decentralisation of waste management issues to local authorities without a parallel substantial budgetary and capacity support, thus resulting in local activity remaining often disoriented and isolated from national strategies, therefore yielding significant planning and implementation problems and delays against pressing issues at hand as well as loss or poor use of available funds. This paper develops a systemic approach for MSWM at both the household and the non-household level, summarizes state-of-the-art available tools and compiles a set of guidelines for developing waste management master plans at the municipal level. It aims to provide a framework in the MSWM field for municipalities in Greece as well as other countries facing similar problems under often comparable socioeconomic settings

  18. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  19. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  20. An integrated approach of composting methodologies for solid waste management

    International Nuclear Information System (INIS)

    Kumaresan, K.; Balan, R.; Sridhar, A.; Aravind, J.; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, p H and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  1. Bioorganic Municipal Waste Management to Deploy a Sustainable Solid Waste Disposal Practice in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW management and source separation of waste on household level, as a precondition for the implementation of an economically feasible integrated waste management infrastructure, were developed in Europe during the last decade. The Sino-German RRU-BMW Project is facilitating applied research investigations in 4 pilot areas in Shenyang to assess the population's behavior to develop the design criteria for appropriate process technologies and to provide the basis to adopt BMW management policy in China.

  2. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.

    Science.gov (United States)

    Sharma, Bhupendra K; Chandel, Munish K

    2017-01-01

    Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.

  4. A mathematical model for the municipal solid waste location-routing problem with intermediate transfer stations

    Directory of Open Access Journals (Sweden)

    Hossein Asefi

    2015-09-01

    Full Text Available Municipal solid waste management is one of the challenging issues in mega cities due to various interrelated factors such as operational costs and environmental concerns. Cost as one of the most significant constraints of municipal solid waste management can be effectively economized by efficient planning approaches. Considering diverse waste types in an integrated municipal solid waste system, a mathematical model of the location-routing problem is formulated and solved in this study in order to minimize the total cost of transportation and facility establishment.

  5. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan

    International Nuclear Information System (INIS)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-01-01

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

  6. Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan.

    Science.gov (United States)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-01

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O&M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested...... of standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  8. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste.

    Science.gov (United States)

    Laryea-Goldsmith, René; Oakey, John; Simms, Nigel J

    2011-02-01

    Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  9. Resource Prospects of Municipal Solid Wastes Generatedin the Ga East Municipal Assembly of Ghana

    OpenAIRE

    Benedicta Abiti; Susanne Hartard; Heike B. Bradl; Davar Pishva; John Kojo Ahiakpa

    2017-01-01

    Background. Municipal solid wastes management has recently become an important public health concern. Municipal solid wastes are a major source of raw materials that could be used for resource recovery for diverse applications. Objectives. The present study aimed to determine the composition of municipal solid waste and recoverable resources from the waste of the Ga East Municipal Assembly (GEMA) in the Greater Accra region of Ghana. Methods. An exploratory approach was used to collect ...

  10. Renewable municipal waste barometer

    International Nuclear Information System (INIS)

    2014-01-01

    In the European Union the production of primary energy from the incineration of municipal waste increased by only 0.7% in 2013 and reached 8.7 million tep (tonnes of oil equivalent). Germany ranks first with the production of 2729 ktep followed by France with 1246 ktep. A positive point is that the sale of heat to heat networks has strongly increased in some countries which means that primary energy is better used. 2 tables give the production of electricity and heat from the incineration of municipal waste in the E.U. member states in 2012 and 2013. Germany ranks first in the 2 tables. The total production of electricity and heat from the incineration of municipal waste in E.U. in 2013 reached 18741 GWh and 2361 tep respectively. A list reviews the most significant companies working in Europe in the sector of waste incineration, 8 companies are listed, 2 are German: EEW, Remondis, 3 are French: SITA (Suez Environment, Veolia and TIRU (EDF), Urbaser is spanish, Gruppo Hera is Italian and AEB-Amsterdan is dutch. (A.C.)

  11. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  12. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    Directory of Open Access Journals (Sweden)

    Oakey John

    2011-02-01

    Full Text Available Abstract Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling. It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  13. Municipal solid waste management in Lebanon: the need for an integrated approach

    International Nuclear Information System (INIS)

    Khoury, R.; El-Fadel, M.

    2000-01-01

    Full text.This study focuses on the management of municipal solid waste (MSW) in Lebanon. It addresses the current status of MSW management in Lebanon in terms of collection, transport and disposal, infers the associated impacts of such practices and discusses mitigation measures and finally proposes basic guidelines for a national strategy for solid waste management in the country. The study is based on available previous investigations and on a field survey of 113 villages in four different countries. The study revealed the absence of an effective environmental policy and poor collection and disposal methods throughout the country, except for the Greater Beirut Area (G A), where better solid waste management practices are employed. Although collection of MSW outside GBA was found to be acceptable by local authorities, resources (labor and equipment) were not used efficiently. Furthermore, treatment of collected waste is almost not available. Waste collected is invariably open dumped and /or open burned outside GBA. The poor quality of the services were reflected by the low budgets available in the solid waste sanitation departments of most surveyed villages. Unlike the situation outside the GBA a solid waste management component can be identified in the GBA. However, until recently, nearly 90 percent of the total waste generated in the GBA is being ultimately disposed of at the landfill. This raises into question the purpose of the sorting-processing-composting facilities as well as the recycling program. Apparently, the current waste management activities, particularly source reduction and recycling have not measured up favorably with the steps outlined in an integrated solid waste management system. The study concludes with a series of policy measures that can constitute the framework for a long-term strategy in order to implement an effective solid waste master plan in Lebanon

  14. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  15. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  16. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  17. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  18. The impact of municipal budgets and land-use management on the hazardous waste production of Malaga municipalities

    International Nuclear Information System (INIS)

    Soler, Ismael P.; Gemar, German; Jimenez-Madrid, Alberto

    2017-01-01

    Economic development and the search for competitiveness have become key issues in regions' economic success. However, despite the direct relationship between economic and environmental management, few land-use plans consider the latter aspect, and city managers delegate the responsibility for environmental impacts to state legislation and private initiatives. This myopic search for competitiveness has meant that a holistic view of environmental issues is often not integrated into municipal decision-making processes. Therefore, this study's objective was to determine the relevant direct and indirect relationships of land management and budgetary procedures of municipalities with overall production levels of hazardous waste. To this end, a primary tourist region, Málaga, was examined in terms of how this waste's environmental impacts can affect the region's vital tourism sector. This research used principal component analysis, regression by ordinary least squares, cluster analysis in two stages and a means test to compare the data for the Province of Malaga's subregions. The results confirm a positive relationship between municipal expenditure and waste production and highlight the environmental benefits of land use involving environmentally non-aggressive crops. The results also reveal a negative relationship between waste production and financial assets and a direct relationship between unproductive land and the production of hazardous waste. The findings also highlight the necessity of raising awareness about the need for collaboration between different agents, especially in the development of inter-municipal strategies.

  19. Electricity production from municipal solid waste in Brazil.

    Science.gov (United States)

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  20. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  1. Using life cycle assessment for municipal solid waste management in Tehran Municipality Region 20

    Directory of Open Access Journals (Sweden)

    Salar Omid

    2017-05-01

    Full Text Available Background: Due to the lack of a proper waste management system, Tehran Municipality Region 20 is facing economic and environmental problems such as the high costs of a disposal system and source pollution. Life cycle assessment (LCA is a method for collecting and evaluating the inputs, outputs, and potential environmental impacts of a product system throughout its life cycle. The current study purposed to provide a stable and optimized system of solid waste management in Tehran Municipality Region 20. Methods: The LCA method was used to evaluate various scenarios and compare the effects on environmental aspects of management systems. Four scenarios were defined based on existing and possible future waste management systems for this region. These scenarios were considered with different percentages for source separation, composting, recycling, and energy recovery. Results: Based on the results of this study, Scenario 4 (source separation [14%] + composting [30%] + municipal recycling facility [MRF] [20%] + energy recovery [10%] + landfilling [26%] was found to be the option with the minimum environmental impact. In the absence of government support and sufficient funds for establishing energy recovery facilities, the third scenario (source separation [14%] + composting [30%] +MRF [20%] + landfilling [36%] is recommended. Conclusion: The results acquired from this investigation will confirm the belief that LCA as an environmental device may be successfully used in an integrated solid waste management system (ISWMS as a support tool for decision-making.

  2. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Solid waste integrated management proposal in Churuguara and Maparari population axis, Federacion municipality Falcon State, Venezuela

    International Nuclear Information System (INIS)

    Reyes Torres, Magly; Melendez, Angelica; Sanchez, Angel

    2009-01-01

    This research shows a solid waste integrated management proposal in Churuguara and Maparari axis population, Federation municipality Falcon State. The inadequate arrangement of solid waste in these populations lacks of any type of control. It has caused environmental pollution problems that affect public health. For this reason, a diagnosis of the situation was made to classify the solid waste, an optimal way of processing and storing them was shown; the fleet that will offer the service, the routes of collection, the frequency and timetable of them, the waste to recycle and the design of a semi-mechanized landfill site were measured as a technical and economical alternative for the government. In this proposal, there are established strategies to increase the quality of life of the inhabitants of this region that allow to reform, improve and transform the solid waste management within a valid legal frame. Since, this is one of the most important services and it has direct consequences in people's health. It is necessary the community and governmental entities participation in the managerial process of these kinds of waste. (author)

  4. Optimization of municipal solid waste collection and transportation routes

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  5. Optimization of municipal solid waste collection and transportation routes

    International Nuclear Information System (INIS)

    Das, Swapan; Bhattacharyya, Bidyut Kr.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  6. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification process can compete......Municipal solid waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by their use it is possible to reduce the waste...... storage in landfills and devote these spaces to other human activities. It is also important to point out that this kind of renewable energy suffers significantly less availability which characterizes other type of renewable energy sources such as in wind and solar energy.In a gasification process, waste...

  7. Assessment Strategies for Municipal Selective Waste Collection – Regional Waste Management

    Directory of Open Access Journals (Sweden)

    Agnieszka Boas Berg

    2018-01-01

    Full Text Available Waste disposal in landfill sites causes a potentialhazard for the human health, as they release substantial amounts of gas, odours and pollutants to the environment. There have been vast reductions in the volume of waste being landfilledin many European countries and a reduction in the number of illegal landfills The European Parliament’s laws obliged the Member States to amend the national waste law; the main objectives of the implemented directives are to create the conditions for the prevention of excessive waste. Directive 2008/98/EC establishes, as a goal for 2020, that waste reuse and recycling reach 50% of the total waste produced. Poland, having joined the European Union, committed itself to implementing many changes related to waste management. The amendment of the law on the maintenance of cleanliness and order in the municipalities imposed new obligations regarding the waste management (WM on the local government and residents. By adopting a municipal waste management system, the selected municipality made all its residents responsible for their waste. However, the fact of introducing changes does not solve the waste problem. The implementation of EU directives and the development of strategic documents such as the National Waste Management Plan (NWMP have made a clear change in the WM approach. One of the changes was the establishment of selective collection of municipal selective waste (MSW, with the issue of collecting the waste by the residents being a priority. This work describes the legal context of selective collection of MSW as one of the most effective means of reducing the amount of waste being landfilled.

  8. Compaction and packaging of dry active municipal wastes

    International Nuclear Information System (INIS)

    Chen Zongming; Xi Xinmin

    1994-01-01

    The authors present the feature of a compaction system for active municipal wastes and the radiological monitoring results of workplace and environment. A variety of dry active municipal wastes could be compacted by this system. Volume reduction factor attained to 5 to 7 for soft wastes and 8 to 13 for hard wastes. No evident radiological impact was found on workplace and environment

  9. Determinants of municipal solid waste management in Portugal

    Directory of Open Access Journals (Sweden)

    Ana Luísa Mota Freitas

    2016-07-01

    Full Text Available Municipal solid waste management has been a topic of interest of several authors over time, in particular the implementation and maintenance of waste collection programmes. Initially, pioneering studies focused on the economic aspects of the provided services. However, many authors later argued the costs of providing solid waste collection services should also be influenced by socio-economic and behavioural factors, exogenous to the municipalities. The present study will be developed in this context, looking, more broadly, to explain the factors influencing the decision-making of the Portuguese municipalities in implementing and maintaining programs of selective collection of solid waste, considering the economic, financial, technological and sociodemographic factors. The results show that, indeed as presented by several authors before, economic factors aren’t the only determinants that influence municipal costs concerning these services, as demographic, geographic and technological factors must be taken into account. Moreover, the enforced legislation also impacts the municipal costs due to municipalities being obliged to contribute to the success of these collection programs in order to fulfil the waste recovery targets. This implies that the costs of these services and the inherent infrastructures are usually financed by its citizens in the form of utilization taxes and also the state.

  10. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  11. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: a shared input DEA-model.

    Science.gov (United States)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-01

    This paper proposed an adjusted "shared-input" version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  13. Fuel-related Emissions from the Croatian Municipal Solid Waste Collection System in 2013: Mixed Municipal Waste

    Directory of Open Access Journals (Sweden)

    Anamarija Grbeš

    2018-01-01

    Full Text Available Waste removal (collection and landfilling in the Republic of Croatia is the responsibility of the municipalities and local governments in 21 administrative units (counties. They entrust the respective economic activity to 208 private and public companies specialized in waste collection and treatment. Organised waste collection affects 99 % of the population. The mixed waste from households and enterprises is at various frequencies collected at the door (kerbside collection and transported by truck to a landfill, or processing plant. This article aims to estimate fuel consumption and fuel-related airborne emissions from the collection of mixed municipal waste in Croatia in 2013. The input data and emission results are shown for Croatia and each Croatian county, in total, and relative to the number of inhabitants and mass of collected waste. Annual consumption of diesel for the collection of mixed waste is estimated at 10.6 million litres. At the county level, fuel consumption ranges from 87 thousand litres to 2.2 million litres, on average 504 thousand litres per county. Total emission of CO2 is estimated at 28 000 t, which at county level ranges from 231 to 5711 t. Relative emission ranges from 3.3 to 13 kg CO2 per capita (average 6.6 kg per capita, or 8.6–28.1 kg t−1 of municipal waste (average 17 kg CO2 per ton of municipal waste. The average values of CO2 emission from MSW collection that should also be the target values are 7–9 kg for mixed waste, and 8–15 kg CO2 for separate waste streams. Apart from CO2 emission, this research estimates emission of other, diesel combustion related compounds, such as NOx, CO, lubricant related CO2, NMVOC, PM, f-BC, N2O, SO2, NH3, Pb, ID[1,2,3-cd]P, B[k]F, B[b]F, B[a]P, as well as total distance of transport.

  14. Effect of municipal liquid waste on corrosion susceptibility of ...

    African Journals Online (AJOL)

    This investigation studied the effect of municipal liquid waste discharged into the environment within Kano municipal area on the corrosion susceptibility of galvanized steel pipe burial underground. Six stagnant and six moving municipal liquid waste samples were used for the investigation. The corrosion rate of the ...

  15. Models of municipal solid waste generation and collection costs applicable to all municipalities in Thailand

    Directory of Open Access Journals (Sweden)

    Chira Bureecam

    2015-08-01

    Full Text Available The aim of this paper is to identify and measure the variables which influence municipal solid waste (MSW generation and collection costs in Thai municipality. The empirical analysis is based on the information derived from a survey conducted in a sample size of 570 municipalities across the country. The results from the MSW generation model indicate that the population density, the household size and the size of municipality are the significant determinant of waste generation. Meanwhile, with regards to the MSW collection cost model, the results showed some existence of positive in the volume of MSW collected, population density, the distance between the center of municipality to the disposal site the hazardous sorting and the size of municipality whereas, there were no evidence of the frequency of collection and the ratio of recycled material to waste generation on cost.

  16. MUNICIPAL SOLID WASTE AND RECOVERY POTENTIAL: BANGLADESH PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    M. Alamgir, A. Ahsan

    2007-04-01

    Full Text Available A total of 7690 tons of municipal solid waste generated daily at the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal and Sylhet, as estimated in 2005. Sampling was done at different waste generation sources such as residential, commercial, institutional and open areas, in different seasons. The composition of the entire waste stream was about 74.4% organic matter, 9.1% paper, 3.5% plastic, 1.9% textile and wood, 0.8% leather and rubber, 1.5% metal, 0.8% glass and 8% other waste. The per capita generation of municipal solid waste was ranged from 0.325 to 0.485 kg/cap/day while the average rate was 0.387 kg/cap/day as measured in the six major cities. The potential for waste recovery and reduction based on the waste characteristics are evaluated and it is predicted that 21.64 million US$/yr can be earned from recycling and composting of municipal solid waste.

  17. Development of Municipal Solid Waste Management

    OpenAIRE

    Teibe, Inara

    2015-01-01

    This paper is based on an empirical work done by author on a series of case studies such us document studies and analyzing the best practices examples. The objective of this research is to find out barriers to reach regional waste management plan demands in three municipalities: Salacgriva, Saulkrasti and Ikskile. Author gives proposal with some recommendations for development of municipal waste management as well. There are several views and attitudes of local stakeholders such us municipali...

  18. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    International Nuclear Information System (INIS)

    Rogge, Nicky; De Jaeger, Simon

    2012-01-01

    Highlights: ► Complexity in local waste management calls for more in depth efficiency analysis. ► Shared-input Data Envelopment Analysis can provide solution. ► Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted “shared-input” version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities’ cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  19. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. A model for cooperative inter-municipal separate waste collection: an application of the Shapley value

    International Nuclear Information System (INIS)

    Bevilacqua, V.; Intini, F.; Kuhtz, S.

    2008-01-01

    In this work we have carried out a study in order to estimate and allocate the costs related to separate waste collection in an inter-municipal area located in the province of Bari (Italy). This analysis promotes the cooperation among municipalities to manage, in an optimal way, the waste collection service. Indeed, according to Italian laws, the municipalities are responsible for organizing the management of municipal waste in accordance with principles of transparency, efficiency, effectiveness and inexpensiveness. For this reason we have built a model of separate waste collection management, highlighting the different cost functions. The total cost of the service has been divided among the individual municipalities using the theory of cooperative games, stressing that local authorities are not interested in paying off more than they would pay if they organized independently. To achieve this goal, we have created a model of aggregation of quantitative information on equipment and specialized personnel (and their costs). The problem of the cost allocation is interpreted as an example of transferable utility games and it is resolved with the technique of Shapley values that are included in the nucleolus of the inter-municipal game. Therefore it is more cost-effective to entrust a single operator with the waste collection for each area or sub domain in order not to double service costs. This work on waste management can integrate the studies and applications of the theory of cooperative games in the environmental field. [it

  1. Optimal planning for the sustainable utilization of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Santibañez-Aguilar, José Ezequiel [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Ponce-Ortega, José María, E-mail: jmponce@umich.mx [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Betzabe González-Campos, J. [Institute of Chemical and Biological Researches, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Serna-González, Medardo [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); El-Halwagi, Mahmoud M. [Chemical Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Adjunct Faculty at the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  2. Optimal planning for the sustainable utilization of municipal solid waste

    International Nuclear Information System (INIS)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-01-01

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits

  3. Quality assessment of compost prepared with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Jodar J. R.

    2017-11-01

    Full Text Available One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  4. Quality assessment of compost prepared with municipal solid waste

    Science.gov (United States)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  5. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Renewable municipal waste barometer - EurObserv'ER - November 2010

    International Nuclear Information System (INIS)

    2010-11-01

    7,7 Mtoe of primary energy produced from the combustion of renewable municipal waste in the European Union in 2009. Approximately half the energy produced in Union European's municipal waste incineration plants is obtained from fermentescible waste (ie biomass waste). To date, incineration is still the main energy conversion channel for renewable municipal waste, for in 2009, biomass energy output stood at 7.7 million toe, which is a 3.3% increase on 2008. Furthermore, this amount could be doubled, assuming a constant level of waste, by investing in modernisation and combustion efficiency improvements

  7. Scenario Of Solid Waste Management In Hetauda Municipality, Nepal

    Directory of Open Access Journals (Sweden)

    Bigyan Neupane

    2013-12-01

    Full Text Available The paper aims to enlighten the solid waste management of Hetauda Municipality in Makwanpur district of an area of 44.5 sq. km. The total human population of the municipality is 84,671 (CBS 2011. Out of 11 wards, 5 wards (1, 2, 3, 4 and 10 were selected for the present study. In total 50 households, 10 institutions and 10 commercial sectors were selected from studied wards from which samples of different types of wastes were collected, segregated and weighed. Weight was calculated using a digital spring balance and a bag 0.043 m3 was used for the estimation of volume. Organic wastes were found to be dominant in the household (51.73% and commercial sectors (61.70% whereas in institutions, plastic (50.36% and papers (38.19% were prevailing. The findings revealed that per capita 155.4 gm/person/day household waste was generated in Hetauda Municipality. The residents are also aware of the harmful effects of the wastes, and demand an effective solid waste management services. Though they are aware about the sustainable management of wastes, due to erratic collection of wastes, some of them throw the wastes in the open lands - The local people also participate in the awareness campaigns organized by local NGOs and municipal. Solid waste management strategies are timely need for an effective management of anthropogenic wastes. Regular waste collection, improvement of dumping sites and sufficient number of composting plants are recommended in the municipality. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 105-114 DOI: http://dx.doi.org/10.3126/ije.v2i1.9214

  8. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  9. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  10. Municipal Household Solid Waste Compost: Effects on Carrot ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the impact of municipal household solid waste compost on N, P and K uptake and yield of carrot (Daucus carrota), using a coastal savanna Haplic Acrisol. Bulked samples of fresh solid waste from 45 households within the Cape Coast Municipality in the Central Region of Ghana ...

  11. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.S. [CSI Resource Systems, Boston, MA (United States)

    1993-12-31

    The Japanese, through a combination of public policy, private market conditions, and geographic necessity, practice integrated municipal solid waste management as defined by the US Environmental Protection Agency. The Japanese have not defined a specific hierarchical preference for alternative waste management practices, i.e., waste reduction, reuse and recycling, combustion, composting, and landfill disposal. However, in marked contrast to the US approach, the Japanese system relies heavily on waste combustion, with and without energy recovery. {open_quotes}Discards{close_quotes}, as the term is used in this paper, refers to all materials considered used and spent by residential and commercial generators. That which is discarded (whether recyclable or nonrecyclable) by a municipality is referred to as MSW. This paper provides an overview of MSW management practices and private-sector recycling in Japan. Estimates of the total generation of residential and commercial discards and their disposition are also presented. Such an overview of Japanese practices can be used to assess the potential effectiveness of US integrated solid waste management programs. Of the estimated 61.3 to 72.1 million tons of residential and commercial discards generated in Japan during its 1989 fiscal year (April 1, 1989, through March 31, 1990), an estimated 55 to 64 percent was incinerated; 15 to 28 percent was recycled (only 2 to 3 percent through municipal recycling activities); less than 0.1 percent was composted or used as animal feed; and 17 to 20 percent was landfilled. Including ash disposal, 26 to 30 percent, by weight, of the gross discards were landfilled.

  12. Municipal solid waste management in Malaysia: Practices and challenges

    International Nuclear Information System (INIS)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-01-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  13. evaluation of municipal solid waste management system

    African Journals Online (AJOL)

    eobe

    Keywords: solid waste, household, waste bin, willingness to pay, municipal. 1. INTRODUCTION .... significant differences between WTP and household ... Gender. Income of Household. Education Status. House Type. Household Size. Male.

  14. A review on current status of municipal solid waste management in India.

    Science.gov (United States)

    Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit

    2015-11-01

    Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.

  15. Modern technologies of processing municipal solid waste: investing in the future

    Science.gov (United States)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  16. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  17. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  18. Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

    OpenAIRE

    Bakare Babatunde Femi

    2011-01-01

    Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This p...

  19. Critical analysis of the integration of residual municipal solid waste incineration and selective collection in two Italian tourist areas.

    Science.gov (United States)

    Ranieri, Ezio; Rada, Elena Cristina; Ragazzi, Marco; Masi, Salvatore; Montanaro, Comasia

    2014-06-01

    Municipal solid waste management is not only a contemporary problem, but also an issue at world level. In detail, the tourist areas are more difficult to be managed. The dynamics of municipal solid waste production in tourist areas is affected by the addition of a significant amount of population equivalent during a few months. Consequences are seen in terms of the amount of municipal solid waste to be managed, but also on the quality of selective collection. In this article two case studies are analyzed in order to point out some strategies useful for a correct management of this problem, also taking into account the interactions with the sector of waste-to-energy. The case studies concern a tourist area in the north of Italy and another area in the south. Peak production is clearly visible during the year. Selective collection variations demonstrate that the tourists' behavior is not adequate to get the same results as with the resident population. © The Author(s) 2014.

  20. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Directory of Open Access Journals (Sweden)

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  1. Municipal solid waste management in Tehran: Changes during the last 5 years.

    Science.gov (United States)

    Malmir, Tahereh; Tojo, Yasumasa

    2016-05-01

    The situation of waste management in Tehran was a typical example of it in developing countries. The amount of municipal solid waste has been increasing and the city has depended on landfill for municipal solid waste management. However, in recent years, various measures have been taken by the city, such as collecting recyclables at the source and increasing the capacity of waste-processing facilities. As a result, significant changes in the waste stream are starting to occur. This study investigated the nature of, and reasons for, the marked changes in the waste stream from 2008 to 2012 by analysing the municipal solid waste statistics published by the Tehran Waste Management Organization in 2013 and survey data on the physical composition of the municipal solid waste. The following trends were identified: Although the generation of municipal solid waste increased by 10% during the 5-year period, the amount of waste directly disposed of to landfill halved and resource recovery almost doubled. An increase in the capacity of a waste-processing facility contributed significantly to these changes. The biodegradable fraction going to landfill was estimated by using the quantity and the composition of each input to the landfill. The estimated result in 2012 decreased to 49% of its value in 2008. © The Author(s) 2016.

  2. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  3. Economic evaluation of municipal solid waste recycling in Yazd:

    OpenAIRE

    Eslami H; Mokhtari M; Eslami Dost Z; Barzegar Khanghah MR; Ranjbar Ezzatabadi M

    2017-01-01

    Background and aims: In every urban waste management plan, recycling and reuse is considered as an economic pattern. This study aimed to economic evaluation of municipal solid waste recycling in Yazd by cost-benefit analysis in 2015. Methods: This research is a descriptive–analytic study which in the data about quality and quantity of municipal solid waste in Yazd city were collected through the sampling and physical analysis and the data about total income and costs from the implementatio...

  4. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  5. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  6. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    Science.gov (United States)

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-11-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  7. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Science.gov (United States)

    2010-07-01

    ... waste landfill units. 258.16 Section 258.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the...

  8. Partnerships for development: municipal solid waste management in Kasese, Uganda.

    Science.gov (United States)

    Christensen, David; Drysdale, David; Hansen, Kenneth; Vanhille, Josefine; Wolf, Andreas

    2014-11-01

    Municipal solid waste management systems of many developing countries are commonly constrained by factors such as limited financial resources and poor governance, making it a difficult proposition to break with complex, entrenched and unsustainable technologies and systems. This article highlights strategic partnerships as a way to affect a distributed agency among several sets of stakeholders to break so-called path dependencies, which occur when such unsustainable pathways arise, stabilize and become self-reinforcing over time. Experiences from a North-South collaborative effort provide some lessons in such partnership building: In Uganda and Denmark, respectively, the World Wildlife Fund and the network organization access2innovation have mobilized stakeholders around improving the municipal solid waste management system in Kasese District. Through a municipal solid waste management system characterization and mapping exercise, some emergent lessons and guiding principles in partnership building point to both pitfalls and opportunities for designing sustainable pathways. First, socio-technical lock-in effects in the municipal solid waste management system can stand in the way of partnerships based on introducing biogas or incineration technologies. However, opportunities in the municipal solid waste management system can exist within other areas, and synergies can be sought with interlinking systems, such as those represented with sanitation. © The Author(s) 2014.

  9. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    Directory of Open Access Journals (Sweden)

    MA Abduli

    2015-07-01

    Methods: The study was a descriptive cross-sectional one conducted from 2010 to 2014. Relevant officials of the waste recovery in 22 regions of Tehran were approached in order to collect data about municipal solid waste generation through interviewing, filling out questionnaires, conducting field visits from Aradkooh Disposal and Processing Complex and collecting information on disposal and destiny of wastes. Then the data were compiled and analyzed. Results: Total solid waste generation in Tehran from 2010 to 2014 amounted to respectively 3389662, 3399344, 3449338 and 3245157 Metric Tons, categorized into three groups of municipal, companies and townships and hospital wastes. Most of the generated waste produced in Tehran was that of households and commercial (known as municipal waste from 22 Regions of Tehran. Based on the surveys conducted, per capita solid waste generation of 11 regions of Tehran ranged from 550 to 1000 grams and in other 11 ones from 1000 to 1521 grams per capita per day. The lowest and highest waste generation rate belonged respectively to region 13 with 556 grams and region 12 with 1521 grams per capita per day in 2011. Conclusion: Comparing per capita generation of municipal solid waste in different municipal regions in Tehran with maximum acceptable capacity of waste generation indicates the deviation of waste generation of all Tehran regions from the standard acceptable amount. Therefore, not only is it necessary to plan and take strategic measures to reduce Tehran waste generation but also these programs and measures should be specific to each region considering its specifications and solid waste quality and quantity.

  10. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Science.gov (United States)

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity less...

  11. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  12. Fiscal Instruments for the Municipal Solid Waste Management (MSW in the Mexican Municipality

    Directory of Open Access Journals (Sweden)

    Violeta Mendezcarlo Silva

    2013-10-01

    Full Text Available Waste generation (municipal waste in the cities is, as we all know, one of the main current environmental issues. Responsibility for this kind of pollution is not only the companies’ but also the homeowners’ and the general public’s, who must redirect their behavior towards a responsible consumption, not only regarding the choices of environmentally friendly products and services but should also strive to influence the reduction of environmental damage caused by the waste itself.  The goal of this research work is to make clear that the local government (in Mexico’s case, the municipalities has the unavoidable duty of raising awareness of this issue by using tools to encourage responsible waste management, such as fiscal instruments, which in addition results in the extra benefit of raising public funds to neutralize the problem. 

  13. Development of an automated system for the decentral fractioning of municipal wastes

    Directory of Open Access Journals (Sweden)

    Heiko Vesper

    2012-03-01

    Full Text Available Background: There is a growing problem of the increasing amount of unsorted municipal wastes with the resulting consequences for the environment. The aim of this study was to present a new solutions of the system for the decentral fractioning of municipal wastes, which enable simplification and improvement of the process together with the reduction of total costs. Methods: The description of  the problem of the increasing amount of unsorted municipal wastes with the resulting consequences for the environment as well as an alternative solution for the decentral fractioning of such wastes was presented. The influence onto the environment as well as the efficiency of the costly mechanical sorting of wastes was queried. The nowadays used principles of sorted and unsorted waste disposal were elucidated and their advantages and disadvantages evaluated. Results and conclusions: Based on this evaluation an innovative and future oriented development of an automated system for the decentral fractioning of municipal wastes was presented. The new developed systems aim at the achievement of an easier, less costly and environment-friendlier process for the disposal of municipal wastes from apartment buildings.

  14. An industrial ecology approach to municipal solid waste ...

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  15. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    Science.gov (United States)

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Waste is a resource: A study on the opportunities in a new solid waste management in Iringa municipality

    OpenAIRE

    Solberg, Eirin

    2012-01-01

    Master i produktdesign Municipal solid waste refers to waste in a solid form, produced in the daily day life of a society such as packaging, food scrapes, grass clippings, clothing, furniture, paper, electronics and so on. It is called municipal solid waste because it is in the responsibility of the local government and comes from our homes, schools, hospitals and businesses. It is produced 108 tons municipal solid waste in Iringa each day. Iringa district is located approximately 500...

  17. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  18. Integrated economic model of waste management: Case study for South Moravia region

    Directory of Open Access Journals (Sweden)

    Jiří Hřebíček

    2013-01-01

    Full Text Available The paper introduces and discusses the developed integrated economic model of municipal waste management of the Czech Republic, which was developed by authors as a balanced network model for a set of sources (mostly municipalities of municipal solid waste connected with a set of chosen waste treatment facilities processing their waste. Model is implemented as a combination of several economic submodels including environmental and economic point of view. It enables to formulate the optimisation problem in a concise way and the resulting model is easily scalable. Model involves submodels of waste prevention, collection and transport optimization, submodels of waste energy utilization (incineration and biogas plants and material recycling (composting and submodel of landfilling. Its size (number of sources and facilities depends only upon available data. Its application is used in the case study of the South Moravia region with verification of using time series waste data. The results enable to improve decision making in waste management sector.

  19. Electric Energy production through Municipal solid wastes

    International Nuclear Information System (INIS)

    Agorio Comas, M.; Chediak Nunez, M.; Galan Prado, A.

    2010-01-01

    The main objective in this investment Project is to improve the integral management of urban solid waste in the city of Salto, Uruguay, obtaining favorable results for the environment and society, contributing moreover in Sustainable Development.First of all, it is recommended the remediation of the current Open air Municipal dumping site. Simultaneously with the Remediation process, a controlled dumping site with daily covers of the compacted solid waste has been designed, as a transition methodology with a lifetime of 3 years approximately.In addition to this, two sanitary landfills are designed wits29h a total lifetime of 7 years, for the operation after the controlled dumping site is closed. There is also a leachate treatment system to process the effluents of the landfills. In order to optimize the use of the landfills, is proposed the simultaneous implementation of a Separated Urban Solid Waste Collection System (SisRReVa). This consist in separating the Valuable Waste (VW) from wet or organic solid waste in origin (home, stores,etc)and collecting it separately.The VW are separated by type (paper, board, glass, plastic and metal) in a Valuable Waste Classification Plant. This plant is designed to process the VW generated in Salto and collected by the SisRReVa for about ten years from now on. (Author)

  20. characterization and composition analysis of municipal solid waste

    African Journals Online (AJOL)

    userpc

    ABSTRACT. Municipal Solid Waste (MSW) is produced through human activities and in the last two ... Solid waste samples were collected and analysed from the four major dumpsites in ..... Technology, Ueberlandstrasse 133,. Switzerland.

  1. Strategies for the municipal waste management system to take advantage of carbon trading under competing policies: The role of energy from waste in Sydney

    International Nuclear Information System (INIS)

    El Hanandeh, Ali; El-Zein, Abbas

    2009-01-01

    Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow the municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.

  2. Report: new guidelines for characterization of municipal solid waste: the Portuguese case.

    Science.gov (United States)

    da Graça Madeira Martinho, Maria; Silveira, Ana Isabel; Fernandes Duarte Branco, Elsa Maria

    2008-10-01

    This report proposes a new set of guidelines for the characterization of municipal solid waste. It is based on an analysis of reference methodologies, used internationally, and a case study of Valorsul (a company that handles recovery and treatment of solid waste in the North Lisbon Metropolitan Area). In particular, the suggested guidelines present a new definition of the waste to be analysed, change the sampling unit and establish statistical standards for the results obtained. In these new guidelines, the sampling level is the waste collection vehicle and contamination and moisture are taken into consideration. Finally, focus is on the quality of the resulting data, which is essential for comparability of data between countries. These new guidelines may also be applicable outside Portugal because the methodology includes, besides municipal mixed waste, separately collected fractions of municipal waste. They are a response to the need for information concerning Portugal (e.g. Eurostat or OECD inquiries) and follow European Union municipal solid waste management policies (e.g. packaging waste recovery and recycling targets and the reduction of biodegradable waste going to landfill).

  3. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  4. Treatment and disposal techniques of dangerous municipal solid wastes

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes the qualitative and quantitative features of the different types of dangerous municipal solid wastes, according to Italian law. In the second part the impact on environment and man health is presented. This impact should be minimized by suitable controlled disposal techniques, which differ from other municipal waste treatments. Finally, the paper deals with the most appropriate systems for treatment and disposal of such kind of waste. Particularly, some research activities in the field of metal recovery from used batteries, sponsored by ENEA, and carrying out by private companies, are described. (author)

  5. Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines

    Directory of Open Access Journals (Sweden)

    Aries Roda D. Romallosa

    2017-02-01

    Full Text Available A technical and socio-economic feasibility study of biomass briquette production was performed in Iloilo City, Philippines, by integrating a registered group of the informal sector. The study has shown that the simulated production of biomass briquettes obtained from the municipal waste stream could lead to a feasible on-site fuel production line after determining its usability, quality and applicability to the would-be users. The technology utilized for briquetting is not complicated when operated due to its simple, yet sturdy design with suggestive results in terms of production rate, bulk density and heating value of the briquettes produced. Quality briquettes were created from mixtures of waste paper, sawdust and carbonized rice husk, making these material flows a renewable source of cost-effective fuels. An informal sector that would venture into briquette production can be considered profitable for small business enterprising, as demonstrated in the study. The informal sector from other parts of the world, having similar conditionality with that of the Uswag Calajunan Livelihood Association, Inc. (UCLA, could play a significant role in the recovery of these reusable waste materials from the waste stream and can add value to them as alternative fuels and raw materials (AFR for household energy supply using appropriate technologies.

  6. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  7. Sustainable recycling of municipal solid waste in developing countries

    International Nuclear Information System (INIS)

    Troschinetz, Alexis M.; Mihelcic, James R.

    2009-01-01

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors

  8. Waste Management Policy in Tourism Area of Saensuk Municipality, Thailand

    OpenAIRE

    Wijaya, Andy Fefta; Kaewmanee, Pongsathon

    2014-01-01

    Saensuk Municipality is a famous tourism city in Thailand, especially Bangsaen beach. In supporting the tourism activity, it has waste managing method by using new generation administrator and technologies. However, the waste problem happened in Saensuk Municipality is included the human resource ability, technical facility, and the amount of waste. By using the qualitative descriptive method and doing a series of interview to selected informants, the researcher studied and analyzed the probl...

  9. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... waste landfills by approved states. On June 14, 2012, Oregon submitted an application to EPA Region 10...

  10. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-02-22

    ... Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... Region IX is proposing to approve a modification to Arizona's municipal solid waste landfill (MSWLF... final rule amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for RD&D...

  11. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Science.gov (United States)

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  12. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... landfill emissions. 62.14353 Section 62.14353 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  13. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  14. HIGH-TEMPERATURE GASIFICATION OF RDF WASTE AND MELTING OF FLY ASH OBTAINED FROM THE INCINERATION OF MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Marián Lázár

    2015-02-01

    Full Text Available Objective of this paper is to describe innovative solutions of thermal processing of selected components of municipal waste (so-called RDF waste using low-ionized depended plasma arc generated by a progressive and promising technology, which is plasma reactor. Its application can transform hazardous waste into inert waste while significantly reducing the volume of waste. Results given in this paper indicate experimentally achieved outputs with thermal disposal of RDF waste and ash from municipal waste

  15. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    Science.gov (United States)

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Municipal solid waste options : integrating organics management and residual disposal treatment : executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Cant, M. (comp.) [Totten Sims Hubicki Associates Ltd., Calgary, AB (Canada); Van der Werf, P. [2cg Inc., Edmonton, AB (Canada); Kelleher, M. [Kelleher Environmental, Toronto, ON (Canada); Merriman, D. [MacViro Consultants, Markham, ON (Canada); Fitcher, K. [Gartner Lee Ltd., Toronto, ON (Canada); MacDonald, N. [CH2M Hill Engineering Ltd., Calgary, AB (Canada)

    2006-04-15

    The Municipal Solid Waste (MSW) Options Report explored different MSW management options for 3 community sizes: 20,000, 80,000 and 200,0000 people. It was released at a time when many communities were developing waste management plans to cost-effectively reduce environmental impacts and conserve landfill capacity. The purpose of this report was to provide a greater understanding on the environmental, social, economic, energy recovery/utilization and greenhouse gas (GHG) considerations of MSW management. The report also demonstrated the interrelationships between the management of organics and residuals. It was based on information from existing waste diversion and organics management options and emerging residual treatment technology options. The following organics management and residual treatment disposal options were evaluated: composting; anaerobic digestion; sanitary landfills; bioreactor landfills; and thermal treatment. Composting was examined with reference to both source separated organics (SSO) and mixed waste composting. SSO refers to the separation of materials suitable for composting solid waste from households, while mixed waste composting refers to the manual or mechanical removal of recyclable material from the waste, including compost. The composting process was reviewed along with available technologies such as non-reactor windrow; aerated static pile; reactor enclosed channel; and, container tunnel. An evaluation of SSO and mixed waste composting was then presented in terms of environmental, social, financial and GHG impacts. refs., tabs., figs.

  17. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  18. Classification of sources of municipal solid wastes in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Buenrostro, O. [Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-105, 58400, Michoacan, Morelia (Mexico); Bocco, G. [Departamento de Ecologia de los Recursos Naturales, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Campus Morelia, Apartado Postal 27-3 Xangari, 58089, Michoacan, Morelia (Mexico); Cram, S. [Departamento de Geografia Fisica, Instituto de Geografia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.P. 04510 Ciudad Universitaria, Mexico City (Mexico)

    2001-05-01

    The existence of different classifications of municipal solid waste (MSW) creates confusion and makes it difficult to interpret and compare the results of generation analyses. In this paper, MSW is conceptualized as the solid waste generated within the territorial limits of a municipality, independently of its source of generation. Grounded on this assumption, and based on the economic activity that generates a solid waste with determinate physical and chemical characteristics, a hierarchical source classification of MSW is suggested. Thus, a connection between the source and the type of waste is established. The classification categorizes the sources into three divisions and seven classes of sources: residential, commercial, institutional, construction/demolition, agricultural-animal husbandry, industrial, and special. When applied at different geographical scales, this classification enables the assessment of the volume of MSW generated, and provides an overview of the types of residues expected to be generated in a municipality, region or state.

  19. studies on municipal solid wastes dumping on soil anions, cations

    African Journals Online (AJOL)

    Osondu

    and selected soil enzymes activities of Njoku solid waste dumpsite Owerri municipal, Nigeria were investigated. ... wastes) and sometimes commercial wastes collected by a ... Ethiopian Journal of Environmental Studies and Management Vol.

  20. Obtaining fuel briquets from the solid municipal waste

    International Nuclear Information System (INIS)

    Armenski, Slave; Kachurkov, Gjorgji; Vasilevski, Goce

    1998-01-01

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  1. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  2. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    Science.gov (United States)

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  3. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Municipal Solid Waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by th eir use it is possible to reduce the waste...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification......, waste is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called “Syngas” which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor...

  4. Assessing musculoskeletal disorders among municipal waste loaders of Mumbai, India.

    Science.gov (United States)

    Salve, Pradeep; Chokhandre, Praveen; Bansod, Dhananjay

    2017-10-06

    The study aims to assess the impact of municipal waste loading occupation upon developing musculoskeletal disorders (MSDs) and thereby disabilities among waste loaders. Additionally, the study has identified the potential risk factors raising MSDs and disabilities. A cross-sectional case-control design survey was conducted in 6 out of 24 municipal wards of Mumbai during March-September 2015. The study population consisted of municipal waste loaders (N = 180) and a control group (N = 180). The Standardized Modified Nordic questionnaire was adopted to measures the MSDs and thereby disabilities in the past 12 months. A Propensity Score Matching (PSM) method was applied to assess the impact of waste loading occupation on developing MSDs and disabilities. Waste loaders had a significantly higher risk of developing MSDs as well as disabilities than the control group particularly for low back, hip/ thigh upper back and shoulder. Propensity Score Matching results revealed that the MSDs were significantly higher among waste loaders for hip/thigh (22%), low back (19%), shoulder (18%), and upper back (15%) than matched control group. Likewise, MSDs-related disabilities were found to be significantly higher among waste loaders for low back (20%), hip/ thigh (18%) upper back (13%) and shoulder (8%) than the control group. Duration of work, substance use and mental health were found to be the potential psychosocial factors for developing the risk of MSDs and disabilities. The municipal waste loading occupation raised the risk of MSDs and related disabilities among waste loaders compared to the control group. The preventive and curative measures are strongly recommended to minimize the burden of MSDs and disabilities. Int J Occup Med Environ Health 2017;30(6):875-886. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. Financial compensation owed to municipalities that host radioactive waste disposal

    International Nuclear Information System (INIS)

    Silva, Renata Amaral da

    2013-01-01

    This work aims to perform calculation about the financial compensation due to municipalities with viability for construction of radioactive waste deposits fro, low and medium activity. It was used as methodology the frameweork of normative act in the Resolution n. 96, August 10th, 2010. ('Model of Calculation for Financial Compensation due to Municipalities') where there are establidhed the parameters for the wastes, the facilities and the deployment sites. The calculation was made according with interim storage or definitive disposal of solid wastes, e.e. personal protection equipment (gloves, shoes, masks etc) resins and filters used in waste water treatment from nuclear and radioactivity facilities. SOme examples of countries in which compensation, financial or not, was practiced in favor of municipalities due to construction of waste deposits were sown and in some cases, the way that occurred the negotiation bweween the stakeholders. Were also presented other forms of financial compensation in Brazil due to large-scale industrial activities that result in potential risk for the surrounding population and environment, as oil and natural gas, hydropower plants and mining. Were used the waste inventory designed by RMBN project (Waste Repository of Low and Medium Activity) developed in CDTN (2009) which presents the implementation of a repository for disposal of radioactive waste. Based on these data it was possible to develop a case study, establishing four scenarios for initial/interim storage and final disposal of wastes. The results reached monthly values that ranged from 2,6 to 79,8 thousand Brazilian Reais, from which it was performed a critical analysis of the range of parameters and the apportionment of the amount due. Likewise, these values were compared with the budget revenues of some previously selected municipalities and were examined divergent points in the normative act as well. (author)

  6. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  7. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  8. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... waste landfill emissions. 60.33c Section 60.33c Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW...

  9. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  10. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  11. Optimal planning for the sustainable utilization of municipal solid waste.

    Science.gov (United States)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    Science.gov (United States)

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  13. AL(0) in municipal waste incinerator ash

    Science.gov (United States)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  14. Process and technological aspects of municipal solid waste gasification. A review

    International Nuclear Information System (INIS)

    Arena, Umberto

    2012-01-01

    Highlights: ► Critical assessment of the main commercially available MSW gasifiers. ► Detailed discussion of the basic features of gasification process. ► Description of configurations of gasification-based waste-to-energy units. ► Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  15. Research paper 2000-B-8: the implementation of the municipal waste incineration directives

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    End-of-pipe options are needed whenever recycling and source reduction can not cope with waste streams at acceptable costs. One of the disposal options is waste incineration. The incineration of waste was considered 'clean' for a long time. In the 1970's and 1980's it proved that the incineration of municipal waste was a significant source of air pollution. Notorious pollutants were hydrogen chloride, hydrogen florid, sulphur dioxide, oxides of nitrogen, fine particulate matter, 'heavy metals' and dioxines and furans. Most notorious and issue of public anxiety in some countries were emissions of dioxines and that might cause cancer and birth defects. Municipal waste is domestic waste from households and comparable waste from markets and companies. Consent is present that in the long history of waste incinerators, incineration in plants started in Europe around 1900, important steps to secure health and the environment have been taken and will be taken in the future. Debates are still going on the level of emissions that is negligible and acceptable. Also in the European arena waste management is about knowledge, perceptions, uncertainties and negotiations. Arguments are on the right level of ambition and the right level of fine-tuning where precautionary measures are discussed. The European Union decided to issue two European Directives on the atmospheric emissions from municipal waste incineration in 1989. This chapter focuses on the implementation and effects of the 1989 Directives. In section 2 of this chapter we summarize the bargaining on the 1989 European Directives. Section 2 indicates that characteristics of municipal waste incineration and the level of pre-existing national regulation sectors in individual member states played decisive roles. When the 1989 Directives came into force, the requirements had to be integrated in the national legislation in European Member States. In section 3 Germany and the Netherlands will prove

  16. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... continuously estimate load level (for example, the feed rate of municipal solid waste or refuse-derived fuel... municipal waste combustion unit? 62.15265 Section 62.15265 Protection of Environment ENVIRONMENTAL... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units...

  17. Different systems and approaches to treat municipal solid waste. A state-of the art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, A; Euler, H; Klopotek, F; Kellner, C [TBW GmbH, Sustainable Techno-logies Building and Business Consultants, Frankfurt/Main (Germany)

    1997-08-01

    Anaerobic digestion is still a fairly new technology in the area of utilisation of organic residues, in particular as far as treatment of household wastes and integration of agricultural production is concerned. In the last few years, a number of different processes and concepts, with a variety of different intentions, have been developed and established on the European market, in particular in Germany. Actual categories and parameters, used to analyse, structure and compare available treatment systems, are not yet fully satisfying. The presentation will consist of the following elements: 1. Factors influencing the market of the technology in the recent past. 2. Brief comparison of features of anaerobic solid waste digestion with land filling, composting and incineration. 3. Brief comparison between some European and Non-European countries, concerning municipal solid waste digestion. 4. Main topics in the actual German Anaerobic Municipal Solid Waste Treatment (AMSWT) debate. 5. Comparison of some existing AMSWT systems and concepts. 6. Presentation of a comprehensive structure, covering the main technical elements of any of the different technologies available. 7. Outlook. (au)

  18. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... constant between 50 - 60 % wet weight and therefore holds a potential for bioenergy production. The degradable fraction has positive effects for anaerobic digestion when evaluated to desired parameters of anaerobic digestion plants. Wanted parameters are: 1) high organic content (high volatile solid...

  19. Modular life cycle assessment of municipal solid waste management.

    Science.gov (United States)

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  20. Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)

    International Nuclear Information System (INIS)

    Larsen, A.W.; Merrild, H.; Moller, J.; Christensen, T.H.

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

  1. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  2. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  3. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  4. Integrated energy and waste water solutions to solve small town municipal service delivery problems in South Africa

    CSIR Research Space (South Africa)

    Du Plessis, C

    2010-02-01

    Full Text Available Providing municipal services such as electricity and waste water treatment is a major challenge for small towns that often lack the institutional capacity to manage and maintain the necessary infrastructure. High levels of poverty in these towns...

  5. Operator models for delivering municipal solid waste management services in developing countries. Part A: The evidence base.

    Science.gov (United States)

    Wilson, David C; Kanjogera, Jennifer Bangirana; Soós, Reka; Briciu, Cosmin; Smith, Stephen R; Whiteman, Andrew D; Spies, Sandra; Oelz, Barbara

    2017-08-01

    This article presents the evidence base for 'operator models' - that is, how to deliver a sustainable service through the interaction of the 'client', 'revenue collector' and 'operator' functions - for municipal solid waste management in emerging and developing countries. The companion article addresses a selection of locally appropriate operator models. The evidence shows that no 'standard' operator model is effective in all developing countries and circumstances. Each city uses a mix of different operator models; 134 cases showed on average 2.5 models per city, each applying to different elements of municipal solid waste management - that is, street sweeping, primary collection, secondary collection, transfer, recycling, resource recovery and disposal or a combination. Operator models were analysed in detail for 28 case studies; the article summarises evidence across all elements and in more detail for waste collection. Operators fall into three main groups: The public sector, formal private sector, and micro-service providers including micro-, community-based and informal enterprises. Micro-service providers emerge as a common group; they are effective in expanding primary collection service coverage into poor- or peri-urban neighbourhoods and in delivering recycling. Both public and private sector operators can deliver effective services in the appropriate situation; what matters more is a strong client organisation responsible for municipal solid waste management within the municipality, with stable political and financial backing and capacity to manage service delivery. Revenue collection is also integral to operator models: Generally the municipality pays the operator from direct charges and/or indirect taxes, rather than the operator collecting fees directly from the service user.

  6. An Economic Analysis of Municipal Solid Waste Management of Toyohashi City, Japan: Evidences from Environmental Kuznets Curve

    OpenAIRE

    Miyata, Yuzuru; Shibusawa, Hiroyuki; Hossain, Nahid

    2013-01-01

    The study of Toyohashi cityfs economic growth and resultant growth in municipal solid waste management were empirically examined by the relation between city economic growth, city expenditure for solid waste management and municipal solid waste. The growth in the economy and the population has increased discharge of municipal solid waste in Toyohashi city. The economic size of the city is identified as a strong explanatory variable. Various kinds of municipal solid waste were generated with ...

  7. Financial compensation due to municipalities that host radioactive waste deposits

    International Nuclear Information System (INIS)

    Silva, Renata A. da; Simoes, Francisco Fernando L.; Martins, Vivian B.

    2013-01-01

    This work aims to perform calculation about the financial compensation due to municipalities where there is viability for construction of radioactive waste deposits from low and medium activity. Were used like base structure de Resolution No. 96 of August, 10, 2010, entitled 'Model of Calculation For Financial Compensation to Municipalities' where are determinate those principal characteristics by the waste and deposits, such as the half-life, activity level, type of deposits (initial, intermediate or final), costs for construction and maintenance of deposits, demography, between others. The calculation was made according to the temporally or definitive storage for solids waste like personal protection equipment (gloves, shoes, masks, etc) resins and filters used in wastewater treatment, between others, from of nuclear and radioactivity facilities. There are presented some countries that do the compensation, financial or not, for some municipalities for the construction of waste deposits and in some cases, the way that occurred the negotiation between the stake holders, in other words, the local population and the companies. Also are presented others forms of financial compensation in Brazil in consequence of activities in large scale which result in potential risk for the surrounding population and for the environment, like compensation for oil and natural gas, hydropower plants and mining. Were used on methodology the inventory of waste presented on RMBN project (Repository of Waste of Low and Medium Activity) developed by the CDTN which present the implementation of a repository for final storage to radioactive waste. With this was possible to develop a case study with the creation of four scenarios. Values were found which initially range from R$2,6 thousand to R$79,8 thousand for month. Finally are analyzed the possible influences which that values may have on the municipality budget revenue and some divergent points about the resolution. (author)

  8. Financial compensation due to municipalities that host radioactive waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renata A. da; Simoes, Francisco Fernando L.; Martins, Vivian B., E-mail: renata.amaral@ufrj.br, E-mail: flamego@ien.gov.br, E-mail: vbmartins@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work aims to perform calculation about the financial compensation due to municipalities where there is viability for construction of radioactive waste deposits from low and medium activity. Were used like base structure de Resolution No. 96 of August, 10, 2010, entitled 'Model of Calculation For Financial Compensation to Municipalities' where are determinate those principal characteristics by the waste and deposits, such as the half-life, activity level, type of deposits (initial, intermediate or final), costs for construction and maintenance of deposits, demography, between others. The calculation was made according to the temporally or definitive storage for solids waste like personal protection equipment (gloves, shoes, masks, etc) resins and filters used in wastewater treatment, between others, from of nuclear and radioactivity facilities. There are presented some countries that do the compensation, financial or not, for some municipalities for the construction of waste deposits and in some cases, the way that occurred the negotiation between the stake holders, in other words, the local population and the companies. Also are presented others forms of financial compensation in Brazil in consequence of activities in large scale which result in potential risk for the surrounding population and for the environment, like compensation for oil and natural gas, hydropower plants and mining. Were used on methodology the inventory of waste presented on RMBN project (Repository of Waste of Low and Medium Activity) developed by the CDTN which present the implementation of a repository for final storage to radioactive waste. With this was possible to develop a case study with the creation of four scenarios. Values were found which initially range from R$2,6 thousand to R$79,8 thousand for month. Finally are analyzed the possible influences which that values may have on the municipality budget revenue and some divergent points about the resolution. (author)

  9. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  10. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2013-01-01

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO 2 e (glass) to −19 111 kg CO 2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO 2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard

  11. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement

  12. Calculation of financial compensation due of municipalities hosting nuclear waste deposit

    International Nuclear Information System (INIS)

    Silva, Renata A. da; Simoes, Francisco Fernando L.; Martins, Vivian B.

    2011-01-01

    The present work evaluates the math from monthly financial transfers to municipalities with technical viability for building of initial or intermediate repository for storing of radioactivity nuclear waste: gloves, sneakers, mask, resins and filters came from thermonuclear facilities. Several aspects have been considered as the geological factors of the site as presence of capable faults, groundwater vulnerability, infiltration of seawater. Also, it was take into account socioeconomic factors: population density, costs for construction, maintenance and operation of repository; size and activity of waste; among others. Hereafter, we have presented the key features of low and average activity repository and high activity repository even as initial, intermediate and final repository and the possible environment impact. The methodology for calculation of financial compensation of municipalities was established by CNEN will be applied for a specific assumed municipality. The analysis of financial compensation due to the specific nuclear waste deposit and the possible guidelines for the use of that compensation by the municipality will be analyzed. In addiction, it will be compared the model for compensation used for nuclear wastes with other plants receiving permanent wastes from cemeteries and sanitary landfills, where the land should not be allowed for the human activities the same as: crops, livestock and buildings. Also, comparison with royalties and indemnities were paid by facilities of energy production as hydroelectric dams as well as petroleum and gas exploration plants. The destination of financial compensation transfer to the municipality is in charge of the city administration. The compensation could be applied of investments in education and culture, health, sanitation works, improvement of public transport, environment, among others. It will be discussed the cost-benefit relation for the assumed municipality. (author)

  13. Calculation of financial compensation due of municipalities hosting nuclear waste deposit

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renata A. da, E-mail: renata.amaral@ufrj.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Simoes, Francisco Fernando L.; Martins, Vivian B., E-mail: flamego@ien.gov.b [Instituto de Engenharia Nuclear (LIMA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Impactos Ambientais

    2011-07-01

    The present work evaluates the math from monthly financial transfers to municipalities with technical viability for building of initial or intermediate repository for storing of radioactivity nuclear waste: gloves, sneakers, mask, resins and filters came from thermonuclear facilities. Several aspects have been considered as the geological factors of the site as presence of capable faults, groundwater vulnerability, infiltration of seawater. Also, it was take into account socioeconomic factors: population density, costs for construction, maintenance and operation of repository; size and activity of waste; among others. Hereafter, we have presented the key features of low and average activity repository and high activity repository even as initial, intermediate and final repository and the possible environment impact. The methodology for calculation of financial compensation of municipalities was established by CNEN will be applied for a specific assumed municipality. The analysis of financial compensation due to the specific nuclear waste deposit and the possible guidelines for the use of that compensation by the municipality will be analyzed. In addiction, it will be compared the model for compensation used for nuclear wastes with other plants receiving permanent wastes from cemeteries and sanitary landfills, where the land should not be allowed for the human activities the same as: crops, livestock and buildings. Also, comparison with royalties and indemnities were paid by facilities of energy production as hydroelectric dams as well as petroleum and gas exploration plants. The destination of financial compensation transfer to the municipality is in charge of the city administration. The compensation could be applied of investments in education and culture, health, sanitation works, improvement of public transport, environment, among others. It will be discussed the cost-benefit relation for the assumed municipality. (author)

  14. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  15. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  16. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  17. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  18. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation....

  19. SAFE DISPOSAL OF MUNICIPAL WASTES IN NIGERIA ...

    African Journals Online (AJOL)

    affairs in the management of municipal solid waste in most parts of Nigeria. ... 1 John G. Rau and David Wooten (eds), Environmental Impact Analysis Handbook (Mc- ..... Up to date efficient “cleaner production technologies” are expected to be.

  20. Can Britain afford to waste municipal waste and continue to make an unjustified contribution to the greenhouse effect?

    International Nuclear Information System (INIS)

    Lees, Byrom.

    1993-01-01

    In 1990, three papers were published relating to the emission of methane from municipal waste on landfill sites. They were by Munday, Lees and Manley. This report compares the data used in the above three reports published in 1990 and assesses the reasons for the different conclusions. Taking into account the most accurate assessment of methane emission from landfill sites and the latest information on the quantity of municipal waste being sent to landfill, suggestions are made of actions which could be taken in Britain to reduce the major contribution to the greenhouse effect of landfill gas and to utilise the potential heat in municipal waste, thus conserving fossil fuels. (author)

  1. Municipal solid waste management in Phnom Penh, capital city of Cambodia.

    Science.gov (United States)

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2011-05-01

    This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.

  2. Municipal solid waste management in Rasht City, Iran

    International Nuclear Information System (INIS)

    Alavi Moghadam, M.R.; Mokhtarani, N.; Mokhtarani, B.

    2009-01-01

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years

  3. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  4. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  5. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  6. Bio-methanation of municipal solid wastes for ecological balance and sustainable development

    International Nuclear Information System (INIS)

    Sadangi, Subhash Ch.

    2000-01-01

    The importance of bio-methanation of municipal solid wastes for over all improvement of environment and for converting wastes into wealth, the national planners should make all out efforts to implement the concept on a large scale to meet the challenges of future demands of energy, ecology and sustainable development. The huge quantity of methane generated from MSW (Municipal Solid Wastes) after treatment and desulfuration is utilised to generate electric power. Hence, development of methane resource as an alternative to energy source has attracted attention in recent years in many parts of the world. Methane is a much more powerful green house gas as its adverse impacts are felt more intensely due to its higher residence and higher potency in the atmosphere. The article highlights the process of bio-methanation of municipal solid wastes and planning for ecological balance and sustainable development

  7. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.

    Science.gov (United States)

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2017-09-04

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  8. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    Science.gov (United States)

    Yukalang, Nachalida; Clarke, Beverley

    2017-01-01

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572

  9. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    Directory of Open Access Journals (Sweden)

    Nachalida Yukalang

    2017-09-01

    Full Text Available This study focused on determining the barriers to effective municipal solid waste management (MSWM in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  10. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  11. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  12. Assessment on steam gasification of municipal solid waste against biomass substrates

    International Nuclear Information System (INIS)

    Couto, Nuno Dinis; Silva, Valter Bruno; Rouboa, Abel

    2016-01-01

    Highlights: • Steam gasification as an alternative for MSW treatment was studied. • A previously developed numerical model for MSW gasification was used. • Results were validated with data gathered from the literature. • Results were compared with previously studied biomass substrates. • Environment and economic assessment based on the results was conducted. - Abstract: Waste management is becoming one of the main concerns of our time. Not only does it takes up one of the largest portions of municipal budgets but it also entails extensive land use and pollution to the environment using current treatment methods. Steam gasification of Portuguese municipal solid wastes was studied using a previously developed computational fluid dynamics (CFD) model, and experimental and numerical results were found to be in agreement. To assess the potential of Portuguese wastes, these results were compared to those obtained from previously investigated Portuguese biomass substrates and steam-to-biomass ratio was used to characterize and understand the effects of steam in the gasification process. The properties of syngas produced from municipal solid waste and from biomass substrates were compared and results demonstrated that wastes present the lowest carbon conversion, gas yield and cold gas efficiency with the highest tar content. Nevertheless, the pre-existing collection and transportation infrastructure that is currently available for municipal waste does not exist for the compared biomass resources which makes it an interesting process. In addition a detailed economic study was carried out to estimate the environmental and economic benefits of installing the described system. The hydrogen production cost was also estimated and compared with alternative methods.

  13. Composition of source-sorted municipal organic waste collected in Danish cities

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Jansen, Jes La Cour; Spliid, Henrik

    2007-01-01

    Source-sorted municipal organic waste from different dwelling types in five Danish cities was sampled during one year. The samples were from permanent, full-scale systems or temporary, experimental systems for collection of source-sorted municipal organic waste. Pre-treatment of the organic waste...... prior to biological treatment was used in all cities to remove foreign objects and provide size reduction. All sampling was performed after pre-treatment in order to obtain more homogeneous and representative samples. The sampling included both the pre-treated waste and the reject from the pre......-treatment allowing for estimation of the composition of the original waste. A total of 40 waste samples were chemically characterised with respect to 15 parameters. The waste generally consisted of around 88% VS of which an average of 80% was easily degradable. The average content of N, P and K in the dry matter...

  14. Policy Mixes to Achieve Absolute Decoupling: A Case Study of Municipal Waste Management

    Directory of Open Access Journals (Sweden)

    Francesca Montevecchi

    2016-05-01

    Full Text Available Studying the effectiveness of environmental policies is of primary importance to address the unsustainable use of resources that threatens the entire society. Thus, the aim of this paper is to investigate on the effectiveness of environmental policy instruments to decouple waste generation and landfilling from economic growth. In order to do so, the paper analyzes the case study of the Slovakian municipality of Palarikovo, which has drastically improved its waste management system between 2000 and 2012, through the utilization of differentiated waste taxes and awareness-raising and education campaigns, as well as targeting increased recycling and municipal composting. We find evidence of absolute decoupling for landfilled waste and waste generation, the latter being more limited in time and magnitude. These policy instruments could therefore play an important role in municipalities that are still lagging behind in waste management. More specifically, this policy mix was effective in moving away from landfilling, initiating recycling systems, and to some extent decreasing waste generation. Yet, a more explicit focus on waste prevention will be needed to address the entirety of the problem effectively.

  15. Alternative approaches for better municipal solid waste management in Mumbai, India

    International Nuclear Information System (INIS)

    Rathi, Sarika

    2006-01-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management

  16. Influence of effective stress and dry density on the permeability of municipal solid waste.

    Science.gov (United States)

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  17. The Impact of the Information Logistics Flows on the Processes of Municipal Wastes Management

    Directory of Open Access Journals (Sweden)

    Samohovych Oleksandr S.

    2017-06-01

    Full Text Available The article is aimed at identifying the impact of information incompleteness and asymmetry, irrational behavior of actors on the processes of municipal wastes management. It has been found that, at the present moment in Ukraine, quality of the transfer of information flows on the municipal wastes management between the State authority, local government bodies, enterprises, and the public stays at a low level. The urban sanitation schemes are being adopted and waste management technologies are being introduced at the local level, but the local government bodies have not been provided with sufficient information to make optimal decisions. Acting independently, the market mechanism would not be able to overcome the asymmetry of information in the short terms, and the State intervention would be needed to correct the information inadequacy of the municipal waste market. Prospect for future research will be determining conditions for an effective distribution of information flows in the process of municipal wastes management.

  18. A Study on The Management of Municipal Residential Solid Waste in China

    Institute of Scientific and Technical Information of China (English)

    Lu Mingzhong; Shao Tianyi; Li Huayou

    2004-01-01

    As the main organic pollutant in municipal living waste, kitchen waste causes secondary pollution in the course of its being gathered and transported to the landfill by mixing with other refuse and by decomposition. This makes pollution prevention more difficult and raises the cost of landfill engineering. However, the amount of solid waste to be treated can be decreased and such pollution burden lessened by disposing of the solid waste in local municipal areas. The program in Beijing also shows that this works well with our situation in China and can accelerate marketization and public participation.

  19. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  20. Assessing soil pollution from a municipal waste dump in Islamabad, Pakistan. A study by INAA and AAS

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.

    2010-01-01

    INAA and AAS techniques have been employed to determine 40 elements in soil of a municipal waste dump in sector H-11, Islamabad. Background soil was also analyzed to study the extent of contamination of the dump site soil. Most of the major elements in these soils represented the geochemical composition of the soil in this area. The enrichment factors for quantified elements identified high Sb and Mg contents that could be attributed to the presence of PET and food materials in the waste. Geo-accumulation Index (I geo ), Pollution Index (PI) and the Integrated Pollution Index (IPI) have also been calculated for all elements. The values for these indices show that municipal waste has distorted the soil ambiance and the soil of waste dump site is slightly to moderately polluted as compared to the background soil. The dump soil was found to be moderately polluted by the elements Ba, Br, Ga, Rb, Zn, Ni and Pb. Significantly high Cu, Mg and Sb contamination was observed for the waste soil that is likely to pose an environmental issue if current waste disposal procedures are continuously employed. (author)

  1. An industrial ecology approach to municipal solid waste management: I. Methodology

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  2. Municipal solid waste development phases: Evidence from EU27.

    Science.gov (United States)

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  3. Waste Management Policy In Tourism Area of Saensuk Municipality, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsathon Kaewmanee

    2014-01-01

    Full Text Available Saensuk Municipality is a famous tourism city in Thailand, especially Bangsaen beach. In supporting the tourism activity, it has waste managing method by using new generation administrator and technologies. However, the waste problem happened in Saensuk Municipality is included the human resource ability, technical facility, and the amount of waste. By using the qualitative descriptive method and doing a series of interview to selected informants, the researcher studied and analyzed the problem, factors, and solutions of the issue. This study found that the nature of the beach and the visitor behavior is among the reason behind the large amount of waste daily in the site. Moreover, the regulation by the local government is sufficient to cover the issue if implemented fully. The study shows that the city had implemented the good governance idea in several instances, and giving the waste management to the private sector is one of the optionsto resolve the problem since the quality of the work could be improved. Keywords:waste management,public policy, tourism area, Thailand

  4. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette

    1998-01-01

    This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product...... in different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions...

  5. Municipal waste management and groundwater contamination processes in Córdoba Province, Argentina

    Directory of Open Access Journals (Sweden)

    Daniel Emilio Martínez

    2010-12-01

    Full Text Available In Coronel Moldes, Argentina, waste management practices consist in municipal waste being tipped directly onto an area of sand dunes at the municipal waste disposal site (MWDS. Moreover, untreated liquid waste from septic tanks and latrines from urban areas are discharged in the same place. This co-disposal waste management is very common in many regions of Argentina and its impact on the groundwater of Coronel Moldes has not been evaluated. The study area is located in the vicinity of a MWDS in a flatlands environment that is typical of Argentina. The main objective of this study was to evaluate the impacts on groundwater quality of current waste management practices in order to consider the requirement for new guidelines for sustainable groundwater management. Three groundwater monitoring wells were installed up-, across- and down-gradient of the MWDS. The principal aquifer is formed by sandy silt sediments (loess. Groundwater levels in the area of the MWDS are between 5.6 m and 7.8 m. The Vulnerability index indicates that groundwater in this area has a high vulnerability. Groundwater in the vicinity of the MWDS shows elevated electrical conductivity, high concentrations of Cl-, Na+, and HCO3- ions, COD, BOD5 and aerobic bacteria and less dissolved oxygen than the background values indicating the presence of organic matter. Municipal waste management represents a significant omission in current groundwater protection policy at Coronel Moldes. Strict supervision of solid and liquid municipal waste disposal needs to be instigated in order to ensure that the groundwater remains free of contamination and to allow a sustainable environmental management.

  6. Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature.

    Science.gov (United States)

    Alatriste-Mondragón, Felipe; Samar, Parviz; Cox, Huub H J; Ahring, Birgitte K; Iranpour, Reza

    2006-06-01

    Codigestion of organic wastes is a technology that is increasingly being applied for simultaneous treatment of several solid and liquid organic wastes. The main advantages of this technology are improved methane yield because of the supply of additional nutrients from the codigestates and more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. Many municipal wastewater treatment plants (WWTPs) in industrialized countries currently process wastewater sludge in large digesters. Codigestion of organic wastes with municipal wastewater sludge can increase digester gas production and provide savings in the overall energy costs of plant operations. Methane recovery also helps to reduce the emission of greenhouse gases to the atmosphere. The goal of this literature survey was to summarize the research conducted in the last four years on anaerobic codigestion to identify applications of codigestion at WWTPs. Because the solids content in municipal wastewater sludge is low, this survey only focuses on codigestion processes operated at relative low solids content (slurry mode). Semi-solid or solid codigestion processes were not included. Municipal wastewater sludge, the organic fraction of municipal solid waste, and cattle manure (CAM) are the main wastes most often used in codigestion processes. Wastes that are codigested with these main wastes are wood wastes, industrial organic wastes, and farm wastes. These are referred to in this survey as codigestates. The literature provides many laboratory studies (batch assays and bench-scale digesters) that assess the digestibility of codigestates and evaluate the performance and monitoring of codigestion, inhibition of digestion by codigestates, the design of the process (e.g., single-stage or two-stage processes), and the operation temperature (e.g., mesophilic or thermophilic). Only a few reports on pilot- and full-scale studies were found. These evaluate general process

  7. Municipal solid waste source-separated collection in China: A comparative analysis

    International Nuclear Information System (INIS)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-01-01

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  8. Municipal solid waste management in Kurdistan Province, Iran.

    Science.gov (United States)

    Abduli, Mohammad Ali; Nasrabadi, Touraj

    2007-03-01

    Kurdistan Province, with an area of 28,203 square kilometers, is located in a mountainous area in the western part of Iran. From 1967 to 1997, the urban population in the major eight cities of the Kurdistan Province-namely, Baneh, Bijar, Divan Darreh, Saghez, Sanandaj, Ghorveh, Kamyaran, and Marivan-increased from 102,250 to 705,715. The proportion of the population residing in urban areas increased 90 percent during this period. In most of the cities, solid waste handling remains primitive, and well-organized procedures for it have not been established. Traditional methods of disposal, with marginal inclusion of modern conveniences, appear to be the common practice. In general, the shortcomings of the prevailing practices can be summarized as follows: The municipal solid waste management systems (MSWMSs) in this province include unsegregated collection and open dumping of municipal solid wastes. Separation of municipal solid waste in this province is in the hands of scavengers. The MSWMSs in this province lack essential infrastructure. Thus, design and implementation of modern MSWMSs in this province are essential. Principal criteria for and methods of implementing these systems are as follows: (1) rationally evaluating all functional elements so that they operate in a steady-state or equilibrium manner; (2) creating all support elements for the MSWMS in each city; (3) introducing gradual privatization of MSWMS activities; (4) creating guidelines, regulations, and instructions for all elements of MSWMSs; and (5) giving priorities to source separation and recycling programs. This paper reviews the present status of MSWMSs in eight major cities of Kurdistan Province and outlines the principle guidelines and alternatives for MSWMSs.

  9. An integrated approach to regional waste management and mine site rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.V.; Nettle, C.

    2000-07-01

    Municipal solid (putrescible) waste is expected to be treated at Woodlawn Mines using 'bioreactor' processes within the existing mine void. This paper briefly outlines legislation and regional waste management planning issues that led to the development of the Woodlawn Waste Management Facility. It also examines the application of 'bioreactor' technology as a rehabilitation strategy at Woodlawn, energy recovery opportunities and greenhouse gas savings, and the integrated manner in which mining and waste management have combined to provide unprecedented environmental outcomes across both industries. 22 refs., 3 figs., 5 tabs.

  10. Waste washing pre-treatment of municipal and special waste.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana; Pivnenko, Kostyantyn

    2012-03-15

    Long-term pollution potential in landfills is mainly related to the quality of leachate. Waste can be conveniently treated prior to landfilling with an aim to minimizing future emissions. Washing of waste represents a feasible pre-treatment method focused on controlling the leachable fraction of residues and relevant impact. In this study, non-recyclable plastics originating from source segregation, mechanical-biological treated municipal solid waste (MSW), bottom ash from MSW incineration and automotive shredder residues (ASR) were treated and the removal efficiency of washing pre-treatment prior to landfilling was evaluated. Column tests were performed to simulate the behaviour of waste in landfill under aerobic and anaerobic conditions. The findings obtained revealed how waste washing treatment (WWT) allowed the leachability of contaminants from waste to be reduced. Removal rates exceeding 65% were obtained for dissolved organic carbon (DOC), chemical oxygen demand (COD) and Total Kjeldahl Nitrogen (TKN). A percentage decrease of approximately 60% was reached for the leachable fraction of chlorides, sulphates, fluoride and metals, as proved by a reduction in electric conductivity values (70%). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Survey of minipower plant for municipal solid waste firing

    International Nuclear Information System (INIS)

    Merkkiniemi, R.; Hyoety, P.; Saiha, E.

    1999-01-01

    Dumping of municipal waste to disposal areas has caused environmental problems, and this has led to more sophisticated disposal systems and high prices. That and a general demand to reduce the quantity of waste require new solutions, and a question has been arisen whether combustion could be used to treat waste. This project is concentrating to bum waste in a small-scale power plant. The background is one 10-MW pilot in Tampere city based on smelting furnace and a 0.3-MW pyrolyse furnace. The results of these from the viewpoint of operation and effluent were satisfactory and the burning process used is in line with the latest regulations. The second aspect is the economy of waste handling. The minipower plant is designed for reasonable small municipalities, abt 20 000 inhabitants or 1 - 20 MW heat input. According to several feasibility studies this method is the cheapest way to handle waste. A local heat demand is used to support the economy. The prices of products, heat and power, and cost are of the same level as the market prices. Thus, we expect a economical and environmentally safe operation with the minipower plant and it will also give a hint to solve a higher capacity demand of one unit. (orig.)

  12. Social and environmental assessment of municipal solid waste management scenarios in Cali: from landfilling towards integrated recycling schemes

    OpenAIRE

    Díaz Osorio, Andrea

    2011-01-01

    The environmental and social challenges of Solid Waste Management in developing countries have become an increasingly pressing issue. Disparities between the rich and poor continues to increase in many of these regions where growing urban areas often witness the worst signs of maltreatment of human labour and misallocation of waste as a resource. This thesis is a case study of the Municipality of Cali in Colombia, where city managers and the stakeholders involved are wrestling with the challe...

  13. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    Science.gov (United States)

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  14. Process analysis transit of municipal waste. Part II - Domestic provisions of law

    Directory of Open Access Journals (Sweden)

    Starkowski Dariusz

    2017-06-01

    Full Text Available In 2013, the Polish legal system referring to municipal waste management was restructured in a revolutionary way. The analysis of new provisions of law described in the article requires particular attention, taking into account their place in the entire system of dealing with waste and connections with the remaining elements of this system. At present, Polish regulations lay down the rules of conduct with all types of waste, diversifying a subjective area of responsibility. These assumptions are determined by the provisions of law that are in force in the Republic of Poland. At present, the system of legal provisions is quite complex; however, the provisions of law of the EU constitute its base (the first article. At the level of Polish law, the goals and tasks concerned with dealing with waste were set forth, which leads to tightening of the system. All actions in this respect - from propagating the selective accumulation and collection of municipal waste, keeping the established levels of recycling and recycling of packaging wastes, and limiting the mass of biodegradable waste directed at the storage - is only a beginning of the road to reduction of environmental risks. In this case, permanent monitoring of proper waste dealing in the commune, the province as well as the entire country is essential. Third part of the article will present characterization, division, classification and identification of waste, together with the aspects of logistic process of municipal waste collection and transport.

  15. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  16. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  17. Selective Collection Quality Index for Municipal Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Elena Cristina Rada

    2018-01-01

    Full Text Available Trentino (an Italian Province located in the northern part of the country is equipped with a management system of municipal solid waste collection at the forefront. Among the most positive aspects, there is a great ability for waste separation at the source and a consequent low production of residual municipal solid waste for disposal. Latest data show a gross efficiency of selective collection that has recently reached 80%, one of the highest values in Italy. This study analyzed the “Trentino system” to identify the main elements that have been at the base of the current efficient model. This provided an opportunity to propose a selective collection quality index (SCQI, including collection efficiency for each fraction, method of collection, quality of the collected materials, presence of the punctual tariff and tourist incidence. A period relevant for the transition of the collection system to the recent one was chosen for the demonstrative adoption of the proposed indicators in order to determine the potential of the index adoption. Results of the analysis of this case study were obtained in a quantitative form thanks to the sub-parameters that characterize the proposed index. This allowed selected collection decision makers to focus intently on a territory to find criticalities to be solved. For instance, the use of the index and its sub-indicators in the case of Trentino identified and comparatively quantified the local problems resulting from the presence of a large museum in a small town, tourism peaks in some valleys, and a delay in the punctual tariff adoption. The index has been proposed with the aim to make available an integrated tool to analyze other areas in Italy and abroad.

  18. Development of Automated Monitoring and Management System of Municipal Solid Waste Landfill Based on the Industrial OMRON Controller

    Science.gov (United States)

    Kostarev, S. N.; Sereda, T. G.

    2018-01-01

    The application of the programmable logic integrated circuits (PLC) for creating the software and hardware complexes of the medium complexity is an economically sound solution. The application of the OMRON controller to solve the monitoring and management tasks of safety of the municipal solid waste (MSW) landfill with the use of technology of the filtrate recirculation and the landfill maps irrigation is shown in the article. The article contains the technical solution connected with the implementation of the 2162059RU invention patent for the municipal solid waste landfill management in the Kurgan region of Russia. The calculation of maps and ponds was made with consideration of the limited sanitary and protection zone. The GRUNDFOS dosing and reactor equipment was proposed to use in the project.

  19. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  20. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, Aleksandra [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Fatone, Francesco; Di Fabio, Silvia [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Petrovic, Mira, E-mail: mpetrovic@icra.cat [Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 80010 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain); Cecchi, Franco [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Barcelo, Damia [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain)

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ss-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 {mu}g/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  1. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    International Nuclear Information System (INIS)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-01-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification–denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  2. Development and prospects of municipal solid waste (MSW) incineration in China

    Institute of Scientific and Technical Information of China (English)

    Yongfeng NIE

    2008-01-01

    With the lack of space for new landfills, municipal solid waste (MSW) incineration is playing an increasingly important role in municipal solid waste management in China. The literatures on certain aspects of incineration plants in China are reviewed in this paper, including the development and status of the application of MSW incineration technologies, the treatment of leachate from stored MSW, air pollution control technologies, and the status of the fly-ash control method. Energy policy and its promotion of MSW-to-energy conversion are also elucidated.

  3. Modern disposal techniques for sewage sludge and municipal waste; Moderne Entsorgungsverfahren fuer Klaerschlamm und Hausmuell

    Energy Technology Data Exchange (ETDEWEB)

    Garlipp, G. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany); Maczek, K. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany); Steinkamp, H. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany)

    1996-05-01

    Since the passing of the technical code on municipal waste, the issue of the disposal of sewage sludge and municipal waste has become more and more important in Germany. Increasingly, the possibility is made use of to burn industrial and municipal sewage sludge and municipal waste. For such thermal disposal, a great number of techniques are nowadays available. (orig.) [Deutsch] Seit der Verabschiedung der TA Siedlungsabfall gewinnt die Problematik der Entsorgung von Klaerschlamm und Hausmuell in Deutschland zunehmend an Bedeutung. Von der Moeglichkeit, industrielle und kommunale Klaerschlaemme und Hausmuell zu verbrennen, wird in zunehmendem Masse Gebrauch gemacht. Zur thermischen Entsorgung von Klaerschlaemmen und Hausmuell stehen heute eine Vielzahl von Verfahren zur Verfuegung. (orig.)

  4. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. AWARENESS LEVEL STUDY FOR IMPLEMENTING SEPARATION OF MUNICIPAL SOLID WASTE PROGRAM IN THE MUNICIPALITY OF ARANDAS, JALISCO

    Directory of Open Access Journals (Sweden)

    Norberto Santiago-Olivares

    2017-07-01

    Full Text Available The Arandas municipality government in Jalisco, has been looking for solutions to the problem of its municipal solid waste (MSW disposal for some years. Nowadays there is a “dumping site" where these residues are deposited without any established control, promoting the generation of vermin and rodents such as: flies, cockroaches, rats, mouses, etc.; adding up to the air, soil and water pollution. The solution starts with the separation of municipal solid waste from the generation sites, but it does not make any sense to separate the waste if there is not a subsequent treatment system established. The population awareness for garbage separation at home is quite necessary, because if it is not carried out correctly, it won’t be able to give an effective further treatment to the municipal solid waste MSW generated. In countries and municipalities where garbage separation is already practiced, it was because the community is forced to do so, whether their garbage is not collected if it is not properly separated, or by the implementation of economic fines. With the support of the H. Ayuntamiento de Arandas and José Mario Molina Pasquel and Henríquez Technological Institute Campus Arandas, was carried out a study to determine the level of awareness that the population of Arandas has about the necessity to separate garbage at home. For this purpose, a survey was designed and applied to parents or guardians of students from educational institutions: CONALEP Arandas, UDG Regional High School, CBTIS and José Mario Molina Pasquel and Henríquez Technological Institute Campus Arandas. The research carried out was quantitative and descriptive type, where the selection of the sample was “for convenience” (to optimize time and costs in the application of the survey. According to the results obtained in the survey analysis, it was observed that Arandas population was concerned about the preservation of environment and they are willing to do garbage

  6. Assessment of current quality of biodegradable municipal waste separated by residents of Kroměříž

    Directory of Open Access Journals (Sweden)

    Bohdan Stejskal

    2010-01-01

    Full Text Available In an effort to meet the requirements for maximum material utilization, which is set forth in the Act No. 185/2001 Coll. on Waste and amendments to other Acts, and to achieve the objectives of the Waste Management Plan of the Czech Republic to reduce biodegradable waste going to landfill, a proposal for widespread deployment of separate collection and processing of biodegradable municipal waste in municipalities has become part of the amendment Act prepared by the ministry. In many places of the country pilot projects have been launched to test the technology and logistics of sorting, collecting, processing and utilizing biodegradable municipal waste separated by residents.Separate collection of biodegradable municipal waste in Kroměříž was launched as a pilot project in 1992. Despite all the residents’ education, the management of Biopas is not satisfied with the quality of biodegradable waste separation; problems occur especially in the residential area. Biodegradable waste separated by residents, due to its unacceptable amount of impurities, is transported to the landfill Kuchyňky near the village Zdounky 10 km distant but detailed data on the amount of impurities in separate biodegradable municipal waste were missing.Therefore an analysis of separate biodegradable municipal waste has been carried out. Individual samples were collected within two days of separate waste delivery, without any modifications (scattering, compaction. The sample size was at least 200 kg, the sample was manually sorted according to the Catalogue of Waste into biodegradable waste (200201, other non-biodegradable waste (200203 and biodegradable waste unsuitable for composting (e.g. animal by-products. It was found that the amount of unacceptable impurities in separate biodegradable waste considerably varies from 1 to 9 %wt.It can be concluded that the amount of unacceptable impurities in biowaste is too large to allow composting and compost production (in

  7. Challenges for municipal solid waste management practices in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Luong

    2013-11-01

    Full Text Available Municipal solid waste (MSW management is currently one of the major environmental problems facing by Vietnam. Improper management of MSW has caused adverse impacts on the environment, community health, and social-economic development. This study attempts to provide a review of the generation and characterization, disposal and treatment technologies of MSW to evaluate the current status and identify the problems of MSW management practices in Vietnam. Finally, this study is concluded with fruitful recommendations which may be useful in encouraging the responsible agencies to work towards the further improvement of the existing MSW management system.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21Citation:  Luong, N.D., Giang, H.M., Thanh, B.X. and Hung, N.T.  2013. Challenges for municipal solid waste management practices in Vietnam. Waste Technology 1(1:6-9.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21

  8. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling, measurement, data, data collection, construction and demolition (C&D) recycling, source reduction, life cycle...

  9. Incineration as an effective means in Malaysian municipal solid waste treatment

    International Nuclear Information System (INIS)

    Sharifah, A.S.A.K.; Subari, F.; Zainal Abidin, H.

    2006-01-01

    Malaysia is in dire need of an alternative to current method in municipal solid waste treatment. An industrial pilot plant incinerator has been constructed at Universiti Teknologi Mara Shah Alam campus. A study has been performed to investigate the performance of the locally developed and manufactured rotary kiln incinerator. On the overall, the temperature profiles are well in agreement with species concentration observed. The emission quality satisfy the air pollution standards and on the overall the rotary kiln incinerator shows great potential in municipal solid waste treatment. (Author)

  10. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...

  11. Research challenges in municipal solid waste logistics management

    NARCIS (Netherlands)

    Bing, Xiaoyun; Bloemhof-Ruwaard, Jacqueline; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; Vorst, van der J.G.A.J.

    2016-01-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems,

  12. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Science.gov (United States)

    2010-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  13. Co-digestion of municipal organic wastes with night soil and cow ...

    African Journals Online (AJOL)

    Aghomotsegin

    a very promising way to overcome the problem of waste treatment. Biogas, which is principally ... as manure, night soil, sewage sludge and municipal solid wastes. Furthermore, the solid .... It is smokeless, hygienic and more convenient to use ...

  14. The application of life cycle assessment to integrated solid waste management. Pt. 1: Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Clift, R.; Doig, A.; Finnveden, G.

    2000-07-01

    Integrated Waste Management is one of the holistic approaches to environmental and resource management which are emerging from applying the concept of sustainable development. Assessment of waste management options requires application of Life Cycle Assessment (LCA). This paper summarizes the methodology for applying LCA to Integrated Waste Management of Municipal Solid Wastes (MSW) developed for and now used by the UK Environment Agency, including recent developments in international fora. Particular attention is devoted to system definition leading to rational and clear compilation of the Life Cycle Inventory, with appropriate 'credit' for recovering materials and/or energy from the waste. LCA of waste management is best seen as a way of structuring information to help decision processes. (Author)

  15. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  17. The impact of municipal waste combustion in small heat sources

    Science.gov (United States)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  18. Co-Digestion of the Organic Fraction of Municipal Waste With Other Waste Types

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    Several characteristics make anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) difficult. By co-digestion of OFMSW with several other waste types it will be possible to optimize the anaerobic process by waste management. The co-digestion concept involves the treatment...... of several waste types in a single treatment facility. By combining many types of waste it will be possible to treat a wider range of organic waste types by the anaerobic digestion process (figure 1). Furthermore, co-digestion enables the treatment of organic waste with a high biogas potential that makes...... the operation of biogas plants more economically feasible (Ahring et al., 1992a). Thus, co-digestion gives a new attitude to the evaluation of waste: since anaerobic digestion of organic waste is both a waste stabilization method and an energy gaining process with production of a fertilizer, organic waste...

  19. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    Science.gov (United States)

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  20. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    Science.gov (United States)

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  1. Occupational exposure to the municipal solid waste workers in Chandigarh, India.

    Science.gov (United States)

    Ravindra, Khaiwal; Kaur, Kamalpreet; Mor, Suman

    2016-11-01

    Manual handling of municipal solid waste is of serious concern owing to emerging occupational risks. Considering this, health risks of municipal solid waste workers involved in street sweeping, waste collection, waste processing and rag picking were assessed in Chandigarh, India, using an interview schedule as a study tool. Result shows that the waste worker profession is mainly dominated by males, except in rag pickers, and with a lower literacy rate. Age distribution shows that 16% of waste collectors and 11% of rag pickers were below 18 years of age. Daily income of the waste workers ranges from ₹100 to ₹200. It was observed that 22.2% of waste collectors, 43.2% of street sweepers and 25.5% of rag pickers do not use any type of protective gears owing to their casual attitude, which results in various types of injuries. The major occupational health issues reported by various categories of waste workers were respiratory disorders, injuries and allergies having prevalence of 12.3%-17.6%, 4.9%-44.4% and 35.3%-48.9%, respectively. Waste workers are vulnerable to occupational health hazards and hence there is a need to safeguard them through formulation of new laws and policies. © The Author(s) 2016.

  2. Climate protection potential in the waste management sector. Examples: municipal waste and waste wood; Klimaschutzpotenziale der Abfallwirtschaft. Am Beispiel von Siedlungsabfaellen und Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Dehoust, Guenter; Schueler, Doris [Oeko-Institut e.V. Institut fuer angewandte Oekologie, Darmstadt (Germany); Vogt, Regine; Giegrich, Juergen [IFEU Institut fuer Energie- und Umweltforschung Heidelberg GmbH (Germany)

    2010-03-15

    In the National Inventory Reports only the direct greenhouse gas emissions of the waste management sector are taken into account. The overall efforts of the waste management sector in terms of reducing greenhouse gas emissions in accordance with the Kyoto Protocol are not, therefore, represented. In particular the efforts related to the separate collection of recyclables from waste and the re-use or energetic use of such recyclables or residue are shown as the savings of other sectors of the production industry and energy industry. This research project has used the methodology of eco-balancing to examine the efforts of the municipal waste management sector - including the use of waste wood - in Germany, the 27 Member States as well as in Turkey, Tunisia and Mexico. The balances referred to the actual balance in 2006 and different optimisation scenarios for 2020. The expenditure resulting from collection, transport, treatment and recycling of waste after it has become available was compared to the savings arising from the secondary products and energy realised from waste. Since the landfilling of untreated municipal waste has been discontinued in Germany, the key potentials of the country have already been fully tapped. Indeed, the contribution of municipal waste management to the reduction of total greenhouse gas emissions amounted to approx. 18 million t CO{sub 2}-eq per annum in 2006 in Germany. In particular, these emission reductions have been brought about by improving treatment techniques (emission reductions in the biological processes and greater energy efficiency in the thermal processes) and by increases in the separate collection and use of recyclable materials stemming from municipal waste and waste wood. If both strategies are combined, there is still an optimisation potential for reducing greenhouse gas emissions of 10 million t CO{sub 2}-eq per annum. Compared to 1990 data taken from previous assessments, the overall reduction amounts to approx. 56

  3. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  4. Cost efficiency of waste management in Dutch municipalities

    NARCIS (Netherlands)

    de Groot, Hans; van Heezik, A.; Hollanders, D.; Felsö, F.

    2011-01-01

    This paper analyses the cost efficiency of waste management of Dutch municipalities. For the first time stochastic frontier analysis is applied to Dutch data, employing recent multi-year data (2005-2008). The preliminary findings confirm earlier results on the importance for cost efficiency of

  5. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    Science.gov (United States)

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  6. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Integrated solid waste management of Scottsdale, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  8. 40 CFR 60.1555 - Are any small municipal waste combustion units exempt from my State plan?

    Science.gov (United States)

    2010-07-01

    ... qualifies for the exemption. (d) Municipal waste combustion units that combust only tires. Units are exempt... single-item waste stream of tires and no other municipal waste (the unit can co-fire coal, fuel oil.../rubber recycling units. Units are exempt from your State plan if four requirements are met: (1) The...

  9. 40 CFR 62.15020 - Can my small municipal waste combustion unit be exempt from this subpart?

    Science.gov (United States)

    2010-07-01

    ...) Municipal waste combustion units that combust only tires. Your unit is exempt from this subpart if three requirements are met: (1) Your municipal waste combustion unit combusts a single-item waste stream of tires and...) Plastics/rubber recycling units. Your unit is exempt from this subpart if four requirements are met: (1...

  10. An approach for evaluating the effects of source separation on municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, J.H. [Finnish Environment Institute, Helsinki (Finland)

    2000-07-01

    An approach was developed for integrated analysis of recovery rates, waste streams, costs and emissions of municipal solid waste management (MSWM). The approach differs from most earlier models used in the strategic planning of MSWM because of a comprehensive analysis of on-site collection systems of waste materials separated at source for recovery. As a result, the recovery rates and sizes of waste streams can be calculated on the basis of the characteristics of separation strategies instead of giving them as input data. The modelling concept developed can also be applied in other regions, municipalities and districts. This thesis consists of four case studies. Three of these were performed to test the approach developed and to evaluate the effects of separation on MSWM in Finland. In these case studies the approach was applied for modelling: (1) Finland's national separation strategy for municipal solid waste, (2) the effects of separation on MSWM systems in the Helsinki region and (3) the efficiency of various waste collection methods in the Helsinki region. The models developed for these three case studies are static and linear simulation models which were constructed in the format of an Excel spreadsheet. In addition, a new version of the original Swedish MIMES/Waste model was constructed and applied in one of the case studies. The case studies proved that the approach is an applicable tool for various research settings and circumstances in the strategic planning of MSWM. The following main results were obtained from the case studies: A high recovery rate level (around 70 %wt) can be achieved in MSWM without incineration; Central sorting of mixed waste must be included in Finland's national separation strategy in order to reach the recovery rate targets of 50 %wt (year 2000) and 70 %wt (year 2005) adopted for municipal solid waste in the National Waste Plan. The feasible source separation strategies result in recovery rates around 35-40 %wt with the

  11. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    Science.gov (United States)

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  12. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  13. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    Energy Technology Data Exchange (ETDEWEB)

    Oribe-Garcia, Iraia, E-mail: iraia.oribe@deusto.es; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-05-15

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.

  14. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    International Nuclear Information System (INIS)

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-01-01

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation

  15. An experimental method for designing the municipal solid waste biodrying

    International Nuclear Information System (INIS)

    Rada, E.C.; Politecnico Univ., Bucarest; Franzinelli, A.; Taiss, M.; Ragazzi, M.; Panaitescu, V.; Apostol, T.

    2005-01-01

    In the management of Municipal Solid Waste (MSW), in agreement with the new European directives concerning the valorization of materials and energy recovery, a recent approach based on a one-stream Biological Mechanical Treatment (BMT) is spreading as an alternative to the traditional two-stream approach. The bio-mechanical treatment of MSW is an increasing option either as a pre-treatment before land filling or as a pre-treatment before combustion. In the present paper an experimental method for designing the Municipal Solid Waste bio-drying is proposed. That means this paper deals with the option of energy recovery. The aim is to provide design criteria for bio-drying plants independent from the patents available in the sector [it

  16. Utilization of ash from municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  17. Municipal solid waste effective stress analysis

    International Nuclear Information System (INIS)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-01-01

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  18. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    International Nuclear Information System (INIS)

    Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2015-01-01

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single

  19. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Petersen, Claus [Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen (Denmark); Scheutz, Charlotte; Astrup, Thomas Fruergaard [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2015-02-15

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single

  20. Waste management in the regional level: Example of municipalities Pljevlja and Žabljak

    Directory of Open Access Journals (Sweden)

    Šljivančanin Dušan

    2011-01-01

    Full Text Available The problem of proper disposal of all types of solid waste and its inadequate treatment is one of the most dominant spatial-ecological problems of modern society, and as such seriously threatens the quality of basic environmental media and public health. The aim is to point out opportunities for sustainable development of Pljevlja and Zabljak Municipalities through the development of waste management system that will control waste generation, educe the impact of waste on the environment, improve resource efficiency, ensure the proper disposal, stimulate investment in public-private sector and maximize the economic opportunities arising from waste. The subject of this paper is to find an effective model of sustainable waste management in the municipalities of Zabljak and Pljevlja, with the main objective of rational use of space, as a limited resource, and reduce overall costs of waste treatment. The studied area that includes the administrative boundaries of these municipalities in the north of Montenegro, among to traffic geographical and functional correlation, present an area that is in the official republic documents (Spatial Rlan of Montenegro until 2020, 2008 recognized as a region in which envisages the construction of regional sanitary landfills and transfer stations network. In this sense, the work will represent the implementation of policies on waste management in Montenegro, in accordance with the recommendations, directives and EU guidelines.

  1. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  2. Intermunicipal cooperation, privatization and waste management costs: Evidence from rural municipalities

    International Nuclear Information System (INIS)

    Bel, Germa; Mur, Melania

    2009-01-01

    The aim of this paper is to analyze the effects of intermunicipal cooperation and privatization on the delivery costs of urban solid waste services in rural environments. The results of our empirical analysis, which we conducted among a sample of very small municipalities, indicate that small towns that cooperate incur lower costs for their waste collection service. Cooperation also raises collection frequency and improves the quality of the service in small towns. By contrast, the form of production, whether it is public or private, does not result in systematic differences in costs. Interestingly, the degree of population dispersion, that is, the number of population units within the municipal jurisdiction, has a significant positive relation with service costs. No evidence of scale economies is found because small municipalities have likely exploited them by means of intermunicipal cooperation.

  3. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  4. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  5. Municipal solid waste management: A bibliography of U.S. Department of Energy contractor reports through 1995

    International Nuclear Information System (INIS)

    NONE

    1997-01-01

    This bibliography is an updated version of Municipal Solid Waste Management: A Bibliography of US Department of Energy Contractor Reports Through 1994 (NREL/TP-430-7886). The original bibliography, entitled Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, was published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes-an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update

  6. Municipal solid waste management: A bibliography of U.S. Department of Energy contractor reports through 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This bibliography is an updated version of Municipal Solid Waste Management: A Bibliography of US Department of Energy Contractor Reports Through 1994 (NREL/TP-430-7886). The original bibliography, entitled Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, was published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes--an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update.

  7. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    International Nuclear Information System (INIS)

    Boldrin, Alessio; Andersen, Jacob K.; Christensen, Thomas H.

    2011-01-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg -1 ww for the non-toxic categories and up to 100 mPE Mg -1 ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.

  8. Gamma radiation sterilization of municipal waste for reuse as a carrier for inoculant

    International Nuclear Information System (INIS)

    Hung, N.M.; Nhan, D.D.; Quynh, T.M.; Thuan, V.V.; Toan, P.V.

    1998-01-01

    This study aims at: i) analytical evaluation for heavy metals, phenols and microorganism as well as fungus contamination of municipal waste from Hanoi City (Vietnam); ii) application gamma radiation technology to disinfect the material for re-using it as a carrier for microbial inoculant. The study was conducted with the municipal waste which was primarily processed at a waste treatment station and it contains main components such as total organic carbon, nitrogen, phosphorus, potassium, silica of 36.8%, 0.45%, 0.81%, 0.65% and 25.4%, respectively. The content of heavy metals such as Pb, Hg, As, Ni, Cu, Zn, Cr etc. of the waste was quantified by the XRF technique and it was found to be 169.4, 0.2, 18.6, 40.8, 149.4, 365.1 and 101.4 mg/kg dry weight, respectively. The phenolic contamination content of the waste was evaluated by GC-FPD technique and it is lower than the detection limit (0.1 mg/kg) of the FPD. Total aerobic microorganisms and fungus populations in the waste were found to be 1.4.10 8 cell.g -1 and 0.54.10 6 CFU.g -1 , respectively, while pathogen was not found. Irradiation technology was applied to disinfect the material and experimental results show that the effective dose (D eff ) in this case should be as high as 50-55 kGy. It appeared that the municipal waste from Hanoi city with its high organic matter content followed by irradiation disinfection is quite suitable for the re-use as a carrier in biofertilizers. The irradiation disinfected municipal waste based inoculant are expected to be able to store for a long period of time before the contaminating microorganisms and fungus could recover

  9. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  10. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  11. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  12. Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-09-01

    U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  13. Global warming factors modelled for 40 generic municipal waste management scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2009-01-01

    Global warming factors (kg CO2-eq.-tonne—1 of waste) have been modelled for 40 different municipal waste management scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste management by landfilling, incineration or mechanical—biological waste...... treatment. For average European waste composition most waste management scenarios provided negative global warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0—400, scenarios with incineration saved 200—700, and scenarios with mechanical...

  14. Risk of Potential Exposure Incident in Non-healthcare Workers in Contact with Infectious and Municipal Waste

    Science.gov (United States)

    Kanisek, Sanja; Gmajnić, Rudika; Barać, Ivana

    2018-01-01

    Abstract Introduction The proper classification of sharp and infectious waste in situ by the healthcare workers is an important measure of prevention of sharps and other exposure incidents in non-healthcare workers, who handle such waste. The aim was to examine the practice of classifying sharp and infectious waste in family and dental practices. Methods An analysis of 50 bags of infectious and 50 bags of municipal waste from five family and five dental practices for five days in October 2016 at the Health centre Osijek. Results Healthcare workers in 70% of the practices deposited sharps in infectious waste. In 56% of infectious waste bags, sharp object were found. More risky bags of infectious waste were produced by family practices (64%), but with no significant differences in relation to dental practices (48%), (P=0.143). Disposing of infectious into municipal waste was the case in 90% of the practitioners, where in 60% of municipal waste bags, infectious waste was disposed. Dental practices produced more risky bags of municipal waste (76%) in relation to family practices (44%), but with no significant difference (P=0.714). Conclusions The results of this research point to importance of performing audits of proper disposal of sharps and infectious waste to reduce the risks of injury to non-healthcare workers who come into contact with the said waste. Given results could be used for framing written protocols of proper disposal of sharps and infectious waste that should be visibly available in family and dental practices and for education of healthcare workers. PMID:29651317

  15. An inexact reverse logistics model for municipal solid waste management systems.

    Science.gov (United States)

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  17. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Møller, H.B.; Ahring, Birgitte Kiær

    2004-01-01

    of the principles of the anaerobic digestion process and to an optimization of its large-scale implementation. In order to get an overview of the current situation concerning the treatment of the organic fraction of municipal solid waste (OFMSW) in Denmark, interviews were carried out with operators of the biogas...... in paper bags is preferable to collection in plastic bags and successive separation of plastics in a waste processing treatment plant...... plants where OFMSW is treated and the municipality staff responsible for waste management. With the aim of fulfilling the governmental goal to treat 150 000 tons of OFMSW by the year 2004 mainly by anaerobic digestion, the different municipalities are investigating different concepts of waste collection...

  18. Comparative study of municipal solid waste generation and composition in Shiraz city (2014

    Directory of Open Access Journals (Sweden)

    A. Norouzian Baghani

    2017-06-01

    Full Text Available Background: Exponential growths of population and urbanization, and the development of social economy have resulted in an increase in the amount of MSW generation throughout the world. Objective: The present study aimed to survey qualitative and quantitative analysis of solid waste in Shiraz city and comparative these results with the world scenario of solid wastes generation for improving the sustainable management of solid waste. Methods: This cross-sectional study was conducted in 2014 in nine municipality regions Shiraz with a total population of approximately 1,549,354 people. Basic data was gathered through Shiraz waste management organization. Then generation (per capita and constituent percent of the solid waste were evaluated based on the sampling and field analyzing from reliable guidelines. Data were analyzed with Stata-13 and Excel statistical software. Kolmogorov-Smirnov test used for the normality of variables. Means were compared by Student T test and Mann-Whitney test. Findings: The rate of solid waste generated in the Shiraz city was 222.65 kg per person per year in 2014. Statistical analysis showed that the variables of organic materials, paper and cardboard, glass and metal between developed and developing countries were a significant difference (P0.05. Conclusion: Solid waste per capita in Shiraz city (about 600 g/day was near to the average amount of solid waste generation in Iran and other developing countries. Due to the high content of organic material in municipal solid waste of Shiraz, minimization of these material and separation of dry and wet solid wastes must be noted from the people and municipalities.

  19. Between hype and veracity; privatization of municipal solid waste management and its impacts on the informal waste sector.

    Science.gov (United States)

    Sandhu, Kiran; Burton, Paul; Dedekorkut-Howes, Aysin

    2017-01-01

    The informal waste recycling sector has been an indispensable but ironically invisible part of the waste management systems in developing countries as India, often completely disregarded and overlooked by decision makers and policy frameworks. The turn towards liberalization of economy since 1991 in India opened the doors for privatization of urban services and the waste sector found favor with private companies facilitated by the local governments. In joining the privatization bandwagon, the local governments aim to create an image of a progressive city demonstrated most visibly through apt management of municipal solid waste. Resultantly, the long important stakeholder, the informal sector has been sidelined and left to face the adverse impacts of privatization. There is hardly any recognition of its contributions or any attempt to integrate it within the formal waste management systems. The study investigates the impacts of privatization on the waste pickers in waste recycling operations. Highlighting the other dimension of waste collection and management in urban India the study focuses on the waste pickers and small time informal scrap dealers and this is done by taking the case study of Amritsar city, which is an important historic centre and a metropolitan city in the state of Punjab, India. The paper develops an analytical framework, drawing from literature review to analyze the impacts. In conclusion, it supports the case for involving informal waste sector towards achieving sustainable waste management in the city. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Municipal solid waste management. Strategies and technologies for sustainable solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, C.; Hellweg, S.; Stucki, S. (eds.)

    2002-10-01

    The way municipal solid waste is handled greatly determines its impact on the local as well as the global environment. New technologies habe emerged for the treatment of waste, for the recovery of raw materials and energy, and for safe final disposal. The environmental performance of technologies, their social acceptance and their economic viability are key issues to be considered in sustainable waste management. This book provides an overview of current practices in waste management and a synthesis of new developments achieved through interdisciplinary discussions of recent research results. (orig.)

  1. Municipal Solid Waste Characterization according to Different Income Levels: A Case Study

    Directory of Open Access Journals (Sweden)

    Huseyin Kurtulus Ozcan

    2016-10-01

    Full Text Available Solid waste generation and characterization are some of the most important parameters which affect environmental sustainability. Municipal solid waste (MSW characterization depends on social structure and income levels. This study aims to determine the variations in waste components within MSW mass by income levels and seasonal conditions following the analysis conducted on the characterization of solid wastes produced in the Kartal district of the province of Istanbul, which is the research area of this study. To this end, 1.9 tons of solid waste samples were collected to represent four different lifestyles (high, medium, and low income levels, and downtown in the winter and summer periods, and characterization was made on these samples. In order to support waste characterization, humidity content and calorific value analyses were also conducted and various suggestions were brought towards waste management in line with the obtained findings. According to the results obtained in the study, organic waste had the highest rate of waste mass by 57.69%. Additionally, significant differences were found in municipal solid waste components (MSWC based on income level. Average moisture content (MC of solid waste samples was 71.1% in moisture analyses. The average of calorific (heating value (HHV was calculated as 2518.5 kcal·kg−1.

  2. Exergy analysis of biogas production from a municipal solid waste landfill

    DEFF Research Database (Denmark)

    Xydis, George; Nanaki, E.; Koroneos, C.

    2013-01-01

    In the energy area, intensive efforts are being made over the last years to bridge the supply area with renewable energy sources and the demand side with energy conservation. Energy recovery from municipal solid waste landfills can play a contributing role in the solution of problems of both waste...

  3. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  4. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    International Nuclear Information System (INIS)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-01-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  5. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  6. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  7. Techno-economic and environmental analysis of a thermal treatment technology for the generation of electrical energy by municipal solid waste from the zone of Los Santos

    International Nuclear Information System (INIS)

    Carranza Campos, Kevin; Monge Leiva, Matias

    2014-01-01

    A technical, economic and environmental assessment is realized of a thermal treatment technology. The energetic valorization from municipal solid waste and electric power generation in the zone of Los Santos, Costa Rica, are made by the multicriteria hierarchical analysis methodology. The national and cantonal situation is examined in the integral management of municipal solid waste (GIRS), with emphasis on the cantons from the zone of Los Santos. A comparative analysis is developed among some cantons of Costa Rica that have had GIRS studies, and the zone of Los Santos to know the fraction of municipal solid waste that can be valued energetically and calorific power that present. The similarity in the characterization, composition and physico-chemical properties is determined in the study of residues between the cantons analyzed and the zone of Los Santos. The legislation relating the waste processing is analyzed, according Law 8839 for integral management of waste and laws similar to the implementation of a power generation plant. An analysis is developed for the environmental compliance of thermal treatment technologies, including aspects for control of contaminants. The main technologies of energy valorization from waste are investigated and some real cases of Latin America and the world are exposed. A thermal treatment technology of municipal solid waste is selected through a decision-making methodology to evaluate technical, environmental and economic aspects. Operation requirements and functioning of the devices that conform a power generation plant are described by municipal solid waste of the technology selected. The economic viability of the selected proposal has determined by an economic analysis, to extend on the most influential aspects developing alternative scenarios. The diagnosis of the situation of solid waste in the zone of Los Santos has specified that the cardboard, paper and plastics have been the most adequate for the thermal utilization

  8. FORMATION OF DIOXINS AND FURANS DURING MUNICIPAL SOLID WASTE GASIFICATION

    Directory of Open Access Journals (Sweden)

    E. J. Lopes

    2015-03-01

    Full Text Available Abstract Thermal treatment is an interesting strategy to dispose of municipal solid waste: it reduces the volume and weight of the material dumped in landfills and generates alternative energy. However, the process emits pollutants, such as dioxins and furans. The present study evaluated MSW gasification-combustion integrated technologies in terms of dioxin and furan emission; and compared the obtained data with literature results on incineration, to point out which operational features differentiate the release of pollutants by these two processes. The results show that the process of integrated gasification and combustion emitted 0.28 ng N-1 m-3, expressed in TEQ (Total Equivalent Toxicity, of PCDD/F, less than the maximum limits allowed by local and international laws, whereas incineration normally affords values above these limits and requires a gas treatment system. The distinct operational conditions of the two thermal processes, especially those related to temperature and the presence of oxygen and fixed carbon, led to a lower PCDD/F emission in gasification.

  9. Market forces in municipal and industrial waste-to-energy

    International Nuclear Information System (INIS)

    Makansi, J.

    1991-01-01

    The market for municipal and industrial waste-to-energy can be characterized simply as currently soft with continued excellent long-term prospects. But as in all markets large and small, niche opportunities exist now which can be profitable with proper definition and strategy. Economics of several projects have proven marginal, cost overruns are common, and revenue projections are sometimes overstates. Also contributing to poorer economics of late are lower prices for the electric power produced from these plants. New environmental restrictions are adding 10-15% to the capital costs of a given project. On the industrial front, the strength of waste-fuel firing continues to be evident for independent power production. Important fuel-niche markets have sprung up over the last decade including petroleum coke, coal-mining wastes, hospital or redbag wastes, biomass, used tires, and so on. Another fuel niche is hazardous waste incineration. In the municipal arena, realism has not yet hit the recycling and source reduction enthusiasts. Only 25-35% recycling is considered practical by experts. There are also limits to how often material can be recycled. Finally, in spite of the best efforts of the population to control the amount of refuse generated and to recycle that which is, population and economic growth may overtake any new sense of environmental responsibility. And, yes, the additional refuse still has to go somewhere exclamation point The best somewhere option continues to be a waste-to-energy plant. Current market opportunities and two other market forces (international activities and the role of US utilities) are discussed

  10. Mathematical modeling in municipal solid waste management: case study of Tehran.

    Science.gov (United States)

    Akbarpour Shirazi, Mohsen; Samieifard, Reza; Abduli, Mohammad Ali; Omidvar, Babak

    2016-01-01

    Solid Waste Management (SWM) in metropolises with systematic methods and following environmental issues, is one of the most important subjects in the area of urban management. In this regard, it is regarded as a legal entity so that its activities are not overshadowed by other urban activities. In this paper, a linear mathematical programming model has been designed for integrated SWM. Using Lingo software and required data from Tehran, the proposed model has been applied for Tehran SWM system as a case study. To determine the optimal status of the available system for Tehran's Solid Waste Management System (SWMS), a novel linear programming model is applied. Tehran has 22 municipal regions with 11 transfer stations and 10 processing units. By running of the model, the transfer stations and processing units are decreased to 10 and 6 units, respectively. The proposed model is an alternative method for improvement the SWMS by decreasing the transfer stations and processing units.

  11. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  12. Actual problems of municipal cleaner’s waste waters

    Directory of Open Access Journals (Sweden)

    Konko¾ová Patrícia

    2000-03-01

    Full Text Available In paper are evaluated social and economical changes in water economy with emphasis on complex evaluation of municipal cleaner’s waste waters with respect of legislative, position of ownerskip relationskips and financial security of public experiences of water economy.

  13. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  14. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  15. Co-digestion of agricultural and municipal waste to produce energy and soil amendment

    Science.gov (United States)

    In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) produ...

  16. Renewable municipal waste barometer - EurObserv'ER - December 2012

    International Nuclear Information System (INIS)

    2012-12-01

    +2,6 % the growth of primary energy output from renewable municipal waste in the EU relative to 2010. Energy recovery by incinerating household refuse in the European Union led to renewable energy production of more than 8.2 million tons of oil equivalent in 2011, which is a 2.6% increase on 2010. While the increase in waste-to-energy recovery is preferable to using landfills, under no circumstances should this growth be made at the cost of waste prevention and recycling policies

  17. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  18. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India.

    Science.gov (United States)

    Srivastava, P K; Kulshreshtha, K; Mohanty, C S; Pushpangadan, P; Singh, A

    2005-01-01

    The present investigation is a case study of Lucknow, the main metropolis in Northern India, which succumbs to a major problem of municipal solid waste and its management. A qualitative investigation using strengths, weaknesses, opportunities and threats analysis (SWOT) has been successfully implemented through this community participation study. This qualitative investigation emphasizes the limited capabilities of the municipal corporation's resources to provide proper facilitation of the municipal solid waste management (MSWM) services without community participation in Lucknow city. The SWOT analysis was performed to formulate strategic action plans for MSWM in order to mobilize and utilize the community resources on the one hand and municipal corporation's resources on the other. It has allowed the introduction of a participatory approach for better collaboration between the community and municipal corporation in Lucknow (India). With this stakeholder-based SWOT analysis, efforts were made to explore the ways and means of converting the possible "threats" into "opportunities" and changing the "weaknesses" into "strengths" regarding a community-based MSWM programme. By this investigation, concrete strategic action plans were developed for both the community and municipal corporation to improve MSWM in Lucknow.

  19. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Kulshreshtha, K.; Mohanty, C.S.; Pushpangadan, P.; Singh, A.

    2005-01-01

    The present investigation is a case study of Lucknow, the main metropolis in Northern India, which succumbs to a major problem of municipal solid waste and its management. A qualitative investigation using strengths, weaknesses, opportunities and threats analysis (SWOT) has been successfully implemented through this community participation study. This qualitative investigation emphasizes the limited capabilities of the municipal corporation's resources to provide proper facilitation of the municipal solid waste management (MSWM) services without community participation in Lucknow city. The SWOT analysis was performed to formulate strategic action plans for MSWM in order to mobilize and utilize the community resources on the one hand and municipal corporation's resources on the other. It has allowed the introduction of a participatory approach for better collaboration between the community and municipal corporation in Lucknow (India). With this stakeholder-based SWOT analysis, efforts were made to explore the ways and means of converting the possible 'threats' into 'opportunities' and changing the 'weaknesses' into 'strengths' regarding a community-based MSWM programme. By this investigation, concrete strategic action plans were developed for both the community and municipal corporation to improve MSWM in Lucknow

  20. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Japanese, through a combination of public policy, private market conditions, a geographic necessity, practice integrated municipal solid waste (MSW) management. The approach of MSW management in Japan is as follows: The basic concept of refuse treatment consists of recycling discharged refuse into usable resources, reusing such resources as much as possible, and then treating or disposing of the usable portion into a sanitary condition. Considering the difficulty of procuring land or seaside areas for such purpose as a refuse disposal site, it will be necessary to minimize the volume of refuse collected for treatment or disposal.

  1. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    OpenAIRE

    MA Abduli; M Akbarpour Shirazi; B Omidvar; R Samieifard

    2015-01-01

    Introduction: Solid waste reduction is a key and fundamental factor in creating a sustainable society. Tehran Municipality has embarked on a series of positive measures in recent years in different areas of waste management such as source separation, mechanized waste collection, and constructing compost factories. However these measures have not only brought about any reduction in solid waste reduction but have also resulted in their increase. In this article, first we will describe the curre...

  2. Municipal solid waste disposal by using metallurgical technologies and equipments

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jiuju; Sun, Wenqiang [State Environmental Protection Key Laboratory of Eco-industry, Institute of Thermal and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2012-07-01

    Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology for medical waste were respectively developed to improve current unsatisfied sorting status of waste. The investigation results of laboratory experiments, semi-industrial experiments and industrial experiments as well as their economic benefits and environmental benefits for related technologies were separately presented.

  3. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    Science.gov (United States)

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  4. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag

    NARCIS (Netherlands)

    Gao, X.; Yuan, B.; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    In this paper, the feasibility of using two solid wastes in alkali activated slag composites as construction and building materials is evaluated. One waste is the municipal solid waste incineration (MSWI) bottom ash, and the other one is fine granite powder from aggregate manufacturing. These two

  5. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  6. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    Science.gov (United States)

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  7. Enhanced stabilisation of municipal solid waste in bioreactor landfills

    NARCIS (Netherlands)

    Valencia Vázquez, R.

    2008-01-01

    The increasing development and urbanization of the society has led to an increase per-capita production of municipal solid waste (MSW) materials. These MSW materials are of organic and inorganic nature that can be of rapidly, moderately and slowly biodegradable or inert characteristics. With regard

  8. HOLISTIC APPROACH TO ENVIRONMENTAL MANAGEMENT OF MUNICIPAL SOLID WASTE

    Science.gov (United States)

    The paper presents results from the application of a new municipal solid waste (MSW) management planning aid to EPA's new facility in the Research Triangle Park, NC. This planning aid, or decision support tool, is computer software that analyzes the cost and environmental impact ...

  9. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model

    Energy Technology Data Exchange (ETDEWEB)

    Pandyaswargo, Andante Hadi; Onoda, Hiroshi; Nagata, Katsuya [Waseda Univ., Saitama (Japan). Graduate School of Environment and Energy Engineering

    2012-11-01

    Natural resource scarcity and the effects of environmental destruction have pushed societies to use and reuse resources more efficiently. Waste should no longer be seen as a burden but rather as another source of material such as energy fuel. This study analyzes the potential of three waste management technologies - incineration with energy recovery, composting, and sanitary landfill gas collection - as ways to recover energy and material from municipal solid waste. The study applies the environmental load point (ELP) method and utilizes municipal waste characteristics and composition from India, Indonesia, and China as case studies. The ELP methodology employs integrated weighting in the quantification process to get a one-unit result. This study particularly uses analytic hierarchical process questionnaires to get the weighting value of the nine impact categories: energy depletion, global warming, ozone depletion, resource consumption, ecosystem influence, water pollution, waste disposal, air pollution, and acid rain. The results show that the scenario which includes composting organic waste and sanitary landfill with gas collection for energy recovery has medium environmental impact and the highest practicability. The optimum material and energy potential is from the Chinese case study in which 254 tonnes of compost fertilizer and 60 MWh of electricity is the estimated output for every 1,000 tonnes of waste treated. (orig.)

  10. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-01-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita -1 day -1 . Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  11. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico.

    Science.gov (United States)

    Gómez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-07-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita(-1) day(-1). Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  12. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Predicting the calorific value of refuse derived fuel from the characteristics of municipal solid waste

    International Nuclear Information System (INIS)

    Sivapalan Kathiravale; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Mohamad Azman Che Mat Isa; Mohd Fairus Abdul Farid; Norasalwa Zakaria; Khaironie Mohd Takip; Rohyiza Ba'an

    2006-01-01

    The Imposing need to manage the municipal solid waste generated by society in a proper manner has urged municipalities to look into new management methods, which are not only environmentally friendly but also economically profitable. One such way is by converting this waste material into fuel. Currently, Kajang in the State of Selangor, Malaysia, generates about 700 tons of Municipal Solid Waste (MSW) a day. Due to rapid development, lack of land area for new landfill and the environmental impact of raw landfills, the local municipal council has collaborated with a local company in the management of this waste. The company has proposed to convert the MSW to Refuse Derived Fuel (RDF). In view of this, a pilot plant to convert MSW to RDF was erected by the company and begun operation in January 2002. This pilot plant has the capability of converting 15 tons of MSW to 5 tons of RDF. At the same time studies, have been carried out to assess the plant performance, the flue gas analysis, and also the MSW and RDF characteristic. This paper will highlight the findings of the MSW and RDF characterization work carried out over the past year. Sampling and analysis was carried in accordance with ASTM standards. Results of the waste analysis showed that the calorific value of the resulting RDF could be predicted from the physical characteristics as well as the moisture content. Regression analysis on the available data has been used to create equations relating the proximate composition and moisture content of the incoming municipal solid waste to the calorific value of the RDF

  14. Strategic municipal solid waste management: A quantitative model for Italian regions

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2014-01-01

    Highlights: • Definition of new plan waste management based on incineration. • Profitability of waste facilities based on economic and financial indicators. • The amount of wastes generated are considered not annually constant and with a regional detail. • A sensitivity analysis is used to test some of the initial assumptions. • Regional strategies are proposed for optimize benefits from correct waste management. - Abstract: Current economic crisis brought to light the structural deficiencies of European economy. This paper aims to improve the performances of a policy on sustainable municipal solid waste management strategies. Specifically, the attention is focused on Italian country that reports a high rate of landfilling. Waste to Energy plant is an attractive technological option in municipal solid waste, but it is a subject of intense debate. Incinerators require effective and efficient controls to avoid emissions of harmful pollutants into the air, land and water, which may influence human health and environment. To address waste management situation, this study uses a multi-objective mathematical programming. A new plan is presented to evaluate and quantify the effects of initiatives for diversion of current waste from landfill. In an attempt to better simulate realistic waste management scenarios, the amount of waste generated is not annually constant and changes are accounted in waste diversion rates. Moreover, due to the geographical characteristics of Italy, the realization of new facilities is replicated with a regional detail. In this paper economic and financial indicators are used to define the profitability of waste facilities. Moreover, a sensitivity analysis is used to test some of the initial assumptions. Once identified the efficient Waste to Energy plant, regional strategies of waste management are proposed to optimize financial and environmental benefits of the sector. The proposed waste management framework provides a concrete scheme

  15. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Fan, Yunlong; Yu, Zhaosheng; Fang, Shiwen; Lin, Yan; Lin, Yousheng; Liao, Yanfen; Ma, Xiaoqian

    2016-01-01

    Highlights: • Co-combustion of oil shale with municipal solid waste created significant changes. • Blending with municipal solid wastes could improve the combustion performance. • 10–30% of oil shale in the blends could be determined as the optimum ratio range. • Activation energy were calculated by the conversion rate and different proportion. - Abstract: The aim of this study is trying to reveal the thermal characteristics and kinetics of oil shale, municipal solid waste and their blends in the combustion process which are needed for efficient utilization. The combustion experiment is carried out in a thermogravimetric simultaneous thermal analyzer, where the temperature ranged from 110 °C to 900 °C at three different heating rates as 10 °C/min, 20 °C/min and 30 °C/min. Their kinetics were studied by Ozawa–Flynn–Wall and Friedmen methods. According to the data analysis, combustion characteristic index increased progressively with the increase of the proportion of municipal solid waste. And it’s suggested that there was certain interaction in the combustion process of oil shale and municipal solid waste. The average activation energy of the blends reached the minimum value, 177.7927 kJ/mol by Ozawa–Flynn–Wall method and 167.4234 kJ/mol by Friedmen method, when the proportion of MSW was 70%.

  17. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    Science.gov (United States)

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  19. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    International Nuclear Information System (INIS)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region's existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs

  20. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    Science.gov (United States)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  1. A unique approach to municipal waste management in Chianti, Italy

    International Nuclear Information System (INIS)

    Dhargalkar, P.H.

    1991-01-01

    Innovative solutions are required to manage the growing problem of disposal of municipal waste throughout the world. Recovery of energy by combustion of municipal waste has become an acceptable approach in many communities. A unique system with a capacity of 200 tons of waste per day with simultaneous production of electric power and fuel gas is currently under construction in Greve located in the famous wine region of Chianti, Italy. The refuse-derived fuel will be treated in a fluidized bed gasifier. A portion of the gas produced by the gasifier will be used to produce 6.7 MW of electric power; the remaining gas will be used as a fuel in the neighboring cement plant. The plant will be equipped with a state-of-the-art emission control system including an afterburner, a quench reactor, dry venturi and a fabric filter to minimize emissions to the atmosphere. This is the first plant in Europe to employ the fluidized bed gasifier technology on refuse-derived fuel. Design highlights of the overall plant including the air quality control system are presented in this paper

  2. The multiple market-exposure of waste management companies: A case study of two Swedish municipally owned companies

    International Nuclear Information System (INIS)

    Corvellec, Hervé; Bramryd, Torleif

    2012-01-01

    Highlights: ► Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. ► These markets differ in kind and their demands follow different logics. ► These markets affect the public service, processing, and marketing of Swedish waste management. ► Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market that determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.

  3. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    Science.gov (United States)

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  6. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  7. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  8. Effect of fluidization number on the combustion of simulated municipal solid waste in a fluidized bed

    International Nuclear Information System (INIS)

    Anwar Johari; Mutahharah, M.M.; Abdul, A.; Salema, A.; Kalantarifard, A.; Rozainee, M.

    2010-01-01

    The effect of fluidization number on the combustion of simulated municipal solid was in a fluidized bed was investigated. Simulated municipal solid waste was used a sample and it was formulated from major waste composition found in Malaysia which comprised of food waste, paper, plastic and vegetable waste. Proximate and ultimate analyses of the simulated were conducted and results showed its composition was similar to the actual Malaysian municipal solid waste composition. Combustion study was carried out in a rectangular fluidized bed with sand of mean particle size of 0.34 mm as a fluidising medium. The range of fluidization numbers investigated was 3 to 11 U mf . The combustion was carried out at stoichiometric condition (Air Factor = 1). Results showed that the best fluidization number was in the range of 5 to 7 U mf with 5 U mf being the most optimum in which the bed temperature was sustained in a much longer period. (author)

  9. Current Status of Municipal Solid Waste Generation in Malaysia

    OpenAIRE

    Budhiarta, Iwan; Siwar, Chamhuri; Basri, Hassan

    2012-01-01

    Recent investigations in 2010 resulted information that population of Kuala Lumpur City Area has reached 1.66 million people (JPM, 2009). With the population growth rate of 6.1 percent, then the population in the year 2010 can be estimated at least to 1.69 million people. The number of municipal solid waste generated from Kuala Lumpur State Territory and delivered to TBTS was recorded of 2,000 tonnes per day. Accordingly, the solid waste generation average for any person is 1.2 kilograms a da...

  10. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. VERMICOMPOSTING AS AN ALTERNATIVE WAY OF BIODEGRADABLE WASTE MANAGEMENT FOR SMALL MUNICIPALITIES

    Directory of Open Access Journals (Sweden)

    Aleksandra Sosnecka

    2016-07-01

    Full Text Available The aim of the study was to assess the usefulness of vermicomposting as a method of bioconversion of organic wastes, inter alia sewage sludge, biodegradable fraction of municipal solid wastes and green wastes. Vermicomposting is a biological process in which earthworms are employed to cooperate with microorganisms in order to convert organic wastes into a valuable product. It is considered as a relatively low cost and environmentally-friendly method of waste treatment. Nevertheless, as each biotechnology, the process is limited to some physical, chemical and biological parameters. In this study, sewage sludge coming from medium-sized wastewater treatment plant was mixed with mown grass, sawdust and organic fraction of municipal wastes and vermicomposted for 5 weeks with Eisenia fetida and Eisenia andrei as main actors. The scope of the research was to 1 assess the influence of E. fetida and E.andrei composting earthworms on the physical and chemical properties of the product; 2 changes of concentration of selected heavy metals and their available forms in compost during the process, 3 the effects of substrates on earthworms survival and reproduction. Selected earthworm species had shown a high tolerance to the contaminants present in sewage sludge and a positive impact on the quality of the product was noted. Vermicomposting enhances decomposition of organic matter, leads to decrease in C/N ratio and pH, and changes the availability of some heavy metals and its total content in substratum. Experimental medium led earthworms to increase body weight due to the presence of large amount of organic matter, while the reproduction was importantly reduced. Vermicomposting can be considered as a method of treatment of solid wastes, mainly in the case of small municipalities.

  12. An overview of municipal solid waste management in China

    International Nuclear Information System (INIS)

    Chen Xudong; Geng Yong; Fujita, Tsuyoshi

    2010-01-01

    Municipal solid waste management (MSWM) in China warrants particular attention as China has become the largest MSW generator in the world and the total amount of MSW it produces continues to increase. In recent years, central and local governments have made great efforts to improve MSWM in China. New regulations and policies have been issued, urban infrastructure has been improved, and commercialization and international cooperation have been encouraged. Considering these developments, an overview is necessary to analyze the current state as well as new opportunities and challenges regarding MSWM in China. This paper shows that since the late 1990s, the amount of MSW collected has been largely decoupled from economic growth and incineration has become an increasingly widespread treatment method for MSW. We identify and discuss four major challenges and barriers related to China's MSWM, and propose an integrated management framework to improve the overall eco-efficiency of MSWM.

  13. Performance of municipal waste stabilization ponds in the Canadian Arctic

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Schmidt, Jordan J.; Krkosek, Wendy H.

    2015-01-01

    The majority of small remote communities in the Canadian arctic territory of Nunavut utilize waste stabilization ponds (WSPs) for municipal wastewater treatment because of their relatively low capital and operational costs, and minimal complexity. New national effluent quality regulations have be...

  14. Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia

    2017-01-01

    The biodegradable fraction of municipal solid wastes generated from households in Ghana has favourable characteristics worth considering for bioenergy production. The suitability of this biodegradable portion for biogas and bioethanol production was assessed in this study. The assessment...... was performed on both untreated and hydrothermally treated unsorted and sorted fractions of the waste using standard methods for biomass conversion to bioenergy. Compositional analysis of the waste indicated that unsorted biodegradable municipal solid wastes (BMSW) consisted of 38.7 % dry matter (DM) glucan, 8.......3 % DM hemicellulose, 10.1 % DM lignin and 7.6 % DM ash. The sorted fractions with the highest glucan but least lignin and hemicellulose were the pool of cassava, yam and plantain peeling wastes (CYPPW) with 84 % DM glucan much of which was starch, 5.6 % DM lignin and 0.5 % DM hemicellulose. The highest...

  15. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  16. An Industrial Ecology Approach to Municipal Solid Waste ...

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  17. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  18. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Science.gov (United States)

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  19. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    Science.gov (United States)

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  20. Framework for integration of informal waste management sector with the formal sector in Pakistan.

    Science.gov (United States)

    Masood, Maryam; Barlow, Claire Y

    2013-10-01

    Historically, waste pickers around the globe have utilised urban solid waste as a principal source of livelihood. Formal waste management sectors usually perceive the informal waste collection/recycling networks as backward, unhygienic and generally incompatible with modern waste management systems. It is proposed here that through careful planning and administration, these seemingly troublesome informal networks can be integrated into formal waste management systems in developing countries, providing mutual benefits. A theoretical framework for integration based on a case study in Lahore, Pakistan, is presented. The proposed solution suggests that the municipal authority should draw up and agree on a formal work contract with the group of waste pickers already operating in the area. The proposed system is assessed using the integration radar framework to classify and analyse possible intervention points between the sectors. The integration of the informal waste workers with the formal waste management sector is not a one dimensional or single step process. An ideal solution might aim for a balanced focus on all four categories of intervention, although this may be influenced by local conditions. Not all the positive benefits will be immediately apparent, but it is expected that as the acceptance of such projects increases over time, the informal recycling economy will financially supplement the formal system in many ways.

  1. Characterization of municipal solid waste from the main landfills of Havana city.

    Science.gov (United States)

    Espinosa Lloréns, Ma Del C; Torres, Matilde López; Alvarez, Haydee; Arrechea, Alexis Pellón; García, Jorge Alejandro; Aguirre, Susana Díaz; Fernández, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.

  2. Characterization of municipal solid waste from the main landfills of Havana city

    International Nuclear Information System (INIS)

    Espinosa Llorens, Ma. del C; Lopez Torres, Matilde; Alvarez, Haydee; Pellon Arrechea, Alexis; Garcia, Jorge Alejandro; Diaz Aguirre, Susana; Fernandez, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana

  3. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  4. Chloride leaching from municipal solid waste incineration (MSWI) bottom ash

    NARCIS (Netherlands)

    Alam, Q.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H.; Vlastimil, Bilek; Kersner, Zbynek; Simonova, Hana

    2017-01-01

    The presence of chlorides in the Municipal Solid Waste Incineration bottom ashes (BA) hinders their potential for recycling in building materials. The contaminant content in the incineration residues is strictly regulated by the Dutch legislation Soil Quality Decree (2013). The fine fraction

  5. Optimizing Resource and Energy Recovery for Municipal Solid Waste Management

    Science.gov (United States)

    Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...

  6. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    Science.gov (United States)

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment. © The Author(s) 2014.

  7. Potential manure in organic production use: management of municipal organic waste with activators

    Directory of Open Access Journals (Sweden)

    Ruiz Jessica

    2015-05-01

    Full Text Available The Tiquipaya Municipality produces 22 t day-1 of solid, 63% of it is organic and 37% is inorganic. This waste is disposed of in the Municipal Landfill, rendering it into an environmental and health threat. In order to diminish the negative effects of poor management of municipal solid waste in Tiquipaya, we have carried out the present study in the Tiquipaya municipal composting site, the municipal nursery and the facilities of the PROINPA foundation. At the beginning, the waste composting was done using two treatments: one with organic activator and the other without it. Later the same two methods were used in worm composting, this second process in turn yielded other four treatments two of which included organic activator. After 64 days, within the compost, the activator achieved to reduce 60.02% of the initial volume, leaving a remaining 39.99% of thick material. After the compost had been processed by the worms it was evaluated on the 47th day, we found that the organic activator treatment used from the beginning of the composting phase, yielded a 90.67% decrease from the initial volume of fine matter, compared to the other treatments; it left only 9.33% of thick material. Bio-tests were conducted on barley plants to evaluate the phytotoxicity of the worm compost, these studies showed that treatments with a 50% worm compost concentration had lower germination values (40 to 50%. Whereas treatments that contained 100% of worm compost stood out for their higher yield that ranged from 60 to 70% in their germination values.

  8. The multiple market-exposure of waste management companies: A case study of two Swedish municipally owned companies

    Energy Technology Data Exchange (ETDEWEB)

    Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se [Department of Service Management, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden); Bramryd, Torleif [Department of Environmental Strategy, Lund University, Campus Helsingborg, PO Box 882, SE-251 08 Helsingborg (Sweden)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market that determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.

  9. Relationship Between Distance of Schools from the Nearest Municipal Waste Incineration Plant and Child Health in Japan

    International Nuclear Information System (INIS)

    Miyake, Y.; Yura, A.; Misaki, H.; Ikeda, Y.; Usui, T.; Iki, M.; Shimizu, T.

    2005-01-01

    In Japan, the main source of dioxins is incinerators. This study examined the relationship between the distance of schools from municipal waste incineration plants and the prevalence of allergic disorders and general symptoms in Japanese children. Study subjects were 450,807 elementary school children aged 6-12 years who attended 996 public elementary schools in Osaka Prefecture in Japan. Parents of school children completed a questionnaire that included items about illnesses and symptoms in the study child. Distance of each of the public elementary schools from all of the 37 municipal waste incineration plants in Osaka Prefecture was measured using geographical information systems packages. Adjustment was made for grade, socioeconomic status and access to health care per municipality. Decreases in the distance of schools from the nearest municipal waste incineration plant were independently associated with an increased prevalence of wheeze, headache, stomach ache, and fatigue (adjusted odds ratios [95% confidence intervals] for shortest vs. longest distance categories =1.08 [1.01-1.15], 1.05 [1.00-1.11], 1.06 [1.01-1.11], and 1.12 [1.08-1.17], respectively). A positive association with fatigue was pronounced in schools within 4 km of the second nearest municipal waste incineration plant. There was no evident relationship between the distance of schools from such a plant and the prevalence of atopic dermatitis or allergic rhinitis. The findings suggest that proximity of schools to municipal waste incineration plants may be associated with an increased prevalence of wheeze, headache, stomach ache, and fatigue in Japanese children

  10. Use of the Geographic Information System and Analytic Hierarchy Process for Municipal Solid Waste Landfill Site Selection: A Case Study of Najafabad, Iran

    Directory of Open Access Journals (Sweden)

    A. Afzali

    2014-03-01

    Full Text Available Following technological advancements and integrated municipal solid waste management in recent decades, various methods such as recycling, biotreatment, thermal treatment, and sanitary landfills have been developed and employed. Creating sanitary landfills is a major strategy in the integrated solid waste management hierarchy. It is cheaper and thus more common than other disposal methods. Selecting a suitable solid waste landfill site can prevent adverse ecological and socioeconomic effects. Landfill site selection requires the analysis of spatial data, regulations, and accepted criteria. The present study aimed to use the geographic information system and the analytic hierarchy process to identify an appropriate landfill site for municipal solid wastes in Najafabad (Isfahan, Iran. Environmental and socioeconomic criteria were evaluated through different information layers in the Boolean and fuzzy logics. The analytical hierarchy process was applied for weighing the fuzzy information layers. Subsequently, two suitable sites were identified by superimposing the maps from the Boolean and fuzzy logics and considering the minimum required landfill area for 20 years. However, proximity of these two sites to Tiran (a nearby city made them undesirable landfill sites for Najafabad. Therefore, due to the existing restrictions in Najafabad, the possibility of creating landfill sites in common with adjacent cities should be further investigated.

  11. Optimization of municipal solid waste collection and transportation routes.

    Science.gov (United States)

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  13. The Management of Capital Allocation for Sustainable Municipal Solid Waste Management System: A Case Study of Bang Saen, Thailand

    Directory of Open Access Journals (Sweden)

    Daichi Iwase

    2013-01-01

    Full Text Available This paper attempted to analyze and understand the management of capital allocation for sustainable municipal solid waste management system at Bang Saen, Thailand. Financial, manufactured, human, social and natural capital was the focus of this study. Capital allocation to five capitals, activities of the stakeholders related to municipal solid waste management, and the output of these activities were analyzed. The investigation was carried out by reviewing documents, conducting in-depth interviews with various stakeholders including the Saensuk municipality officials, locals and tourists, and carrying out field observations. Results showed that total output from five capitals is influenced by activity performance of stakeholders, which is dependent on input to five capitals. However, input was made without assessments of output produced by the activities of the stakeholders, which stemmed from the absence of a policy goal on municipal solid waste management and action plans to achieve its goal. Capital was mostly allocated to financial and manufactured capitals in terms of support of municipal solid waste collection, transportation and disposal. Findings suggest that capital should be allocated to activities related to human, social and natural capitals that can help improve activity performance of the stakeholders, and therefore improve total output and sustainability of the system. Well-designed activities could generate improved output, which is made by readjusting input based on assessments of output and by reflecting feedback in decision making on capital allocation. For this reason, the municipality has to set a clear policy goal of municipal solid waste management, short-term, and long-term action plans. Finally, recommendation is given to municipality.

  14. Effect of municipal solid waste ash on comprehensive strength ...

    African Journals Online (AJOL)

    The blocks were moulded in a CINVA-Ram machine by replacing 0%, 2%, 5% and 10% of municipal solid waste ash (MSW ash) as a stabilizing agent. The compressive strengths of individual blocks were obtained after curing for 7, 14 and 28 days. The 2%MSW ash replacement gave the highest compressive strength and ...

  15. Forest products decomposition in municipal solid waste landfills

    International Nuclear Information System (INIS)

    Barlaz, Morton A.

    2006-01-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO 2 -neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components

  16. Effect of microwaves on solubilization of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shahriari, H.; Warith, M.; Kennedy, K.J. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Civil Engineering

    2009-07-01

    Landfilling is the most common method for disposing of municipal solid waste (MSW) in North America. MSW consists of nonbiodegradable fractions as well as biodegradable fractions known as the organic fraction of municipal solid waste (OFMSW). Because of its high moisture content, OFMSW produces large amounts of leachate in landfills. If not treated properly, leachates can pollute groundwater and negatively affect health and the environment. This paper reported on a study that was conducted to determine the effects of microwave (MW) irradiation on the solubilization of organic fraction of municipal solid waste (OFMSW) at different temperatures, MW ramp times, and supplemental water addition (SWA). The objective was to enhance solubilization before anaerobic digestion (AD). MW pretreatment resulted in higher soluble chemical oxygen demand (sCOD), proteins and sugars in the supernatant phase. The highest increase in sCOD was achieved at 175 degrees C. For the same condition, the free liquid volume from bound water released from OFMSW into the supernatant was about 1.39 times higher than the control. The increase in potentially bio-available sCOD increased significantly to more than 200 per cent after microwaving at high temperature. It was concluded that microwaving of OFMSW at high temperature with SWA provides the best conditions for waste solubilisation in preparation for anaerobic digestion. The actual effect of MW pre-treatment on the anaerobic digestion process has yet to be determined. 49 refs., 5 tabs., 3 figs.

  17. Management of Municipal Solid Waste in One of the Galapagos Islands

    Directory of Open Access Journals (Sweden)

    Marco Ragazzi

    2014-12-01

    Full Text Available This paper analyses some aspects of the management of municipal solid waste in one of the islands of the Galapagos archipelago. The aim is to point out a few aspects of an interesting experience that could help decision managers faced with the organization of the waste sector in similar realities. The relevance of this case study consists in the presence of a very famous National Park surrounding the inhabited area. The role of tourism in the generation of waste is analyzed too.

  18. Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.M.; Chynoweth, D.P.; Barkdoll, A.W.; Nordstedt, R.A.; Owens, J.M.; Sifontes, J. (Florida Univ., Gainesville, FL (United States). Dept. of Agricultural Engineering)

    1993-01-01

    Sequential batch anaerobic composting (SEBAC[sup TM]) was used to treat two fractions of municipal solid waste (MSW), the organic fraction of the MSW (processed MSW) and yard waste. Processed MSW gave a mean methane yield of 0.19 m[sup 3] kg[sup -1] volatile solids (VS) after 42 days. The mean VS reduction was 49.7% for this same period. Yard waste gave a mean methane yield of 0.07 m[sup 3] kg[sup -1] VS. Methane content of the biogas stabilized at a mean of 48% from three to four days after startup. The mean VS reduction for yard waste was 19%. With processed MSW, the volatile acid concentration was over 3000 mg L[sup -1] during startup but these acids were reduced within a few days to negligible levels. The trend was similar with yard waste except that volatile acids reached maximum concentrations of less than 1000 mg L[sup -1]. Composts from the reactors were evaluated for agronomic characteristics and pollution potential. Processed MSW and yard waste residues had marginal fertilizer value but posed no potential for groundwater pollution. Yard waste residue caused no apparent inhibition to mustard (Brassica juncea) germination relative to a commercial growth medium. Anaerobic yard waste compost demonstrated the potential to improve the water holding capacity of Florida soils. (author)

  19. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona

    2015-01-01

    Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both...... comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub......-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10-50 waste fractions, organised according to a three-level (tiered approach) facilitating,comparison of the waste data between individual sub-areas with different fractionation (waste...

  20. Regional integrated system of separated collection

    International Nuclear Information System (INIS)

    Markuskova, I.

    2008-01-01

    Since 2002 Palarikovo manages and ensures Regional integrated system of separated collection. In the present time 28 villages of the region are associated in Association of villages for sustainable treatment of municipal wastes with settlement in Palarikovo. In accordance with hierarchy of goals of national strategy in the field of treatment of municipal wastes the key aims of activity are centred on economical and sustainable treatment of municipal wastes, which consist in reduction of quantity and harmfulness of municipal wastes by destruction by unloading or combustion. The steps for achievement of this aim consist in (1) prevention of formation of wastes, (2) using of usable subjects (establishing of centre for repeated using in Regional collecting court), (3) by rigorous realisation of recycling program - by collection of separated commodities with a view to mainly material recycling as well as composting program. By starting of integrated regional system of separated collection were integrated 18 villages with 24,000 inhabitants into common separated collection. In the present time this association has 28 members (villages of the region) with total population 55,904. Operating of the Regional integrated system of separated collection in Palarikovo is reviewed

  1. The effect of gender and age structure on municipal waste generation in Poland

    International Nuclear Information System (INIS)

    Talalaj, Izabela Anna; Walery, Maria

    2015-01-01

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior

  2. The effect of gender and age structure on municipal waste generation in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Talalaj, Izabela Anna, E-mail: izabela.tj@gmail.com; Walery, Maria, E-mail: m.walery@pb.edu.pl

    2015-06-15

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior.

  3. New municipal waste management in opinion of inhabitants of urban and rural areas of the Słupsk Powiat

    Directory of Open Access Journals (Sweden)

    Lucyna Klein

    2018-02-01

    Full Text Available The aim of this article was to determine the satisfaction level and to assess the opinion of urban and rural area inhabitants of new municipal waste management system. The assessment was based on population surveys. The survey group consisted of 119 people. According to the obtained data, more than 70% of Słupsk Powiat inhabitants declare the selective collection of municipal waste. The respondents well asses the educational activities of local government. Furthermore, on the basis of the results obtained, it can be said that the inhabitants of rural areas are more involved in the implementation of sustainable municipal waste management.

  4. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  5. Anaerobic degradation of organic municipal solid waste together with liquid manure. Part 1; Anaerob nedbrydning af organisk husholdningsaffald sammen med gylle. Del 1

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, H.; Angelidaki, I.; Ahring, B.K.

    2001-01-01

    This project includes preliminary investigations about anaerobic degradation of organic municipal waste together with liquid manure. Investigations consist of characterization of organic municipal waste and preliminary test of anaerobic degradation of the waste. Characterization is related especially to the contents of environmentally hazardous substances, while the degradation process is characterized by means of determination of biogas potential in batch test and methane yield, organic VS (volatile solids) reduction and process stability in reactor test. In relation to environmentally hazardous substances the content of NPE and LAS in all tests of organic municipal waste was insignificant. The main problem was the content of DEHP, concentration of which is half of the cut-off value in the municipal waste. By TS (Total solid) reduction through the biogas process the DEHP concentration will thus exceed the cut-off value pr kg TS in the effluent if DEHP is not removed at the same time. The PAH concentration in the collected waste was only in one case at the level of the cut-off value which would exceed the cut-off value if no removal happens through the anaerobic degradation. The biogas potential of municipal waste was determined to be 187 m{sup 3}biogas/m{sup 3}waste, which makes organic municipal waste a very attractive waste type for biogas plants. No direct restraint by degradation of clean waste in batch test could be demonstrated. In the reactor test a stable degradation of organic municipal waste with an increasing supply of waste in mixture with manure could be established. By treatment of a mixture of municipal waste and manure in ratio to 50 : 50 a methane yield on 350 lCH{sub 4} kg VS and a VS-reduction between 50% and 60% could be obtained. Using clean municipal waste diluted with water the methane yield was higher than in the batch test and a VS reduction of up to 80% could be obtained. The analyses of DEHP and PAH in influent and effluent of the

  6. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  7. Public Health Risks from Mismanagement of Healthcare Wastes in Shinyanga Municipality Health Facilities, Tanzania

    Directory of Open Access Journals (Sweden)

    Kizito Kuchibanda

    2015-01-01

    Full Text Available The increase of healthcare facilities in Shinyanga municipality has resulted in an increase of healthcare wastes, which poses serious threats to the environment, health workers, and the general public. This research was conducted to investigate management practices of healthcare wastes in Shinyanga municipality with a view of assessing health risks to health workers and the general public. The study, which was carried out in three hospitals, involved the use of questionnaires, in-depth interview, and observation checklist. The results revealed that healthcare wastes are not quantified or segregated in all the three hospitals. Healthcare wastes at the Shinyanga Regional Referral Hospital are disposed of by on-site incineration and burning and some wastes are disposed off-site. At Kolandoto DDH only on-site burning and land disposal are practiced, while at Kambarage UHC healthcare solid wastes are incinerated, disposed of on land disposal, and burned. Waste management workers do not have formal training in waste management techniques and the hospital administrations pay very little attention to appropriate management of healthcare wastes. In light of this, it is evident that management of healthcare solid wastes is not practiced in accordance with the national and WHO’s recommended standards.

  8. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  9. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  10. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... exceed 30 nanograms per dry standard cubic meter (12 grains per billion dry standard cubic feet), corrected to 7 percent oxygen (dry basis). ...

  11. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  12. The Impact of Pay-As-You-Throw Schemes on Municipal Solid Waste Management: The Exemplar Case of the County of Aschaffenburg, Germany

    Directory of Open Access Journals (Sweden)

    Juergen Morlok

    2017-02-01

    Full Text Available The “pay-as-you-throw” (PAYT scheme is an economic instrument for waste management that applies the “polluter pays” principle by charging the inhabitants of municipalities according to the amount of residual, organic, and bulky waste they send for third-party waste management. When combined with well-developed infrastructure to collect the different waste fractions (residual waste, paper and cardboard, plastics, bio waste, green cuttings, and many recyclables as well as with a good level of citizens’ awareness, its performance has frequently been linked to an increase in the collection rates of recyclables. However, the establishment and operation of PAYT systems can require significant resource inputs from municipalities. In this paper, PAYT is analysed through a case study from the German County of Aschaffenburg, covering nearly 20 years of implementation across 32 municipalities with 173,000 inhabitants. Key performance indicators include temporal trends in the county’s recyclables collection rate, waste treatment fees for residents, and municipal waste management costs, benchmarked against German municipalities not implementing PAYT. We conclude that PAYT could make an important contribution towards material reuse and recycling objectives for the new circular economy.

  13. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Kofoworola, O.F.

    2007-01-01

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested

  14. [Research advances in control of N2O emission from municipal solid waste landfill sites].

    Science.gov (United States)

    Cai, Chuan-Yu; Li, Bo; Lü, Hao-Hao; Wu, Wei-Xiang

    2012-05-01

    Landfill is one of the main approaches for municipal solid waste treatment, and landfill site is a main emission source of greenhouse gases nitrous oxide (N2O) and methane (CH4). As a high-efficient trace greenhouse gas, N2O has a very high warming potential, with a warming capacity 296 times of CO2, and has a long-term stability in atmosphere, giving greater damage to the ozone layer. Aiming at the researches in the control of N2O emission from municipal solid waste landfill sites, this paper summarized the characteristics and related affecting factors of the N2O emission from the landfill sites, and put forward a series of the measures adaptable to the N2O emission control of present municipal solid waste landfill sites in China. Some further research focuses on the control of N2O emission from the landfill sites were also presented.

  15. Possible applications for municipal solid waste fly ash.

    Science.gov (United States)

    Ferreira, C; Ribeiro, A; Ottosen, L

    2003-01-31

    The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.

  16. Municipal solid waste management in Beijing City

    International Nuclear Information System (INIS)

    Li Zhenshan; Yang Lei; Qu XiaoYan; Sui Yumei

    2009-01-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km 2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  17. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery...

  18. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Gordon

    2014-03-15

    Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Emission from open burning of municipal solid waste in India.

    Science.gov (United States)

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  20. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  1. A historical context of municipal solid waste management in the United States.

    Science.gov (United States)

    Louis, Garrick E

    2004-08-01

    Municipal solid waste management (MSWM) in the United States is a system comprised of regulatory, administrative, market, technology, and social subcomponents, and can only be understood in the context of its historical evolution. American cities lacked organized public works for street cleaning, refuse collection, water treatment, and human waste removal until the early 1800s. Recurrent epidemics forced efforts to improve public health and the environment. The belief in anticontagionism led to the construction of water treatment and sewerage works during the nineteenth century, by sanitary engineers working for regional public health authorities. This infrastructure was capital intensive and required regional institutions to finance and administer it. By the time attention turned to solid waste management in the 1880s, funding was not available for a regional infrastructure. Thus, solid waste management was established as a local responsibility, centred on nearby municipal dumps. George Waring of New York City organized solid waste management around engineering unit operations; including street sweeping, refuse collection, transportation, resource recovery and disposal. This approach was adopted nationwide, and was managed by City Departments of Sanitation. Innovations such as the introduction of trucks, motorized street sweepers, incineration, and sanitary landfill were developed in the following decades. The Resource Conservation and Recovery Act of 1976 (RCRA), is the defining legislation for MSWM practice in America today. It forced the closure of open dumps nationwide, and required regional planning for MSWM. The closure of municipal dumps caused a 'garbage crisis' in the late 1980s and early 1990s. Private companies assumed an expanded role in MSWM through regional facilities that required the transportation of MSW across state lines. These transboundary movements of MSW created the issue of flow control, in which the US Supreme Court affirmed the protection

  2. Examinations of content of heavy metals in municipal solid waste and produced compost

    International Nuclear Information System (INIS)

    Golimowski, J.; Tykarska, A.; Orzechowska, K.

    1993-01-01

    The basic methods of utilization of municipal solid waste are biothermic and aerobic methods to compost. The content of heavy metals in composts depends on the initial their content in wastes as well as on the compost process. The voltammetric method has been applied for measurement of concentration of Zn, Cd, Pb, Cu, Cr, Ni and Hg in the waste and composts samples. (author). 24 refs, 2 figs, 3 tabs

  3. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  4. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  5. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  6. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, P

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

  7. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  8. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  9. Vehicle-Routing Optimization for Municipal Solid Waste Collection Using Genetic Algorithm: The Case of Southern Nablus City

    Science.gov (United States)

    Assaf, Ramiz; Saleh, Yahya

    2017-09-01

    Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP). The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.

  10. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  11. Future industrial and municipal waste management in poland the polish challenge

    International Nuclear Information System (INIS)

    Nowakowskl, J.; Sorum, L.; Hustad, J.E.

    1996-01-01

    Poland now face a very interesting discussion on modern waste treatment methods, although the waste problems are very oil. This paper presents a total waste management view from the formation process to recycling, utilisation and land filling. The average municipal solid waste (MSW) annual per capita generation in poland is 250 kg per person, which is half of the waste amount generated in norway and one third of the amount in Usa. The present low per capita generation, large variations in MSW properties and an expected growth in the standard of living make the decisions regarding future polish waste management systems very important. Waste management must be handled carefully to prevent a rapid growth of waste generation - this is the p olish challenge , both mow and for the future. Three different possibilities for future waste management systems for rural areas, small cities and larger cities are discussed in the paper. 4 figs., 1 tab

  12. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Fang, Shiwen; Yu, Zhaosheng; Lin, Yousheng; Hu, Shanchao; Liao, Yanfen; Ma, Xiaoqian

    2015-01-01

    Highlights: • The co-pyrolysis of municipal solid waste, paper sludge and the blends was studied. • The reactivity of paper sludge could be improved by blending municipal solid waste. • The FWO and KAS methods were used to calculate activation energy. • The average activation energy was the minimum by blending 50% paper sludge. - Abstract: The pyrolysis characteristics of municipal solid waste (MSW), paper sludge (PS) and their blends were studied through a thermogravimetric simultaneous thermal analyzer from room temperature to 1000 °C. Meanwhile their kinetics were studied by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The mass proportions of PS in the blends were 10%, 30%, 50%, 70%, 90%, respectively and the experiments were carried out at different heating rates (30, 40 and 50 °C/min). The initial temperature of MSW was lower than that of PS and the terminated temperature was higher than PS. The comprehensive characteristic index decreased progressively along with the decrease of the MSW proportion. The values of average activation energies calculated by FWO and KAS methods were highly consistent. The average activation energy reached the minimum number, 96.7 kJ/mol by KAS and 11.56 kJ/mol by FWO, with the proportion of PS was 50%

  13. Complete decay of radionuclides: Implications for low-level waste disposal in municipal landfills

    International Nuclear Information System (INIS)

    Meck, R.A.

    1996-01-01

    The time required for the complete decay of a radioactive source can be quantified by specifying an acceptable probability and using an original derivation. The physical phenomenon of complete decay may be used as the technical basis to change regulations and permit, with public acceptance, the inexpensive disposal of short half-lived radioactive waste into municipal landfills. Current regulations require isolation of trash form the biosphere for 30 years during the post-closure control period for municipal landfills. Thirty years is sufficient time for complete decay of significant quantities of short-lived radionuclides, and there is a large decay capacity in the nation's landfills. As the major generators of low-level radioactive waste with relatively short half-lives, the academic, medical, and research communities likely would benefit most from such regulatory relief. Disposal of such waste is prohibited or costly. The waste must be specially packaged, stored, transported, and disposed in designated repositories. Regulatory relief can be initiated by citizens since the Administrative Procedures Act gives citizens the right to petition for regulatory change. 10 refs., 2 tabs

  14. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.

    Science.gov (United States)

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M; Alonso-Vicario, Ainhoa

    2015-05-01

    The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    International Nuclear Information System (INIS)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-01-01

    Highlights: ► This study evaluates the effects of co-gasification of MSW with MSW bottom ash. ► No significant difference between MSW treatment with and without MSW bottom ash. ► PCDD/DFs yields are significantly low because of the high carbon conversion ratio. ► Slag quality is significantly stable and slag contains few hazardous heavy metals. ► The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by

  16. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    International Nuclear Information System (INIS)

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-01-01

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobile phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using

  17. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    Energy Technology Data Exchange (ETDEWEB)

    Terazono, Atsushi, E-mail: terazono@nies.go.jp [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Oguchi, Masahiro [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Iino, Shigenori [Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075 (Japan); Mogi, Satoshi [Bureau of Environment, Tokyo Metropolitan Government, 2-8-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 163-8001 (Japan)

    2015-05-15

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobile phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using

  18. Modelling and evaluating municipal solid waste management strategies in a mega-city: The case of Ho Chi Minh City

    NARCIS (Netherlands)

    ThiKimOanh, L.; Bloemhof-Ruwaard, J.M.; Buuren, van J.C.L.; Vorst, van der J.G.A.J.; Rulkens, W.H.

    2015-01-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional

  19. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  20. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    Science.gov (United States)

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  1. A Historical Perspective of Global Warming Potential from Municipal Solid Waste Management

    DEFF Research Database (Denmark)

    Habib, Komal; Schmidt, Jannick Højrup; Christensen, Per

    2013-01-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical...... development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP100), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies...

  2. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    Energy Technology Data Exchange (ETDEWEB)

    Rada, E.C., E-mail: Elena.Rada@ing.unitn.it [University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano, 77, 38123 Trento (Italy); Ragazzi, M. [University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano, 77, 38123 Trento (Italy); Fedrizzi, P. [I and S, Informatica e Servizi srl, Via Solteri, 74, 38121 Trento (Italy)

    2013-04-15

    Highlights: ► As an appropriate solution for MSW management in developed and transient countries. ► As an option to increase the efficiency of MSW selective collection. ► As an opportunity to integrate MSW management needs and services inventories. ► As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.

  3. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    International Nuclear Information System (INIS)

    Rada, E.C.; Ragazzi, M.; Fedrizzi, P.

    2013-01-01

    Highlights: ► As an appropriate solution for MSW management in developed and transient countries. ► As an option to increase the efficiency of MSW selective collection. ► As an opportunity to integrate MSW management needs and services inventories. ► As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector

  4. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    International Nuclear Information System (INIS)

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-01-01

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m 3 /h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold

  5. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    Science.gov (United States)

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  6. ANALYZING CERTAIN CHRACTERISTICS OF MUNICIPAL SOLID WASTE GENERATION IN THE PROCES S OF WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Gábriel Györgyi T #336;ZSÉR

    2010-01-01

    Full Text Available Based on the regulations of Act XLIII/2000 on Waste Management to implement the strategic objectives and targets in the Act for the prevalence of the basic waste management principles a National Waste Management Plan II will be worked out and then accepted by the Parliament as part of the National Environmental Protection Programme. On the basis of the national plan the administrative bodies of environmental protection in accordance with the regional settlement and d evelopment programmes make a regional waste management project with the inclusion of the regional, local authorities, and other authorities concerned as well as the non governmental organisations for environmental protection. In our research we analyze the correlation between municipal solid waste per capita and urbanisation level. We have conducted similar calculations in the filed of population density and income. The study was carried out on a micro region level. Our analysis can help determine the framework conditions and factors that influence waste generation, and therefore should be taken into consideration when designing waste policies .

  7. Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia--Thrace in Greece.

    Science.gov (United States)

    Athanasiou, C J; Tsalkidis, D A; Kalogirou, E; Voudrias, E A

    2015-06-01

    The present work conducts a preliminary techno-economic feasibility study for a single municipal solid waste mass burning to an electricity plant for the total municipal solid waste potential of the Region of Eastern Macedonia - Thrace, in Greece. For a certain applied and highly efficient technology and an installed capacity of 400,000 t of municipal solid waste per year, the available electrical power to grid would be approximately 260 GWh per year (overall plant efficiency 20.5% of the lower heating value). The investment for such a plant was estimated at €200m. Taking into account that 37.9% of the municipal solid waste lower heating value can be attributed to their renewable fractions, and Greek Law 3851/2010, which transposes Directive 2009/28/EC for Renewable Energy Sources, the price of the generated electricity was calculated at €53.19/MWhe. Under these conditions, the economic feasibility of such an investment depends crucially on the imposed gate fees. Thus, in the gate fee range of 50-110 € t(-1), the internal rate of return increases from 5% to above 15%, whereas the corresponding pay-out time periods decrease from 11 to about 4 years. © The Author(s) 2015.

  8. A service network design model for multimodal municipal solid waste transport

    NARCIS (Netherlands)

    Inghels, D.A.M.; Dullaert, W.E.H.; Vigo, D.

    2016-01-01

    A modal shift from road transport towards inland water or rail transport could reduce the total Green House Gas emissions and societal impact associated with Municipal Solid Waste management. However, this shift will take place only if demonstrated to be at least cost-neutral for the decision

  9. Municipal wastes and landfield gases utilization - renewable resource of energy and materials

    International Nuclear Information System (INIS)

    Kuburovic, M.; Jovovic, A.

    2002-01-01

    Urbanization and industrialization, have been fundamental causes of environmental pollution (of water, air and land) which the cities were unable to handle. There is already enough evidence of the fact that the role of technology in environmental matters is moving in two important directions: sustainable development, dealing primary with global problems, and preventive technology, designed to reduce the environmental effects of processes, operations, and products. Treatment plants for industrial and municipal wastes, emission controls for incinerators, and safe landfills for waste disposal were developed to control air, water, and land pollution. Now, this 'end-of-pipe' treatment technologies are still the way of environmental protection philosophy, particularly in the developing countries. New environmental standards demand more and more rigorous preventive environmental protection technologies, therefore further development of industrial production requires the rational use of natural sources of raw materials and energy. Production and the use of goods with the minimum municipal and industrial wastes and the development of recycling technology provided closed cycle of materials. Main principles for the development and exploitation of the technology with the minimum or without waste materials and energy are: the use of renewable sources of material and energy, maximum use of waste materials and waste energy, waste minimisation and reduction of energy losses in the production, development of new industrial processes operating with minimum material and energy losses in products exploitation period and after that, and the responsible use of natural sources, products and energy in the field of industry and consumption. (author)

  10. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  11. Large Municipal Waste Combustors (LMWC): New Source Performance Standards (NSPS) and Emissions Guidelines

    Science.gov (United States)

    Learn about the NSPS, emission guidelines and compliance times for large municipal waste combustors (MWC) by reading the rule summary, rule history and the federal register citations and supporting documents

  12. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    Science.gov (United States)

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Engineering properties for high kitchen waste content municipal solid waste

    Directory of Open Access Journals (Sweden)

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  14. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density situation. © The Author(s) 2015.

  15. Experimental Studies on Combustion Characteristics of Mixed Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Fan Jiang; Zhonggang Pan; Shi Liu; Haigang Wang

    2003-01-01

    In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper,thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3~3.5 rain to burn out in FB, but in thermogravimetric analyzer, the time is 20~25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures.Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures,there was interference among the components during fluidized bed combustion.

  16. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  17. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  18. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators....... The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting...

  19. Life Cycle Assessment Modelling of Greenhouse Gas Emissions from Existing and Proposed Municipal Solid Waste Management System of Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Adila Batool Syeda

    2017-12-01

    Full Text Available Open Dumping of indiscriminate municipal solid waste (MSW remarkably contributes to global warming (GW. Life Cycle Assessment modelling may be a useful tool for assessing the best waste management option regarding GW potential. The current study evaluates the contribution of an existing MSW management (MSWM system to greenhouse gases in Gulberg Town, Lahore, Pakistan. This research also presents a comparison of scenarios with different waste management options. Life Cycle Assessment methodology has been used to conduct the study. EASETECH has been used for modelling. The short-term scenarios (STSs have been developed to promote the thinking of integration of treatment technologies in the current waste management system within a few months. The results show that the major contribution to the total emissions comes from the anaerobic digestion of organic material from open waste dumps. Currently, recycling is the best treatment option for reducing the CO2-eq values in the study area. It was clarified that recycling is the best option for reducing the CO2-eq values, whereas biogasification comes in second in terms of savings and reduction. The integration of recycling and biogasification techniques would be a good solution.

  20. Conversion of cellulose rich municipal solid waste blends using ionic liquids: Feedstock convertibility and process scale-up

    OpenAIRE

    Liang, L; Li, C; Xu, F; He, Q; Yan, J; Luong, T; Simmons, BA; Pray, TR; Singh, S; Thompson, VS; Sun, N

    2017-01-01

    © 2017 The Royal Society of Chemistry. Sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) a...

  1. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  2. Artificial Neural Network Modelling of the Energy Content of Municipal Solid Wastes in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2017-12-01

    Full Text Available The study presents an application of the artificial neural network model using the back propagation learning algorithm to predict the actual calorific value of the municipal solid waste in major cities of the northern part of Nigeria, with high population densities and intense industrial activities. These cities are: Kano, Damaturu, Dutse, Bauchi, Birnin Kebbi, Gusau, Maiduguri, Katsina and Sokoto. Experimental data of the energy content and the physical characterization of the municipal solid waste serve as the input parameter in nature of wood, grass, metal, plastic, food remnants, leaves, glass and paper. Comparative studies were made by using the developed model, the experimental results and a correlation which was earlier developed by the authors to predict the energy content. While predicting the actual calorific value, the maximum error was 0.94% for the artificial neural network model and 5.20% by the statistical correlation. The network with eight neurons and an R2 = 0.96881 in the hidden layer results in a stable and optimum network. This study showed that the artificial neural network approach could successfully be used for energy content predictions from the municipal solid wastes in Northern Nigeria and other areas of similar waste stream and composition.

  3. Quantification of food waste in public catering services - A case study from a Swedish municipality.

    Science.gov (United States)

    Eriksson, Mattias; Persson Osowski, Christine; Malefors, Christopher; Björkman, Jesper; Eriksson, Emelie

    2017-03-01

    Food waste is a major problem that must be reduced in order to achieve a sustainable food supply chain. Since food waste valorisation measures, like energy recovery, have limited possibilities to fully recover the resources invested in food production, there is a need to prevent food waste. Prevention is most important at the end of the value chain, where the largest number of sub-processes have already taken place and occur in vain if the food is not used for its intended purpose, i.e. consumption. Catering facilities and households are at the very end of the food supply chain, and in Sweden the public catering sector serves a large number of meals through municipal organisations, including schools, preschools and elderly care homes. Since the first step in waste reduction is to establish a baseline measurement in order to identify problems, this study sought to quantify food waste in schools, preschools and elderly care homes in one municipality in Sweden. The quantification was conducted during three months, spread out over three semesters, and was performed in all 30 public kitchen units in the municipality of Sala. The kitchen staff used kitchen scales to quantify the mass of wasted and served food divided into serving waste (with sub-categories), plate waste and other food waste. The food waste level was quantified as 75g of food waste per portion served, or 23% of the mass of food served. However, there was great variation between kitchens, with the waste level ranging from 33g waste per portion served (13%) to 131g waste per portion served (34%). Wasted food consisted of 64% serving waste, 33% plate waste and 3% other food waste. Preschools had a lower waste level than schools, possibly due to preschool carers eating together with the children. Kitchens that received warm food prepared in another kitchen (satellite kitchens) had a 42% higher waste level than kitchens preparing all food themselves (production units), possibly due to the latter having higher

  4. Regionalization of municipal solid waste management in Japan: balancing the proximity principle with economic efficiency.

    Science.gov (United States)

    Okuda, Itaru; Thomson, Vivian E

    2007-07-01

    The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.

  5. To study the municipal solid waste as an energy source

    International Nuclear Information System (INIS)

    Ahmed, Z.; Khan, M.M.

    2005-01-01

    The solid waste management is a very complicated specially when it must be environmental friendly. In the present life, power energy is being more expensive than ever before and human off spring is struggling td acquire cheap ways of getting energy. At the same time, he is facing another problem of waste disposal pollution in the environment, which is a by-product of his industries and population, and when it would be hazardous to life, it will be a more serious problem. In this study, an idea is made to use garbage as an alternate fuel and the analysis of ingredients is done to compare it with the usual fuel i.e. coal. On the other hand, municipal waste (garbage) disposal will be automatically solved. (author)

  6. Study on detecting leachate leakage of municipal solid waste landfill site.

    Science.gov (United States)

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  7. Gaseous emissions from industrial processes: Municipal solid waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Cassitto, L.; Gallarini, V.; Magnani, P.; Rizzi, A. (Politecnico di Milano, Milan (Italy). Impianti Condizionamento e Fisica Tecnica Artea, Milan (Italy))

    A survey of European Communities proposed air pollution standards is coupled with an examination of the technical feasibility of building and operating municipal solid waste incineration plants that can successfully meet those standards. The results of the analysis indicate that modern incineration plants equipped with cogeneration and current-technology materials and energy recovery systems offer a significant contribution to meeting Italian national energy requirements and contemporaneously provide a decisive answer to the pressing need for safe and effective urban area waste disposal. The paper cautions however any final decision making must be based on extensive cost benefit analyses to determine the optimum combination of incinerator plant energy production and pollution control systems.

  8. Waste picker livelihoods and inclusive neoliberal municipal solid waste management policies: The case of the La Chureca garbage dump site in Managua, Nicaragua.

    Science.gov (United States)

    Hartmann, Chris

    2018-01-01

    The modernization (i.e. mechanization, formalization, and capital intensification) and enclosure of municipal solid waste management (MSWM) systems threaten waste picker livelihoods. From 2009 to 2013, a major development project, embodying traditional neoliberal policies with inclusive social policies, transformed the Managua, Nicaragua, municipal solid waste site from an open-air dump where as many as 2,000 informal waste pickers toiled to a sanitary landfill. To investigate waste pickers' social and economic condition, including labor characteristics, household income, and poverty incidence, after the project's completion, 146 semi-structured survey questionnaires were administered to four communities adjacent to the landfill and 45 semi-structured interviews were completed with key stakeholders. Findings indicate that hundreds of waste pickers were displaced by the project, employment benefits from the project were unevenly distributed by neighborhood, and informal waste picking endures due to persistent impoverishment, thereby contributing to continued social and economic marginalization and environmental degradation. The findings highlight the limitations of inclusive neoliberal development efforts to transform MSWM in a low-income country. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Science.gov (United States)

    2010-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  10. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Science.gov (United States)

    2010-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  11. CHARACTERISTICS OF MUNICIPAL WASTE BIODEGRADABLE FRACTION AND EVALUATION OF ITS PROCESSING

    Directory of Open Access Journals (Sweden)

    Edward Meller

    2015-11-01

    Full Text Available A growing interest in Renewable Energy Sources initiated the use of biogas as an energy generating material. Biodegradable waste coming from different streams is an important resource for biogas production. The studies were conducted on 20–80 mm fraction of municipal waste separated by rotary screen in the technological process of The Waste Recovery and Storage Plant in Leśno Górne. Morphological composition of the examined waste and their parameters determining their usefulness for composting and fermentation were analysed. On the basis of organic carbon content, the amount of biogas that may be produced from 1 kg of waste was estimated. An approximate amount of biogas which can be obtained in the process of methane fermentation from energy piles, formed from 10 000 Mg of waste was also calculated. Depending on the temperature it was from. 2.8 to 3.8 mln m3.

  12. Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas

    Directory of Open Access Journals (Sweden)

    Elisa Pennacchia

    2016-06-01

    Full Text Available Building energy efficiency and urban waste management are two focal issues for improving environmental status and reducing greenhouse gas emissions. The main aim of this paper is to compare economic costs of new building envelope structures designed by authors reusing and upcycling municipal waste in order to decrease energy demand from the building sector and, at the same time, improve eco-friendly waste management at the local scale. The reuse of waste for building envelope structures is one of the main principles of the Earthship buildings model, based on the use of passive solar principles in autonomous earth-sheltered homes. This Earthship principle has been analyzed in order to optimize buildings’ energy performance and reuse municipal waste for new building envelope structures in urban areas. Indeed, the elaborated structures have been designed for urban contexts, with the aim of reuse waste coming from surrounding landfills. The methods include an analysis of thermal performance of urban waste for designing new building envelope structures realized by assembling waste and isolating materials not foreseen in Earthship buildings. The reused materials are: cardboard tubes, automobile tires, wood pallets, and plastic and glass bottles. Finally, comparing economic costs of these new building envelope structures, the obtained results highlight their economic feasibility compared to a traditional structure with similar thermal transmittance.

  13. A conceptual framework for negotiating public involvement in municipal waste management decision-making in the UK.

    Science.gov (United States)

    Garnett, Kenisha; Cooper, Tim; Longhurst, Philip; Jude, Simon; Tyrrel, Sean

    2017-08-01

    The technical expertise that politicians relied on in the past to produce cost-effective and environmentally sound solutions no longer provides sufficient justification to approve waste facilities. Local authorities need to find more effective ways to involve stakeholders and communities in decision-making since public acceptance of municipal waste facilities is integral to delivering effective waste strategies. This paper presents findings from a research project that explored attitudes towards greater levels of public involvement in UK waste management decision-making. The study addressed questions of perception, interests, the decision context, the means of engagement and the necessary resources and capacity for adopting a participatory decision process. Adopting a mixed methods approach, the research produced an empirical framework for negotiating the mode and level of public involvement in waste management decision-making. The framework captures and builds on theories of public involvement and the experiences of practitioners, and offers guidance for integrating analysis and deliberation with public groups in different waste management decision contexts. Principles in the framework operate on the premise that the decision about 'more' and 'better' forms of public involvement can be negotiated, based on the nature of the waste problem and wider social context of decision-making. The collection of opinions from the wide range of stakeholders involved in the study has produced new insights for the design of public engagement processes that are context-dependent and 'fit-for-purpose'; these suggest a need for greater inclusivity in the case of contentious technologies and high levels of uncertainty regarding decision outcomes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad

    2011-01-01

    How waste is managed – whether as a nuisance to be disposed of, or as a resource to be reused – directly affects local and global environmental quality. This analysis explores the GHG benefits of five treatment options for residual municipal solid waste (MSW) in California: Business As Usual...... landfills. Using two different waste LCA models, EASEWASTE (a Danish model) and WARM (a U.S. model), we find that improved biogenic waste management through anaerobic digestion and waste reduction can lead to life-cycle GHG savings when compared to Business As Usual. The magnitude of the benefits depends...... strongly on a number of model assumptions: the type of electricity displaced by waste-derived energy, how biogenic carbon is counted as a contributor to atmospheric carbon stocks, and the landfill gas collection rate. Assuming that natural gas is displaced by waste-derived energy, that 64% of landfill gas...

  16. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Hu, Shanchao; Ma, Xiaoqian; Lin, Yousheng; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Highlights: • Thermogravimetric analysis of paper mill sludge and municipal solid waste were studied. • The combustion of paper mill sludge could be improved by blending municipal solid waste. • There existed significant interaction during co-combustion of the blends. • The OFW and Starink methods were used to obtain the activation energy. • The average activation energy was the lowest by blending 20% municipal solid waste. - Abstract: The thermal characteristics and kinetics of paper mill sludge (PMS), municipal solid waste (MSW) and their blends in the combustion process were investigated in this study. The mass percentages of PMS in the blends were 10%, 30%, 50%, 70% and 90%, respectively. The experiments were carried out at different heating rates (10 °C/min, 20 °C/min and 30 °C/min) and the temperature ranged from room temperature to 1000 °C in a thermogravimetric simultaneous thermal analyzer. The results suggested that the ignition temperature and burnout temperature of MSW were lower than that of PMS, and the mass loss rate of MSW was larger especially at low temperatures. There were only two mass loss peaks in the differential thermogravimetry (DTG) curve, while three mass loss peaks were observed when the blending ratios of PMS were 30%, 50%, 70%. The value of the comprehensive combustion characteristic index of the blends indicated a good combustibility when the percentage of PMS (PPMS) in the blends was less than 30%. There existed certain interaction between the combustion process of PMS and MSW, especially at high temperature stage. Activation energy (E) value obtained by the Ozawa–Flynn–Wall (OFW) method and the Starink method were very consistent. When the mass percentage of PMS in the blends was 80%, the E average value attained the minimum

  17. Integrated geophysical characterisation of Sunyani municipal solid waste disposal site using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography

    Science.gov (United States)

    Appiah, Isaac; Wemegah, David Dotse; Asare, Van-Dycke Sarpong; Danuor, Sylvester K.; Forson, Eric Dominic

    2018-06-01

    Non-invasive geophysical investigation using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography (ERT) was carried out on the Sunyani Municipal Assembly (SMA) solid waste disposal (SWD) site. The study was aimed at delineating the physical boundaries and the area extent of the waste deposit, mapping the distribution of the waste at the site, detecting and delineating zones of leachate contamination and its preferential migration pathways beneath the waste deposit and its surroundings. The results of both magnetic susceptibility and gradiometric methods displayed in anomaly maps clearly delineated the physical boundaries of the waste deposit with an approximate area extent of 82,650 m2 that are characterised by high magnetic susceptibilities between 426 × 10-5 SI and 9890 × 10-5 SI. They also revealed high magnetic anomalies erratically distributed within the waste deposit attributable to its heterogeneous and uncontrolled nature. The high magnetic anomalies outside the designated waste boundaries were also attributed to indiscriminate deposition of the waste. Similarly, the ERT sections delineated and characterised zones of leachate contamination beneath the waste body and its close surroundings as well as pathways for leachate migration with low resistivity signatures up to 43.9 Ωm. In spite of the successes reported herein using the ERT, this research also revealed that the ERT is less effective in estimating the thickness of the waste deposit in unlined SWD sites due to leachate infiltration into the ground beneath it that masks the resistivities of the top level ground and makes it indistinguishable from the waste body.

  18. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Science.gov (United States)

    2010-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  19. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model.

    Science.gov (United States)

    Aghajani Mir, M; Taherei Ghazvinei, P; Sulaiman, N M N; Basri, N E A; Saheri, S; Mahmood, N Z; Jahan, A; Begum, R A; Aghamohammadi, N

    2016-01-15

    Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making. A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    Science.gov (United States)

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  2. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Christensen, Thomas Højlund

    2011-01-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting...... was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of −6 to 8mPEMg−1ww...... from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly....

  3. Quantification of regional leachate variance from municipal solid waste landfills in China

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter

    2015-01-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture...... contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese...... waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China...

  4. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants

    NARCIS (Netherlands)

    Tang, P.; Florea, M.V.A.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    This study focuses on municipal solid waste incineration (MSWI) bottom ash characteristics, its heterogeneity, environmental properties, and their stability in time. The physical and chemical characteristics of bottom ashes from two plants were determined over time; results show that their

  5. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  6. Municipal solid waste management in Africa: Strategies and livelihoods in Yaounde, Cameroon

    International Nuclear Information System (INIS)

    Parrot, Laurent; Sotamenou, Joel; Dia, Bernadette Kamgnia

    2009-01-01

    This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaounde, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaounde also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance

  7. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  8. Municipal solid waste in Brazil: A review.

    Science.gov (United States)

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  9. A study of the metal content of municipal solid waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Churney, K.L.; Domalski, E.S.

    1998-01-01

    Knowledge of the content of toxic components, so called pollutant precursors, in the municipal solid waste (MSW) stream is essential to development of the strategies for source reduction and reuse, recycling, composting and disposal. Data are scarce; trends in composition for any locality even more so. In a previous study the total and water soluble chlorine content of the components of municipal solid waste were determined from sampling studies at two sites, Baltimore County, MD, and Brooklyn, NY, each for a five day period. The total sulfur content of the combined combustible components was also determined. Because of the scarcity of data and synergistic effects, it seemed appropriate to determine the heavy metal content of the preceding material prior to its disposal. The metals chosen were the so-called priority pollutant metals (PPM): antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc.

  10. The effect of food waste disposers on municipal waste and wastewater management.

    Science.gov (United States)

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  11. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-01-01

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H 2 S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS 2 ) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O 2 concentration (p −1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%

  12. Developing a Sustainability Assessment Model to Analyze China’s Municipal Solid Waste Management Enhancement Strategy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2015-01-01

    Full Text Available This study develops a sustainability assessment model for analysis and decision-making of the impact of China’s municipal solid waste management enhancement strategy options based on three waste treatment scenarios: landfill disposal, waste-to-energy incineration, and a combination of a material recovery facility and composting. The model employs life cycle assessment, health risk assessment, and full cost accounting to evaluate the treatment scenarios regarding safeguarding public health, protecting the environment and conserving resources, and economic feasibility. The model then uses an analytic hierarchy process for an overall appraisal of sustainability. Results suggest that a combination of material recovery and composting is the most efficient option. The study results clarify sustainable attributes, suitable predications, evaluation modeling, and stakeholder involvement issues in solid waste management. The demonstration of the use of sustainability assessment model (SAM provides flexibility by allowing assessment for a municipal solid waste management (MSWM strategy on a case-by-case basis, taking into account site-specific factors, therefore it has the potential for flexible applications in different communities/regions.

  13. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... per dry standard cubic meter (0.015 grains per dry standard cubic foot), corrected to 7 percent oxygen (dry basis). (b) On and after the date on which the initial compliance test is completed or is required...

  14. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  15. Process and design considerations for the anaerobic digestion of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, S.R.; Bastuk, B. [Larsen Engineers, Rochester, NY (United States)

    1993-12-31

    Full scale experience exists and justifies implementing anaerobic digestion for pretreatment of high strength industrial waste water and side streams. Anaerobic treatment of sludge and manure have demonstrated cost effective, environmentally sound treatment of these wastes. Recent attention has focused on the potential for anaerobically treating high solids municipal solid wastes to assist in meeting state waste reduction goals and provide a new renewable source of energy. This paper focuses on the fundamental facility design and process protocol considerations necessary for a high solids anaerobic digesting facility. The primary design and equipment considerations are being applied to a 5 to 10 ton per day demonstration anaerobic digestion facility in Bergen, New York.

  16. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Model Rule-Carbon Monoxide Emission... BBBB of Part 60—Model Rule—Carbon Monoxide Emission Limits for Existing Small Municipal Waste... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...

  17. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    Directory of Open Access Journals (Sweden)

    Elmira Shamshiry

    2011-01-01

    Full Text Available The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  18. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    Science.gov (United States)

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  19. Start-up of anaerobic digestion of source-sorted organic municipal solid waste

    International Nuclear Information System (INIS)

    Maroun, Rania

    2004-01-01

    Municipal solid waste (MSW) disposal is a major environmental concern worldwide. Among the environmentally sound technologies for the treatment of MSW, composting in the form of anaerobic digestion (AD) appears as a suitable alternative that offers the advantage of rapid stabilization of organic matter, reduction in waste volume, production of methane, and minimal environmental impacts in comparison to land filling and incineration. Yet, although outstanding advances in anaerobic digestion of solid substrate have been made in the last 10 years, some development areas are lagging, including the fast and reliable process start-up in terms of type of inocula and overall start-up strategies. The present study investigates the start-up and operation of bench-scale anaerobic digesters treating the source-sorted organic fraction of municipal solid waste. The experimental program consisted of starting up two digesters in parallel. Three consecutive interventions in the start-up program were implemented to achieve steady state. Start-up was relatively slow indicating the seed obtained from an operating anaerobic wastewater treatment plant was not suitable. The use of cattle manure together with effluent dilution reduced the acclimation period (Author.)

  20. Integrating climate change into governance at the municipal scale

    DEFF Research Database (Denmark)

    Wejs, Anja

    2014-01-01

    traditions and perceptions. This article examines dif- ferent approaches to CC governance and the institutional dynamics that occur in the integration process within eight Danish municipalities in the initial phase of integrating CC. The results show three different governance approaches related to climate...

  1. On-line caloric value sensor and validation of dynamic models applied to municipal solid waste

    NARCIS (Netherlands)

    Kessel, van L.B.M.; Leskens, M.; Brem, G.

    2002-01-01

    This paper deals with two aspects concerning the optimization of municipal solid waste combustion (MSWC) processes. First of all, an on-line calorific value sensor is discussed by means of which the calorific value of the waste can be estimated from actual process data. Experimental results on a

  2. The small-scale production of hydrogen, with the co-production of electricity and district heat, by means of the gasification of municipal solid waste

    International Nuclear Information System (INIS)

    Hognert, Johannes; Nilsson, Lars

    2016-01-01

    Highlights: • Outline of a process for handling municipal solid waste potentially leading to reduced use of fossil transportation fuels. • The integration of waste gasification into a district heat plant leads to excellent energy efficiency. • Analysis based on actual production data from a district heat plant over the period of one year. • Simulation of a plant with productions of heat, power and gaseous hydrogen. - Abstract: Reducing the use of fossil fuels and increasing the recycling of waste are two important challenges for a sustainable society. Fossil fuels contribute to global warming whilst waste causes the pollution of land, water and air. Alternative fuels and innovative waste management systems are needed to address these issues. In this study a gasification process, fuelled with municipal solid waste, was assumed to be integrated into a heat plant to produce hydrogen, electricity and district heat. A whole system, which includes a gasification reactor, heat plant, steam cycle, pressure swing adsorption, gas turbine and compressors was modelled in Microsoft Excel and an energy balance of the system was solved. Data from the scientific literature were used when setting up the heat and mass balances of the gasification process as well as for assessment of the composition of the syngas. The allocation of energy of the products obtained in the process is 29% hydrogen, 26% electricity and 45% district heat. A significant result of the study is the high energy efficiency (88%) during the cold period of the year when the produced heat in the system is utilized for district heat. The system also shows a competitive energy efficiency (56.5%) all year round.

  3. An efficient method of material recycling of municipal plastic waste

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Michálková, Danuše; Kruliš, Zdeněk

    2004-01-01

    Roč. 85, č. 9 (2004), s. 975-979 ISSN 0141-3910. [IUPAC Microsymposium on Degradation, Stabilisation and Recycling of Polymers /42./. Prague, 14.07.2003-17.07.2003] R&D Projects: GA AV ČR(CZ) IBS4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : recycling * municipal plastic waste * compatibilisation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.685, year: 2004

  4. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMSW...

  5. Data summary of municipal solid waste management alternatives. Volume I: report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  6. Integrated waste management as a climate change stabilisation wedge for the Maltese islands.

    Science.gov (United States)

    Falzon, Clyde; Fabri, Simon G; Frysinger, Steven

    2013-01-01

    The continuous increase in anthropogenic greenhouse gas emissions occurring since the Industrial Revolution is offering significant ecological challenges to Earth. These emissions are leading to climate changes which bring about extensive damage to communities, ecosystems and resources. The analysis in this article is focussed on the waste sector within the Maltese islands, which is the largest greenhouse gas emitter in the archipelago following the energy and transportation sectors. This work shows how integrated waste management, based on a life cycle assessment methodology, acts as an effective stabilisation wedge strategy for climate change. Ten different scenarios applicable to the Maltese municipal solid waste management sector are analysed. It is shown that the scenario that is most coherent with the stabilisation wedges strategy for the Maltese islands consists of 50% landfilling, 30% mechanical biological treatment and 20% recyclable waste export for recycling. It is calculated that 16.6 Mt less CO2-e gases would be emitted over 50 years by means of this integrated waste management stabilisation wedge when compared to the business-as-usual scenario. These scientific results provide evidence in support of policy development in Malta that is implemented through legislation, economic instruments and other applicable tools.

  7. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.

    Science.gov (United States)

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-05-01

    To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6-10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries. Copyright

  8. State of municipal solid waste management in Delhi, the capital of India

    International Nuclear Information System (INIS)

    Talyan, Vikash; Dahiya, R.P.; Sreekrishnan, T.R.

    2008-01-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000 tonnes/day of MSW, which is projected to rise to 17,000-25,000 tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system

  9. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  10. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Science.gov (United States)

    2010-07-01

    ... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or... weight or volume) or 30 parts per million by volume, corrected to 7 percent oxygen (dry basis), whichever... by volume, corrected to 7 percent oxygen (dry basis), whichever is less stringent. ...

  11. Quantitative assessments of municipal waste management systems: using different indicators to compare and rank programs in New York State.

    Science.gov (United States)

    Greene, Krista L; Tonjes, David J

    2014-04-01

    The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for

  12. PLANNING OF INTEGRATED/SUSTAINABLE SOLID WASTE MANAGEMENT (ISWM – MODEL OF INTEGRATED SOLID WASTE MANAGEMENT IN REPUBLIKA SRPSKA/B&H

    Directory of Open Access Journals (Sweden)

    Milan Topić

    2015-11-01

    Full Text Available Municipal solid waste management (MSWM has become an important issue for countries around the world. The challenges are particularly notable in developing and transitional countries reflected mainly in inappropriate management, underdeveloped technology, an unfavorable economic situation and the lack of environmental awareness, causing a tremendous environmental impact. Today, various models are applied to analyze solid waste management systems from the regional to the municipal levels. Understanding the mechanisms and factors that currently drive the development of waste management is a crucial step for moving forward and planning sustainable waste management systems. The main objective of this paper is to apply the ISWM model, which is based on the Life-Cycle approach and follows the analytical framework methodology, to the research region. The transdisciplinary research framework was empirically tested and subsequently applied in the region Republika Srpska. Using the benchmark methodology, based on environmental, institutional and economical sustainability, the waste management is summarized in assessment profile. The results of the conducted analyses and the application of the developed model can be used further as a basis for the proposal of further strategic, political and managerial changes and support decision makers and stakeholders to handle waste in a cost-efficient and environmentally sound way

  13. [Methods for health impact assessment of policies for municipal solid waste management: the SESPIR Project].

    Science.gov (United States)

    Parmagnani, Federica; Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Chiusolo, Monica; Cadum, Ennio; Lauriola, Paolo; Forastiere, Francesco

    2014-01-01

    The Project Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants (SESPIR) included five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily) and the National Institute of Health in the period 2010-2013. SESPIR was funded by the Ministry of Health as part of the National centre for diseases prevention and control (CCM) programme of 2010 with the general objective to provide methods and operational tools for the implementation of surveillance systems for waste and health, aimed at assessing the impact of the municipal solid waste (MSW) treatment cycle on the health of the population. The specific objective was to assess health impacts resulting from the presence of disposal facilities related to different regional scenarios of waste management. Suitable tools for analysis of integrated assessment of environmental and health impact were developed and applied, using current demographic, environmental and health data. In this article, the methodology used for the quantitative estimation of the impact on the health of populations living nearby incinerators, landfills and mechanical biological treatment plants is showed, as well as the analysis of three different temporal scenarios: the first related to the existing plants in the period 2008-2009 (baseline), the second based on regional plans, the latter referring to MSW virtuous policy management based on reduction of produced waste and an intense recovery policy.

  14. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  15. Resources from waste : integrated resource management phase 1 study report

    International Nuclear Information System (INIS)

    Corps, C.; Salter, S.; Lucey, P.; O'Riordan, J.

    2008-01-01

    Integrated resource management (IRM) of municipal waste streams and water systems requires a structured analysis of options that consider environmental aspects such as greenhouse gases, carbon taxes and credits. Each option's inputs and outputs are assessed to determine the net highest and best use and value. IRM focuses on resource recovery and extracting maximum value. It considers the overall net impact on the taxpayer and requires the integration of liquid and solid waste streams to maximize values for recovering energy in the form of biofuels, heat, minerals, water and reducing electricity demand. IRM is linked to water management through reuse of treated water for groundwater recharge and to offset potable water use for non-potable purposes such as irrigation, including potential commercial use, which contributes to maintaining or improving the health of watersheds. This report presented a conceptual design for the application of IRM in the province of British Columbia (BC) and analyzed its potential contribution to the provincial climate change agenda. The report discussed traditional waste management, the IRM approach, and resource recovery technology and opportunities. The business case for IRM in BC was also outlined. It was concluded that IRM has the potential to be a viable solution to water, solid and liquid waste management that should be less expensive, result in fewer environmental impacts, and provide greater flexibility than traditional approaches to waste management. 63 refs., 17 tabs., 21 figs., 10 appendices

  16. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  17. Physiological responses of Vetiver plant (Vetiver zizanioides to municipal waste leachate

    Directory of Open Access Journals (Sweden)

    Sasan Mohsenzadeh

    2016-06-01

    Full Text Available Vetiver plant is tolerant to acidity and temperature variations. Has rapid growth for biomass production and has high tolerance to organic and non-organic compounds in municipal waste leachate for example heavy metals. So this plant is good for landfill cultivation. In this study, physiological responses to municipal waste leachate were studied. Statistical design was a randomized complete block and each block treated with different concentrations of latex at levels of zero, 15, 30, 45 and 60 percent compared to the original latex waste. The leachate collected from the Shiraz landfill and brought into the greenhouse. The physiological characterization including leaf area, dry weight, chlorophyll, anthocyanin, proline, soluble sugars and total protein were measured. The result indicated that the dry weight, chlorophyll and anthocyanin decrease with increasing of latex concentration. The leaf area, leaf relative water, soluble sugars and total protein increased with increasing latex concentration. Proline concentration at 15 percent of leachate increased significantly compared to controls, whereas at higher concentrations decreased. According to the results, it is recommended that 45 percent of leachate in a landfill can be used to irrigate Vetiver. This is the maximum concentration of leachate that Vetiver plant can survive as green space. Primary filtration of leachate before using is recommended. If the aim is more growth or perfume application from root, less concentration of leachate is better.

  18. Study on the construction and operation for management system of municipal domestic wastes

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Wang Shuqiang; Chen Jingxin

    2006-01-01

    In recent years, the quantity of our country's municipal domestic wastes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system. Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale,waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed our country's domestic wastes management system, proposed the measures of promoting the operation of system. It has realized the transformation of waste management system from terminal disposal to source reduction,achieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing,and finally brought sustainable development for resources, environment, economy and society.

  19. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    Science.gov (United States)

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  20. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    International Nuclear Information System (INIS)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-01-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion

  1. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  2. Prediction of the compression ratio for municipal solid waste using decision tree.

    Science.gov (United States)

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  3. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia

    International Nuclear Information System (INIS)

    Tan, Sie Ting; Hashim, Haslenda; Lim, Jeng Shiun; Ho, Wai Shin; Lee, Chew Tin; Yan, Jinyue

    2014-01-01

    Highlights: • Feasibility study on the energy and GHG emission reduction for WtE strategies for municipal solid waste (MSW) in Malaysia. • Greenhouse gases (GHG) emissions from WtE strategies analysed using IPCC guideline. • Scenario analysis by comparison of different WtE strategies. • Impact of moisture content of MSW towards energy potential and GHG emission reduction. - Abstract: Ineffective waste management that involves dumping of waste in landfills may degrade valuable land resources and emit methane gas (CH 4 ), a more potent greenhouse gas than carbon dioxide (CO 2 ). The incineration of waste also emits polluted chemicals such as dioxin and particle. Therefore, from a solid waste management perspective, both landfilling and incineration practices pose challenges to the development of a green and sustainable future. Waste-to-energy (WtE) has become a promising strategy catering to these issues because the utilisation of waste reduces the amount of landfilled waste (overcoming land resource issues) while increasing renewable energy production. The goal of this paper is to evaluate the energy and carbon reduction potential in Malaysia for various WtE strategies for municipal solid waste (MSW). The material properties of the MSW, its energy conversion potential and subsequent greenhouse gases (GHG) emissions are analysed based on the chemical compositions and biogenic carbon fractions of the waste. The GHG emission reduction potential is also calculated by considering fossil fuel displacement and CH 4 avoidance from landfilling. In this paper, five different scenarios are analysed with results indicating a integration of landfill gas (LFG) recovery systems and waste incinerator as the major and minor WtE strategies shows the highest economical benefit with optimal GHG mitigation and energy potential. Sensitivity analysis on the effect of moisture content of MSW towards energy potential and GHG emissions are performed. These evaluations of Wt

  4. A preliminary study of waste to energy potential of municipal solid waste in Havana

    International Nuclear Information System (INIS)

    Llanes, Junior Lorenzo; Kalogirou, Efstratios

    2017-01-01

    One of the challenges that must be face by a growing society is its waste management. This is crucial in the particular case of developing countries like Cuba. Waste to energy is a well-established technology for municipal solid waste (MSW) treatment. The aim of this work was to estimate the energetic potential of MSW in the city of Havana. An average low heating value (LHV) of 7.35 MJ/kg was estimated by applying different models. From the mass and energy balances, the emissions and the energy recovered for electricity generation were determined. Two steam turbine configurations (back – pressure and condensing) were designed by a rigorous method and later simulated in Aspen Plus simulator. The results showed that for a feeding rate of 49.5 tonh-1 of MSW it was possible to generate 257 GWh per year with an overall plant efficiency of 25.4% in a four-stage turbine. (author)

  5. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.

    Science.gov (United States)

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei

    2017-08-01

    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  6. Integrated Solid Waste Management for Urban Area in Basrah District

    Directory of Open Access Journals (Sweden)

    Abdulhussain Abdul Kareem Abbas

    2016-09-01

    Full Text Available The success of waste management requires accurate data on generation and composition of waste which is pivotal for the decisions towards the appropriate waste management system. A five years (2008-2012 study was conducted to evaluate the solid wastes management system in all the six divisions of Basrah district (more than 30 sub-districts. Recent investigations in 2012 resulted information that population of Basrah district has reached 1,018,000 person The quantity of municipal solid waste generated was recorded to be 634 tons per day with MSW generation rates of 0.62 kg per capita per day. Municipal solid waste density was conducted as 192.6 kg/m³ with moisture content of 31.1%. The main components of the MSW were Food wastes represents largest proportion (54.8%, followed by plastic (25.2% and paper (7%. The study results reveal that the MSW stream has the largest proportion of biodegradable and recyclable waste. Therefore, the study recommends to use methods of waste treatment such composting, recycling and incineration in order to reduce the amount of waste that are taken to the landfill.

  7. Municipal solid waste processing methods: Technical-economic comparison

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    This paper points out the advantages and disadvantages of municipal solid waste processing methods incorporating different energy and/or materials recovery techniques, i.e., those involving composting or incineration and those with a mix of composting and incineration. The various technologies employed are compared especially with regard to process reliability, flexibility, modularity, pollution control efficiency and cost effectiveness. For that which regards composting, biodigestors are examined, while for incineration, the paper analyzes systems using combustion with complete recovery of vapour, combustion with total recovery of available electric energy, and combustion with cogeneration. Each of the processing methods examined includes an iron recovery cycle

  8. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit at your plant. Include supporting calculations. (b) Records of low carbon feed... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...

  9. Household hazardous waste in municipal landfills: contaminants in leachate

    International Nuclear Information System (INIS)

    Slack, R.J.; Gronow, J.R.; Voulvoulis, N.

    2005-01-01

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge

  10. Energy potential from municipal solid waste in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sivapalan Kathirvale; Muhd Noor Muhd Yunus [Malaysian Institute for Nuclear Technology Research, Selangor Darul Ehsan (Malaysia). Incineration and Renewable Energy Center; Kamaruzzaman Sopian; Abdul Halim Samsuddin [University Kebangsaan Malaysia, Selangor Darul Ehsan (Malaysia). Faculty of Engineering

    2004-04-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. This paper highlights the MSW characteristics for the city of Kuala Lumpur. Currently, the waste management approach being employed is landfill, but due to rapid development and lack of space for new landfills, big cities in Malaysia are switching to incineration. A simple evaluation was conducted to establish the amount of energy that would be recovered based on the characteristics of the MSW if it were to be incinerated. From the characterization exercise, the main components of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80% of the waste by weight. The average moisture content of the MSW was about 55%, making incineration a challenging task. The calorific value of the Malaysian MSW ranged between 1500 and 2600 kcal/kg. However, the energy potential from an incineration plant operating based on 1500 ton of MSW/day with an average calorific value of 2200 kcal/kg is assessed to be at 640 kW/day. (author)

  11. Empowering the Legitimacy of Municipal Decision-Making - Three Swedish Municipalities Facing the Nuclear Waste Management Issue

    International Nuclear Information System (INIS)

    Soederberg, Olof

    2001-01-01

    This paper is focussed on how municipal elected leaders in three Swedish feasibility study municipalities - Nykoeping, Oskarshamn and Tierp - have tried to ensure that future decisions by their respective municipalities will be based both on factual knowledge and on existing opinions held by the general public. These efforts have contributed to an empowerment of the legitimacy of municipal decision-making within the nuclear waste management field and, probably, also served as a factor contributing to trust building with regard to these issues. The three cases show three ways to handle the problem, although there are also common features. The municipalities of Nykoeping and Oskarshamn have been facing these issues since 1995. In the case of Tierp, the municipality was confronted in late 1998 with the task to choose a strategy for its involvement in the site selection process and then, immediately, implement that strategy. A decision to construct a final repository for spent nuclear fuel has an obvious local dimension. It is not enough that an implementer is capable of developing a method that is considered to be safe enough by the regulatory authorities and by the Government. Nor is it enough that the implementer has succeeded to choose a site that these institutions consider to be suitable. A vital condition for a successful result is also that the general public, especially people living close to the site, have trust in the process leading up to the decision - and of course also that the general public is confident that the implementer and the regulator have agreed on a sound technical solution of the disposal problem. In other words, decisions in this area by Government and regulatory authorities do not only have to comply with existing legislation (obviously decisions by such bodies have to be 'legal'); they also should have a democratic legitimacy. In a representative democracy like Sweden, with high voting participation, it may seem self-evident that the

  12. Empowering the Legitimacy of Municipal Decision-Making - Three Swedish Municipalities Facing the Nuclear Waste Management Issue

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, Olof [Ministry of the Environment, Stockholm (Sweden)

    2001-07-01

    This paper is focussed on how municipal elected leaders in three Swedish feasibility study municipalities - Nykoeping, Oskarshamn and Tierp - have tried to ensure that future decisions by their respective municipalities will be based both on factual knowledge and on existing opinions held by the general public. These efforts have contributed to an empowerment of the legitimacy of municipal decision-making within the nuclear waste management field and, probably, also served as a factor contributing to trust building with regard to these issues. The three cases show three ways to handle the problem, although there are also common features. The municipalities of Nykoeping and Oskarshamn have been facing these issues since 1995. In the case of Tierp, the municipality was confronted in late 1998 with the task to choose a strategy for its involvement in the site selection process and then, immediately, implement that strategy. A decision to construct a final repository for spent nuclear fuel has an obvious local dimension. It is not enough that an implementer is capable of developing a method that is considered to be safe enough by the regulatory authorities and by the Government. Nor is it enough that the implementer has succeeded to choose a site that these institutions consider to be suitable. A vital condition for a successful result is also that the general public, especially people living close to the site, have trust in the process leading up to the decision - and of course also that the general public is confident that the implementer and the regulator have agreed on a sound technical solution of the disposal problem. In other words, decisions in this area by Government and regulatory authorities do not only have to comply with existing legislation (obviously decisions by such bodies have to be 'legal'); they also should have a democratic legitimacy. In a representative democracy like Sweden, with high voting participation, it may seem self-evident that

  13. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    Science.gov (United States)

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  14. Locally Integrated Energy Sectors supported by renewable network management within municipalities

    International Nuclear Information System (INIS)

    Kostevšek, Anja; Petek, Janez; Čuček, Lidija; Klemeš, Jiří Jaromír; Varbanov, Petar Sabev

    2015-01-01

    The decarbonisation of energy systems is one of the important issues of the present energy policies. One of the ways of achieving this is to focus on local energy systems, thus ensuring as much as possible their heat and power self-sufficiency by applying local renewable resource integration and transformation of the renewable energy. Increasing the share of renewables within the local energy balance could be accomplished by using a variety of approaches. One possibility is combining the Locally Integrated Energy Sectors' concept with the novel management and organisation of a renewables-based network. As a first priority, the proposed comprehensive approach focuses on increasing the energy efficiency of municipal heat and power systems using the Locally Integrated Energy Sectors' concept, which is followed by the integration of renewable energy sources with the establishment of a renewable-based network. The proposed approach is illustrated by a case study of district heating based on wood biomass for the municipality Ormož, Slovenia by integrating various end-users from different sectors. - Highlights: • The paper presents a new approach for accelerated inception of RES in municipalities. • LIES with RES network increases energy efficiency and accelerates RES integration. • A demonstration case of district heating on wood biomass within Ormož was performed.

  15. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia

    International Nuclear Information System (INIS)

    Tan, Sie Ting; Ho, Wai Shin; Hashim, Haslenda; Lee, Chew Tin; Taib, Mohd Rozainee; Ho, Chin Siong

    2015-01-01

    Highlights: • 3E impact of WTE derived from MSW were performed. • MSW treatment technologies significantly effects the economic and environmental benefits of WTE. • Different scenarios are conducted based on the waste projections and production. • Comprehensive discussion on the trade-off of both incineration and anaerobic digestion for MSWM. - Abstract: The utilisation of municipal solid waste (MSW) for energy production has been implemented globally for many decades. Malaysia, however, is still highly dependent on landfills for MSW management. Because of the concern for greenhouse gases (GHG) emission and the scarcity of land, Malaysia has an urgent need for a better waste management strategy. This study aims to evaluate the energy, economic and environmental (3E) impact of waste-to-energy (WTE) for municipal solid waste management. An existing landfill in Malaysia is selected as the case study for consideration to adopt the advanced WTE technologies including the landfill gas recovery system (LFGRS), incineration, anaerobic digestion (AD), and gasification. The study presented an interactive comparison of different WTE scenarios and followed by further discussion on waste incineration and AD as the two potential WTE options in Malaysia. The 3E assessment reveals incineration as the superior technology choice when the production of electricity and heat were considered; however, AD is found to be more favourable under the consideration of electricity production only

  16. A framework for a decision support system for municipal solid waste landfill design.

    Science.gov (United States)

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  17. Impact of socioeconomic status on municipal solid waste generation rate.

    Science.gov (United States)

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    International Nuclear Information System (INIS)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-01-01

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP 100 ), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO 2 -eq. tonne −1 to net saving of 670 kg CO 2 -eq. tonne −1 of MSWM

  19. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Komal, E-mail: koh@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohr’s Alle 1, 5230 Odense M (Denmark); Schmidt, Jannick H.; Christensen, Per [Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg OE (Denmark)

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  20. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Science.gov (United States)

    2010-07-01

    ... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...

  1. Municipal solid waste management in Kolkata, India - A review

    International Nuclear Information System (INIS)

    Chattopadhyay, Subhasish; Dutta, Amit; Ray, Subhabrata

    2009-01-01

    Kolkata is one of four metropolitan cities in India. With an area of 187.33 sq km and a population of about 8 million, it generates around 3,000 t d -1 of municipal solid waste (MSW) at a rate of 450-500 g per capita per day. With rapid urbanization as a result of planned and unplanned growth and industrialization, the problems associated with handling MSW have increased at an alarming rate over the past few years. No source segregation arrangement exists; there is only limited (60%) house-to-house collection; and 50-55% open vats are used in the present collection system. The operational efficiency of the Kolkata Municipal Corporation (KMC) transport system is about 50%, with a fleet composed of about 30-35% old vehicles. The majority (80%) of these, particularly the hired vehicles, are more than 20 years old. The newly added areas covered by KMC have even lower collection efficiencies, and only an informal recycling system exists. The waste collected has a low energy value (3,350-4,200 kJ kg -1 ) with high moisture and inert content. A 700 t d -1 compost plant set up in 2000 has not been functioning effectively since 2003. Open dumping (without liners and without a leachate management facility) and the threat of groundwater pollution, as well as saturation of an existing landfill site (Dhapa) are the most pressing problems for the city today. KMC spends 70-75% of its total expenditures on collection of solid waste, 25-30% on transportation, and less than 5% on final disposal arrangements. The Kolkata Environmental Improvement Project, funded by the Asian Development Bank, is seen as only a partial solution to the problem. A detailed plan should emphasize segregation at the source, investment in disposal arrangements (including the use of liners and leachate collection), and an optimized transport arrangement, among improvements

  2. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041 (China); College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Schuchardt, Frank [Johann Heinrich von Thuenen-Institute, Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig (Germany); Li, Guoxue, E-mail: ligx@cau.edu.cn [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Yang, Jinbing; Yang, Qingyuan [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China)

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  3. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Science.gov (United States)

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  4. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    Science.gov (United States)

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  5. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  6. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Characterization of municipal solid waste incineration fly ash before and after electrodialytic treatment

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Municipal solid waste incineration (MSWI) fly ash, which has been treated electrodialytically for the removal of heavy metals, may have changed characteristics compared to untreated fly ash. In this study, MSWI fly ash was characterized with respect to leaching properties (pH static leaching...

  8. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio

    2015-01-01

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered...

  9. Renewable municipal waste barometer - EurObserv'ER - November 2014

    International Nuclear Information System (INIS)

    2014-11-01

    EurObserv'ER reckons that the energy recovered from renewable municipal waste incineration that takes into account the organic part (cartons, kitchen waste, etc.) increased slightly in 2013 (by 0.7% over 2012), giving output of about 8.7 Mtoe. Heat sales to district heating networks stepped up conspicuously in 2013, as synergy between the incineration plants and the heating networks improved. Heat output increased 7.8% over 2012 to reach 2.4 Mtoe, while electricity output remained stable at 18.7 TWh. This development demonstrates the increased energy efficiency of the incineration plants that is stimulated by European legislation, primarily through the transposition of the framework directive on waste (2008/98/EC) that encourages operators to optimize the energy efficiency of their plants, primarily by looking for new outlets for heat production. The Directive stipulates that the incinerators can only be classed as waste-to- energy recovery units if they meet minimum yield criteria, which in the case of plant constructed since 31 December 2008 must be at least equal to 65%. The energy efficiency of those constructed prior to 2008 must be at least 60%. If these criteria are not met, the waste incineration process will not be recognized as treatment eligible for waste ranking as imposed by the directive

  10. Effects of long-term application of municipal solid waste compost on speciation and availability of heavy metals in soil

    International Nuclear Information System (INIS)

    Ben Achiba, W.; Lakdar, A.; Verloo, M. G.; Gabteni, N.; Jedidi, N.; Gallali, T.

    2009-01-01

    The application of municipal solid waste compost in agriculture provides a valuable source of plant nutrients and soil fertility. Nevertheless, heavy metals accumulation may be a problem. A seven-year field study was carried out to investigate the effects of farmyard manure (40 and 120 t/ha) and municipal solid waste compost (40, 80 and 120 t/ha) application on the total content, speciation and availability of heavy metals in a calcareous Tunisian soil without vegetation. (Author)

  11. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    Science.gov (United States)

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Compost production from municipal wastes of Canadian mining towns

    International Nuclear Information System (INIS)

    Jongejan, A.

    1983-01-01

    A summary of results of experiements on composting mumicipal wastes, and an overview of a type of composting process that could be used in small Canadian mining towns are given. The process is a means of waste disposal designed to produce compost. Compost can be used for the revegetation of mine-mill tailings as its sorptive properties complement the chemical action of inorganic fertilizers. The possibility of using compost instead of peat in water pollution-abatement processes can be considered. Difficulties that can be expected if a windrow composting process is continued during the low ambient-temperatures of Canadian winters can be avoided by storing the garbage-sewage mixture as hydraulically-compacted briquettes. Degradation of the briquettes takes place during mild-temperature periods without producing the foul odors of heaped garbage. A tentative plan for composting plant is presented as an illustration of the applicatin of the experimental results in a practical process. Because the process is a means of waste disposal, costs have to be divided between the municipality and the mining industry

  13. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  14. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    Science.gov (United States)

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results

  15. Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste

    International Nuclear Information System (INIS)

    Budych-Gorzna, Magdalena; Smoczynski, Marcin; Oleskowicz-Popiel, Piotr

    2016-01-01

    Highlights: • Laboratory and full-scale trials on co-digestion of sludge and poultry waste were performed. • Successful scaling-up of the results from laboratory to full-scale was accomplished. • Incremental addition of poultry waste to the full-scale anaerobic digesters did not cause any inhibition of the process. • WWTP energy dependency can be reduced significantly by co-digestion of sludge and external source of waste. - Abstract: Municipal wastewater treatment plants (WWTPs) are energy-intensive and thus cost-intensive facilities; therefore, it is crucial to increase energy production directly at the WWTP. Enhancement of biogas production by addition of external substrates is one of the solutions to increase energy self-sufficiency of the WWTPs with an additional benefit of cutting down the greenhouse gas emission. The main aim of the work was to investigate full utilization of the capacity of full-scale digesters at the municipal WWTP by addition of poultry industry waste. At first, laboratory trials were conducted in order to identify the most suitable dose for co-digestion with primary and waste activated sludge and finally, based on the achieved laboratory results, full-scale trials were carried out directly at the municipal WWTP. Poultry industrial waste yielded between 0.39 and 0.88 m 3 of methane per kg of volatile solids during laboratory trials, depending on the added concentration. During full-scale investigation yield of 0.81 m 3 /kg VS was achieved. Enhanced biogas production improved WWTP energy self-sufficiency bringing closer to the aim of increasing the share of self-produced energy up to 80%.

  16. Municipal Solid Waste Landfills: New Source Performance Standards (NSPS), Emission Guidelines (EG) and Compliance Times

    Science.gov (United States)

    learn about the NSPS for municipal solid waste landfills by reading the rule summary, rule history, code of federal regulations text, fact sheets, background information documents, related rules and compliance information.

  17. Properties of municipal solid waste incineration ashes with respect to their separation temperature

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Pavlík, Z.; Tydlitát, V.; Volfová, P.; Švarcová, Silvie; Šyc, Michal; Černý, R.

    2012-01-01

    Roč. 30, č. 10 (2012), s. 1041-1048 ISSN 0734-242X Institutional support: RVO:61388980 ; RVO:67985858 Keywords : bottom ash * fly ash * municipal solid waste incinerator * pozzolanic activity * hydration heat * separation temperature * building industry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  18. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    International Nuclear Information System (INIS)

    Ferri, Giovane Lopes; Diniz Chaves, Gisele de Lorena; Ribeiro, Glaydston Mattos

    2015-01-01

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  19. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br [Department of Engineering and Technology, Federal University of Espírito Santo – UFES, Rodovia BR 101 Norte, Km 60, Bairro Litorâneo, São Mateus, ES, 29.932-540 (Brazil); Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br [Department of Engineering and Technology, Federal University of Espírito Santo – UFES, Rodovia BR 101 Norte, Km 60, Bairro Litorâneo, São Mateus, ES, 29.932-540 (Brazil); Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br [Transportation Engineering Programme, Federal University of Rio de Janeiro – UFRJ, Centro de Tecnologia, Bloco H, Sala 106, Cidade Universitária, Rio de Janeiro, 21949-900 (Brazil)

    2015-06-15

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  20. 40 CFR Table 1 to Subpart Aaaa of... - Emission Limits for New Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...