WorldWideScience

Sample records for integrated molecular signature

  1. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    International Nuclear Information System (INIS)

    Torres-Roca, Javier F.; Fulp, William J.; Caudell, Jimmy J.; Servant, Nicolas; Bollet, Marc A.; Vijver, Marc van de; Naghavi, Arash O.; Harris, Eleanor E.; Eschrich, Steven A.

    2015-01-01

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSI and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI and

  2. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Roca, Javier F., E-mail: javier.torresroca@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Department of Chemical Biology and Molecular Medicine, Moffitt Cancer Center, Tampa, Florida (United States); Fulp, William J. [Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States); Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida (United States); Caudell, Jimmy J. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Servant, Nicolas [Institut Curie, INSERM U900, Paris (France); Mines ParisTech, Paris (France); Bollet, Marc A. [Institut Curie, INSERM U900, Paris (France); Vijver, Marc van de [Netherlands Cancer Institute, Amsterdam (Netherlands); Naghavi, Arash O. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Harris, Eleanor E. [East Carolina University, Greensborough, North Carolina (United States); Eschrich, Steven A. [Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States)

    2015-11-01

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSI and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI and

  3. Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis.

    Science.gov (United States)

    Hudson, Marie; Bernatsky, Sasha; Colmegna, Ines; Lora, Maximilien; Pastinen, Tomi; Klein Oros, Kathleen; Greenwood, Celia M T

    2017-06-03

    We undertook this study to identify DNA methylation signatures of three systemic autoimmune rheumatic diseases (SARDs), namely rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, compared to healthy controls. Using a careful design to minimize confounding, we restricted our study to subjects with incident disease and performed our analyses on purified CD4 + T cells, key effector cells in SARD. We identified differentially methylated (using the Illumina Infinium HumanMethylation450 BeadChip array) and expressed (using the Illumina TruSeq stranded RNA-seq protocol) sites between cases and controls, and investigated the biological significance of this SARD signature using gene annotation databases. We recruited 13 seropositive rheumatoid arthritis, 19 systemic sclerosis, 12 systemic lupus erythematosus subjects, and 8 healthy controls. We identified 33 genes that were both differentially methylated and expressed (26 over- and 7 under-expressed) in SARD cases versus controls. The most highly overexpressed gene was CD1C (log fold change in expression = 1.85, adjusted P value = 0.009). In functional analysis (Ingenuity Pathway Analysis), the top network identified was lipid metabolism, molecular transport, small molecule biochemistry. The top canonical pathways included the mitochondrial L-carnitine shuttle pathway (P = 5E-03) and PTEN signaling (P = 8E-03). The top upstream regulator was HNF4A (P = 3E-05). This novel SARD signature contributes to ongoing work to further our understanding of the molecular mechanisms underlying SARD and provides novel targets of interest.

  4. Respiromics – An integrative analysis linking mitochondrial bioenergetics to molecular signatures

    Directory of Open Access Journals (Sweden)

    Ellen Walheim

    2018-03-01

    Full Text Available Objective: Energy metabolism is challenged upon nutrient stress, eventually leading to a variety of metabolic diseases that represent a major global health burden. Methods: Here, we combine quantitative mitochondrial respirometry (Seahorse technology and proteomics (LC-MS/MS-based total protein approach to understand how molecular changes translate to changes in mitochondrial energy transduction during diet-induced obesity (DIO in the liver. Results: The integrative analysis reveals that significantly increased palmitoyl-carnitine respiration is supported by an array of proteins enriching lipid metabolism pathways. Upstream of the respiratory chain, the increased capacity for ATP synthesis during DIO associates strongest to mitochondrial uptake of pyruvate, which is routed towards carboxylation. At the respiratory chain, robust increases of complex I are uncovered by cumulative analysis of single subunit concentrations. Specifically, nuclear-encoded accessory subunits, but not mitochondrial-encoded or core units, appear to be permissive for enhanced lipid oxidation. Conclusion: Our integrative analysis, that we dubbed “respiromics”, represents an effective tool to link molecular changes to functional mechanisms in liver energy metabolism, and, more generally, can be applied for mitochondrial analysis in a variety of metabolic and mitochondrial disease models. Keywords: Mitochondria, Respirometry, Proteomics, Mitochondrial pyruvate carrier, Liver disease, Bioenergetics, Obesity, Diabetes

  5. Signature molecular descriptor : advanced applications.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  6. Biomarker Gene Signature Discovery Integrating Network Knowledge

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    2012-02-01

    Full Text Available Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches.

  7. On reliable discovery of molecular signatures

    Directory of Open Access Journals (Sweden)

    Björkegren Johan

    2009-01-01

    Full Text Available Abstract Background Molecular signatures are sets of genes, proteins, genetic variants or other variables that can be used as markers for a particular phenotype. Reliable signature discovery methods could yield valuable insight into cell biology and mechanisms of human disease. However, it is currently not clear how to control error rates such as the false discovery rate (FDR in signature discovery. Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult to replicate in independent studies, casting doubts on their reliability. Results We demonstrate that with modern prediction methods, signatures that yield accurate predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail to replicate in independent studies due to limited statistical power. Thus, neither stability nor predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a general statistical hypothesis testing framework that for the first time provides FDR control for signature discovery. Our method is demonstrated to be correct in simulation studies. When applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR in three cases, while two data sets yielded no significant findings. Conclusion Our approach enables reliable discovery of molecular signatures from genome-wide data with current sample sizes. The statistical framework developed herein is potentially applicable to a wide range of prediction problems in bioinformatics.

  8. Molecular signatures of thyroid follicular neoplasia

    DEFF Research Database (Denmark)

    Borup, R.; Rossing, M.; Henao, Ricardo

    2010-01-01

    The molecular pathways leading to thyroid follicular neoplasia are incompletely understood, and the diagnosis of follicular tumors is a clinical challenge. To provide leads to the pathogenesis and diagnosis of the tumors, we examined the global transcriptome signatures of follicular thyroid...... a mechanism for cancer progression, which is why we exploited the results in order to generate a molecular classifier that could identify 95% of all carcinomas. Validation employing public domain and cross-platform data demonstrated that the signature was robust and could diagnose follicular nodules...... and robust genetic signature for the diagnosis of FA and FC. Endocrine-Related Cancer (2010) 17 691-708...

  9. Molecular Signature in HCV-Positive Lymphomas

    Directory of Open Access Journals (Sweden)

    Valli De Re

    2012-01-01

    Full Text Available Hepatitis C virus (HCV is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL. Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.

  10. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth.

    Directory of Open Access Journals (Sweden)

    Agnes Bonnet

    Full Text Available The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments.We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9 and BMP binding endothelial regulator (BMPER was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11, bone morphogenetic protein 15 (BMP15 and WEE1 homolog 2 (S. pombe(WEE2 which play critical roles in follicular development but other biomarkers

  11. Integrative Metabolic Signatures for Hepatic Radiation Injury.

    Directory of Open Access Journals (Sweden)

    Irwin Jack Kurland

    Full Text Available Radiation-induced liver disease (RILD is a dose-limiting factor in curative radiation therapy (RT for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI and were contrasted to mice, which received 10 Gy whole body irradiation (WBI. Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate, fatty acids (lineolate, n-hexadecanoic acid and DNA damage markers (uridine.We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.

  12. Molecular signatures from omics data: from chaos to consensus.

    Science.gov (United States)

    Sung, Jaeyun; Wang, Yuliang; Chandrasekaran, Sriram; Witten, Daniela M; Price, Nathan D

    2012-08-01

    In the past 15 years, new "omics" technologies have made it possible to obtain high-resolution molecular snapshots of organisms, tissues, and even individual cells at various disease states and experimental conditions. It is hoped that these developments will usher in a new era of personalized medicine in which an individual's molecular measurements are used to diagnose disease, guide therapy, and perform other tasks more accurately and effectively than is possible using standard approaches. There now exists a vast literature of reported "molecular signatures". However, despite some notable exceptions, many of these signatures have suffered from limited reproducibility in independent datasets, insufficient sensitivity or specificity to meet clinical needs, or other challenges. In this paper, we discuss the process of molecular signature discovery on the basis of omics data. In particular, we highlight potential pitfalls in the discovery process, as well as strategies that can be used to increase the odds of successful discovery. Despite the difficulties that have plagued the field of molecular signature discovery, we remain optimistic about the potential to harness the vast amounts of available omics data in order to substantially impact clinical practice. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular signatures for the Crenarchaeota and the Thaumarchaeota.

    Science.gov (United States)

    Gupta, Radhey S; Shami, Ali

    2011-02-01

    Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales-3 CSIs and 169 SPs, Thermoproteales-5 CSIs and 25 SPs, Desulfurococcales-4 SPs, and Sulfolobales and Desulfurococcales-2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and

  14. Validation of a radiosensitivity molecular signature in breast cancer

    NARCIS (Netherlands)

    S.A. Eschrich (Steven); C. Fulp (Carl); Y. Pawitan (Yudi); J.A. Foekens (John); M. Smid (Marcel); J.W.M. Martens (John); M. Echevarria (Michelle); P.S. Kamath (Patrick); J.-H. Lee (Ji-Hyun); E.E. Harris (Eleanor); J. Bergh (Jonas); J.F. Torres-Roca (Javier)

    2012-01-01

    textabstractPurpose: Previously, we developed a radiosensitivity molecular signature [radiosensitivity index (RSI)] that was clinically validated in 3 independent datasets (rectal, esophageal, and head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT)-treated breast cancer patients.

  15. Dynamic signature of molecular association in methanol

    International Nuclear Information System (INIS)

    Bertrand, C. E.; Copley, J. R. D.; Faraone, A.; Self, J. L.

    2016-01-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD 3 OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.

  16. Molecular signatures database (MSigDB) 3.0.

    Science.gov (United States)

    Liberzon, Arthur; Subramanian, Aravind; Pinchback, Reid; Thorvaldsdóttir, Helga; Tamayo, Pablo; Mesirov, Jill P

    2011-06-15

    Well-annotated gene sets representing the universe of the biological processes are critical for meaningful and insightful interpretation of large-scale genomic data. The Molecular Signatures Database (MSigDB) is one of the most widely used repositories of such sets. We report the availability of a new version of the database, MSigDB 3.0, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site. MSigDB is freely available for non-commercial use at http://www.broadinstitute.org/msigdb.

  17. Molecular signatures define two main classes of meningiomas

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2007-10-01

    Full Text Available Abstract Background Meningiomas are common brain tumors that are classified into three World Health Organization grades (benign, atypical and malignant and are molecularly ill-defined tumors. The purpose of this study was identify molecular signatures unique to the different grades of meningiomas and to unravel underlying molecular mechanisms driving meningioma tumorigenesis. Results We have used a combination of gene expression microarrays and array comparative genomic hybridization (aCGH to show that meningiomas of all three grades fall into two main molecular groups designated 'low-proliferative' and 'high-proliferative' meningiomas. While all benign meningiomas fall into the low-proliferative group and all malignant meningiomas fall into the high-proliferative group, atypical meningiomas distribute into either one of these groups. High-proliferative atypical meningiomas had an elevated median MIB-1 labeling index and a greater frequency of copy number aberrations (CNAs compared to low-proliferative atypical meningiomas. Additionally, losses on chromosome 6q, 9p, 13 and 14 were found exclusively in the high-proliferative meningiomas. We have identified genes that distinguish benign low-proliferative meningiomas from malignant high-proliferative meningiomas and have found that gain of cell-proliferation markers and loss of components of the transforming growth factor-beta signaling pathway were the major molecular mechanisms that distinguish these two groups. Conclusion Collectively, our data suggests that atypical meningiomas are not a molecularly distinct group but are similar to either benign or malignant meningiomas. It is anticipated that identified molecular and CNA markers will potentially be more accurate prognostic markers of meningiomas.

  18. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Science.gov (United States)

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  19. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kogner Per

    2011-04-01

    Full Text Available Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB; Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples. Four distinct clusters were identified by Principal Components Analysis (PCA in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.

  20. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Protein signatures using electrostatic molecular surfaces in harmonic space

    Directory of Open Access Journals (Sweden)

    C. Sofia Carvalho

    2013-10-01

    Full Text Available We developed a novel method based on the Fourier analysis of protein molecular surfaces to speed up the analysis of the vast structural data generated in the post-genomic era. This method computes the power spectrum of surfaces of the molecular electrostatic potential, whose three-dimensional coordinates have been either experimentally or theoretically determined. Thus we achieve a reduction of the initial three-dimensional information on the molecular surface to the one-dimensional information on pairs of points at a fixed scale apart. Consequently, the similarity search in our method is computationally less demanding and significantly faster than shape comparison methods. As proof of principle, we applied our method to a training set of viral proteins that are involved in major diseases such as Hepatitis C, Dengue fever, Yellow fever, Bovine viral diarrhea and West Nile fever. The training set contains proteins of four different protein families, as well as a mammalian representative enzyme. We found that the power spectrum successfully assigns a unique signature to each protein included in our training set, thus providing a direct probe of functional similarity among proteins. The results agree with established biological data from conventional structural biochemistry analyses.

  2. Validation of a Radiosensitivity Molecular Signature in Breast Cancer

    Science.gov (United States)

    Eschrich, Steven A.; Fulp, William J.; Pawitan, Yudi; Foekens, John A.; Smid, Marcel; Martens, John W. M.; Echevarria, Michelle; Kamath, Vidya; Lee, Ji-Hyun; Harris, Eleanor E.; Bergh, Jonas; Torres-Roca, Javier F.

    2014-01-01

    Purpose Previously, we developed a radiosensitivity molecular signature (RSI) that was clinically-validated in three independent datasets (rectal, esophageal, head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT) treated breast cancer patients. Experimental Design RSI was tested in two previously published breast cancer datasets. Patients were treated at the Karolinska University Hospital (n=159) and Erasmus Medical Center (n=344). RSI was applied as previously described. Results We tested RSI in RT-treated patients (Karolinska). Patients predicted to be radiosensitive (RS) had an improved 5 yr relapse-free survival when compared with radioresistant (RR) patients (95% vs. 75%, p=0.0212) but there was no difference between RS/RR patients treated without RT (71% vs. 77%, p=0.6744), consistent with RSI being RT-specific (interaction term RSIxRT, p=0.05). Similarly, in the Erasmus dataset RT-treated RS patients had an improved 5-year distant-metastasis-free survival over RR patients (77% vs. 64%, p=0.0409) but no difference was observed in patients treated without RT (RS vs. RR, 80% vs. 81%, p=0.9425). Multivariable analysis showed RSI is the strongest variable in RT-treated patients (Karolinska, HR=5.53, p=0.0987, Erasmus, HR=1.64, p=0.0758) and in backward selection (removal alpha of 0.10) RSI was the only variable remaining in the final model. Finally, RSI is an independent predictor of outcome in RT-treated ER+ patients (Erasmus, multivariable analysis, HR=2.64, p=0.0085). Conclusions RSI is validated in two independent breast cancer datasets totaling 503 patients. Including prior data, RSI is validated in five independent cohorts (621 patients) and represents, to our knowledge, the most extensively validated molecular signature in radiation oncology. PMID:22832933

  3. Prognostic Biomarker Identification Through Integrating the Gene Signatures of Hepatocellular Carcinoma Properties

    Directory of Open Access Journals (Sweden)

    Jialin Cai

    2017-05-01

    Full Text Available Many molecular classification and prognostic gene signatures for hepatocellular carcinoma (HCC patients have been established based on genome-wide gene expression profiling; however, their generalizability is unclear. Herein, we systematically assessed the prognostic effects of these gene signatures and identified valuable prognostic biomarkers by integrating these gene signatures. With two independent HCC datasets (GSE14520, N = 242 and GSE54236, N = 78, 30 published gene signatures were evaluated, and 11 were significantly associated with the overall survival (OS of postoperative HCC patients in both datasets. The random survival forest models suggested that the gene signatures were superior to clinical characteristics for predicting the prognosis of the patients. Based on the 11 gene signatures, a functional protein-protein interaction (PPI network with 1406 nodes and 10,135 edges was established. With tissue microarrays of HCC patients (N = 60, we determined the prognostic values of the core genes in the network and found that RAD21, CDK1, and HDAC2 expression levels were negatively associated with OS for HCC patients. The multivariate Cox regression analyses suggested that CDK1 was an independent prognostic factor, which was validated in an independent case cohort (N = 78. In cellular models, inhibition of CDK1 by siRNA or a specific inhibitor, RO-3306, reduced cellular proliferation and viability for HCC cells. These results suggest that the prognostic predictive capacities of these gene signatures are reproducible and that CDK1 is a potential prognostic biomarker or therapeutic target for HCC patients.

  4. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

    KAUST Repository

    Schunter, Celia Marei; Welch, Megan J.; Ryu, Tae Woo; Zhang, Huoming; Berumen, Michael L.; Nilsson, Gö ran E.; Munday, Philip L.; Ravasi, Timothy

    2016-01-01

    The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO -tolerant and CO -sensitive parents were reared at near-future CO (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO and the expression of parental tolerance to high CO in the offspring molecular phenotype. Exposure to high CO resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO conditions. This transgenerational molecular signature suggests that individual variation in CO sensitivity could facilitate adaptation of fish populations to ocean acidification.

  5. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

    KAUST Repository

    Schunter, Celia Marei

    2016-07-29

    The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO -tolerant and CO -sensitive parents were reared at near-future CO (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO and the expression of parental tolerance to high CO in the offspring molecular phenotype. Exposure to high CO resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO conditions. This transgenerational molecular signature suggests that individual variation in CO sensitivity could facilitate adaptation of fish populations to ocean acidification.

  6. Do craniopharyngioma molecular signatures correlate with clinical characteristics?

    Science.gov (United States)

    Omay, Sacit Bulent; Chen, Yu-Ning; Almeida, Joao Paulo; Ruiz-Treviño, Armando Saul; Boockvar, John A; Stieg, Philip E; Greenfield, Jeffrey P; Souweidane, Mark M; Kacker, Ashutosh; Pisapia, David J; Anand, Vijay K; Schwartz, Theodore H

    2018-05-01

    OBJECTIVE Exome sequencing studies have recently demonstrated that papillary craniopharyngiomas (PCPs) and adamantinomatous craniopharyngiomas (ACPs) have distinct genetic origins, each primarily driven by mutually exclusive alterations: either BRAF ( V600E), observed in 95% of PCPs, or CTNNB1, observed in 75%-96% of ACPs. How the presence of these molecular signatures, or their absence, correlates with clinical, radiographic, and outcome variables is unknown. METHODS The pathology records for patients who underwent surgery for craniopharyngiomas between May 2000 and March 2015 at Weill Cornell Medical College were reviewed. Craniopharyngiomas were identified and classified as PCP or ACP. Patients were placed into 1 of 3 groups based on their genomic mutations: BRAF mutation only, CTNNB1 mutation only, and tumors with neither of these mutations detected (not detected [ND]). Demographic, radiological, and clinical variables were collected, and their correlation with each genomic group was tested. RESULTS Histology correlated strongly with mutation group. All BRAF tumors with mutations were PCPs, and all CTNNB1 with mutations and ND tumors were ACPs. Preoperative and postoperative clinical symptoms and radiographic features did not correlate with any mutation group. There was a statistically significant relationship (p = 0.0323) between the age group (pediatric vs adult) and the mutation groups. The ND group tumors were more likely to involve the sella (p = 0.0065). CONCLUSIONS The mutation signature in craniopharyngioma is highly predictive of histology. The subgroup of tumors in which these 2 mutations are not detected is more likely to occur in children, be located in the sella, and be of ACP histology.

  7. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    LENUS (Irish Health Repository)

    Abel, Frida

    2011-04-14

    Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

  8. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0737 TITLE: Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer PRINCIPAL...AND SUBTITLE 5a. CONTRACT NUMBER Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer 5b. GRANT NUMBER W81XWH...that there exist distinctive molecular correlates of PTEN loss in the context of ETS-negative versus ETS-positive human prostate cancers and that

  9. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Martín Gómez Ravetti

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a progressive brain disease with a huge cost to human lives. The impact of the disease is also a growing concern for the governments of developing countries, in particular due to the increasingly high number of elderly citizens at risk. Alzheimer's is the most common form of dementia, a common term for memory loss and other cognitive impairments. There is no current cure for AD, but there are drug and non-drug based approaches for its treatment. In general the drug-treatments are directed at slowing the progression of symptoms. They have proved to be effective in a large group of patients but success is directly correlated with identifying the disease carriers at its early stages. This justifies the need for timely and accurate forms of diagnosis via molecular means. We report here a 5-protein biomarker molecular signature that achieves, on average, a 96% total accuracy in predicting clinical AD. The signature is composed of the abundances of IL-1alpha, IL-3, EGF, TNF-alpha and G-CSF. METHODOLOGY/PRINCIPAL FINDINGS: Our results are based on a recent molecular dataset that has attracted worldwide attention. Our paper illustrates that improved results can be obtained with the abundance of only five proteins. Our methodology consisted of the application of an integrative data analysis method. This four step process included: a abundance quantization, b feature selection, c literature analysis, d selection of a classifier algorithm which is independent of the feature selection process. These steps were performed without using any sample of the test datasets. For the first two steps, we used the application of Fayyad and Irani's discretization algorithm for selection and quantization, which in turn creates an instance of the (alpha-beta-k-Feature Set problem; a numerical solution of this problem led to the selection of only 10 proteins. CONCLUSIONS/SIGNIFICANCE: the previous study has provided an extremely

  10. Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature.

    Science.gov (United States)

    Bacalini, Maria Giulia; Franceschi, Claudio; Gentilini, Davide; Ravaioli, Francesco; Zhou, Xiaoyuan; Remondini, Daniel; Pirazzini, Chiara; Giuliani, Cristina; Marasco, Elena; Gensous, Noémie; Di Blasio, Anna Maria; Ellis, Ewa; Gramignoli, Roberto; Castellani, Gastone; Capri, Miriam; Strom, Stephen; Nardini, Christine; Cescon, Matteo; Grazi, Gian Luca; Garagnani, Paolo

    2018-03-15

    The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt signaling pathways in the aging of human liver.

  11. Signatures of molecular recognition from the topography of ...

    Indian Academy of Sciences (India)

    Administrator

    cules through non-covalent bonding such as hydro- gen bonding ... tion exhibit complementarity of certain properties ... of molecular recognition has been given in terms of .... VA and VB correspond to the monomer MESP in the composite.

  12. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers

    Directory of Open Access Journals (Sweden)

    Ali Jabbari

    2016-05-01

    Full Text Available Alopecia areata (AA is an autoimmune disease typified by nonscarring hair loss with a variable clinical course. In this study, we conducted whole genome gene expression analysis of 96 human scalp skin biopsy specimens from AA or normal control subjects. Based on gene expression profiling, samples formed distinct clusters based on the presence or absence of disease as well as disease phenotype (patchy disease compared with alopecia totalis or universalis. Differential gene expression analysis allowed us to robustly demonstrate graded immune activity in samples of increasing phenotypic severity and generate a quantitative gene expression scoring system that classified samples based on interferon and cytotoxic T lymphocyte immune signatures critical for disease pathogenesis.

  13. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    2008-07-01

    Full Text Available Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production.We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc.Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs in the skin of patients with scleroderma.

  14. Molecular-signature analyses support the establishment of the actinobacterial genus Sphaerimonospora (Mingma et al. 2016).

    Science.gov (United States)

    Meyers, Paul R

    2017-10-01

    The genera Microbispora and Sphaerimonospora were examined for GyrB and RecA amino-acid signatures to determine whether molecular-signature analyses support the recent establishment of the genus Sphaerimonospora. The creation of Sphaerimonospora was based mainly upon morphological differences between Microbispora and Sphaerimonospora and the clustering of the type strains of the two genera in phylogenetic trees based on a multilocus sequence analysis. The molecular-signature analyses showed that all members of Sphaerimonospora can be distinguished from all members of Microbispora at 14 amino acid positions in the GyrB protein and at four positions in the shorter RecA protein. These amino acid differences can be used as signatures to differentiate the members of these genera from each other and thus provide support for the establishment of the genus Sphaerimonospora. This is the first demonstration of the use of molecular signatures to support the establishment of a new genus in the family Streptosporangiaceae. Following the transfer of Microbispora mesophila and Microbispora thailandensis from Microbispora to Sphaerimonospora, all species in the genus Microbispora are characterised by the insertion of a small, hydrophobic amino acid after position 208 in the GyrB protein. This insertion is absent from the GyrB protein of members of the genus Sphaerimonospora. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. An Overview of Biomarkers and Molecular Signatures in HCC

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Seon-Hee [Integrated Research Center for Genome Polymorphism, The Catholic University of Korea School of Medicine, 505 Banpo-dong, Seocho-gu, Seoul 137-701 (Korea, Republic of); Chung, Yeun-Jun, E-mail: yejun@catholic.ac.kr [Integrated Research Center for Genome Polymorphism, The Catholic University of Korea School of Medicine, 505 Banpo-dong, Seocho-gu, Seoul 137-701 (Korea, Republic of); Department of Microbiology, The Catholic University of Korea School of Medicine, 505 Banpo-dong, Seocho-gu, Seoul 137-701 (Korea, Republic of)

    2010-05-07

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality worldwide. Although most HCCs seem to originate from the accumulation of genetic abnormalities induced by various risk factors, underlying mechanisms of hepatocarcinogenesis remain unclear. Long-term survival of HCC patients is also poor, partly due to HCC recurrence. Although serum alpha-fetoprotein (AFP) level is a useful marker for the detection and monitoring of HCC, AFP levels may remain normal in the patients even with advanced HCC. To identify useful biomarkers for HCC, many studies have been conducted on molecular events such as genetic and epigenetic alterations, and gene expression. This review summarizes recent studies of potential molecular markers for diagnosis and monitoring metastasis or recurrence of HCC.

  16. Electronic signature for medical documents--integration and evaluation of a public key infrastructure in hospitals.

    Science.gov (United States)

    Brandner, R; van der Haak, M; Hartmann, M; Haux, R; Schmücker, P

    2002-01-01

    Our objectives were to determine the user-oriented and legal requirements for a Public Key Infrastructure (PKI) for electronic signatures for medical documents, and to translate these requirements into a general model for a signature system. A prototype of this model was then implemented and evaluated in clinical routine use. Analyses of documents, processes, interviews, observations, and of the available literature supplied the foundations for the development of the signature system model. Eight participants of the Department of Dermatology of the Heidelberg University Medical Center evaluated the implemented prototype from December 2000 to January 2001, during the course of an intervention study. By means of questionnaires, interviews, observations and database analyses, the usefulness and user acceptance of the electronic signature and its integration into electronic discharge letters were established. Since the major part of medical documents generated in a hospital are signature-relevant, they will require electronic signatures in the future. A PKI must meet the multitude of responsibilities and security needs required in a hospital. Also, the signature functionality must be integrated directly into the workflow surrounding document creation. A developed signature model, fulfilling user-oriented and legal requirements, was implemented using hard and software components that conform to the German Signature Law. It was integrated into the existing hospital information system of the Heidelberg University Medical Center. At the end of the intervention study, the average acceptance scores achieved were mean = 3.90; SD = 0.42 on a scale of 1 (very negative attitude) to 5 (very positive attitude) for the electronic signature procedure. Acceptance of the integration into computer-supported discharge letter writing reached mean = 3.91; SD = 0.47. On average, the discharge letters were completed 7.18 days earlier. The electronic signature is indispensable for the

  17. Defining the molecular signatures of human right heart failure.

    Science.gov (United States)

    Williams, Jordan L; Cavus, Omer; Loccoh, Emefah C; Adelman, Sara; Daugherty, John C; Smith, Sakima A; Canan, Benjamin; Janssen, Paul M L; Koenig, Sara; Kline, Crystal F; Mohler, Peter J; Bradley, Elisa A

    2018-03-01

    Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    Science.gov (United States)

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma.

    Science.gov (United States)

    Diaz, Giacomo; Engle, Ronald E; Tice, Ashley; Melis, Marta; Montenegro, Stephanie; Rodriguez-Canales, Jaime; Hanson, Jeffrey; Emmert-Buck, Michael R; Bock, Kevin W; Moore, Ian N; Zamboni, Fausto; Govindarajan, Sugantha; Kleiner, David; Farci, Patrizia

    2018-06-01

    There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n-5) and with non-HCC HDV cirrhosis (n=7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and non-malignant hepatocytes, tumorous and non-tumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of up-regulated transcripts associated with pathways involved in cell cycle/DNA replication, damage and repair (sonic hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell cycle regulation, cell cycle: G2/M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being over-expressed, these genes were also strongly co-regulated. Gene co-regulation was high not only when compared to non-malignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and co-regulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms. This study identifies a molecular signature of HDV

  20. Predictive gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma.

    Directory of Open Access Journals (Sweden)

    Janice E Drew

    Full Text Available Cancers exhibit abnormal molecular signatures associated with disease initiation and progression. Molecular signatures could improve cancer screening, detection, drug development and selection of appropriate drug therapies for individual patients. Typically only very small amounts of tissue are available from patients for analysis and biopsy samples exhibit broad heterogeneity that cannot be captured using a single marker. This report details application of an in-house custom designed GenomeLab System multiplex gene expression assay, the hCellMarkerPlex, to assess predictive gene signatures of normal, adenomatous polyp and carcinoma colon tissue using archived tissue bank material. The hCellMarkerPlex incorporates twenty-one gene markers: epithelial (EZR, KRT18, NOX1, SLC9A2, proliferation (PCNA, CCND1, MS4A12, differentiation (B4GANLT2, CDX1, CDX2, apoptotic (CASP3, NOX1, NTN1, fibroblast (FSP1, COL1A1, structural (ACTG2, CNN1, DES, gene transcription (HDAC1, stem cell (LGR5, endothelial (VWF and mucin production (MUC2. Gene signatures distinguished normal, adenomatous polyp and carcinoma. Individual gene targets significantly contributing to molecular tissue types, classifier genes, were further characterised using real-time PCR, in-situ hybridisation and immunohistochemistry revealing aberrant epithelial expression of MS4A12, LGR5 CDX2, NOX1 and SLC9A2 prior to development of carcinoma. Identified gene signatures identify aberrant epithelial expression of genes prior to cancer development using in-house custom designed gene expression multiplex assays. This approach may be used to assist in objective classification of disease initiation, staging, progression and therapeutic responses using biopsy material.

  1. Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model.

    Science.gov (United States)

    van Koppen, Arianne; Verschuren, Lars; van den Hoek, Anita M; Verheij, Joanne; Morrison, Martine C; Li, Kelvin; Nagabukuro, Hiroshi; Costessi, Adalberto; Caspers, Martien P M; van den Broek, Tim J; Sagartz, John; Kluft, Cornelis; Beysen, Carine; Emson, Claire; van Gool, Alain J; Goldschmeding, Roel; Stoop, Reinout; Bobeldijk-Pastorova, Ivana; Turner, Scott M; Hanauer, Guido; Hanemaaijer, Roeland

    2018-01-01

    The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes involved in NASH and to rank early markers for hepatic fibrosis. A time-course study in low-density lipoprotein-receptor knockout. Leiden mice on a high-fat diet was performed to identify the temporal dynamics of key processes contributing to NASH and fibrosis. An integrative systems biology approach was used to elucidate candidate markers linked to the active fibrosis process by combining transcriptomics, dynamic proteomics, and histopathology. The translational value of these findings were confirmed using human NASH data sets. High-fat-diet feeding resulted in obesity, hyperlipidemia, insulin resistance, and NASH with fibrosis in a time-dependent manner. Temporal dynamics of key molecular processes involved in the development of NASH were identified, including lipid metabolism, inflammation, oxidative stress, and fibrosis. A data-integrative approach enabled identification of the active fibrotic process preceding histopathologic detection using a novel molecular fibrosis signature. Human studies were used to identify overlap of genes and processes and to perform a network biology-based prioritization to rank top candidate markers representing the early manifestation of fibrosis. An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (pre)clinical experimental time frames.

  2. Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers.

    Science.gov (United States)

    Wagner, Sasha; Riedel, Thomas; Niggemann, Jutta; Vähätalo, Anssi V; Dittmar, Thorsten; Jaffé, Rudolf

    2015-12-01

    Large world rivers are significant sources of dissolved organic matter (DOM) to the oceans. Watershed geomorphology and land use can drive the quality and reactivity of DOM. Determining the molecular composition of riverine DOM is essential for understanding its source, mobility and fate across landscapes. In this study, DOM from the main stem of 10 global rivers covering a wide climatic range and land use features was molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). FT-ICR mass spectral data revealed an overall similarity in molecular components among the rivers. However, when focusing specifically on the contribution of nonoxygen heteroatomic molecular formulas (CHON, CHOS, CHOP, etc.) to the bulk molecular signature, patterns relating DOM composition and watershed land use became apparent. Greater abundances of N- and S-containing molecular formulas were identified as unique to rivers influenced by anthropogenic inputs, whereas rivers with primarily forested watersheds had DOM signatures relatively depleted in heteroatomic content. A strong correlation between cropland cover and dissolved black nitrogen was established when focusing specifically on the pyrogenic class of compounds. This study demonstrated how changes in land use directly affect downstream DOM quality and could impact C and nutrient cycling on a global scale.

  3. MicroRNA Expression Profiling Identifies Molecular Diagnostic Signatures for Anaplastic Large Cell Lymphoma

    DEFF Research Database (Denmark)

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie

    2013-01-01

    distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(-) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, mi...

  4. Molecular signatures associated with HCV-induced hepatocellular carcinoma and liver metastasis.

    Directory of Open Access Journals (Sweden)

    Valeria De Giorgi

    Full Text Available Hepatocellular carcinomas (HCCs are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis.A diagnostic molecular signature complementing conventional pathologic assessment was identified.

  5. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    Science.gov (United States)

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer.

    Science.gov (United States)

    Paik, E Sun; Choi, Hyun Jin; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo; Choi, Chel Hun

    2018-04-01

    We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients' survival. Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.

  7. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers

    Directory of Open Access Journals (Sweden)

    Thomas Riedel

    2016-09-01

    Full Text Available Rivers carry large amounts of dissolved organic matter (DOM to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae, however, revealed

  8. Integrated Molecular and Cellular Biophysics

    CERN Document Server

    Raicu, Valerica

    2008-01-01

    This book integrates concepts and methods from physics, biology, biochemistry and physical chemistry into a standalone, unitary text of biophysics that aims to provide a quantitative description of structures and processes occurring in living matter. The book introduces graduate physics students and physicists interested in biophysics research to 'classical' as well as emerging areas of biophysics. The advanced undergraduate physics students and the life scientists are also invited to join in, by building on their knowledge of basic physics. Essential notions of biochemistry and biology are introduced, as necessary, throughout the book, while the reader's familiarity with basic knowledge of physics is assumed. Topics covered include interactions between biological molecules, physical chemistry of phospholipids association into bilayer membranes, DNA and protein structure and folding, passive and active electrical properties of the cell membrane, classical as well as fractal aspects of reaction kinetics and di...

  9. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  10. Integrating Iris and Signature Traits for Personal Authentication Using User-SpecificWeighting

    Directory of Open Access Journals (Sweden)

    Serestina Viriri

    2012-03-01

    Full Text Available Biometric systems based on uni-modal traits are characterized by noisy sensor data, restricted degrees of freedom, non-universality and are susceptible to spoof attacks. Multi-modal biometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. In this paper, a user-score-based weighting technique for integrating the iris and signature traits is presented. This user-specific weighting technique has proved to be an efficient and effective fusion scheme which increases the authentication accuracy rate of multi-modal biometric systems. The weights are used to indicate the importance of matching scores output by each biometrics trait. The experimental results show that our biometric system based on the integration of iris and signature traits achieve a false rejection rate (FRR of 0.08% and a false acceptance rate (FAR of 0.01%.

  11. Integrated multiscale modeling of molecular computing devices

    International Nuclear Information System (INIS)

    Cummings, Peter T; Leng Yongsheng

    2005-01-01

    Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic

  12. Osmoadaptative Strategy and Its Molecular Signature in Obligately Halophilic Heterotrophic Protists.

    Science.gov (United States)

    Harding, Tommy; Brown, Matthew W; Simpson, Alastair G B; Roger, Andrew J

    2016-08-03

    Halophilic microbes living in hypersaline environments must counteract the detrimental effects of low water activity and salt interference. Some halophilic prokaryotes equilibrate their intracellular osmotic strength with the extracellular milieu by importing inorganic solutes, mainly potassium. These "salt-in" organisms characteristically have proteins that are highly enriched with acidic and hydrophilic residues. In contrast, "salt-out" halophiles accumulate large amounts of organic solutes like amino acids, sugars and polyols, and lack a strong signature of halophilicity in the amino acid composition of cytoplasmic proteins. Studies to date have examined halophilic prokaryotes, yeasts, or algae, thus virtually nothing is known about the molecular adaptations of the other eukaryotic microbes, that is, heterotrophic protists (protozoa), that also thrive in hypersaline habitats. We conducted transcriptomic investigations to unravel the molecular adaptations of two obligately halophilic protists, Halocafeteria seosinensis and Pharyngomonas kirbyi Their predicted cytoplasmic proteomes showed increased hydrophilicity compared with marine protists. Furthermore, analysis of reconstructed ancestral sequences suggested that, relative to mesophiles, proteins in halophilic protists have undergone fewer substitutions from hydrophilic to hydrophobic residues since divergence from their closest relatives. These results suggest that these halophilic protists have a higher intracellular salt content than marine protists. However, absence of the acidic signature of salt-in microbes suggests that Haloc. seosinensis and P. kirbyi utilize organic osmolytes to maintain osmotic equilibrium. We detected increased expression of enzymes involved in synthesis and transport of organic osmolytes, namely hydroxyectoine and myo-inositol, at maximal salt concentration for growth in Haloc. seosinensis, suggesting possible candidates for these inferred organic osmolytes. © The Author 2016

  13. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    Science.gov (United States)

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  14. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Science.gov (United States)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  15. A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR.

    Directory of Open Access Journals (Sweden)

    Federica Rizzi

    Full Text Available Prostate cancer (CaP is one of the most relevant causes of cancer death in Western Countries. Although detection of CaP at early curable stage is highly desirable, actual screening methods present limitations and new molecular approaches are needed. Gene expression analysis increases our knowledge about the biology of CaP and may render novel molecular tools, but the identification of accurate biomarkers for reliable molecular diagnosis is a real challenge. We describe here the diagnostic power of a novel 8-genes signature: ornithine decarboxylase (ODC, ornithine decarboxylase antizyme (OAZ, adenosylmethionine decarboxylase (AdoMetDC, spermidine/spermine N(1-acetyltransferase (SSAT, histone H3 (H3, growth arrest specific gene (GAS1, glyceraldehyde 3-phosphate dehydrogenase (GAPDH and Clusterin (CLU in tumour detection/classification of human CaP.The 8-gene signature was detected by retrotranscription real-time quantitative PCR (RT-qPCR in frozen prostate surgical specimens obtained from 41 patients diagnosed with CaP and recommended to undergo radical prostatectomy (RP. No therapy was given to patients at any time before RP. The bio-bank used for the study consisted of 66 specimens: 44 were benign-CaP paired from the same patient. Thirty-five were classified as benign and 31 as CaP after final pathological examination. Only molecular data were used for classification of specimens. The Nearest Neighbour (NN classifier was used in order to discriminate CaP from benign tissue. Validation of final results was obtained with 10-fold cross-validation procedure. CaP versus benign specimens were discriminated with (80+/-5% accuracy, (81+/-6% sensitivity and (78+/-7% specificity. The method also correctly classified 71% of patients with Gleason score or =7, an important predictor of final outcome.The method showed high sensitivity in a collection of specimens in which a significant portion of the total (13/31, equal to 42% was considered CaP on the basis

  16. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Ence Yang

    2014-10-01

    Full Text Available Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition

  17. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    Science.gov (United States)

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Proteoform profiling of peripheral blood serum proteins from pregnant women provides a molecular IUGR signature.

    Science.gov (United States)

    Wölter, M; Röwer, C; Koy, C; Rath, W; Pecks, U; Glocker, M O

    2016-10-21

    Intrauterine growth restriction (IUGR) is an important cause of perinatal morbidity and mortality and contributes substantially to medically indicated preterm birth; preventing fetal death. Molecular profiling of the mothers' peripheral blood was desired to monitor the health conditions of the fetuses. To develop such a minimally invasive assay, we applied a protein affinity fractionation method to peripheral blood serum samples from pregnant women belonging to either the IUGR or to the control group. Proof-of-principle was shown by relative quantitation analysis of mixtures of intact proteoforms using MALDI-ToF mass spectrometry. The two best differentiating proteins and proteoforms, respectively, were apolipoprotein C-II and apolipoprotein C-III 0 . Together with three robustly expressed protein proteoforms proapolipoprotein C-II, apolipoprotein C-III 1 , and apolipoprotein C-III 2 , which served as landmarks for relative quantitation analysis, they constituted the maternal IUGR proteome signature. Separation confidence of our IUGR proteoform signature reached a sensitivity of 0.73 and a specificity of 0.87 with an area under curve of 0.86 in receiver operator characteristics. Identification of IUGR newborns in the case room is required as children are severely diseased and need specialized care during infancy. Yet, at time of birth there is no readily applicable clinical test available. Hence, a molecular profiling assay is highly desired. It needs to be mentioned that current clinical definitions and recommendations for IUGR are unfortunately misleading and are not universally applicable. The most commonly adopted definition is an abdominal circumference (AC) or estimated fetal weight measurement protein composition (IUGR signature) which can be determined just ahead of delivery and at date of delivery, respectively using a minimal invasive blood sampling approach. With this manuscript we describe the use of a mass spectrometric profiling method of 30

  19. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity

    Science.gov (United States)

    Smith, Milo R.; Burman, Poromendro

    2016-01-01

    Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530

  20. HPV Integration in HNSCC Correlates with Survival Outcomes, Immune Response Signatures, and Candidate Drivers.

    Science.gov (United States)

    Koneva, Lada A; Zhang, Yanxiao; Virani, Shama; Hall, Pelle B; McHugh, Jonathan B; Chepeha, Douglas B; Wolf, Gregory T; Carey, Thomas E; Rozek, Laura S; Sartor, Maureen A

    2018-01-01

    The incidence of human papillomavirus (HPV)-related oropharynx cancer has steadily increased over the past two decades and now represents a majority of oropharyngeal cancer cases. Integration of the HPV genome into the host genome is a common event during carcinogenesis that has clinically relevant effects if the viral early genes are transcribed. Understanding the impact of HPV integration on clinical outcomes of head and neck squamous cell carcinoma (HNSCC) is critical for implementing deescalated treatment approaches for HPV + HNSCC patients. RNA sequencing (RNA-seq) data from HNSCC tumors ( n = 84) were used to identify and characterize expressed integration events, which were overrepresented near known head and neck, lung, and urogenital cancer genes. Five genes were recurrent, including CD274 (PD-L1) A significant number of genes detected to have integration events were found to interact with Tp63, ETS, and/or FOX1A. Patients with no detected integration had better survival than integration-positive and HPV - patients. Furthermore, integration-negative tumors were characterized by strongly heightened signatures for immune cells, including CD4 + , CD3 + , regulatory, CD8 + T cells, NK cells, and B cells, compared with integration-positive tumors. Finally, genes with elevated expression in integration-negative specimens were strongly enriched with immune-related gene ontology terms, while upregulated genes in integration-positive tumors were enriched for keratinization, RNA metabolism, and translation. Implications: These findings demonstrate the clinical relevancy of expressed HPV integration, which is characterized by a change in immune response and/or aberrant expression of the integration-harboring cancer-related genes, and suggest strong natural selection for tumor cells with expressed integration events in key carcinogenic genes. Mol Cancer Res; 16(1); 90-102. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    2018-01-01

    Conclusions: An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (preclinical experimental time frames.

  2. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    2007-07-01

    Full Text Available Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class

  3. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  4. Cdc42 and Tks5: a minimal and universal molecular signature for functional invadosomes.

    Science.gov (United States)

    Di Martino, Julie; Paysan, Lisa; Gest, Caroline; Lagrée, Valérie; Juin, Amélie; Saltel, Frédéric; Moreau, Violaine

    2014-01-01

    Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.

  5. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Science.gov (United States)

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and

  6. Leishmania tarentolae molecular signatures in a 300 hundred-years-old human Brazilian mummy.

    Science.gov (United States)

    Novo, Shênia P C; Leles, Daniela; Bianucci, Raffaella; Araujo, Adauto

    2015-02-04

    L. tarentolae, the lizard-infecting species of Old World geckos, has been classified as non-pathogenic to man. While it has been demonstrated that L. tarentolae is capable of infecting human phagocytic cells and to differentiate into amastigote-like forms, there is no clear evidence for its efficient replication within macrophages. Here we provide first evidence for L. tarentolae ancient DNA sequences from bone marrow and intestines of a 300yo adult male. We identified molecular signatures of Leishmania tarentolae, the lizard-infecting species of Old World geckos, in hard and soft tissue biopsies from a Brazilian mummy (A74) uncovered in Itacambira (Brazil) and dating to the Colonial Period (end of 18th/beginning of the 19th century). Our results imply that efficient replication of the parasite occurred within human macrophage and to lead to a systemic spread and visceralization in this individual. The ancient sequences show a 100% similarity with those of isolated L. tarentolae parasites grown on artificial nutrient media and a 99% similarity with two modern sequences isolated from reptiles. De facto, our findings re-open the debate about the potential survival of ancient L. tarentolae strain within human macrophage and its ability to spread systemically. They also raise ecological issues since it is unknown whether this parasite circulates in the reptilian reservoir in modern day Brazil or not. Investigations on fossil fauna and arthropods are needed to shed light on the interactions between saurian Leishmania and lizards in Brazil's remote and recent past.

  7. The Molecular Signatures Database (MSigDB) hallmark gene set collection.

    Science.gov (United States)

    Liberzon, Arthur; Birger, Chet; Thorvaldsdóttir, Helga; Ghandi, Mahmoud; Mesirov, Jill P; Tamayo, Pablo

    2015-12-23

    The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis. Since its creation, MSigDB has grown beyond its roots in metabolic disease and cancer to include >10,000 gene sets. These better represent a wider range of biological processes and diseases, but the utility of the database is reduced by increased redundancy across, and heterogeneity within, gene sets. To address this challenge, here we use a combination of automated approaches and expert curation to develop a collection of "hallmark" gene sets as part of MSigDB. Each hallmark in this collection consists of a "refined" gene set, derived from multiple "founder" sets, that conveys a specific biological state or process and displays coherent expression. The hallmarks effectively summarize most of the relevant information of the original founder sets and, by reducing both variation and redundancy, provide more refined and concise inputs for gene set enrichment analysis.

  8. How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome.

    Directory of Open Access Journals (Sweden)

    Mariana F Nery

    Full Text Available Cetaceans are unique in being the only mammals completely adapted to an aquatic environment. This adaptation has required complex changes and sometimes a complete restructuring of physiology, behavior and morphology. Identifying genes that have been subjected to selection pressure during cetacean evolution would greatly enhance our knowledge of the ways in which genetic variation in this mammalian order has been shaped by natural selection. Here, we performed a genome-wide scan for positive selection in the dolphin lineage. We employed models of codon substitution that account for variation of selective pressure over branches on the tree and across sites in a sequence. We analyzed 7,859 nuclear-coding ortholog genes and using a series of likelihood ratio tests (LRTs, we identified 376 genes (4.8% with molecular signatures of positive selection in the dolphin lineage. We used the cow as the sister group and compared estimates of selection in the cetacean genome to this using the same methods. This allowed us to define which genes have been exclusively under positive selection in the dolphin lineage. The enrichment analysis found that the identified positively selected genes are significantly over-represented for three exclusive functional categories only in the dolphin lineage: segment specification, mesoderm development and system development. Of particular interest for cetacean adaptation to an aquatic life are the following GeneOntology targets under positive selection: genes related to kidney, heart, lung, eye, ear and nervous system development.

  9. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal

    Directory of Open Access Journals (Sweden)

    Pfeifer Aleksandra

    2009-06-01

    Full Text Available Abstract Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.

  10. Transcriptome Analysis Reveals Molecular Signatures of Luteoloside Accumulation in Senescing Leaves of Lonicera macranthoides

    Directory of Open Access Journals (Sweden)

    Zexiong Chen

    2018-03-01

    Full Text Available Lonicera macranthoides is an important medicinal plant widely used in traditional Chinese medicine. Luteoloside is a critical bioactive compound in L. macranthoides. To date, the molecular mechanisms underlying luteoloside biosynthesis are still largely unknown. In this work, high performance liquid chromatography (HPLC was employed to determine the luteoloside contents in leaves, stems, and flowers at different developmental stages. Results showed that senescing leaves can accumulate large amounts of luteoloside, extremely higher than that in young and semi-lignified leaves and other tissues. RNA-Seq analysis identified that twenty-four differentially expressed unigenes (DEGs associated with luteoloside biosynthesis were significantly up-regulated in senescing leaves, which are positively correlated with luteoloside accumulation. These DEGs include phenylalanine ammonia lyase 2, cinnamate 4-hydroxylase 2, thirteen 4-coumarate-CoA ligases, chalcone synthase 2, six flavonoid 3′-monooxygenase (F3′H and two flavone 7-O-β-glucosyltransferase (UFGT genes. Further analysis demonstrated that two F3′Hs (CL11828.Contig1 and CL11828.Contig2 and two UFGTs (Unigene2918 and Unigene97915 might play vital roles in luteoloside generation. Furthermore, several transcription factors (TFs related to flavonoid biosynthesis including MYB, bHLH and WD40, were differentially expressed during leaf senescence. Among these TFs, MYB12, MYB75, bHLH113 and TTG1 were considered to be key factors involved in the regulation of luteoloside biosynthesis. These findings provide insights for elucidating the molecular signatures of luteoloside accumulation in L. macranthoides.

  11. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2015-03-03

    Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

  12. Microelectromechanical systems integrating molecular spin crossover actuators

    Energy Technology Data Exchange (ETDEWEB)

    Manrique-Juarez, Maria D. [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France); Rat, Sylvain; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France)

    2016-08-08

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H{sub 2}B(pz){sub 2}){sub 2}(phen)] (H{sub 2}B(pz){sub 2} = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δf{sub r} = −0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  13. Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups.

    Science.gov (United States)

    Gupta, Radhey S; Bhandari, Vaibhav

    2011-06-01

    Thermotogae species are currently identified mainly on the basis of their unique toga and distinct branching in the rRNA and other phylogenetic trees. No biochemical or molecular markers are known that clearly distinguish the species from this phylum from all other bacteria. The taxonomic/evolutionary relationships within this phylum, which consists of a single family, are also unclear. We report detailed phylogenetic analyses on Thermotogae species based on concatenated sequences for many ribosomal as well as other conserved proteins that identify a number of distinct clades within this phylum. Additionally, comprehensive analyses of protein sequences from Thermotogae genomes have identified >60 Conserved Signature Indels (CSI) that are specific for the Thermotogae phylum or its different subgroups. Eighteen CSIs in important proteins such as PolI, RecA, TrpRS and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in various Thermotogae species and provide molecular markers for the phylum. Many CSIs were specific for a number of Thermotogae subgroups. Twelve of these CSIs were specific for a clade consisting of various Thermotoga species except Tt. lettingae, which was separated from other Thermotoga species by a long branch in phylogenetic trees; Fourteen CSIs were specific for a clade consisting of the Fervidobacterium and Thermosipho genera and eight additional CSIs were specific for the genus Thermosipho. In addition, the existence of a clade consisting of the deep branching species Petrotoga mobilis, Kosmotoga olearia and Thermotogales bacterium mesG1 was supported by seven CSIs. The deep branching of this clade was also supported by a number of CSIs that were present in various Thermotogae species, but absent in this clade and all other bacteria. Most of these clades were strongly supported by phylogenetic analyses based on two datasets of protein sequences and they identify potential higher taxonomic grouping (viz. families) within this phylum

  14. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival

    NARCIS (Netherlands)

    Chang, Howard Y.; Nuyten, Dimitry S. A.; Sneddon, Julie B.; Hastie, Trevor; Tibshirani, Robert; Sørlie, Therese; Dai, Hongyue; He, Yudong D.; van't Veer, Laura J.; Bartelink, Harry; van de Rijn, Matt; Brown, Patrick O.; van de Vijver, Marc J.

    2005-01-01

    Based on the hypothesis that features of the molecular program of normal wound healing might play an important role in cancer metastasis, we previously identified consistent features in the transcriptional response of normal fibroblasts to serum, and used this "wound-response signature" to reveal

  15. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  16. Integration of molecular pathology, epidemiology and social science for global precision medicine.

    Science.gov (United States)

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L; Nishihara, Reiko; Tan, Andy S; Kawachi, Ichiro; Ogino, Shuji

    2016-01-01

    The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science.

  17. Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease

    Science.gov (United States)

    Darzi, Youssef; Mongodin, Emmanuel F.; Pan, Chongle; Shah, Manesh; Halfvarson, Jonas; Tysk, Curt; Henrissat, Bernard; Raes, Jeroen; Verberkmoes, Nathan C.; Jansson, Janet K.

    2012-01-01

    Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers. PMID:23209564

  18. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Alison R Erickson

    Full Text Available Crohn's disease (CD is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD or colon (CCD. Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.

  19. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy - Part 1: The Araucariaceae family

    Science.gov (United States)

    Lu, Y.; Hautevelle, Y.; Michels, R.

    2012-08-01

    Several extant species of the Araucariaceae family (one of the families of conifers) were invested for the experimental artificial maturation by confined pyrolysis, in order to realize the transformation of biomolecules to geomolecules in laboratory conditions. The experimental study of diagenetized molecular signatures of the Araucariaceae species (common, inter- and infra-generic characteristics) allow to complete our knowledge in botanical palaeochemotaxonomy. Such knowledge is relevant to the reconstitution of palaeoflora and palaeoclimatic reconstruction, archaeology and environmental studies. In this work, major carbon skeleton types of Araucariaceae are detected in the organic solvent extracts of fresh and pyrolyzed plants using gas chromatography-mass spectrometry. The results show that all species of Araucariaceae are firstly characterized by a predominance of saturated tetracyclic diterpenoids. Moreover, the Araucaria genus shows a high relative abundance of bicyclic sesquiterpenoids, particularly compounds of the cadalane-type compounds accompanied by those of eudesmane-type, bisabolane-type as well as chamazulene, pentamethyl-dihydroindenes. Diterpenoids are of the labdane-type, isopimarane, abietane-type (essentially derived from abietanoic acids) as well as isohexyl alkylaromatic hydrocarbons. Compared to the tetracyclic diterpenoids, these compounds show a relatively lower abundance, reaching trace levels in the case of saturated abietanes. Distribution of sesqui- and diterpenoids of Agathis shows some similarities to that of Araucaria, with the exception of one species, in which the tetracyclic compounds are absent and the abietane-type (essentially derived from abietanoic acids) predominant. High similarities between the Wollemia and Araucaria genera are observed. Both are characterized by some high relative abundance of tetracyclic compounds with no predominance of other specific diterpenoids.

  20. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.

    Science.gov (United States)

    Thomsen, T R; Finster, K; Ramsing, N B

    2001-04-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802-805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.

  1. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.

    Science.gov (United States)

    Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

  2. Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe

    Directory of Open Access Journals (Sweden)

    D. Bozhinova

    2014-07-01

    Full Text Available Radiocarbon dioxide (14CO2, reported in Δ14CO2 can be used to determine the fossil fuel CO2 addition to the atmosphere, since fossil fuel CO2 no longer contains any 14C. After the release of CO2 at the source, atmospheric transport causes dilution of strong local signals into the background and detectable gradients of Δ14CO2 only remain in areas with high fossil fuel emissions. This fossil fuel signal can moreover be partially masked by the enriching effect that anthropogenic emissions of 14CO2 from the nuclear industry have on the atmospheric Δ14CO2 signature. In this paper, we investigate the regional gradients in 14CO2 over the European continent and quantify the effect of the emissions from nuclear industry. We simulate the emissions and transport of fossil fuel CO2 and nuclear 14CO2 for Western Europe using the Weather Research and Forecast model (WRF-Chem for a period covering 6 summer months in 2008. We evaluate the expected CO2 gradients and the resulting Δ14CO2 in simulated integrated air samples over this period, as well as in simulated plant samples. We find that the average gradients of fossil fuel CO2 in the lower 1200 m of the atmosphere are close to 15 ppm at a 12 km × 12 km horizontal resolution. The nuclear influence on Δ14CO2 signatures varies considerably over the domain and for large areas in France and the UK it can range from 20 to more than 500% of the influence of fossil fuel emissions. Our simulations suggest that the resulting gradients in Δ14CO2 are well captured in plant samples, but due to their time-varying uptake of CO2, their signature can be different with over 3‰ from the atmospheric samples in some regions. We conclude that the framework presented will be well-suited for the interpretation of actual air and plant 14CO2 samples.

  3. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    Science.gov (United States)

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  4. Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations

    Energy Technology Data Exchange (ETDEWEB)

    Hoadley, Keri; France, Kevin; Arulanantham, Nicole; Loyd, R. O. Parke; Kruczek, Nicholas, E-mail: keri.hoadley@colorado.edu [Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Space Science Building (SPSC), 3665 Discovery Drive, Boulder, CO 80303 (United States)

    2017-09-01

    The environment around protoplanetary disks (PPDs) regulates processes that drive the chemical and structural evolution of circumstellar material. We perform a detailed empirical survey of warm molecular hydrogen (H{sub 2}) absorption observed against H i-Ly α (Ly α : λ 1215.67) emission profiles for 22 PPDs, using archival Hubble Space Telescope ultraviolet (UV) spectra to identify H{sub 2} absorption signatures and quantify the column densities of H{sub 2} ground states in each sightline. We compare thermal equilibrium models of H{sub 2} to the observed H{sub 2} rovibrational level distributions. We find that, for the majority of targets, there is a clear deviation in high-energy states ( T {sub exc} ≳ 20,000 K) away from thermal equilibrium populations ( T (H{sub 2}) ≳ 3500 K). We create a metric to estimate the total column density of non-thermal H{sub 2} ( N (H{sub 2}){sub nLTE}) and find that the total column densities of thermal ( N (H{sub 2})) and N (H{sub 2}){sub nLTE} correlate for transition disks and targets with detectable C iv-pumped H{sub 2} fluorescence. We compare N (H{sub 2}) and N (H{sub 2}){sub nLTE} to circumstellar observables and find that N (H{sub 2}){sub nLTE} correlates with X-ray and far-UV luminosities, but no correlations are observed with the luminosities of discrete emission features (e.g., Ly α , C iv). Additionally, N (H{sub 2}) and N (H{sub 2}){sub nLTE} are too low to account for the H{sub 2} fluorescence observed in PPDs, so we speculate that this H{sub 2} may instead be associated with a diffuse, hot, atomic halo surrounding the planet-forming disk. We create a simple photon-pumping model for each target to test this hypothesis and find that Ly α efficiently pumps H{sub 2} levels with T {sub exc} ≥ 10,000 K out of thermal equilibrium.

  5. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo.The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry.Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA.In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  6. Molecular integrals for slater type orbitals using coulomb sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2014-01-01

    The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...

  7. Gene Expression Deconvolution for Uncovering Molecular Signatures in Response to Therapy in Juvenile Idiopathic Arthritis.

    Directory of Open Access Journals (Sweden)

    Ang Cui

    Full Text Available Gene expression-based signatures help identify pathways relevant to diseases and treatments, but are challenging to construct when there is a diversity of disease mechanisms and treatments in patients with complex diseases. To overcome this challenge, we present a new application of an in silico gene expression deconvolution method, ISOpure-S1, and apply it to identify a common gene expression signature corresponding to response to treatment in 33 juvenile idiopathic arthritis (JIA patients. Using pre- and post-treatment gene expression profiles only, we found a gene expression signature that significantly correlated with a reduction in the number of joints with active arthritis, a measure of clinical outcome (Spearman rho = 0.44, p = 0.040, Bonferroni correction. This signature may be associated with a decrease in T-cells, monocytes, neutrophils and platelets. The products of most differentially expressed genes include known biomarkers for JIA such as major histocompatibility complexes and interleukins, as well as novel biomarkers including α-defensins. This method is readily applicable to expression datasets of other complex diseases to uncover shared mechanistic patterns in heterogeneous samples.

  8. Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data

    Science.gov (United States)

    Koleti, Amar; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Cooper, Daniel J; Turner, John P; Vidović, Dušica; Forlin, Michele; Kelley, Tanya T; D’Urso, Alessandro; Allen, Bryce K; Torre, Denis; Jagodnik, Kathleen M; Wang, Lily; Jenkins, Sherry L; Mader, Christopher; Niu, Wen; Fazel, Mehdi; Mahi, Naim; Pilarczyk, Marcin; Clark, Nicholas; Shamsaei, Behrouz; Meller, Jarek; Vasiliauskas, Juozas; Reichard, John; Medvedovic, Mario; Ma’ayan, Avi; Pillai, Ajay

    2018-01-01

    Abstract The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content. PMID:29140462

  9. An Enhanced Data Integrity Model In Mobile Cloud Environment Using Digital Signature Algorithm And Robust Reversible Watermarking

    Directory of Open Access Journals (Sweden)

    Boukari Souley

    2017-10-01

    Full Text Available the increase use of hand held devices such as smart phones to access multimedia content in the cloud is increasing with rise and growth in information technology. Mobile cloud computing is increasingly used today because it allows users to have access to variety of resources in the cloud such as image video audio and software applications with minimal usage of their inbuilt resources such as storage memory by using the one available in the cloud. The major challenge faced with mobile cloud computing is security. Watermarking and digital signature are some techniques used to provide security and authentication on user data in the cloud. Watermarking is a technique used to embed digital data within a multimedia content such as image video or audio in order to prevent authorized access to those content by intruders whereas digital signature is used to identify and verify user data when accessed. In this work we implemented digital signature and robust reversible image watermarking in order enhance mobile cloud computing security and integrity of data by providing double authentication techniques. The results obtained show the effectiveness of combining the two techniques robust reversible watermarking and digital signature by providing strong authentication to ensures data integrity and extract the original content watermarked without changes.

  10. Molecular characterization of circulating colorectal tumor cells defines genetic signatures for individualized cancer care

    Science.gov (United States)

    Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.

    2017-01-01

    Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093

  11. Molecular signature of the radioinduction in the thyroid tumors developed after radiotherapy

    International Nuclear Information System (INIS)

    Mallard, Ch.

    2005-10-01

    Several epidemiological studies enlightens an increase of the number of thyroid cancers among children and adolescents exposed to ionizing radiation after an internal exposure ( Chernobylsk accident) or external one as a radiotherapy. No increase arose for adults.The analysis of the transcriptome was realised with micro arrays prepared on the genomic platform of the Cea at Evry that allow to study simultaneously the expression of 6000 genes. this study allows to enlighten a signature of radioinduction constituted by series of genes specifically expressed in one or other type of cancer in function of its etiology. This signature includes 59 genes expressed differentially between the sporadic carcinomas and 45 genes in the case of adenomas. with this signature an analysis in principal components allowed to determine correctly the etiology of 12 tumors among 13, the etiology of a sporadic adenoma was not determined. Besides, the study of the expression of genes specific to thyroid (TSHR, TG, TPO, TTF1, TTF2, PAX8) in relation with the presence of arrangements RET/PTC or mutations of BRAF was made. It allowed to enlighten the loss of TPO expression in the cancers changed for BRAF as well as a new mechanism of BRAF activation. (N.C.)

  12. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae and Lentisphaerae of Bacteria Provide Insights into their Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Radhey S. Gupta

    2012-09-01

    Full Text Available The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia and Chlamydiae, along with the Lentisphaerae, Poribacteria and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, 6 conserved signature indels (CSIs in the proteins Cyt c oxidase, UvrD helicase, urease and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms.

  13. EVALUATING THE ECOLOGICAL RESILIENT DRIVEN PERFORMANCE OF A TROPICAL WASTE STABILIZATION POND SYSTEM USING ECOLOGICAL SIGNATURE OF BIOLOGICAL INTEGRITY

    OpenAIRE

    Susmita Lahiri Ganguly; Dipanwita Sarkar Paria; B. B. Jana

    2015-01-01

    Using ecological signature of biological integrity as a measure of performance, the reclamation efficiency of waste stabilization ponds was evaluated over a period of four years in a tropical sewage treatment plant – cum fish culture consisting of two anaerobic, two facultative and four maturation ponds located serially across the sewage effluent gradient. The four maturation ponds were used for batch culture of fish. Samples of surface and bottom water as well as surface sediment were collec...

  14. Integrated molecular landscape of Parkinson's disease

    NARCIS (Netherlands)

    Klemann, C.J.H.M.; Martens, G.J.; Sharma, M.; Martens, M.B.; Isacson, O.; Gasser, T.; Visser, J.E.; Poelmans, G.J.V.

    2017-01-01

    Parkinson's disease is caused by a complex interplay of genetic and environmental factors. Although a number of independent molecular pathways and processes have been associated with familial Parkinson's disease, a common mechanism underlying especially sporadic Parkinson's disease is still largely

  15. Integration of Molecular Pathology, Epidemiology, and Social Science for Global Precision Medicine

    Science.gov (United States)

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L.; Nishihara, Reiko; Tan, Andy S.; Kawachi, Ichiro; Ogino, Shuji

    2015-01-01

    Summary The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations, and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial, and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors, and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference, and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology, and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors, and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging, and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science. PMID:26636627

  16. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  17. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory of hyperspheri......A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory...... of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  18. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease.

    Science.gov (United States)

    Ogino, Shuji; Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Cho, Eunyoung; Wolpin, Brian M; Meyerhardt, Jeffrey A; Meissner, Alexander; Schernhammer, Eva S; Fuchs, Charles S; Giovannucci, Edward

    2013-04-01

    Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator

  19. Radiation signatures

    International Nuclear Information System (INIS)

    McGlynn, S.P.; Varma, M.N.

    1992-01-01

    A new concept for modelling radiation risk is proposed. This concept is based on the proposal that the spectrum of molecular lesions, which we dub ''the radiation signature'', can be used to identify the quality of the causal radiation. If the proposal concerning radiation signatures can be established then, in principle, both prospective and retrospective risk determination can be assessed on an individual basis. A major goal of biophysical modelling is to relate physical events such as ionization, excitation, etc. to the production of radiation carcinogenesis. A description of the physical events is provided by track structure. The track structure is determined by radiation quality, and it can be considered to be the ''physical signature'' of the radiation. Unfortunately, the uniqueness characteristics of this signature are dissipated in biological systems in ∼10 -9 s. Nonetheless, it is our contention that this physical disturbance of the biological system eventuates later, at ∼10 0 s, in molecular lesion spectra which also characterize the causal radiation. (author)

  20. Numerical computation of molecular integrals via optimized (vectorized) FORTRAN code

    International Nuclear Information System (INIS)

    Scott, T.C.; Grant, I.P.; Saunders, V.R.

    1997-01-01

    The calculation of molecular properties based on quantum mechanics is an area of fundamental research whose horizons have always been determined by the power of state-of-the-art computers. A computational bottleneck is the numerical calculation of the required molecular integrals to sufficient precision. Herein, we present a method for the rapid numerical evaluation of molecular integrals using optimized FORTRAN code generated by Maple. The method is based on the exploitation of common intermediates and the optimization can be adjusted to both serial and vectorized computations. (orig.)

  1. Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method

    Science.gov (United States)

    Liu, Xiwu; Guo, Zhiqi; Han, Xu

    2018-06-01

    A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically

  2. An Integrated Molecular Database on Indian Insects.

    Science.gov (United States)

    Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil

    2018-01-01

    MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.

  3. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events.

    Directory of Open Access Journals (Sweden)

    Stéphane Buhler

    2011-02-01

    Full Text Available Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies.Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model. However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used

  4. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.

    Science.gov (United States)

    Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H

    2016-03-01

    Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of

  5. Hybrid CMOS/Molecular Integrated Circuits

    Science.gov (United States)

    Stan, M. R.; Rose, G. S.; Ziegler, M. M.

    CMOS silicon technologies are likely to run out of steam in the next 10-15 years despite revolutionary advances in the past few decades. Molecular and other nanoscale technologies show significant promise but it is unlikely that they will completely replace CMOS, at least in the near term. This chapter explores opportunities for using CMOS and nanotechnology to enhance and complement each other in hybrid circuits. As an example of such a hybrid CMOS/nano system, a nanoscale programmable logic array (PLA) based on majority logic is described along with its supplemental CMOS circuitry. It is believed that such systems will be able to sustain the historical advances in the semiconductor industry while addressing manufacturability, yield, power, cost, and performance challenges.

  6. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  7. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C.; Krol, M.C.; Rockmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H-2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H-2 and several other species as well as the H-2 isotopic composition in air samples that were collected in the BARCA

  8. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C; Krol, M.C.; Röckmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço

  9. Current and Emerging Technologies for Probing Molecular Signatures of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Ari Ercole

    2017-08-01

    Full Text Available Traumatic brain injury (TBI is understood as an interplay between the initial injury, subsequent secondary injuries, and a complex host response all of which are highly heterogeneous. An understanding of the underlying biology suggests a number of windows where mechanistically inspired interventions could be targeted. Unfortunately, biologically plausible therapies have to-date failed to translate into clinical practice. While a number of stereotypical pathways are now understood to be involved, current clinical characterization is too crude for it to be possible to characterize the biological phenotype in a truly mechanistically meaningful way. In this review, we examine current and emerging technologies for fuller biochemical characterization by the simultaneous measurement of multiple, diverse biomarkers. We describe how clinically available techniques such as cerebral microdialysis can be leveraged to give mechanistic insights into TBI pathobiology and how multiplex proteomic and metabolomic techniques can give a more complete description of the underlying biology. We also describe spatially resolved label-free multiplex techniques capable of probing structural differences in chemical signatures. Finally, we touch on the bioinformatics challenges that result from the acquisition of such large amounts of chemical data in the search for a more mechanistically complete description of the TBI phenotype.

  10. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  11. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  12. Molecular annotation of integrative feeding neural circuits.

    Science.gov (United States)

    Pérez, Cristian A; Stanley, Sarah A; Wysocki, Robert W; Havranova, Jana; Ahrens-Nicklas, Rebecca; Onyimba, Frances; Friedman, Jeffrey M

    2011-02-02

    The identity of higher-order neurons and circuits playing an associative role to control feeding is unknown. We injected pseudorabies virus, a retrograde tracer, into masseter muscle, salivary gland, and tongue of BAC-transgenic mice expressing GFP in specific neural populations and identified several CNS regions that project multisynaptically to the periphery. MCH and orexin neurons were identified in the lateral hypothalamus, and Nurr1 and Cnr1 in the amygdala and insular/rhinal cortices. Cholera toxin β tracing showed that insular Nurr1(+) and Cnr1(+) neurons project to the amygdala or lateral hypothalamus, respectively. Finally, we show that cortical Cnr1(+) neurons show increased Cnr1 mRNA and c-Fos expression after fasting, consistent with a possible role for Cnr1(+) neurons in feeding. Overall, these studies define a general approach for identifying specific molecular markers for neurons in complex neural circuits. These markers now provide a means for functional studies of specific neuronal populations in feeding or other complex behaviors. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Molecular Signatures of Hepatitis C Virus (HCV-Induced Type II Mixed Cryoglobulinemia (MCII

    Directory of Open Access Journals (Sweden)

    Roberto Burioni

    2012-11-01

    Full Text Available The role of hepatitis C virus (HCV infection in the induction of type II mixed cryoglobulinemia (MCII and the possible establishment of related lymphoproliferative disorders, such as B-cell non-Hodgkin lymphoma (B-NHL, is well ascertained. However, the molecular pathways involved and the factors predisposing to the development of these HCV-related extrahepatic complications deserve further consideration and clarification. To date, several host- and virus-related factors have been implicated in the progression to MCII, such as the virus-induced expansion of selected subsets of B-cell clones expressing discrete immunoglobulin variable (IgV gene subfamilies, the involvement of complement factors and the specific role of some HCV proteins. In this review, we will analyze the host and viral factors taking part in the development of MCII in order to give a general outlook of the molecular mechanisms implicated.

  14. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells

    OpenAIRE

    Sun, Bing; Bai, Yuxin; Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    2016-01-01

    Lung cancer remains the leading cancer killer around the world. It's crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer...

  15. Accurate Kirkwood-Buff Integrals from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.

    2010-01-01

    A method is proposed for obtaining thermodynamic properties via Kirkwood–Buff (KB) integrals from molecular simulations. In order to ensure that the KB integration converges, the pair distribution function is extrapolated to large distances using the extension method of Verlet, which enforces...... of state fitted to simulation results. Good agreement is achieved for both fluids at densities larger than 1.5 times the critical density....

  16. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  17. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  18. Integrating molecular diagnostics into histopathology training: the Belfast model.

    Science.gov (United States)

    Flynn, C; James, J; Maxwell, P; McQuaid, S; Ervine, A; Catherwood, M; Loughrey, M B; McGibben, D; Somerville, J; McManus, D T; Gray, M; Herron, B; Salto-Tellez, M

    2014-07-01

    Molecular medicine is transforming modern clinical practice, from diagnostics to therapeutics. Discoveries in research are being incorporated into the clinical setting with increasing rapidity. This transformation is also deeply changing the way we practise pathology. The great advances in cell and molecular biology which have accelerated our understanding of the pathogenesis of solid tumours have been embraced with variable degrees of enthusiasm by diverse medical professional specialties. While histopathologists have not been prompt to adopt molecular diagnostics to date, the need to incorporate molecular pathology into the training of future histopathologists is imperative. Our goal is to create, within an existing 5-year histopathology training curriculum, the structure for formal substantial teaching of molecular diagnostics. This specialist training has two main goals: (1) to equip future practising histopathologists with basic knowledge of molecular diagnostics and (2) to create the option for those interested in a subspecialty experience in tissue molecular diagnostics to pursue this training. It is our belief that this training will help to maintain in future the role of the pathologist at the centre of patient care as the integrator of clinical, morphological and molecular information. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Science.gov (United States)

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that

  20. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Directory of Open Access Journals (Sweden)

    Jose A Santiago

    Full Text Available Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level.Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP, previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS and the Prognostic Biomarker Study (PROBE, revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients.These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first

  1. Possible signatures of nuclear-molecular formation in O+C systems

    International Nuclear Information System (INIS)

    Tighe, R.J.; Kolata, J.J.; Belbot, M.; Aguilera, E.F.

    1993-01-01

    The interplay between the elastic, quasielastic, and fusion reaction channels at energies from just above to well below the Coulomb barrier is investigated for O+C systems. Elastic-scattering and quasielastic-scattering angular distributions were measured using the kinematic coincidence technique. Fusion yields were obtained by direct detection of the evaporation residues using a time-of-flight energy spectrometer, at energies from just above to well below the Coulomb barrier. The fusion yields differ significantly from previous work, but the present measurements give barrier parameters consistent with systematics. Comparisons with two-center shell model and coupled-channels predictions show possible indications of nuclear-molecular formation in the elastic, inelastic, and single-neutron transfer channels

  2. A signature of the intermittency of interstellar turbulence - The wings of molecular line profiles

    International Nuclear Information System (INIS)

    Falgarone, E.; Phillips, T.G.

    1990-01-01

    Ensembles of line profiles of molecular clouds are presented, and it is shown that most of the profiles can be fitted by a strong and narrow Gaussian plus a weak and broad Gaussian. The remarkably self-similar scaling of the wing widths to that of the cores is shown and the available information on the density and velocity structure of the fast gas is discussed. It is shown that the line wings can be used as tracers of the probability distribution of the projected velocity field within the cloud volume sampled by the profile. The statistical properties of this distribution are compared with that of the velocity in atmospheric turbulence and recent duct flow measurements. 62 refs

  3. The Unique Molecular Signatures of Contact Dermatitis and Implications for Treatment.

    Science.gov (United States)

    Leonard, Alexandra; Guttman-Yassky, Emma

    2018-05-12

    Irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD) are common skin disorders that are characterized by inflammation, oozing, crusting, and pruritus. Atopic dermatitis (AD) is an inflammatory skin disease characterized by immune and barrier abnormalities and is additionally a risk factor for acquiring ICD and ACD. New work on allergic sensitization to common allergens (e.g., nickel and fragrance) in human skin has shown that different allergens have distinct molecular fingerprinting. For example, nickel promotes strong Th1/Th17 polarization, whereas fragrance allergy causes Th2/Th22 skewing, which is similar to the phenotype of AD. While ACD has previously been considered to be constant across all allergens, largely based on mouse models involving strong sensitizers, these new data suggest that ACD differs mechanistically according to allergen. Further, ACD in the setting of concurrent AD shows a different and attenuated phenotype as compared to healthy individuals with ACD, which influences the way AD patients respond to vaccination and other treatment modalities. As in contact sensitization, skin challenged by food patch testing shows that common food allergens (e.g., peanut and barley) also cause distinct immune polarizations in the skin. Additionally, house dust mite reactions in human skin have been profiled to show unique Th2, Th9, and Th17/22 activation as compared to controls, which are similar to the phenotype of psoriasis and contact responses to nickel. Given this information, ACD patients should be treated based on their unique allergen polarity. Refined understanding of the molecular behavior of contact dermatitis and related diseases translates to improved methods of inducing tolerance in sensitized allergic patients, such as with targeted drug therapy and epicutaneous immunotherapy.

  4. Integration of rock physical signatures with depositional environments: A case study from East Coast of India

    Science.gov (United States)

    Mondal, Samit; Yadav, Ashok; Chatterjee, Rima

    2018-01-01

    Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.

  5. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  6. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells.

    Science.gov (United States)

    Sun, Bing; Bai, Yuxin; Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    Lung cancer remains the leading cancer killer around the world. It's crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer.

  7. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Bing Sun

    Full Text Available Lung cancer remains the leading cancer killer around the world. It's crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5 is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer.

  8. Molecular signature of anastasis for reversal of apoptosis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ho Man Tang

    2017-02-01

    Full Text Available Anastasis (Greek for "rising to life" is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis in vitro and in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis – the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.

  9. Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel.

    Science.gov (United States)

    Kharaziha, Pedram; Chioureas, Dimitris; Rutishauser, Dorothea; Baltatzis, George; Lennartsson, Lena; Fonseca, Pedro; Azimi, Alireza; Hultenby, Kjell; Zubarev, Roman; Ullén, Anders; Yachnin, Jeffrey; Nilsson, Sten; Panaretakis, Theocharis

    2015-08-28

    Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) which remains a leading cause of cancer-related deaths, worldwide. The clinical usage of docetaxel has resulted in modest gains in survival, primarily due to the development of resistance. There are currently no clinical biomarkers available that predict whether a CRPC patient will respond or acquire resistance to this therapy. Comparative proteomics analysis of exosomes secreted from DU145 prostate cancer cells that are sensitive (DU145 Tax-Sen) or have acquired resistance (DU145 Tax-Res) to docetaxel, demonstrated significant differences in the amount of exosomes secreted and in their molecular composition. A panel of proteins was identified by proteomics to be differentially enriched in DU145 Tax-Res compared to DU145 Tax-Sen exosomes and was validated by western blotting. Importantly, we identified MDR-1, MDR-3, Endophilin-A2 and PABP4 that were enriched only in DU145 Tax-Res exosomes. We validated the presence of these proteins in the serum of a small cohort of patients. DU145 cells that have uptaken DU145 Tax-Res exosomes show properties of increased matrix degradation. In summary, exosomes derived from DU145 Tax-Res cells may be a valuable source of biomarkers for response to therapy.

  10. Feline urine metabolomic signature: characterization of low-molecular-weight substances in urine from domestic cats.

    Science.gov (United States)

    Rivera-Vélez, Sol-Maiam; Villarino, Nicolas F

    2018-02-01

    Objectives This aim of this study was to characterize the composition and content of the feline urine metabolome. Methods Eight healthy domestic cats were acclimated at least 10 days before starting the study. Urine samples (~2 ml) were collected by ultrasound-guided cystocentesis. Samples were centrifuged at 1000 × g for 8 mins, and the supernatant was analyzed by gas chromatography/time-of-flight mass spectrometery. The urine metabolome was characterized using an untargeted metabolomics approach. Results Three hundred and eighteen metabolites were detected in the urine of the eight cats. These molecules are key components of at least 100 metabolic pathways. Feline urine appears to be dominated by carbohydrates, carbohydrate conjugates, organic acid and derivatives, and amino acids and analogs. The five most abundant molecules were phenaceturic acid, hippuric acid, pseudouridine phosphate and 3-(4-hydroxyphenyl) propionic acid. Conclusions and relevance This study is the first to characterize the feline urine metabolome. The results of this study revealed the presence of multiple low-molecular-weight substances that were not known to be present in feline urine. As expected, the origin of the metabolites detected in urine was diverse, including endogenous compounds and molecules biosynthesized by microbes. Also, the diet seemed to have had a relevant role on the urine metabolome. Further exploration of the urine metabolic phenotype will open a window for discovering unknown, or poorly understood, metabolic pathways. In turn, this will advance our understanding of feline biology and lead to new insights in feline physiology, nutrition and medicine.

  11. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  12. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells

    Directory of Open Access Journals (Sweden)

    Kim Han

    2012-07-01

    Full Text Available Abstract Background In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. Results Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1 was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2. Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. Conclusions Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that

  13. Vibrational signatures of cation-anion hydrogen bonding in ionic liquids: a periodic density functional theory and molecular dynamics study.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-05

    Hydrogen bonding in alkylammonium based protic ionic liquids was studied using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Normal-mode analysis within the harmonic approximation and power spectra of velocity autocorrelation functions were used as tools to obtain the vibrational spectra in both the gas phase and the crystalline phases of these protic ionic liquids. The hydrogen bond vibrational modes were identified in the 150-240 cm(-1) region of the far-infrared (far-IR) spectra. A blue shift in the far-IR mode was observed with an increasing number of hydrogen-bonding sites on the cation; the exact peak position is modulated by the cation-anion hydrogen bond strength. Sub-100 cm(-1) bands in the far-IR spectrum are assigned to the rattling motion of the anions. Calculated NMR chemical shifts of the acidic protons in the crystalline phase of these salts also exhibit the signature of cation-anion hydrogen bonding.

  14. Metabolomics reveals distinct, antibody-independent, molecular signatures of MS, AQP4-antibody and MOG-antibody disease.

    Science.gov (United States)

    Jurynczyk, Maciej; Probert, Fay; Yeo, Tianrong; Tackley, George; Claridge, Tim D W; Cavey, Ana; Woodhall, Mark R; Arora, Siddharth; Winkler, Torsten; Schiffer, Eric; Vincent, Angela; DeLuca, Gabriele; Sibson, Nicola R; Isabel Leite, M; Waters, Patrick; Anthony, Daniel C; Palace, Jacqueline

    2017-12-06

    conditions are indeed different at a molecular level. The metabolites identified provide a molecular signature of each condition which is independent of antibody titre and EDSS, with potential use for disease monitoring and diagnosis.

  15. An Integrative data mining approach to identifying Adverse Outcome Pathway (AOP) Signatures

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is a tool for making biological connections and summarizing key information across different levels of biological organization to connect biological perturbations at the molecular level to adverse outcomes for an individual or populatio...

  16. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    Science.gov (United States)

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  17. Identification of a robust subpathway-based signature for acute myeloid leukemia prognosis using an miRNA integrated strategy.

    Science.gov (United States)

    Chang, Huijuan; Gao, Qiuying; Ding, Wei; Qing, Xueqin

    2018-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease, and survival signatures are urgently needed to better monitor treatment. MiRNAs displayed vital regulatory roles on target genes, which was necessary involved in the complex disease. We therefore examined the expression levels of miRNAs and genes to identify robust signatures for survival benefit analyses. First, we reconstructed subpathway graphs by embedding miRNA components that were derived from low-throughput miRNA-gene interactions. Then, we randomly divided the data sets from The Cancer Genome Atlas (TCGA) into training and testing sets, and further formed 100 subsets based on the training set. Using each subset, we identified survival-related miRNAs and genes, and identified survival subpathways based on the reconstructed subpathway graphs. After statistical analyses of these survival subpathways, the most robust subpathways with the top three ranks were identified, and risk scores were calculated based on these robust subpathways for AML patient prognoses. Among these robust subpathways, three representative subpathways, path: 05200_10 from Pathways in cancer, path: 04110_20 from Cell cycle, and path: 04510_8 from Focal adhesion, were significantly associated with patient survival in the TCGA training and testing sets based on subpathway risk scores. In conclusion, we performed integrated analyses of miRNAs and genes to identify robust prognostic subpathways, and calculated subpathway risk scores to characterize AML patient survival.

  18. EVALUATING THE ECOLOGICAL RESILIENT DRIVEN PERFORMANCE OF A TROPICAL WASTE STABILIZATION POND SYSTEM USING ECOLOGICAL SIGNATURE OF BIOLOGICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    Susmita Lahiri Ganguly

    2015-06-01

    Full Text Available Using ecological signature of biological integrity as a measure of performance, the reclamation efficiency of waste stabilization ponds was evaluated over a period of four years in a tropical sewage treatment plant – cum fish culture consisting of two anaerobic, two facultative and four maturation ponds located serially across the sewage effluent gradient. The four maturation ponds were used for batch culture of fish. Samples of surface and bottom water as well as surface sediment were collected twice a month from different ponds of the system and examined for some nutrient cycling bacteria, primary production, chlorophyll content of micro-algae, phytoplankton, zooplankton abundance, fish growth and water quality parameters. Computation of ecological signature using aerobic mineralization index for heterotrophic and ammonifying bacteria revealed steady increase across the sewage effluent gradient. The heterotrophic and ammonifying bacterial populations appeared to have a direct function with the concentrations of chemical oxygen demand of water. The sum of total scores for different optimal conditions for fish growth increased as a function of the distance from the source of effluent implying that ecological resilience of the waste stabilization ponds has been accomplished by the sedimentation, chelation, and biological functional attributes mediated through redundancy of different subsystems, self- purification capacity of the system as a whole.

  19. Estuarine Ecosystems: Using T & E Signature Approaches to Support STEM Integration

    Science.gov (United States)

    McCulloch, Allison W.; Ernst, Jeremy V.

    2012-01-01

    STEM-based understandings and experiences that prepare learners beyond the classroom are of imminent need, as today's STEM education students are tomorrow's leaders in science, technology, engineering, mathematics, and education (Prabhu, 2009). Integrative STEM education signifies the intentional integration of science and mathematics with the…

  20. Stage-dependent prognostic impact of molecular signatures in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Weber T

    2014-05-01

    Full Text Available Thomas Weber,1,2 Matthias Meinhardt,3 Stefan Zastrow,1 Andreas Wienke,4 Kati Erdmann,1 Jörg Hofmann,1 Susanne Fuessel,1 Manfred P Wirth11Department of Urology, Technische Universität Dresden, Dresden, Germany; 2Department of Oncology and Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale, Germany; 3Institute of Pathology, Technische Universität Dresden, Dresden, Germany; 4Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale, GermanyPurpose: To enhance prognostic information of protein biomarkers for clear cell renal cell carcinomas (ccRCCs, we analyzed them within prognostic groups of ccRCC harboring different tumor characteristics of this clinically and molecularly heterogeneous tumor entity.Methods: Tissue microarrays from 145 patients with primary ccRCC were immunohistochemically analyzed for VHL (von Hippel-Lindau tumor suppressor, Ki67 (marker of proliferation 1, p53 (tumor protein p53, p21 (cyclin-dependent kinase inhibitor 1A, survivin (baculoviral IAP repeat containing 5, and UEA-1 (ulex europaeus agglutinin I to assess microvessel-density.Results: When analyzing all patients, nuclear staining of Ki67 (hazard ratio [HR] 1.08, 95% confidence interval [CI] 1.04–1.12 and nuclear survivin (nS; HR 1.04, 95% CI 1.01–1.08 were significantly associated with disease-specific survival (DSS. In the cohort of patients with advanced localized or metastasized ccRCC, high staining of Ki67, p53 and nS predicted shorter DSS (Ki67: HR 1.07, 95% CI 1.02–1.11; p53: HR 1.05, 95% CI 1.01–1.09; nS: HR 1.08, 95% CI 1.02–1.14. In organ-confined ccRCC, patients with high p21-staining had a longer DSS (HR 0.96, 95% CI 0.92–0.99. In a multivariate model with stepwise backward elimination, tumor size and p21-staining showed a significant association with DSS in patients with "organ-confined" ccRCCs. The p21-staining increased the concordance index of tumor size from

  1. Field Biogeochemical Measurements in Support of Remote Sensing Signatures and Characterization of Permafrost Terrain: Integrated Technologies for Delineating Permafrost and Ground-State Conditions

    Science.gov (United States)

    2015-03-01

    Characterization of Permafrost Terrain Integrated Technologies for Delineating Permafrost and Ground-State Conditions En gi ne er R es ea rc h an d...Signatures and Characterization of Permafrost Terrain Integrated Technologies for Delineating Permafrost and Ground-State Conditions Robyn A. Barbato...Center-Directed Research Project, “Integrated Technologies for Delineating Permafrost and Ground-State Conditions” ERDC TR-15-1 ii Abstract This

  2. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  3. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...

  4. A Neural Signature of Divisive Normalization at the Level of Multisensory Integration in Primate Cortex.

    Science.gov (United States)

    Ohshiro, Tomokazu; Angelaki, Dora E; DeAngelis, Gregory C

    2017-07-19

    Studies of multisensory integration by single neurons have traditionally emphasized empirical principles that describe nonlinear interactions between inputs from two sensory modalities. We previously proposed that many of these empirical principles could be explained by a divisive normalization mechanism operating in brain regions where multisensory integration occurs. This normalization model makes a critical diagnostic prediction: a non-preferred sensory input from one modality, which activates the neuron on its own, should suppress the response to a preferred input from another modality. We tested this prediction by recording from neurons in macaque area MSTd that integrate visual and vestibular cues regarding self-motion. We show that many MSTd neurons exhibit the diagnostic form of cross-modal suppression, whereas unisensory neurons in area MT do not. The normalization model also fits population responses better than a model based on subtractive inhibition. These findings provide strong support for a divisive normalization mechanism in multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions rela...... currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank....

  6. Integration of metabolomic and transcriptomic networks in pregnant women reveals biological pathways and predictive signatures associated with preeclampsia.

    Science.gov (United States)

    Kelly, Rachel S; Croteau-Chonka, Damien C; Dahlin, Amber; Mirzakhani, Hooman; Wu, Ann C; Wan, Emily S; McGeachie, Michael J; Qiu, Weiliang; Sordillo, Joanne E; Al-Garawi, Amal; Gray, Kathryn J; McElrath, Thomas F; Carey, Vincent J; Clish, Clary B; Litonjua, Augusto A; Weiss, Scott T; Lasky-Su, Jessica A

    2017-01-01

    Preeclampsia is a leading cause of maternal and fetal mortality worldwide, yet its exact pathogenesis remains elusive. This study, nested within the Vitamin D Antenatal Asthma Reduction Trial (VDAART), aimed to develop integrated omics models of preeclampsia that have utility in both prediction and in the elucidation of underlying biological mechanisms. Metabolomic profiling was performed on first trimester plasma samples of 47 pregnant women from VDAART who subsequently developed preeclampsia and 62 controls with healthy pregnancies, using liquid-chromatography tandem mass-spectrometry. Metabolomic profiles were generated based on logistic regression models and assessed using Received Operator Characteristic Curve analysis. These profiles were compared to profiles from generated using third trimester samples. The first trimester metabolite profile was then integrated with a pre-existing transcriptomic profile using network methods. In total, 72 (0.9%) metabolite features were associated (pIntegration with the transcriptomic signature refined these results suggesting a particular role for lipid imbalance, immune function and the circulatory system. These findings suggest it is possible to develop a predictive metabolomic profile of preeclampsia. This profile is characterized by changes in lipid and amino acid metabolism and dysregulation of immune response and can be refined through interaction with transcriptomic data. However validation in larger and more diverse populations is required.

  7. Phylogenetic analysis of canine distemper virus in South America clade 1 reveals unique molecular signatures of the local epidemic.

    Science.gov (United States)

    Fischer, Cristine D B; Gräf, Tiago; Ikuta, Nilo; Lehmann, Fernanda K M; Passos, Daniel T; Makiejczuk, Aline; Silveira, Marcos A T; Fonseca, André S K; Canal, Cláudio W; Lunge, Vagner R

    2016-07-01

    Canine distemper virus (CDV) is a highly contagious pathogen for domestic dogs and several wild carnivore species. In Brazil, natural infection of CDV in dogs is very high due to the large non-vaccinated dog population, a scenario that calls for new studies on the molecular epidemiology. This study investigates the phylodynamics and amino-acid signatures of CDV epidemic in South America by analyzing a large dataset compiled from publicly available sequences and also by collecting new samples from Brazil. A population of 175 dogs with canine distemper (CD) signs was sampled, from which 89 were positive for CDV, generating 42 new CDV sequences. Phylogenetic analysis of the new and publicly available sequences revealed that Brazilian sequences mainly clustered in South America 1 (SA1) clade, which has its origin estimated to the late 1980's. The reconstruction of the demographic history in SA1 clade showed an epidemic expanding until the recent years, doubling in size every nine years. SA1 clade epidemic distinguished from the world CDV epidemic by the emergence of the R580Q strain, a very rare and potentially detrimental substitution in the viral genome. The R580Q substitution was estimated to have happened in one single evolutionary step in the epidemic history in SA1 clade, emerging shortly after introduction to the continent. Moreover, a high prevalence (11.9%) of the Y549H mutation was observed among the domestic dogs sampled here. This finding was associated (p<0.05) with outcome-death and higher frequency in mixed-breed dogs, the later being an indicator of a continuous exchange of CDV strains circulating among wild carnivores and domestic dogs. The results reported here highlight the diversity of the worldwide CDV epidemic and reveal local features that can be valuable for combating the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets.

    Science.gov (United States)

    Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François

    2013-09-01

    Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (Pmolecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.

  9. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    reported based on concatenated sequences for 12 conserved proteins by different methods including the character compatibility (or clique approach. The placement of Salinibacter ruber with other Bacteroidetes species was not resolved by other phylogenetic methods, but this affiliation was strongly supported by the character compatibility approach. Conclusion The molecular signatures described here provide novel tools for identifying and circumscribing species from the Bacteroidetes and Chlorobi phyla as well as some of their main groups in clear terms. These results also provide strong evidence that species from these two phyla (and also possibly Fibrobacteres are specifically related to each other and they form a single superphylum. Functional studies on these proteins and indels should aid in the discovery of novel biochemical and physiological characteristics that are unique to these groups of bacteria.

  10. The signature of 44Ti in Cassiopeia a Revealed by IBIS/ISGRI on INTEGRAL

    NARCIS (Netherlands)

    Renaud, M.; Vink, J.; Decourchelle, A.; Lebrun, F.; den Hartog, P.R.; Terrier, R.; Couvreur, C.; Knödlseder, J.; Martin, P; Prantzos, N.; Bykov, A.M.; Bloemen, H.

    2006-01-01

    We report the detection of both the 67.9 and 78.4 keV 44Sc g-ray lines in Cassiopeia A with the INTEGRAL IBIS/ISGRI instrument. Besides the robustness provided by spectroimaging observations, the main improvements compared to previous measurements are a clear separation of the two 44Sc lines

  11. Air pollution and the fetal origin of disease: A systematic review of the molecular signatures of air pollution exposure in human placenta.

    Science.gov (United States)

    Luyten, Leen J; Saenen, Nelly D; Janssen, Bram G; Vrijens, Karen; Plusquin, Michelle; Roels, Harry A; Debacq-Chainiaux, Florence; Nawrot, Tim S

    2018-06-13

    Fetal development is a crucial window of susceptibility in which exposure-related alterations can be induced on the molecular level, leading to potential changes in metabolism and development. The placenta serves as a gatekeeper between mother and fetus, and is in contact with environmental stressors throughout pregnancy. This makes the placenta as a temporary organ an informative non-invasive matrix suitable to investigate omics-related aberrations in association with in utero exposures such as ambient air pollution. To summarize and discuss the current evidence and define the gaps of knowledge concerning human placental -omics markers in association with prenatal exposure to ambient air pollution. Two investigators independently searched the PubMed, ScienceDirect, and Scopus databases to identify all studies published until January 2017 with an emphasis on epidemiological research on prenatal exposure to ambient air pollution and the effect on placental -omics signatures. From the initial 386 articles, 25 were retained following an a priori set inclusion and exclusion criteria. We identified eleven studies on the genome, two on the transcriptome, five on the epigenome, five on the proteome category, one study with both genomic and proteomic topics, and one study with both genomic and transcriptomic topics. Six studies discussed the triple relationship between exposure to air pollution during pregnancy, the associated placental -omics marker(s), and the potential effect on disease development later in life. So far, no metabolomic or exposomic data discussing associations between the placenta and prenatal exposure to air pollution have been published. Integration of placental biomarkers in an environmental epidemiological context enables researchers to address fundamental questions essential in unraveling the fetal origin of disease and helps to better define the pregnancy exposome of air pollution. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Comparative analysis of molecular signatures suggests the use of gabapentin for the management of endometriosis-associated pain

    Directory of Open Access Journals (Sweden)

    Bellessort B

    2018-04-01

    Full Text Available Brice Bellessort,1 Anne Bachelot,1,2 Virginie Grouthier,2 Camille De Lombares,1 Nicolas Narboux-Neme,1 Paolo Garagnani,3,4 Chiara Pirazzini,3,4 Simonetta Astigiano,5 Luca Mastracci,6,7 Anastasia Fontaine,1 Gladys Alfama,1 Evelyne Duvernois-Berthet,1 Giovanni Levi1 1Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France; 2AP-HP, Department of Endocrinology and Reproductive Medicine, Reference Center for Rare Endocrine Diseases, Pitié-Salpêtrière Hospital, UPMC, Paris, France; 3Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy; 4Interdepartmental Center “L. Galvani”, University of Bologna, Bologna, Italy; 5Department of Integrated Oncological Therapies, San Martino Hospital, Genova, Italy; 6Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy; 7Division of Anatomic Pathology, Department of Surgical Science and Integrated Diagnostics, University of Genoa, Genova, Italy Background: It has been repetitively shown that the transcription factors DLX5 and DLX6 are drastically downregulated in endometriotic lesions when compared with eutopic endometrium. These findings suggest that regulatory cascades involving DLX5/6 might be at the origin of endometriosis symptoms such as chronic pelvic pain (CPP. We have shown that inactivation of Dlx5 and Dlx5/6 in the mouse uterus results in an endometrial phenotype reminiscent of endometriosis. Methods: We focused on genes that present a similar deregulation in endometriosis and in Dlx5/6-null mice in search of new endometriosis targets. Results: We confirmed a strong reduction of DLX5 expression in endometriosis implants. We identified a signature of 30 genes similarly deregulated in human endometriosis implants and in Dlx5/6-null mouse uteri, reinforcing the notion that the downregulation of Dlx5/6 is an early event in

  13. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome

    Directory of Open Access Journals (Sweden)

    Beleut Manfred

    2012-07-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach. Methods We integrated gene expression data from 97 primary RCC of different pathologic parameters, 15 RCC metastases as well as 34 cancer cell lines for two-way nonsupervised hierarchical clustering using gene groups suggested by the PANTHER Classification System. We depicted the genomic landscape of the resulted tumor groups by means of Single Nuclear Polymorphism (SNP technology. Finally, the achieved results were immunohistochemically analyzed using a tissue microarray (TMA composed of 254 RCC. Results We found robust, genome wide expression signatures, which split RCC into three distinct molecular subgroups. These groups remained stable even if randomly selected gene sets were clustered. Notably, the pattern obtained from RCC cell lines was clearly distinguishable from that of primary tumors. SNP array analysis demonstrated differing frequencies of chromosomal copy number alterations among RCC subgroups. TMA analysis with group-specific markers showed a prognostic significance of the different groups. Conclusion We propose the existence of characteristic and histologically independent genome-wide expression outputs in RCC with potential biological and clinical relevance.

  14. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features.

    Directory of Open Access Journals (Sweden)

    Marcel Kool

    Full Text Available BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases, SHH signaling (B; 15 cases, expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively or photoreceptor genes (D and E; both 11 cases. Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E

  15. Integrating atomistic molecular dynamics simulations, experiments and network analysis to study protein dynamics: strength in unity

    Directory of Open Access Journals (Sweden)

    Elena ePapaleo

    2015-05-01

    Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  16. Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community.

    Science.gov (United States)

    Aldape, Kenneth; Nejad, Romina; Louis, David N; Zadeh, Gelareh

    2017-03-01

    Molecular markers provide important biological and clinical information related to the classification of brain tumors, and the integration of relevant molecular parameters into brain tumor classification systems has been a widely discussed topic in neuro-oncology over the past decade. With recent advances in the development of clinically relevant molecular signatures and the 2016 World Health Organization (WHO) update, the views of the neuro-oncology community on such changes would be informative for implementing this process. A survey with 8 questions regarding molecular markers in tumor classification was sent to an email list of Society for Neuro-Oncology members and attendees of prior meetings (n=5065). There were 403 respondents. Analysis was performed using whole group response, based on self-reported subspecialty. The survey results show overall strong support for incorporating molecular knowledge into the classification and clinical management of brain tumors. Across all 7 subspecialty groups, ≥70% of respondents agreed to this integration. Interestingly, some variability is seen among subspecialties, notably with lowest support from neuropathologists, which may reflect their roles in implementing such diagnostic technologies. Based on a survey provided to the neuro-oncology community, we report strong support for the integration of molecular markers into the WHO classification of brain tumors, as well as for using an integrated "layered" diagnostic format. While membership from each specialty showed support, there was variation by specialty in enthusiasm regarding proposed changes. The initial results of this survey influenced the deliberations underlying the 2016 WHO classification of tumors of the central nervous system. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  17. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  18. Numerical solution of boundary-integral equations for molecular electrostatics.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  19. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure.

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-17

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  20. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  1. Analytic solution of integral equations for molecular fluids

    International Nuclear Information System (INIS)

    Cummings, P.T.

    1984-01-01

    We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)

  2. Identification of a gene expression core signature for Duchenne Muscular Dystrophy (DMD) via integrative analysis reveals novel potential compounds for treatment

    KAUST Repository

    Ichim-Moreno, Norú

    2010-05-01

    Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy and one of the most prevalent genetic disorders of childhood. DMD is characterized by rapid progression of muscle degeneration, and ultimately death. Currently, glucocorticoids are the only available treatment for DMD, but they have been shown to result in serious side effects. The purpose of this research was to define a core signature of gene expression related to DMD via integrative analysis of mouse and human datasets. This core signature was subsequently used to screen for novel potential compounds that antagonistically affect the expression of signature genes. With this approach we were able to identify compounds that are 1) already used to treat DMD, 2) currently under investigation for treatment, and 3) so far unknown but promising candidates. Our study highlights the potential of meta-analyses through the combination of datasets to unravel previously unrecognized associations and reveal new relationships. © IEEE.

  3. Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival.

    Science.gov (United States)

    Yang, Jia-Cheng; Risch, Eric; Zhang, Meiqin; Huang, Chan; Huang, Huatian; Lu, Lingeng

    2017-09-01

    To investigate the association between NSUN2/IGF-II signature and ovarian cancer survival. Using a publicly accessible dataset of RNA sequencing and clinical follow-up data, we performed Classification and Regression Tree and survival analyses. Patients with NSUN2 high IGF-II low had significantly superior overall and disease progression-free survival, followed by NSUN2 low IGF-II low , NSUN2 high IGF-II high and NSUN2 low IGF-II high (p IGF-II signature with the risks of death and relapse remained significant in multivariate Cox regression models. Random-effects meta-analyses show the upregulated NSUN2 and IGF-II expression in ovarian cancer versus normal tissues. The NSUN2/IGF-II signature associates with heterogeneous outcome and may have clinical implications in managing ovarian cancer.

  4. Toward an integrative molecular approach to wildlife disease.

    Science.gov (United States)

    DeCandia, Alexandra L; Dobson, Andrew P; vonHoldt, Bridgett M

    2018-01-29

    Pathogens pose serious threats to human health, agricultural investment, and biodiversity conservation through the emergence of zoonoses, spillover to domestic livestock, and epizootic outbreaks. As such, wildlife managers are often tasked with mitigating the negative effects of disease. Yet, parasites form a major component of biodiversity that often persist. This is due to logistical challenges of implementing management strategies and to insufficient understanding of host-parasite dynamics. We advocate for an inclusive understanding of molecular diversity in driving parasite infection and variable host disease states in wildlife systems. More specifically, we examine the roles of genetic, epigenetic, and commensal microbial variation in disease pathogenesis. These include mechanisms underlying parasite virulence and host resistance and tolerance, and the development, regulation, and parasite subversion of immune pathways, among other processes. Case studies of devil facial tumor disease in Tasmanian devils (Sarcophilus harrisii) and chytridiomycosis in globally distributed amphibians exemplify the broad range of questions that can be addressed by examining different facets of molecular diversity. For particularly complex systems, integrative molecular analyses present a promising frontier that can provide critical insights necessary to elucidate disease dynamics operating across scales. These insights enable more accurate risk assessment, reconstruction of transmission pathways, discernment of optimal intervention strategies, and development of more effective and ecologically sound treatments that minimize damage to the host population and environment. Such measures are crucial when mitigating threats posed by wildlife disease to humans, domestic animals, and species of conservation concern. © 2018 Society for Conservation Biology.

  5. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma

    Science.gov (United States)

    Zhang, Hao; Lin, Wan; Kannan, Kalpana; Luo, Liming; Li, Jing; Chao, Pei-Wen; Wang, Yan; Chen, Yu-Ping; Gu, Jiang; Yen, Laising

    2013-01-01

    It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response. PMID:24243830

  6. Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Kumi Barimah, E.; Hömmerich, U.; Brown, E.; Yang, C. S.-C.; Trivedi, S. B.; Jin, F.; Wijewarnasuriya, P. S.; Samuels, A. C.; Snyder, A. P.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique to detect the elemental composition of solids, liquids, and gases in real time. For example, recent advances in UV-VIS LIBS have shown great promise for applications in chemical, biological, and explosive sensing. The extension of conventional UVVIS LIBS to the near-IR (NIR), mid-IR (MIR) and long wave infrared (LWIR) regions (~1-12 μm) offers the potential to provide additional information due to IR atomic and molecular signatures. In this work, a Q-switched Nd: YAG laser operating at 1064 nm was employed as the excitation source and focused onto several chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on background air, KCl , and NaCl were also included for comparison. All potassium and sodium containing samples revealed narrow-band, atomic-like emissions assigned to transitions of neutral alkali-metal atoms in accordance with the NIST atomic spectra database. In addition, first evidence of broad-band molecular LIBS signatures from chlorate and nitrate compounds were observed at ~10 μm and ~7.3 μm, respectively. The observed molecular emissions showed strong correlation with FTIR absorption spectra of the investigated materials.

  7. Systems Biology Methods for Alzheimer's Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials.

    Science.gov (United States)

    Castrillo, Juan I; Lista, Simone; Hampel, Harald; Ritchie, Craig W

    2018-01-01

    Alzheimer's disease (AD) is a complex multifactorial disease, involving a combination of genomic, interactome, and environmental factors, with essential participation of (a) intrinsic genomic susceptibility and (b) a constant dynamic interplay between impaired pathways and central homeostatic networks of nerve cells. The proper investigation of the complexity of AD requires new holistic systems-level approaches, at both the experimental and computational level. Systems biology methods offer the potential to unveil new fundamental insights, basic mechanisms, and networks and their interplay. These may lead to the characterization of mechanism-based molecular signatures, and AD hallmarks at the earliest molecular and cellular levels (and beyond), for characterization of AD subtypes and stages, toward targeted interventions according to the evolving precision medicine paradigm. In this work, an update on advanced systems biology methods and strategies for holistic studies of multifactorial diseases-particularly AD-is presented. This includes next-generation genomics, neuroimaging and multi-omics methods, experimental and computational approaches, relevant disease models, and latest genome editing and single-cell technologies. Their progressive incorporation into basic research, cohort studies, and trials is beginning to provide novel insights into AD essential mechanisms, molecular signatures, and markers toward mechanism-based classification and staging, and tailored interventions. Selected methods which can be applied in cohort studies and trials, with the European Prevention of Alzheimer's Dementia (EPAD) project as a reference example, are presented and discussed.

  8. VitisNet: "Omics" integration through grapevine molecular networks.

    Directory of Open Access Journals (Sweden)

    Jérôme Grimplet

    Full Text Available BACKGROUND: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet. METHODOLOGY/PRINCIPAL FINDINGS: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024 genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 "Metabolic", 15 "Genetic Information Processing", 12 "Environmental Information Processing", 3 "Cellular Processes", 21 "Transport", and 80 "Transcription Factors". The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. CONCLUSIONS/SIGNIFICANCE: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome

  9. Signature Balancing

    NARCIS (Netherlands)

    Noordkamp, H.W.; Brink, M. van den

    2006-01-01

    Signatures are an important part of the design of a ship. In an ideal situation, signatures must be as low as possible. However, due to budget constraints it is most unlikely to reach this ideal situation. The arising question is which levels of signatures are optimal given the different scenarios

  10. Efficient stochastic thermostatting of path integral molecular dynamics.

    Science.gov (United States)

    Ceriotti, Michele; Parrinello, Michele; Markland, Thomas E; Manolopoulos, David E

    2010-09-28

    The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.

  11. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Science.gov (United States)

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  12. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Directory of Open Access Journals (Sweden)

    Kazuhide Watanabe

    Full Text Available Deregulation of canonical Wnt/CTNNB1 (beta-catenin pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells.We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis.Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  13. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  14. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle.

    Science.gov (United States)

    Sharifi, Somayeh; Pakdel, Abbas; Ebrahimi, Mansour; Reecy, James M; Fazeli Farsani, Samaneh; Ebrahimie, Esmaeil

    2018-01-01

    Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as

  15. Strategy to find molecular signatures in a small series of rare cancers: validation for radiation-induced breast and thyroid tumors.

    Directory of Open Access Journals (Sweden)

    Nicolas Ugolin

    Full Text Available Methods of classification using transcriptome analysis for case-by-case tumor diagnosis could be limited by tumor heterogeneity and masked information in the gene expression profiles, especially as the number of tumors is small. We propose a new strategy, EMts_2PCA, based on: 1 The identification of a gene expression signature with a great potential for discriminating subgroups of tumors (EMts stage, which includes: a a learning step, based on an expectation-maximization (EM algorithm, to select sets of candidate genes whose expressions discriminate two subgroups, b a training step to select from the sets of candidate genes those with the highest potential to classify training tumors, c the compilation of genes selected during the training step, and standardization of their levels of expression to finalize the signature. 2 The predictive classification of independent prospective tumors, according to the two subgroups of interest, by the definition of a validation space based on a two-step principal component analysis (2PCA. The present method was evaluated by classifying three series of tumors and its robustness, in terms of tumor clustering and prediction, was further compared with that of three classification methods (Gene expression bar code, Top-scoring pair(s and a PCA-based method. Results showed that EMts_2PCA was very efficient in tumor classification and prediction, with scores always better that those obtained by the most common methods of tumor clustering. Specifically, EMts_2PCA permitted identification of highly discriminating molecular signatures to differentiate post-Chernobyl thyroid or post-radiotherapy breast tumors from their sporadic counterparts that were previously unsuccessfully classified or classified with errors.

  16. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes

    Directory of Open Access Journals (Sweden)

    Amanda M. Ackermann

    2016-03-01

    Conclusions: We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.

  17. Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model

    NARCIS (Netherlands)

    Koppen, A. van; Verschuren, L.; Hoek, A.M. van den; Verheij, J.; Morrison, M.C.; Li, K.; Nagabukuro, H.; Costessi, A.; Caspers, M.P.M.; Broek, T.J. van den; Sagartz, J.; Kluft, C.; Beysen, C.; Emson, C.; Gool, A.J. van; Goldschmeding, R.; Stoop, R.; Bobeldijk-Pastorova, I.; Turner, S.M.; Hanauer, G.; Hanemaaijer, R.

    2017-01-01

    Background & Aims: The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes

  18. Molecular signature of epistatic selection: interrogating genetic interactions in the sex-ratio meiotic drive of Drosophila simulans.

    Science.gov (United States)

    Chevin, Luis-Miguel; Bastide, Héloïse; Montchamp-Moreau, Catherine; Hospital, Frédéric

    2009-06-01

    Fine scale analyses of signatures of selection allow assessing quantitative aspects of a species' evolutionary genetic history, such as the strength of selection on genes. When several selected loci lie in the same genomic region, their epistatic interactions may also be investigated. Here, we study how the neutral polymorphism pattern was shaped by two close recombining loci that cause 'sex-ratio' meiotic drive in Drosophila simulans, as an example of strong selection with potentially strong epistasis. We compare the polymorphism data observed in a natural population with the results of forward stochastic simulations under several contexts of epistasis between the candidate loci for the drive. We compute the likelihood of different possible scenarios, in order to determine which configuration is most consistent with the data. Our results highlight that fine scale analyses of well-chosen candidate genomic regions provide information-rich data that can be used to investigate the genotype-phenotype-fitness map, which can hardly be studied in genome-wide analyses. We also emphasize that initial conditions and time of observation (here, time after the interruption of a partial selective sweep) are crucial parameters in the interpretation of real data, while these are often overlooked in theoretical studies.

  19. Molecular Assemblies, Genes and Genomics Integrated Efficiently (MAGGIE)

    Energy Technology Data Exchange (ETDEWEB)

    Baliga, Nitin S

    2011-05-26

    Final report on MAGGIE. We set ambitious goals to model the functions of individual organisms and their community from molecular to systems scale. These scientific goals are driving the development of sophisticated algorithms to analyze large amounts of experimental measurements made using high throughput technologies to explain and predict how the environment influences biological function at multiple scales and how the microbial systems in turn modify the environment. By experimentally evaluating predictions made using these models we will test the degree to which our quantitative multiscale understanding wilt help to rationally steer individual microbes and their communities towards specific tasks. Towards this end we have made substantial progress towards understanding evolution of gene families, transcriptional structures, detailed structures of keystone molecular assemblies (proteins and complexes), protein interactions, biological networks, microbial interactions, and community structure. Using comparative analysis we have tracked the evolutionary history of gene functions to understand how novel functions evolve. One level up, we have used proteomics data, high-resolution genome tiling microarrays, and 5' RNA sequencing to revise genome annotations, discover new genes including ncRNAs, and map dynamically changing operon structures of five model organisms: For Desulfovibrio vulgaris Hildenborough, Pyrococcus furiosis, Sulfolobus solfataricus, Methanococcus maripaludis and Haiobacterium salinarum NROL We have developed machine learning algorithms to accurately identify protein interactions at a near-zero false positive rate from noisy data generated using tagfess complex purification, TAP purification, and analysis of membrane complexes. Combining other genome-scale datasets produced by ENIGMA (in particular, microarray data) and available from literature we have been able to achieve a true positive rate as high as 65% at almost zero false positives

  20. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas

    Directory of Open Access Journals (Sweden)

    Garcia Juan L

    2010-08-01

    Full Text Available Abstract Background Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM. Methods Eight fresh, primary and non cultured GBMs were used in order to study the gene expression signatures from its CD133 positive and negative populations isolated by FACS-sorting. Dataset was generated with Affymetrix U133 Plus 2 arrays and analysed using the software of the Affymetrix Expression Console. In addition, genomic analysis of these tumours was carried out by CGH arrays, FISH studies and MLPA; Results Gene expression analysis of CD133+ vs. CD133- cell population from each tumour showed that CD133+ cells presented common characteristics in all glioblastoma samples (up-regulation of genes involved in angiogenesis, permeability and down-regulation of genes implicated in cell assembly, neural cell organization and neurological disorders. Furthermore, unsupervised clustering of gene expression led us to distinguish between two groups

  1. Specific Molecular Signatures for Type II Crustins in Penaeid Shrimp Uncovered by the Identification of Crustin-Like Antimicrobial Peptides in Litopenaeus vannamei

    Science.gov (United States)

    Barreto, Cairé; Coelho, Jaqueline da Rosa; Yuan, Jianbo; Xiang, Jianhai; Perazzolo, Luciane Maria

    2018-01-01

    Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or “Crustins” and Type IIb or “Crustin-like”) possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV). As Crustin Lv, Crustin-like Lv transcripts were found to be present early in development, suggesting a maternal contribution to shrimp progeny. Altogether, our in silico and transcriptional data allowed to conclude that (1) each sub-type displays a specific amino acid signature at the C-terminal end holding both the cysteine-rich region and the whey acidic protein (WAP) domain, and that (2) shrimp Type II crustins evolved from a common ancestral gene that conserved a similar pattern of transcriptional regulation. PMID:29337853

  2. Integrating Molecular Computation and Material Production in an Artificial Subcellular Matrix

    DEFF Research Database (Denmark)

    Fellermann, Harold; Hadorn, Maik; Bönzli, Eva

    Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly compartmen......Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly...... compartmentalized re- action compartments that interact and get delivered through vesicle trafficking. The European Commission funded project MatchIT (Matrix for Chemical IT) aims at creating an artificial cellular matrix that seamlessly integrates infor- mation processing and material production in much the same...

  3. Gene trio signatures as molecular markers to predict response to doxorubicin cyclophosphamide neoadjuvant chemotherapy in breast cancerpatients

    Directory of Open Access Journals (Sweden)

    M.C. Barros Filho

    2010-12-01

    Full Text Available In breast cancer patients submitted to neoadjuvant chemotherapy (4 cycles of doxorubicin and cyclophosphamide, AC, expression of groups of three genes (gene trio signatures could distinguish responsive from non-responsive tumors, as demonstrated by cDNA microarray profiling in a previous study by our group. In the current study, we determined if the expression of the same genes would retain the predictive strength, when analyzed by a more accessible technique (real-time RT-PCR. We evaluated 28 samples already analyzed by cDNA microarray, as a technical validation procedure, and 14 tumors, as an independent biological validation set. All patients received neoadjuvant chemotherapy (4 AC. Among five trio combinations previously identified, defined by nine genes individually investigated (BZRP, CLPTM1,MTSS1, NOTCH1, NUP210, PRSS11, RPL37A, SMYD2, and XLHSRF-1, the most accurate were established by RPL37A, XLHSRF-1based trios, with NOTCH1 or NUP210. Both trios correctly separated 86% of tumors (87% sensitivity and 80% specificity for predicting response, according to their response to chemotherapy (82% in a leave-one-out cross-validation method. Using the pre-established features obtained by linear discriminant analysis, 71% samples from the biological validation set were also correctly classified by both trios (72% sensitivity; 66% specificity. Furthermore, we explored other gene combinations to achieve a higher accuracy in the technical validation group (as a training set. A new trio, MTSS1, RPL37 and SMYD2, correctly classified 93% of samples from the technical validation group (95% sensitivity and 80% specificity; 86% accuracy by the cross-validation method and 79% from the biological validation group (72% sensitivity and 100% specificity. Therefore, the combined expression of MTSS1, RPL37 and SMYD2, as evaluated by real-time RT-PCR, is a potential candidate to predict response to neoadjuvant doxorubicin and cyclophosphamide in breast cancer

  4. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts.

    Directory of Open Access Journals (Sweden)

    Michael E Johnson

    Full Text Available Genome-wide expression profiling in systemic sclerosis (SSc has identified four 'intrinsic' subsets of disease (fibroproliferative, inflammatory, limited, and normal-like, each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling.

  5. Detectability of molecular gas signatures on Jupiter’s moon Europa from ground and space-based facilities

    Science.gov (United States)

    Paganini, Lucas; Villanueva, Geronimo Luis; Hurford, Terry; Mandell, Avi; Roth, Lorenz; Mumma, Michael J.

    2017-10-01

    Plumes and their effluent material could provide insights into Europa’s subsurface chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. In 2016, we initiated a strong observational campaign to characterize the chemical composition of Europa’s surface and exosphere using high-resolution infrared spectroscopy. While several studies have focused on the detection of water, or its dissociation products, there could be a myriad of complex molecules released by erupting plumes. Our IR survey has provided a serendipitous search for several key molecular species, allowing a chemical characterization that can aid the investigation of physical processes underlying its surface. Since our tentative water detection, presented at the 2016 DPS meeting, we have continued the observations of Europa during 2017 covering a significant extent of the moon’s terrain and orbital position (true anomaly), accounting for over 50 hr on source. Current analyses of these data are showing spectral features that grant further investigation. In addition to analysis algorithms tailored to the examination of Europan data, we have developed simulation tools to predict the possible detection of molecular species using ground-based facilities like the Keck Observatory, NASA’s Infrared Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA). In this presentation we will discuss the detectability of key molecular species with these remote sensing facilities, as well as expected challenges and future strategies with upcoming spacecrafts such as the James Webb Space Telescope (JWST), the Large UV/Optical/Infrared Surveyor (LUVOIR), and a possible gas spectrometer onboard an orbiter.This work is supported by NASA’s Keck PI Data Award (PI L.P.) and Solar System Observation Program (PI L.P.), and by the NASA Astrobiology Institute through funding awarded to the Goddard Center for Astrobiology (PI M.J.M.).

  6. Cellular and molecular mechanisms of HIV-1 integration targeting.

    Science.gov (United States)

    Engelman, Alan N; Singh, Parmit K

    2018-07-01

    Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.

  7. Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms.

    Science.gov (United States)

    Wheler, Jennifer J; Parker, Barbara A; Lee, Jack J; Atkins, Johnique T; Janku, Filip; Tsimberidou, Apostolia M; Zinner, Ralph; Subbiah, Vivek; Fu, Siqing; Schwab, Richard; Moulder, Stacy; Valero, Vicente; Schwaederle, Maria; Yelensky, Roman; Miller, Vincent A; Stephens, M Philip J; Meric-Bernstam, Funda; Kurzrock, Razelle

    2014-05-15

    Our analysis of the tumors of 57 women with metastatic breast cancer with next generation sequencing (NGS) demonstrates that each patient's tumor is unique in its molecular fingerprint. We observed 216 somatic aberrations in 70 different genes, including 131 distinct aberrations. The most common gene alterations (in order of decreasing frequency) included: TP53, PIK3CA, CCND1, MYC, HER2 (ERBB2), MCL1, PTEN, FGFR1, GATA3, NF1, PIK3R1, BRCA2, EGFR, IRS2, CDH1, CDKN2A, FGF19, FGF3 and FGF4. Aberrations included mutations (46%), amplifications (45%), deletions (5%), splices (2%), truncations (1%), fusions (0.5%) and rearrangements (0.5%), with multiple distinct variants within the same gene. Many of these aberrations represent druggable targets, either through direct pathway inhibition or through an associated pathway (via 'crosstalk'). The 'molecular individuality' of these tumors suggests that a customized strategy, using an "N-of-One" model of precision medicine, may represent an optimal approach for the treatment of patients with advanced tumors.

  8. Molecular characterization of apocrine carcinoma of the breast: validation of an apocrine protein signature in a well-defined cohort

    DEFF Research Database (Denmark)

    Celis, J.E.; Cabezon, T.; Moreira, José

    2009-01-01

    Invasive apocrine carcinomas (IACs), as defined by morphological features, correspond to 0.3-4% of all invasive ductal carcinomas (IDC), and despite the fact that they are histologically distinct from other breast lesions there are currently no standard molecular criteria available...... characterize these lesions as well as to dissect some of the steps in the processes underlying breast apocrine metaplasia and development of precancerous apocrine lesions. Establishing these apocrine-specific markers as best practice for the routine pathology evaluation of breast cancer, however, will require......1), in addition to a set of categorizing markers that are consistently expressed (AR, CD24) or not expressed (ERalpha, PgR, Bcl-2, and GATA-3) by apocrine metaplasia in benign breast lesions and apocrine sweat glands. This panel was used to analyze a well-defined cohort consisting of 14 apocrine...

  9. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography

    Science.gov (United States)

    Brooksby, Ben; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Srinivasan, Subhadra; Kogel, Christine; Tosteson, Tor D.; Weaver, John; Poplack, Steven P.; Paulsen, Keith D.

    2006-06-01

    Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images. hemoglobin | magnetic resonance imaging | water | fat | oxygen saturation

  10. Property Integration - A New Approach for Simultaneous Solution of Process and Molecular Design Problems

    DEFF Research Database (Denmark)

    The objective of this paper is to introduce the new concept of property integration. It is based on tracking and integrating properties throughout the process. This is made possible by exploiting the unique features at the interface of process and molecular design. Recently developed clustering...... concepts are employed to identify optimal properties without commitment to specific species. Subsequently, group contribution methods and molecular design techniques are employed to solve the reverse property prediction problem to design molecules possessing the optimal properties....

  11. Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods

    International Nuclear Information System (INIS)

    Gray, S.K.; Noid, D.W.; Sumpter, B.G.

    1994-01-01

    We test the suitability of a variety of explicit symplectic integrators for molecular dynamics calculations on Hamiltonian systems. These integrators are extremely simple algorithms with low memory requirements, and appear to be well suited for large scale simulations. We first apply all the methods to a simple test case using the ideas of Berendsen and van Gunsteren. We then use the integrators to generate long time trajectories of a 1000 unit polyethylene chain. Calculations are also performed with two popular but nonsymplectic integrators. The most efficient integrators of the set investigated are deduced. We also discuss certain variations on the basic symplectic integration technique

  12. Integrated Molecular Imaging and Therapy for Breast Cancer

    National Research Council Canada - National Science Library

    Panchapakesan, Balaji

    2008-01-01

    ...) and NIR dosing of cancer cells using SWCNT. While previous studies have shown the transport of DNA into cells using nanotubes, in this study we show multi-component molecular targeting of both IGF1R and Her2 surface markers in cancer cells...

  13. Multiple time step integrators in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-01-01

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy

  14. Molecular integrals for exponential-type orbitals using hyperspherical harmonics

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2015-01-01

    -dimensional hypersphere. Using this projection, Fock was able to show that the Fourier transforms of Coulomb Sturmian basis functions are very simply related to four-dimensional hyperspherical harmonics.With the help of Fock's relationships and the theory of hyperspherical harmonics we are able to evaluate molecular...

  15. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  16. Emergence of canine distemper virus strains with modified molecular signature and enhanced neuronal tropism leading to high mortality in wild carnivores.

    Science.gov (United States)

    Origgi, F C; Plattet, P; Sattler, U; Robert, N; Casaubon, J; Mavrot, F; Pewsner, M; Wu, N; Giovannini, S; Oevermann, A; Stoffel, M H; Gaschen, V; Segner, H; Ryser-Degiorgis, M-P

    2012-11-01

    An ongoing canine distemper epidemic was first detected in Switzerland in the spring of 2009. Compared to previous local canine distemper outbreaks, it was characterized by unusually high morbidity and mortality, rapid spread over the country, and susceptibility of several wild carnivore species. Here, the authors describe the associated pathologic changes and phylogenetic and biological features of a multiple highly virulent canine distemper virus (CDV) strain detected in and/or isolated from red foxes (Vulpes vulpes), Eurasian badgers (Meles meles), stone (Martes foina) and pine (Martes martes) martens, from a Eurasian lynx (Lynx lynx), and a domestic dog. The main lesions included interstitial to bronchointerstitial pneumonia and meningopolioencephalitis, whereas demyelination--the classic presentation of CDV infection--was observed in few cases only. In the brain lesions, viral inclusions were mainly in the nuclei of the neurons. Some significant differences in brain and lung lesions were observed between foxes and mustelids. Swiss CDV isolates shared together with a Hungarian CDV strain detected in 2004. In vitro analysis of the hemagglutinin protein from one of the Swiss CDV strains revealed functional and structural differences from that of the reference strain A75/17, with the Swiss strain showing increased surface expression and binding efficiency to the signaling lymphocyte activation molecule (SLAM). These features might be part of a novel molecular signature, which might have contributed to an increase in virus pathogenicity, partially explaining the high morbidity and mortality, the rapid spread, and the large host spectrum observed in this outbreak.

  17. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Balduino, Alex, E-mail: balduino@uva.edu.br [School of Dentistry, Veiga de Almeida University, Rio de Janeiro, RJ (Brazil); Mello-Coelho, Valeria [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H. [Department of Periodontics, Prevention and Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI (United States); Weeraratna, Ashani T.; Becker, Kevin G. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Mello, Wallace de [Instituto Oswaldo Cruz, Rio de Janeiro, RJ (Brazil); Taub, Dennis D. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Borojevic, Radovan [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  18. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    International Nuclear Information System (INIS)

    Balduino, Alex; Mello-Coelho, Valeria; Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H.; Weeraratna, Ashani T.; Becker, Kevin G.; Mello, Wallace de; Taub, Dennis D.; Borojevic, Radovan

    2012-01-01

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the “quiescent” and “proliferative” niches in which hematopoietic stem cells and progenitors reside.

  19. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker.

    Science.gov (United States)

    Fadini, Gian Paolo; Albiero, Mattia; Millioni, Renato; Poncina, Nicol; Rigato, Mauro; Scotton, Rachele; Boscari, Federico; Brocco, Enrico; Arrigoni, Giorgio; Villano, Gianmarco; Turato, Cristian; Biasiolo, Alessandra; Pontisso, Patrizia; Avogaro, Angelo

    2014-09-01

    Chronic foot ulceration is a severe complication of diabetes, driving morbidity and mortality. The mechanisms underlying delaying wound healing in diabetes are incompletely understood and tools to identify such pathways are eagerly awaited. Wound biopsies were obtained from 75 patients with diabetic foot ulcers. Matched subgroups of rapidly healing (RH, n = 17) and non-healing (NH, n = 11) patients were selected. Proteomic analysis was performed by labelling with isobaric tag for relative and absolute quantification and mass spectrometry. Differentially expressed proteins were analysed in NH vs RH for identification of pathogenic pathways. Individual sample gene/protein validation and in vivo validation of candidate pathways in mouse models were carried out. Pathway analyses were conducted on 92/286 proteins that were differentially expressed in NH vs RH. The following pathways were enriched in NH vs RH patients: apoptosis, protease inhibitors, epithelial differentiation, serine endopeptidase activity, coagulation and regulation of defence response. SerpinB3 was strongly upregulated in RH vs NH wounds, validated as protein and mRNA in individual samples. To test the relevance of serpinB3 in vivo, we used a transgenic mouse model with α1-antitrypsin promoter-driven overexpression of human SERPINB3. In this model, wound healing was unaffected by SERPINB3 overexpression in non-diabetic or diabetic mice with or without hindlimb ischaemia. In an independent validation cohort of 47 patients, high serpinB3 protein content was confirmed as a biomarker of healing improvement. We provide a benchmark for the unbiased discovery of novel molecular targets and biomarkers of impaired diabetic wound healing. High serpinB3 protein content was found to be a biomarker of successful healing in diabetic patients.

  20. A combined reaction class approach with integrated molecular orbital+molecular orbital (IMOMO) methodology: A practical tool for kinetic modeling

    International Nuclear Information System (INIS)

    Truong, Thanh N.; Maity, Dilip K.; Truong, Thanh-Thai T.

    2000-01-01

    We present a new practical computational methodology for predicting thermal rate constants of reactions involving large molecules or a large number of elementary reactions in the same class. This methodology combines the integrated molecular orbital+molecular orbital (IMOMO) approach with our recently proposed reaction class models for tunneling. With the new methodology, we show that it is possible to significantly reduce the computational cost by several orders of magnitude while compromising the accuracy in the predicted rate constants by less than 40% over a wide range of temperatures. Another important result is that the computational cost increases only slightly as the system size increases. (c) 2000 American Institute of Physics

  1. Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts.In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays.We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases.

  2. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics.

    Science.gov (United States)

    Lee, Sunhee C

    2018-05-18

    Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.

  3. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    Science.gov (United States)

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  4. Existence of CD8α-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species.

    Science.gov (United States)

    Contreras, Vanessa; Urien, Céline; Guiton, Rachel; Alexandre, Yannick; Vu Manh, Thien-Phong; Andrieu, Thibault; Crozat, Karine; Jouneau, Luc; Bertho, Nicolas; Epardaud, Mathieu; Hope, Jayne; Savina, Ariel; Amigorena, Sebastian; Bonneau, Michel; Dalod, Marc; Schwartz-Cornil, Isabelle

    2010-09-15

    The mouse lymphoid organ-resident CD8alpha(+) dendritic cell (DC) subset is specialized in Ag presentation to CD8(+) T cells. Recent evidence shows that mouse nonlymphoid tissue CD103(+) DCs and human blood DC Ag 3(+) DCs share similarities with CD8alpha(+) DCs. We address here whether the organization of DC subsets is conserved across mammals in terms of gene expression signatures, phenotypic characteristics, and functional specialization, independently of the tissue of origin. We study the DC subsets that migrate from the skin in the ovine species that, like all domestic animals, belongs to the Laurasiatheria, a distinct phylogenetic clade from the supraprimates (human/mouse). We demonstrate that the minor sheep CD26(+) skin lymph DC subset shares significant transcriptomic similarities with mouse CD8alpha(+) and human blood DC Ag 3(+) DCs. This allowed the identification of a common set of phenotypic characteristics for CD8alpha-like DCs in the three mammalian species (i.e., SIRP(lo), CADM1(hi), CLEC9A(hi), CD205(hi), XCR1(hi)). Compared to CD26(-) DCs, the sheep CD26(+) DCs show 1) potent stimulation of allogeneic naive CD8(+) T cells with high selective induction of the Ifngamma and Il22 genes; 2) dominant efficacy in activating specific CD8(+) T cells against exogenous soluble Ag; and 3) selective expression of functional pathways associated with high capacity for Ag cross-presentation. Our results unravel a unifying definition of the CD8alpha(+)-like DCs across mammalian species and identify molecular candidates that could be used for the design of vaccines applying to mammals in general.

  5. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    Science.gov (United States)

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  7. Integrative Network Analysis Unveils Convergent Molecular Pathways in Parkinson's Disease and Diabetes

    OpenAIRE

    Santiago, Jose A.; Potashkin, Judith A.

    2013-01-01

    Background Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. ...

  8. Molecular Signatures of Natural Selection

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2005-01-01

    provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating......There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may...

  9. Integration of molecular typing results into tuberculosis surveillance in Germany-A pilot study.

    Science.gov (United States)

    Andrés, Marta; Göhring-Zwacka, Elke; Fiebig, Lena; Priwitzer, Martin; Richter, Elvira; Rüsch-Gerdes, Sabine; Haas, Walter; Niemann, Stefan; Brodhun, Bonita

    2017-01-01

    An integrated molecular surveillance for tuberculosis (TB) improves the understanding of ongoing TB transmission by combining molecular typing and epidemiological data. However, the implementation of an integrated molecular surveillance for TB is complex and requires thoughtful consideration of feasibility, demand, public health benefits and legal issues. We aimed to pilot the integration of molecular typing results between 2008 and 2010 in the German Federal State of Baden-Württemberg (population 10.88 Million) as preparation for a nationwide implementation. Culture positive TB cases were typed by IS6110 DNA fingerprinting and results were integrated into routine notification data. Demographic and clinical characteristics of cases and clusters were described and new epidemiological links detected after integrating typing data were calculated. Furthermore, a cross-sectional survey was performed among local public health offices to evaluate their perception and experiences. Overall, typing results were available for 83% of notified culture positive TB cases, out of which 25% were clustered. Age Germany (OR = 2.01, 95% CI: 1.44-2.80) were associated with clustering. At cluster level, molecular typing information allowed the identification of previously unknown epidemiological links in 11% of the clusters. In 59% of the clusters it was not possible to identify any epidemiological link. Clusters extending over different counties were less likely to have epidemiological links identified among their cases (OR = 11.53, 95% CI: 3.48-98.23). The majority of local public health offices found molecular typing useful for their work. Our study illustrates the feasibility of integrating typing data into the German TB notification system and depicts its added public health value as complementary strategy in TB surveillance, especially to uncover transmission events among geographically separated TB patients. It also emphasizes that special efforts are required to strengthen the

  10. An eleven gene molecular signature for extra-capsular spread in oral squamous cell carcinoma serves as a prognosticator of outcome in patients without nodal metastases.

    Science.gov (United States)

    Wang, Weining; Lim, Weng Khong; Leong, Hui Sun; Chong, Fui Teen; Lim, Tony K H; Tan, Daniel S W; Teh, Bin Tean; Iyer, N Gopalakrishna

    2015-04-01

    Extracapsular spread (ECS) is an important prognostic factor for oral squamous cell carcinoma (OSCC) and is used to guide management. In this study, we aimed to identify an expression profile signature for ECS in node-positive OSCC using data derived from two different sources: a cohort of OSCC patients from our institution (National Cancer Centre Singapore) and The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma (HNSCC) cohort. We also sought to determine if this signature could serve as a prognostic factor in node negative cancers. Patients with a histological diagnosis of OSCC were identified from an institutional database and fresh tumor samples were retrieved. RNA was extracted and gene expression profiling was performed using the Affymetrix GeneChip Human Genome U133 Plus 2.0 microarray platform. RNA sequence data and corresponding clinical data for the TCGA HNSCC cohort were downloaded from the TCGA Data Portal. All data analyses were conducted using R package and SPSS. We identified an 11 gene signature (GGH, MTFR1, CDKN3, PSRC1, SMIM3, CA9, IRX4, CPA3, ZSCAN16, CBX7 and ZFP3) which was robust in segregating tumors by ECS status. In node negative patients, patients harboring this ECS signature had a significantly worse overall survival (p=0.04). An eleven gene signature for ECS was derived. Our results also suggest that this signature is prognostic in a separate subset of patients with no nodal metastasis Further validation of this signature on other datasets and immunohistochemical studies are required to establish utility of this signature in stratifying early stage OSCC patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Mingguang Shi

    Full Text Available Several studies have reported gene expression signatures that predict recurrence risk in stage II and III colorectal cancer (CRC patients with minimal gene membership overlap and undefined biological relevance. The goal of this study was to investigate biological themes underlying these signatures, to infer genes of potential mechanistic importance to the CRC recurrence phenotype and to test whether accurate prognostic models can be developed using mechanistically important genes.We investigated eight published CRC gene expression signatures and found no functional convergence in Gene Ontology enrichment analysis. Using a random walk-based approach, we integrated these signatures and publicly available somatic mutation data on a protein-protein interaction network and inferred 487 genes that were plausible candidate molecular underpinnings for the CRC recurrence phenotype. We named the list of 487 genes a NEM signature because it integrated information from Network, Expression, and Mutation. The signature showed significant enrichment in four biological processes closely related to cancer pathophysiology and provided good coverage of known oncogenes, tumor suppressors, and CRC-related signaling pathways. A NEM signature-based Survival Support Vector Machine prognostic model was trained using a microarray gene expression dataset and tested on an independent dataset. The model-based scores showed a 75.7% concordance with the real survival data and separated patients into two groups with significantly different relapse-free survival (p = 0.002. Similar results were obtained with reversed training and testing datasets (p = 0.007. Furthermore, adjuvant chemotherapy was significantly associated with prolonged survival of the high-risk patients (p = 0.006, but not beneficial to the low-risk patients (p = 0.491.The NEM signature not only reflects CRC biology but also informs patient prognosis and treatment response. Thus, the network

  12. Integration of molecular typing results into tuberculosis surveillance in Germany—A pilot study

    Science.gov (United States)

    Fiebig, Lena; Priwitzer, Martin; Richter, Elvira; Rüsch-Gerdes, Sabine; Haas, Walter; Niemann, Stefan; Brodhun, Bonita

    2017-01-01

    An integrated molecular surveillance for tuberculosis (TB) improves the understanding of ongoing TB transmission by combining molecular typing and epidemiological data. However, the implementation of an integrated molecular surveillance for TB is complex and requires thoughtful consideration of feasibility, demand, public health benefits and legal issues. We aimed to pilot the integration of molecular typing results between 2008 and 2010 in the German Federal State of Baden-Württemberg (population 10.88 Million) as preparation for a nationwide implementation. Culture positive TB cases were typed by IS6110 DNA fingerprinting and results were integrated into routine notification data. Demographic and clinical characteristics of cases and clusters were described and new epidemiological links detected after integrating typing data were calculated. Furthermore, a cross-sectional survey was performed among local public health offices to evaluate their perception and experiences. Overall, typing results were available for 83% of notified culture positive TB cases, out of which 25% were clustered. Age typing information allowed the identification of previously unknown epidemiological links in 11% of the clusters. In 59% of the clusters it was not possible to identify any epidemiological link. Clusters extending over different counties were less likely to have epidemiological links identified among their cases (OR = 11.53, 95% CI: 3.48–98.23). The majority of local public health offices found molecular typing useful for their work. Our study illustrates the feasibility of integrating typing data into the German TB notification system and depicts its added public health value as complementary strategy in TB surveillance, especially to uncover transmission events among geographically separated TB patients. It also emphasizes that special efforts are required to strengthen the communication between local public health offices in different counties to enhance TB control

  13. The rise of a novel classification system for endometrial carcinoma; integration of molecular subclasses.

    Science.gov (United States)

    McAlpine, Jessica; Leon-Castillo, Alicia; Bosse, Tjalling

    2018-04-01

    Endometrial cancer is a clinically heterogeneous disease and it is becoming increasingly clear that this heterogeneity may be a function of the diversity of the underlying molecular alterations. Recent large-scale genomic studies have revealed that endometrial cancer can be divided into at least four distinct molecular subtypes, with well-described underlying genomic aberrations. These subtypes can be reliably delineated and carry significant prognostic as well as predictive information; embracing and incorporating them into clinical practice is thus attractive. The road towards the integration of molecular features into current classification systems is not without obstacles. Collaborative studies engaging research teams from across the world are working to define pragmatic assays, improve risk stratification systems by combining molecular features and traditional clinicopathological parameters, and determine how molecular classification can be optimally utilized to direct patient care. Pathologists and clinicians caring for women with endometrial cancer need to engage with and understand the possibilities and limitations of this new approach, because integration of molecular classification of endometrial cancers is anticipated to become an essential part of gynaecological pathology practice. This review will describe the challenges in current systems of endometrial carcinoma classification, the evolution of new molecular technologies that define prognostically distinct molecular subtypes, and potential applications of molecular classification as a step towards precision medicine and refining care for individuals with the most common gynaecological cancer in the developed world. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Differential amplicons (ΔAmp)—a new molecular method to assess RNA integrity

    Czech Academy of Sciences Publication Activity Database

    Bjorkman, J.; Švec, David; Kubista, Mikael; Sjöback, R.

    2016-01-01

    Roč. 6, Jan 2016 (2016), s. 4-12 ISSN 2214-7535 R&D Projects: GA ČR GA13-02154S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : RNA integrity * RNA quality * Endogenous RNase resistant marker Subject RIV: EB - Genetics ; Molecular Biology

  15. IVSPlat 1.0: an integrated virtual screening platform with a molecular graphical interface.

    Science.gov (United States)

    Sun, Yin Xue; Huang, Yan Xin; Li, Feng Li; Wang, Hong Yan; Fan, Cong; Bao, Yong Li; Sun, Lu Guo; Ma, Zhi Qiang; Kong, Jun; Li, Yu Xin

    2012-01-05

    The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed. A free open-source platform, IVSPlat 1.0, was developed in this study for the management and automation of VS tasks. We integrated several VS-related programs into a molecular graphics system to provide a comprehensive platform for the solution of VS tasks based on molecular docking, pharmacophore detection, and a combination of both methods. This tool can be used to visualize intermediate and final results of the VS execution, while also providing a clustering tool for the analysis of VS results. A case study was conducted to demonstrate the applicability of this platform. IVSPlat 1.0 provides a plug-in-based solution for the management, automation, and visualization of VS tasks. IVSPlat 1.0 is an open framework that allows the integration of extra software to extend its functionality and modified versions can be freely distributed. The open source code and documentation are available at http://kyc.nenu.edu.cn/IVSPlat/.

  16. Effects of Quantum Nuclear Delocalisation on NMR Parameters from Path Integral Molecular Dynamics

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2014-01-01

    Roč. 20, č. 8 (2014), s. 2201-2207 ISSN 0947-6539 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-299242 People Institutional support: RVO:61388963 Keywords : density functional calculations * isotope effects * NMR spectroscopy * nuclear delocalisation * path integral molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  17. Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral

    International Nuclear Information System (INIS)

    Liang, Xian-Ting

    2014-01-01

    A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time

  18. An analytical procedure to evaluate electronic integrals for molecular quantum mechanical calculations

    International Nuclear Information System (INIS)

    Mundim, Kleber C.

    2004-01-01

    Full text: We propose an alternative methodology for the calculation of electronic integrals, through an analytical function based on the generalized Gaussian function (q Gaussian), where a single q Gaussian replaces the usual linear combination of Gaussian functions for different basis set. Moreover, the integrals become analytical functions of the interatomic distances. Therefore, when estimating certain quantities such as molecular energy, g Gaussian avoid new calculations of the integrals: they are simply another value of the corresponding function. The procedure proposed here is particularly advantageous, when compared with the usual one, because it reduces drastically the number of two-electronic integrals used in the construction of the Fock matrix, enabling the use of the quantum mechanics in the description of macro-molecular systems. This advantage increases when the size of the molecular systems become larger and more complex. While in the usual approach CPU time increases with n4, in the one proposed here the CPU time scales linearly with n. This catastrophic dependence of the rank the Hamiltonian or Fock matrix with n4 two-electron integrals is a severe bottleneck for petaFLOPS computing time. Its is important to emphasize that this methodology is equally applicable to systems of any sizes, including biomolecules, solid materials and solutions, within the HF, post-HF and DFT theories. (author)

  19. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    Science.gov (United States)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  20. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  1. XML-based approaches for the integration of heterogeneous bio-molecular data.

    Science.gov (United States)

    Mesiti, Marco; Jiménez-Ruiz, Ernesto; Sanz, Ismael; Berlanga-Llavori, Rafael; Perlasca, Paolo; Valentini, Giorgio; Manset, David

    2009-10-15

    The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources.

  2. Integr8: enhanced inter-operability of European molecular biology databases.

    Science.gov (United States)

    Kersey, P J; Morris, L; Hermjakob, H; Apweiler, R

    2003-01-01

    The increasing production of molecular biology data in the post-genomic era, and the proliferation of databases that store it, require the development of an integrative layer in database services to facilitate the synthesis of related information. The solution of this problem is made more difficult by the absence of universal identifiers for biological entities, and the breadth and variety of available data. Integr8 was modelled using UML (Universal Modelling Language). Integr8 is being implemented as an n-tier system using a modern object-oriented programming language (Java). An object-relational mapping tool, OJB, is being used to specify the interface between the upper layers and an underlying relational database. The European Bioinformatics Institute is launching the Integr8 project. Integr8 will be an automatically populated database in which we will maintain stable identifiers for biological entities, describe their relationships with each other (in accordance with the central dogma of biology), and store equivalences between identified entities in the source databases. Only core data will be stored in Integr8, with web links to the source databases providing further information. Integr8 will provide the integrative layer of the next generation of bioinformatics services from the EBI. Web-based interfaces will be developed to offer gene-centric views of the integrated data, presenting (where known) the links between genome, proteome and phenotype.

  3. Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Reinert, Thomas; Novoradovsky, A

    2012-01-01

    . Methods: We measured the intra-patient variation of an 88-gene progression signature using 39 metachronous tumours from 17 patients. For delineation of the optimal quantitative reverse transcriptase PCR panel of markers, we used 115 tumour samples from patients in Denmark, Sweden, UK and Spain. Results...

  4. A Systems Approach to Refine Disease Taxonomy by Integrating Phenotypic and Molecular Networks

    Directory of Open Access Journals (Sweden)

    Xuezhong Zhou

    2018-05-01

    Full Text Available The International Classification of Diseases (ICD relies on clinical features and lags behind the current understanding of the molecular specificity of disease pathobiology, necessitating approaches that incorporate growing biomedical data for classifying diseases to meet the needs of precision medicine. Our analysis revealed that the heterogeneous molecular diversity of disease chapters and the blurred boundary between disease categories in ICD should be further investigated. Here, we propose a new classification of diseases (NCD by developing an algorithm that predicts the additional categories of a disease by integrating multiple networks consisting of disease phenotypes and their molecular profiles. With statistical validations from phenotype-genotype associations and interactome networks, we demonstrate that NCD improves disease specificity owing to its overlapping categories and polyhierarchical structure. Furthermore, NCD captures the molecular diversity of diseases and defines clearer boundaries in terms of both phenotypic similarity and molecular associations, establishing a rational strategy to reform disease taxonomy. Keywords: Disease taxonomy, Network medicine, Disease phenotypes, Molecular profiles, Precision medicine

  5. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data

    DEFF Research Database (Denmark)

    Raes, Jeroen; Letunic, Ivica; Yamada, Takuji

    2011-01-01

    Using metagenomic 'parts lists' to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we...... integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular repertoire of each sample and the main limiting factor on functional trait dispersal (absence of biogeographic...... provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20° N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community...

  6. Fabrication of reproducible, integration-compatible hybrid molecular/si electronics.

    Science.gov (United States)

    Yu, Xi; Lovrinčić, Robert; Kraynis, Olga; Man, Gabriel; Ely, Tal; Zohar, Arava; Toledano, Tal; Cahen, David; Vilan, Ayelet

    2014-12-29

    Reproducible molecular junctions can be integrated within standard CMOS technology. Metal-molecule-semiconductor junctions are fabricated by direct Si-C binding of hexadecane or methyl-styrene onto oxide-free H-Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n-Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium-doped n-Si, the molecular tunneling barrier can be separated from the Si-Schottky one, which is a 0.47 eV, in agreement with the molecular-modified surface dipole and quite different from the bare Si-H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si-based molecular electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  8. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...... in reasonable agreement with smoothed experimental data. The proposed method for obtaining correlation function integrals is shown to perform at least as well as or better than two previously published approaches....

  9. Integration of pharmacology, molecular pathology, and population data science to support precision gastrointestinal oncology.

    Science.gov (United States)

    Ogino, Shuji; Jhun, Iny; Mata, Douglas A; Soong, Thing Rinda; Hamada, Tsuyoshi; Liu, Li; Nishihara, Reiko; Giannakis, Marios; Cao, Yin; Manson, JoAnn E; Nowak, Jonathan A; Chan, Andrew T

    2017-01-01

    Precision medicine has a goal of customizing disease prevention and treatment strategies. Under the precision medicine paradigm, each patient has unique pathologic processes resulting from cellular genomic, epigenomic, proteomic, and metabolomic alterations, which are influenced by pharmacological, environmental, microbial, dietary, and lifestyle factors. Hence, to realize the promise of precision medicine, multi-level research methods that can comprehensively analyze many of these variables are needed. In order to address this gap, the integrative field of molecular pathology and population data science (i.e., molecular pathological epidemiology) has been developed to enable such multi-level analyses, especially in gastrointestinal cancer research. Further integration of pharmacology can improve our understanding of drug effects, and inform decision-making of drug use at both the individual and population levels. Such integrative research demonstrated potential benefits of aspirin in colorectal carcinoma with PIK3CA mutations, providing the basis for new clinical trials. Evidence also suggests that HPGD (15-PDGH) expression levels in normal colon and the germline rs6983267 polymorphism that relates to tumor CTNNB1 (β-catenin)/ WNT signaling status may predict the efficacy of aspirin for cancer chemoprevention. As immune checkpoint blockade targeting the CD274 (PD-L1)/ PDCD1 (PD-1) pathway for microsatellite instability-high (or mismatch repair-deficient) metastatic gastrointestinal or other tumors has become standard of care, potential modifying effects of dietary, lifestyle, microbial, and environmental factors on immunotherapy need to be studied to further optimize treatment strategies. With its broad applicability, our integrative approach can provide insights into the interactive role of medications, exposures, and molecular pathology, and guide the development of precision medicine.

  10. A novel prognostic six-CpG signature in glioblastomas.

    Science.gov (United States)

    Yin, An-An; Lu, Nan; Etcheverry, Amandine; Aubry, Marc; Barnholtz-Sloan, Jill; Zhang, Lu-Hua; Mosser, Jean; Zhang, Wei; Zhang, Xiang; Liu, Yu-He; He, Ya-Long

    2018-03-01

    We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for prognostic evaluation. An integrative analysis of multidimensional TCGA data was performed to molecularly characterize different risk tumors. The six-CpG risk-score signature robustly predicted overall survival (OS) in all discovery and validation cohorts and in a treatment-independent manner. It also predicted progression-free survival (PFS) in available patients. The multimarker epigenetic signature was demonstrated as an independent prognosticator and had better performance than known molecular indicators such as glioma-CpG island methylator phenotype (G-CIMP) and proneural subtype. The defined risk subgroups were molecularly distinct; high-risk tumors were biologically more aggressive with concordant activation of proangiogenic signaling at multimolecular levels. Accordingly, we observed better OS benefits of bevacizumab-contained therapy to high-risk patients in independent sets, supporting its implication in guiding usage of antiangiogenic therapy. Finally, the six-CpG signature refined the risk classification based on G-CIMP and MGMT methylation status. The novel six-CpG signature is a robust and independent prognostic indicator for GBMs and is of promising value to improve personalized management. © 2018 John Wiley & Sons Ltd.

  11. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    Science.gov (United States)

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  12. Integration of Chinese medicine with Western medicine could lead to future medicine: molecular module medicine.

    Science.gov (United States)

    Zhang, Chi; Zhang, Ge; Chen, Ke-ji; Lu, Ai-ping

    2016-04-01

    The development of an effective classification method for human health conditions is essential for precise diagnosis and delivery of tailored therapy to individuals. Contemporary classification of disease systems has properties that limit its information content and usability. Chinese medicine pattern classification has been incorporated with disease classification, and this integrated classification method became more precise because of the increased understanding of the molecular mechanisms. However, we are still facing the complexity of diseases and patterns in the classification of health conditions. With continuing advances in omics methodologies and instrumentation, we are proposing a new classification approach: molecular module classification, which is applying molecular modules to classifying human health status. The initiative would be precisely defining the health status, providing accurate diagnoses, optimizing the therapeutics and improving new drug discovery strategy. Therefore, there would be no current disease diagnosis, no disease pattern classification, and in the future, a new medicine based on this classification, molecular module medicine, could redefine health statuses and reshape the clinical practice.

  13. Molecular radiotherapy: The NUKFIT software for calculating the time-integrated activity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Kletting, P.; Schimmel, S.; Luster, M. [Klinik für Nuklearmedizin, Universität Ulm, Ulm 89081 (Germany); Kestler, H. A. [Research Group Bioinformatics and Systems Biology, Institut für Neuroinformatik, Universität Ulm, Ulm 89081 (Germany); Hänscheid, H.; Fernández, M.; Lassmann, M. [Klinik für Nuklearmedizin, Universität Würzburg, Würzburg 97080 (Germany); Bröer, J. H.; Nosske, D. [Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Oberschleißheim 85764 (Germany); Glatting, G. [Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167 (Germany)

    2013-10-15

    Purpose: Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error.Methods: The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB.Results: To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit

  14. Path integral centroid molecular dynamics simulations of semiinfinite slab and bulk liquid of para-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Kenichi [Nara Women`s Univ., Nara (Japan). Dept. of Chemistry

    1998-10-01

    It has been unsuccessful to solve a set of time-dependent Schroedinger equations numerically for many-body quantum systems which involve, e.g., a number of hydrogen molecules, protons, and excess electrons at a low temperature, where quantum effect evidently appears. This undesirable situation is fatal for the investigation of real low-temperature chemical systems because they are essentially composed of many quantum degrees of freedom. However, if we use a new technique called `path integral centroid molecular dynamics (CMD) simulation` proposed by Cao and Voth in 1994, the real-time semi-classical dynamics of many degrees of freedom can be computed by utilizing the techniques already developed in the traditional classical molecular dynamics (MD) simulations. Therefore, the CMD simulation is expected to be very powerful tool for the quantum dynamics studies or real substances. (J.P.N.)

  15. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics

    DEFF Research Database (Denmark)

    Papaleo, Elena

    2015-01-01

    that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome...... with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties...... simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations....

  16. Signature-based User Authentication

    OpenAIRE

    Hámorník, Juraj

    2015-01-01

    This work aims on missing handwritten signature authentication in Windows. Result of this work is standalone software that allow users to log into Windows by writing signature. We focus on security of signature authentification and best overall user experience. We implemented signature authentification service that accept signature and return user access token if signature is genuine. Signature authentification is done by comparing given signature to signature patterns by their similarity. Si...

  17. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    Science.gov (United States)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  18. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    International Nuclear Information System (INIS)

    Dednam, W; Botha, A E

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  19. Balancing an accurate representation of the molecular surface in generalized Born formalisms with integrator stability in molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 27, č. 6 (2006), s. 719-729 ISSN 0192-8651 Keywords : molecular surface * generalized Born formalisms * molecular dynamic simulations Subject RIV: CC - Organic Chemistry Impact factor: 4.893, year: 2006

  20. Electronic Signature Policy

    Science.gov (United States)

    Establishes the United States Environmental Protection Agency's approach to adopting electronic signature technology and best practices to ensure electronic signatures applied to official Agency documents are legally valid and enforceable

  1. Lesson 6: Signature Validation

    Science.gov (United States)

    Checklist items 13 through 17 are grouped under the Signature Validation Process, and represent CROMERR requirements that the system must satisfy as part of ensuring that electronic signatures it receives are valid.

  2. Exotic signatures from supersymmetry

    International Nuclear Information System (INIS)

    Hall, L.J.

    1989-08-01

    Minor changes to the standard supersymmetric model, such as soft flavor violation and R parity violation, cause large changes in the signatures. The origin of these changes and the resulting signatures are discussed. 15 refs., 7 figs., 2 tabs

  3. Integrating open-source software applications to build molecular dynamics systems.

    Science.gov (United States)

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  4. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    International Nuclear Information System (INIS)

    Feng Yexin; Chen Ji; Wang Enge; Li Xin-Zheng

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. (topical review)

  5. Signatures of Mechanosensitive Gating.

    Science.gov (United States)

    Morris, Richard G

    2017-01-10

    The question of how mechanically gated membrane channels open and close is notoriously difficult to address, especially if the protein structure is not available. This perspective highlights the relevance of micropipette-aspirated single-particle tracking-used to obtain a channel's diffusion coefficient, D, as a function of applied membrane tension, σ-as an indirect assay for determining functional behavior in mechanosensitive channels. While ensuring that the protein remains integral to the membrane, such methods can be used to identify not only the gating mechanism of a protein, but also associated physical moduli, such as torsional and dilational rigidity, which correspond to the protein's effective shape change. As an example, three distinct D-versus-σ "signatures" are calculated, corresponding to gating by dilation, gating by tilt, and gating by a combination of both dilation and tilt. Both advantages and disadvantages of the approach are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient.

    Science.gov (United States)

    Kletting, P; Schimmel, S; Kestler, H A; Hänscheid, H; Luster, M; Fernández, M; Bröer, J H; Nosske, D; Lassmann, M; Glatting, G

    2013-10-01

    Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error. The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB. To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit parameters and their standard

  7. Blinding for unanticipated signatures

    NARCIS (Netherlands)

    D. Chaum (David)

    1987-01-01

    textabstractPreviously known blind signature systems require an amount of computation at least proportional to the number of signature types, and also that the number of such types be fixed in advance. These requirements are not practical in some applications. Here, a new blind signature technique

  8. Fair quantum blind signatures

    International Nuclear Information System (INIS)

    Tian-Yin, Wang; Qiao-Yan, Wen

    2010-01-01

    We present a new fair blind signature scheme based on the fundamental properties of quantum mechanics. In addition, we analyse the security of this scheme, and show that it is not possible to forge valid blind signatures. Moreover, comparisons between this scheme and public key blind signature schemes are also discussed. (general)

  9. Organic and Isotopic Signatures of Life: Lessons from the Early Earth

    Science.gov (United States)

    Freeman, K. H.; Eigenbrode, J. L.; House, C. H.

    2002-12-01

    In the study of life on earth, isotopic analyses of organic biomarkers provide essential insight to their biological and environmental provenance. Isotopic analyses of organic materials on other planets present a number of challenges, both analytical and interpretive. Prebiotic planetary organic materials can derive from condensation reactions and by delivery through meteorites or interplanetary dust, with the relative importance of each influenced by the oxidation state of the atmosphere. Material delivered to planets can have an interstellar origin, although it is dominated by compounds influenced by the formation of the solar system. Each of these processes impact molecular isotopic signatures and must be considered in life-detection strategies. Pronounced effects are observed for hydrogen isotopes, with smaller fractionations observed for other elements. Theoretical, laboratory and observational studies of non-terrean materials are essential to further understand molecular isotopic heterogeneity associated with these exclusively abiotic processes. Studies of Archean-aged samples provide an important resource for interpreting molecular isotopic patterns as signatures of life processes. Carbon assimilation and biomass synthesis from simple precursor compounds typically discriminate against 13C. This generality, however, is complicated by the observations of a wide range of fractionation factors associated with important microbial carbon-uptake processes. Metabolic processes further distribute isotopic signatures, such that wide isotopic heterogeneity is observed among cellular biochemical constituents. In addition, preservation/contamination concerns dominate studies of very ancient organic matter, as they likely will in life-detection studies. However, both biochemical heterogeneity and sample integrity can be addressed by considering patterns from different paleoenvironments. Molecular results demonstrate that Late Archean microbial life on this planet was

  10. Density functional calculations of potential energy surface and charge transfer integrals in molecular triphenylene derivative HAT6

    NARCIS (Netherlands)

    Zbiri, M.; Johnson, M.R.; Kearley, G.J.; Mulder, F.M.

    2009-01-01

    We investigate the effect of structural fluctuations on charge transfer integrals, overlap integrals, and site energies in a system of two stacked molecular 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6), which is a model system for conducting devices in organic photocell applications. A density

  11. Molecular signatures distinguishing active from latent tuberculosis in peripheral blood mononuclear cells, after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD) or Candida: a preliminary report.

    Science.gov (United States)

    Stern, Joel N H; Keskin, Derin B; Romero, Viviana; Zuniga, Joaquin; Encinales, Liliana; Li, Changlin; Awad, Carlos; Yunis, Edmond J

    2009-01-01

    Purified protein derivative (PPD) or tuberculin skin testing is used to identify infected individuals with Mycobacterium tuberculosis (Mtb) and to assess cell-mediated immunity to Mtb. In the present study, we compared PBMC cultures in the presence of tuberculin or Candida antigens using cytokine bead arrays and RNA microarrays. Measurements of different cytokines and chemokines in supernatants of PMBC cultures in the presence of PPD showed increased levels of interferon (IFN)-gamma in active tuberculosis infection (ATBI) and latent TB infected (LTBI) compared to controls, and increased levels of TNF-alpha in ATBI compared with LTBI. Also, we found increase of IL-6 in cultures of PPD positive and controls but not in the cultures with Candida. We also report the molecular signature of tuberculosis infection, in ATBI patients, the following genes were found to be up-regulated and absent in LTBI individuals: two kinases (JAK3 and p38MAPK), four interleukins (IL-7, IL-2, IL-6, and IFNbeta1), a chemokine (HCC-4) a chemokine receptor (CxCR5), two interleukin receptors (IL-1R2 and IL-18R1), and three additional ones (TRAF5, Smad2, CIITA, and NOS2A). By contrast, IL-17 and IGFBP3 were significantly up-regulated in LTBI. And, STAT4, GATA3, Fra-1, and ICOS were down-regulated in ATBI but absent in LTBI. Conversely, TLR-10, IL-15, DORA, and IKK-beta were down-regulated in LTBI but not in ATBI. Interestingly, the majority of the up-regulated genes found in ATBI were found in cultures stimulated with tuberculin (PPD) or Candida antigens, suggesting that these pathogens stimulate similar immunological pathways. We believe that the molecular signature distinguishing active from latent tuberculosis infection may require using cytokine bead arrays along with RNA microarrays testing cell cultures at different times following in vitro proliferation assays using several bacterial antigens and PPD.

  12. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics.

    Science.gov (United States)

    Penchovsky, Robert

    2012-10-19

    Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.

  13. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.

    Science.gov (United States)

    Kadimisetty, Karteek; Song, Jinzhao; Doto, Aoife M; Hwang, Young; Peng, Jing; Mauk, Michael G; Bushman, Frederic D; Gross, Robert; Jarvis, Joseph N; Liu, Changchun

    2018-06-30

    Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform. Static coating technology was adopted to improve the biocompatibility of our 3D printed device. We demonstrated the suitability of our device for both end-point colorimetric qualitative detection and real-time fluorescence quantitative detection. We applied our diagnostic device to detection of Plasmodium falciparum in plasma samples and Neisseria meningitides in cerebrospinal fluid (CSF) samples by loop-mediated, isothermal amplification (LAMP) within 50 min. The detection limits were 100 fg for P. falciparum and 50 colony-forming unit (CFU) for N. meningitidis per reaction, which are comparable to that of benchtop instruments. This rapid and inexpensive 3D printed device has great potential for point-of-care molecular diagnosis of infectious disease in resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Revealing molecular mechanisms by integrating high-dimensional functional screens with protein interaction data.

    Directory of Open Access Journals (Sweden)

    Angela Simeone

    2014-09-01

    Full Text Available Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of Cellular Traits (IMPACT. The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets and network information (IMPACT-modules. Based on the notion that interacting genes are more likely to be involved in similar functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is subsequently quantified via permutations of the data. IMPACT (1 handles multiple profiles per gene, (2 rescues genes with weak phenotypes and (3 accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes. Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular interpretation of functional screens.

  15. Real Traceable Signatures

    Science.gov (United States)

    Chow, Sherman S. M.

    Traceable signature scheme extends a group signature scheme with an enhanced anonymity management mechanism. The group manager can compute a tracing trapdoor which enables anyone to test if a signature is signed by a given misbehaving user, while the only way to do so for group signatures requires revealing the signer of all signatures. Nevertheless, it is not tracing in a strict sense. For all existing schemes, T tracing agents need to recollect all N' signatures ever produced and perform RN' “checks” for R revoked users. This involves a high volume of transfer and computations. Increasing T increases the degree of parallelism for tracing but also the probability of “missing” some signatures in case some of the agents are dishonest.

  16. What is the molecular signature of mind-body interventions? A systematic review of gene expression changes induced by meditation and related practices

    NARCIS (Netherlands)

    Buric, I.; Farias, M.; Mee, C.J.; Jong, J.; Brazil, I.A.

    2017-01-01

    There is considerable evidence for the effectiveness of mind-body interventions (MBIs) in improving mental and physical health, but the molecular mechanisms of these benefits remain poorly understood. One hypothesis is that MBIs reverse expression of genes involved in inflammatory reactions that are

  17. Differential amplicons (ΔAmp)-a new molecular method to assess RNA integrity.

    Science.gov (United States)

    Björkman, J; Švec, D; Lott, E; Kubista, M; Sjöback, R

    2016-01-01

    Integrity of the mRNA in clinical samples has major impact on the quality of measured expression levels. This is independent of the measurement technique being next generation sequencing (NGS), Quantitative real-time PCR (qPCR) or microarray profiling. If mRNA is highly degraded or damaged, measured data will be very unreliable and the whole study is likely a waste of time and money. It is therefore common strategy to test the quality of RNA in samples before conducting large and costly studies. Most methods today to assess the quality of RNA are ignorant to the nature of the RNA and, therefore, reflect the integrity of ribosomal RNA, which is the dominant species, rather than of mRNAs, microRNAs and long non-coding RNAs, which usually are the species of interest. Here, we present a novel molecular approach to assess the quality of the targeted RNA species by measuring the differential amplification (ΔAmp) of an Endogenous RNase Resistant (ERR) marker relative to a reference gene, optionally combined with the measurement of two amplicons of different lengths. The combination reveals any mRNA degradation caused by ribonucleases as well as physical, chemical or UV damage. ΔAmp has superior sensitivity to common microfluidic electrophoretic methods, senses the integrity of the actual targeted RNA species, and allows for a smoother and more cost efficient workflow.

  18. Differential amplicons (ΔAmp—a new molecular method to assess RNA integrity

    Directory of Open Access Journals (Sweden)

    J. Björkman

    2016-01-01

    Full Text Available Integrity of the mRNA in clinical samples has major impact on the quality of measured expression levels. This is independent of the measurement technique being next generation sequencing (NGS, Quantitative real-time PCR (qPCR or microarray profiling. If mRNA is highly degraded or damaged, measured data will be very unreliable and the whole study is likely a waste of time and money. It is therefore common strategy to test the quality of RNA in samples before conducting large and costly studies. Most methods today to assess the quality of RNA are ignorant to the nature of the RNA and, therefore, reflect the integrity of ribosomal RNA, which is the dominant species, rather than of mRNAs, microRNAs and long non-coding RNAs, which usually are the species of interest. Here, we present a novel molecular approach to assess the quality of the targeted RNA species by measuring the differential amplification (ΔAmp of an Endogenous RNase Resistant (ERR marker relative to a reference gene, optionally combined with the measurement of two amplicons of different lengths. The combination reveals any mRNA degradation caused by ribonucleases as well as physical, chemical or UV damage. ΔAmp has superior sensitivity to common microfluidic electrophoretic methods, senses the integrity of the actual targeted RNA species, and allows for a smoother and more cost efficient workflow.

  19. Quantum signature scheme for known quantum messages

    International Nuclear Information System (INIS)

    Kim, Taewan; Lee, Hyang-Sook

    2015-01-01

    When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)

  20. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine.

    Science.gov (United States)

    Pool, Martin; de Boer, H Rudolf; Hooge, Marjolijn N Lub-de; van Vugt, Marcel A T M; de Vries, Elisabeth G E

    2017-01-01

    Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.

  1. ArrayVigil: a methodology for statistical comparison of gene signatures using segregated-one-tailed (SOT) Wilcoxon's signed-rank test.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2005-01-28

    Due to versatile diagnostic and prognostic fidelity molecular signatures or fingerprints are anticipated as the most powerful tools for cancer management in the near future. Notwithstanding the experimental advancements in microarray technology, methods for analyzing either whole arrays or gene signatures have not been firmly established. Recently, an algorithm, ArraySolver has been reported by Khan for two-group comparison of microarray gene expression data using two-tailed Wilcoxon signed-rank test. Most of the molecular signatures are composed of two sets of genes (hybrid signatures) wherein up-regulation of one set and down-regulation of the other set collectively define the purpose of a gene signature. Since the direction of a selected gene's expression (positive or negative) with respect to a particular disease condition is known, application of one-tailed statistics could be a more relevant choice. A novel method, ArrayVigil, is described for comparing hybrid signatures using segregated-one-tailed (SOT) Wilcoxon signed-rank test and the results compared with integrated-two-tailed (ITT) procedures (SPSS and ArraySolver). ArrayVigil resulted in lower P values than those obtained from ITT statistics while comparing real data from four signatures.

  2. A Signature Comparing Android Mobile Application Utilizing Feature Extracting Algorithms

    Directory of Open Access Journals (Sweden)

    Paul Grafilon

    2017-08-01

    Full Text Available The paper presented one of the application that can be done using smartphones camera. Nowadays forgery is one of the most undetected crimes. With the forensic technology used today it is still difficult for authorities to compare and define what a real signature is and what a forged signature is. A signature is a legal representation of a person. All transactions are based on a signature. Forgers may use a signature to sign illegal contracts and withdraw from bank accounts undetected. A signature can also be forged during election periods for repeated voting. Addressing the issues a signature should always be secure. Signature verification is a reduced problem that still poses a real challenge for researchers. The literature on signature verification is quite extensive and shows two main areas of research off-line and on-line systems. Off-line systems deal with a static image of the signature i.e. the result of the action of signing while on-line systems work on the dynamic process of generating the signature i.e. the action of signing itself. The researchers have found a way to resolve the concerns. A mobile application that integrates the camera to take a picture of a signature analyzes it and compares it to other signatures for verification. It will exist to help citizens to be more cautious and aware with issues regarding the signatures. This might also be relevant to help organizations and institutions such as banks and insurance companies in verifying signatures that may avoid unwanted transactions and identity theft. Furthermore this might help the authorities in the never ending battle against crime especially against forgers and thieves. The project aimed to design and develop a mobile application that integrates the smartphone camera for verifying and comparing signatures for security using the best algorithm possible. As the result of the development the said smartphone camera application is functional and reliable.

  3. Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics.

    Science.gov (United States)

    Vitecek, Simon; Kučinić, Mladen; Previšić, Ana; Živić, Ivana; Stojanović, Katarina; Keresztes, Lujza; Bálint, Miklós; Hoppeler, Felicitas; Waringer, Johann; Graf, Wolfram; Pauls, Steffen U

    2017-06-06

    Taxonomy offers precise species identification and delimitation and thus provides basic information for biological research, e.g. through assessment of species richness. The importance of molecular taxonomy, i.e., the identification and delimitation of taxa based on molecular markers, has increased in the past decade. Recently developed exploratory tools now allow estimating species-level diversity in multi-locus molecular datasets. Here we use molecular species delimitation tools that either quantify differences in intra- and interspecific variability of loci, or divergence times within and between species, or perform coalescent species tree inference to estimate species-level entities in molecular genetic datasets. We benchmark results from these methods against 14 morphologically readily differentiable species of a well-defined subgroup of the diverse Drusinae subfamily (Trichoptera, Limnephilidae). Using a 3798 bp (6 loci) molecular data set we aim to corroborate a geographically isolated new species by integrating comparative morphological studies and molecular taxonomy. Our results indicate that only multi-locus species delimitation provides taxonomically relevant information. The data further corroborate the new species Drusus zivici sp. nov. We provide differential diagnostic characters and describe the male, female and larva of this new species and discuss diversity patterns of Drusinae in the Balkans. We further discuss potential and significance of molecular species delimitation. Finally we argue that enhancing collaborative integrative taxonomy will accelerate assessment of global diversity and completion of reference libraries for applied fields, e.g., conservation and biomonitoring.

  4. What Is the Molecular Signature of Mind–Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices

    Directory of Open Access Journals (Sweden)

    Ivana Buric

    2017-06-01

    Full Text Available There is considerable evidence for the effectiveness of mind–body interventions (MBIs in improving mental and physical health, but the molecular mechanisms of these benefits remain poorly understood. One hypothesis is that MBIs reverse expression of genes involved in inflammatory reactions that are induced by stress. This systematic review was conducted to examine changes in gene expression that occur after MBIs and to explore how these molecular changes are related to health. We searched PubMed throughout September 2016 to look for studies that have used gene expression analysis in MBIs (i.e., mindfulness, yoga, Tai Chi, Qigong, relaxation response, and breath regulation. Due to the limited quantity of studies, we included both clinical and non-clinical samples with any type of research design. Eighteen relevant studies were retrieved and analyzed. Overall, the studies indicate that these practices are associated with a downregulation of nuclear factor kappa B pathway; this is the opposite of the effects of chronic stress on gene expression and suggests that MBI practices may lead to a reduced risk of inflammation-related diseases. However, it is unclear how the effects of MBIs compare to other healthy interventions such as exercise or nutrition due to the small number of available studies. More research is required to be able to understand the effects of MBIs at the molecular level.

  5. What Is the Molecular Signature of Mind-Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices.

    Science.gov (United States)

    Buric, Ivana; Farias, Miguel; Jong, Jonathan; Mee, Christopher; Brazil, Inti A

    2017-01-01

    There is considerable evidence for the effectiveness of mind-body interventions (MBIs) in improving mental and physical health, but the molecular mechanisms of these benefits remain poorly understood. One hypothesis is that MBIs reverse expression of genes involved in inflammatory reactions that are induced by stress. This systematic review was conducted to examine changes in gene expression that occur after MBIs and to explore how these molecular changes are related to health. We searched PubMed throughout September 2016 to look for studies that have used gene expression analysis in MBIs (i.e., mindfulness, yoga, Tai Chi, Qigong, relaxation response, and breath regulation). Due to the limited quantity of studies, we included both clinical and non-clinical samples with any type of research design. Eighteen relevant studies were retrieved and analyzed. Overall, the studies indicate that these practices are associated with a downregulation of nuclear factor kappa B pathway; this is the opposite of the effects of chronic stress on gene expression and suggests that MBI practices may lead to a reduced risk of inflammation-related diseases. However, it is unclear how the effects of MBIs compare to other healthy interventions such as exercise or nutrition due to the small number of available studies. More research is required to be able to understand the effects of MBIs at the molecular level.

  6. Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems.

    Science.gov (United States)

    Liu, Xinzijian; Liu, Jian

    2018-03-14

    An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.

  7. Six Years of Monitoring of the Sgr B2 Molecular Cloud with INTEGRAL

    Science.gov (United States)

    Terrier, R.; Bélanger, G.; Ponti, G.; Trap, G.; Goldwurm, A.; Decourchelle, A.

    2009-05-01

    Several molecular clouds around the Galactic Centre (GC) emit strong neutral iron fluorescence line at 6.4 keV, as well as hard X-ray emission up to 100 keV. The origin of this emission has long been a matter of controversy: irradiation by low energy cosmic ray electrons or X-rays emitted by a nearby flaring source in the central region. A recent evidence for time variability in the iron line intensity that has been detected in the Sgr B2 cloud favors the reflexion scenario. We present here the data obtained after 6 years of INTEGRAL monitoring of the GC. In particular, we show a lightcurve of Sgr B2 that reveals a decrease in the hard X-ray flux over the last years and discuss its implications. We finally discuss perspectives with Simbol-X.

  8. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  9. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea.

    Science.gov (United States)

    Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A

    2017-10-01

    Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels.

    Science.gov (United States)

    Mariani, Giacomo; Goujon, Antoine; Moulin, Emilie; Rawiso, Michel; Giuseppone, Nicolas; Buhler, Eric

    2017-11-30

    In this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution. The supramolecular polymers comprising contracted nanomachines were found to be equilibrium polymers with a mass that is concentration dependent in dilute and semidilute regimes. Surprisingly, the extended polymers form a gel network with a crystal-like internal structure that is independent of concentration and reminiscent of a pearl-necklace network.

  11. Trade-offs in thermal adaptation: the need for a molecular to ecological integration.

    Science.gov (United States)

    Pörtner, Hans O; Bennett, Albert F; Bozinovic, Francisco; Clarke, Andrew; Lardies, Marco A; Lucassen, Magnus; Pelster, Bernd; Schiemer, Fritz; Stillman, Jonathon H

    2006-01-01

    Through functional analyses, integrative physiology is able to link molecular biology with ecology as well as evolutionary biology and is thereby expected to provide access to the evolution of molecular, cellular, and organismic functions; the genetic basis of adaptability; and the shaping of ecological patterns. This paper compiles several exemplary studies of thermal physiology and ecology, carried out at various levels of biological organization from single genes (proteins) to ecosystems. In each of those examples, trade-offs and constraints in thermal adaptation are addressed; these trade-offs and constraints may limit species' distribution and define their level of fitness. For a more comprehensive understanding, the paper sets out to elaborate the functional and conceptual connections among these independent studies and the various organizational levels addressed. This effort illustrates the need for an overarching concept of thermal adaptation that encompasses molecular, organellar, cellular, and whole-organism information as well as the mechanistic links between fitness, ecological success, and organismal physiology. For this data, the hypothesis of oxygen- and capacity-limited thermal tolerance in animals provides such a conceptual framework and allows interpreting the mechanisms of thermal limitation of animals as relevant at the ecological level. While, ideally, evolutionary studies over multiple generations, illustrated by an example study in bacteria, are necessary to test the validity of such complex concepts and underlying hypotheses, animal physiology frequently is constrained to functional studies within one generation. Comparisons of populations in a latitudinal cline, closely related species from different climates, and ontogenetic stages from riverine clines illustrate how evolutionary information can still be gained. An understanding of temperature-dependent shifts in energy turnover, associated with adjustments in aerobic scope and performance

  12. Integrating survey and molecular approaches to better understand wildlife disease ecology.

    Directory of Open Access Journals (Sweden)

    Brendan D Cowled

    Full Text Available Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design versus transmission (molecular case series study design and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%. The median Salmonella DICE coefficient (or Salmonella genetic similarity was 52% (interquartile range [IQR]: 42-62%. Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is

  13. Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

    Science.gov (United States)

    Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.

    2012-01-01

    Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by

  14. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  15. Protein Nano-Object Integrator: Generating atomic-style objects for use in molecular biophysics

    Science.gov (United States)

    Smith, Nicholas David Fenimore

    As researchers obtain access to greater and greater amounts of computational power, focus has shifted towards modeling macroscopic objects while still maintaining atomic-level details. The Protein Nano-Object Integrator (ProNOI) presented here has been designed to provide a streamlined solution for creating and designing macro-scale objects with atomic-level details to be used in molecular simulations and tools. To accomplish this, two different interfaces were developed: a Protein Data Bank (PDB), PDB-focused interface for generating regularly-shaped three-dimensional atomic objects and a 2D image-based interface for tracing images with irregularly shaped objects and then extracting three-dimensional models from these images. Each interface is dependent upon the C++ backend utility for generating the objects and ensures that the output is consistent across each program. The objects are exported in a standard PDB format which allows for the visualization and manipulation of the objects via standard tools available in Molecular Computational Biophysics.

  16. A comparison between integral equation theory and molecular dynamics simulations of dense, flexible polymer liquids

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.; Grest, G.S.; Kremer, K.; Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801; Institut fur Festkorperforschung der Kernforschungsanlage Julich, D-5170 Julich, Federal Republic of Germany)

    1989-01-01

    Recently we (J.G.C. and K.S.S.) formulated a tractable ''reference interaction site model'' (RISM) integral equation theory of flexible polymer liquids. The purpose of this paper is to compare the results of the theory with recent molecular dynamics simulations (G.S.G. and K.K.) on dense chain liquids of degree of polymerization N=50 and 200. Specific comparisons were made between theory and simulation for the intramolecular structure factor ω(k) and the intermolecular radial distribution function g(r) in the liquid. In particular it was possible to independently test the assumptions inherent in the RISM theory and the additional ideality approximation that was made in the initial application of the theory. This comparison was accomplished by calculating the intermolecular g(r) using the simulated intramolecular structure factor, as well as, ω(k) derived from a freely jointed chain model.The RISM theory results, using the simulated ω(k), were found to be in excellent agreement, over all length scales, with the g(r) from molecular dynamics simulations. The theoretical predictions using the ''ideal'' intramolecular structure factor tended to underestimate g(r) near contact, indicating local intramolecular expansion of the chains. This local expansion can be incorporated into the theory self consistently by including the effects of the ''medium induced'' potential on the intramolecular structure

  17. Integrative Transcriptomic and Metabonomic Molecular Profiling of Colonic Mucosal Biopsies Indicates a Unique Molecular Phenotype for Ulcerative Colitis

    DEFF Research Database (Denmark)

    Rantalainen, Mattias; Bjerrum, Jacob Tveiten; Olsen, Jørgen

    2015-01-01

    characterized the molecular phenotype of ulcerative colitis through transcriptomic and metabonomic profiling of colonic mucosal biopsies from patients and controls. We have characterized the extent to which metabonomic and transcriptomic molecular phenotypes are associated with ulcerative colitis versus...... transcriptomic and metabonomic data have previously been shown to predict the clinical course of ulcerative colitis and related clinical phenotypes, indicating that molecular phenotypes reveal molecular changes associated with the disease. Our analyses indicate that variables of both transcriptomics...... and metabonomics are associated with disease case and control status, that a large proportion of transcripts are associated with at least one metabolite in mucosal colonic biopsies, and that multiple pathways are connected to disease-related metabolites and transcripts....

  18. Unconditionally Secure Quantum Signatures

    Directory of Open Access Journals (Sweden)

    Ryan Amiri

    2015-08-01

    Full Text Available Signature schemes, proposed in 1976 by Diffie and Hellman, have become ubiquitous across modern communications. They allow for the exchange of messages from one sender to multiple recipients, with the guarantees that messages cannot be forged or tampered with and that messages also can be forwarded from one recipient to another without compromising their validity. Signatures are different from, but no less important than encryption, which ensures the privacy of a message. Commonly used signature protocols—signatures based on the Rivest–Adleman–Shamir (RSA algorithm, the digital signature algorithm (DSA, and the elliptic curve digital signature algorithm (ECDSA—are only computationally secure, similar to public key encryption methods. In fact, since these rely on the difficulty of finding discrete logarithms or factoring large primes, it is known that they will become completely insecure with the emergence of quantum computers. We may therefore see a shift towards signature protocols that will remain secure even in a post-quantum world. Ideally, such schemes would provide unconditional or information-theoretic security. In this paper, we aim to provide an accessible and comprehensive review of existing unconditionally securesecure signature schemes for signing classical messages, with a focus on unconditionally secure quantum signature schemes.

  19. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  20. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure

    Science.gov (United States)

    Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2013-10-01

    In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

  1. Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems.

    Science.gov (United States)

    Tangchaikeeree, Tienrat; Polpanich, Duangporn; Elaissari, Abdelhamid; Jangpatarapongsa, Kulachart

    2017-10-01

    Colloidal magnetic particles (MPs) have been developed in association with molecular diagnosis for several decades. MPs have the great advantage of easy manipulation using a magnet. In nucleic acid detection, these particles can act as a capture support for rapid and simple biomolecule separation. The surfaces of MPs can be modified by coating with various polymer materials to provide functionalization for different applications. The use of MPs enhances the sensitivity and specificity of detection due to the specific activity on the surface of the particles. Practical applications of MPs demonstrate greater efficiency than conventional methods. Beyond traditional detection, MPs have been successfully adopted as a smart carrier in microfluidic and lab-on-a-chip biosensors. The versatility of MPs has enabled their integration into small single detection units. MPs-based biosensors can facilitate rapid and highly sensitive detection of very small amounts of a sample. In this review, the application of MPs to the detection of nucleic acids, from sample preparation to analytical readout systems, is described. State-of-the-art integrated microsystems containing microfluidic and lab-on-a-chip biosensors for the nucleic acid detection are also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Eukaryotic Cell Originated in the Integration and Redistribution of Hyperstructures from Communities of Prokaryotic Cells Based on Molecular Complementarity

    Directory of Open Access Journals (Sweden)

    Vic Norris

    2009-06-01

    Full Text Available In the “ecosystems-first” approach to the origins of life, networks of non-covalent assemblies of molecules (composomes, rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.

  3. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Punita Sharma

    2015-12-01

    Full Text Available In prokaryotes, horizontal gene transfer (HGT has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.

  4. Signature of protein adaptation to warm deep sea environments: the case of Initiation Factor 6 studied by molecular simulation and neutron scattering

    International Nuclear Information System (INIS)

    Calligari, Paolo

    2008-01-01

    The protein Initiation Factor 6 (IF6) takes part in the protein synthesis regulation of several organisms. It was also found in archeaebacteria such as Methanococcus jannaschii which lives in deep-seas near hydrothermal vents where temperature reaches 80 C and pressure is between 250 bar and 500 bar. The aim of this work was to study for the first time dynamical and structural properties of IF6 produced by M. jannaschii and comparing them with those of the IF6 homologue present in Saccharomyces cerevisiae which lives at 'normal' environmental conditions (27 C and 1 bar). Molecular simulation gave here new insights into the adaptation of these two proteins to their respective physiological conditions and showed that the latter induced similar dynamical and structural properties: in their respective 'natural' conditions, IF6s show very similar structural fluctuations and the characteristic relaxation times which define their dynamical properties shows similar changes when comparing unfavorable conditions to physiological ones. The creation of these corresponding states between the two homologues has been interpreted by the fractional Brownian dynamics model and by a novel method for the characterization of protein secondary structures. The latter is presented here in detail together with some examples of other applications. Experimental data obtained from quasi-elastic neutron scattering seemed to support the results obtained by molecular simulations. (author) [fr

  5. Signatures of attosecond electronic–nuclear dynamics in the one-photon ionization of molecular hydrogen: analytical model versus ab initio calculations

    International Nuclear Information System (INIS)

    Medišauskas, Lukas; Ivanov, Misha Yu; Morales, Felipe; Plimak, Lev; Smirnova, Olga; Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2015-01-01

    We present an analytical model based on the time-dependent WKB approximation to reproduce the photoionization spectra of an H 2 molecule in the autoionization region. We explore the nondissociative channel, which is the major contribution after one-photon absorption, and we focus on the features arising in the energy differential spectra due to the interference between the direct and the autoionization pathways. These features depend on both the timescale of the electronic decay of the autoionizing state and the time evolution of the vibrational wavepacket created in this state. With full ab initio calculations and with a one-dimensional approach that only takes into account the nuclear wavepacket associated to the few relevant electronic states we compare the ground state, the autoionizing state, and the background continuum electronic states. Finally, we illustrate how these features transform from molecular-like to atomic-like by increasing the mass of the system, thus making the electronic decay time shorter than the nuclear wavepacket motion associated with the resonant state. In other words, autoionization then occurs faster than the molecular dissociation into neutrals. (paper)

  6. Immunohistochemical and molecular imaging biomarker signature for the prediction of failure site after chemoradiation for head and neck squamous cell carcinoma

    DEFF Research Database (Denmark)

    Rasmussen, Gregers Brünnich; Håkansson, Katrin E; Vogelius, Ivan R

    2017-01-01

    .23; p: .025), Bcl-2 (HR: 2.6; p: .08), SUVmax (HR: 3.5; p: .095) and GTV (HR: 1.7; p: .063). CONCLUSIONS: The models successfully distinguished between risk of locoregional failure and risk of distant metastasis, which is important information for clinical decision-making. High p53 expression has......OBJECTIVE: To identify a failure site-specific prognostic model by combining immunohistochemistry (IHC) and molecular imaging information to predict long-term failure type in squamous cell carcinoma of the head and neck. PATIENT AND METHODS: Tissue microarray blocks of 196 head and neck squamous...... cell carcinoma cases were stained for a panel of biomarkers using IHC. Gross tumor volume (GTV) from the PET/CT radiation treatment planning CT scan, maximal Standard Uptake Value (SUVmax) of fludeoxyglucose (FDG) and clinical information were included in the model building using Cox proportional...

  7. Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures.

    Directory of Open Access Journals (Sweden)

    Alessandro Furlan

    Full Text Available The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in

  8. Prospective comparison of molecular signatures in urothelial cancer of the bladder and the upper urinary tract--is there evidence for discordant biology?

    Science.gov (United States)

    Krabbe, Laura-Maria; Lotan, Yair; Bagrodia, Aditya; Gayed, Bishoy A; Darwish, Oussama M; Youssef, Ramy F; Bolenz, Christian; Sagalowsky, Arthur I; Raj, Ganesh V; Shariat, Shahrokh F; Kapur, Payal; Margulis, Vitaly

    2014-04-01

    Upper tract urothelial carcinoma is rare and less well studied than bladder cancer. It remains questionable if findings in bladder cancer can safely be extrapolated to upper tract urothelial carcinoma. We prospectively evaluate molecular profiles of upper tract urothelial carcinoma and bladder cancer using a cell cycle biomarker panel. Immunohistochemical staining for p21, p27, p53, cyclin E and Ki-67 was prospectively performed for 96 patients with upper tract urothelial carcinoma and 159 patients with bladder cancer with nonmetastatic high grade urothelial carcinoma treated with extirpative surgery. Data were compared between the groups according to pathological stage. Primary outcome was assessment of differences in marker expression. Secondary outcome was difference in survival according to marker status. During a median followup of 22.0 months 31.2% of patients with upper tract urothelial carcinoma and 28.3% of patients with bladder cancer had disease recurrence, and 20.8% and 27.7% died of upper tract urothelial carcinoma and bladder cancer, respectively. The number of altered markers was not significantly different between the study groups. Overall 34 patients (35.4%) with upper tract urothelial carcinoma and 62 (39.0%) with bladder cancer had an unfavorable marker score (more than 2 markers altered). There were no significant differences between upper tract urothelial carcinoma and bladder cancer in the alteration status of markers, the number of altered markers and biomarker score when substratified by pathological stage. There were no significant differences in survival outcomes between patients with upper tract urothelial carcinoma and those with bladder cancer according to the number of altered markers and biomarker score. Our results demonstrate the molecular similarity of upper tract urothelial carcinoma and bladder cancer in terms of cell cycle and proliferative tissue markers. These findings have important implications and support the further

  9. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease?

    Directory of Open Access Journals (Sweden)

    Turan Nahid

    2012-04-01

    expression may reflect many factors unrelated to birth weight, while inter-individual differences in DNA methylation may represent a "molecular fossil record" of differences in birth weight-related gene expression. Finding these "unexpected" pathways may tell us something about the long-term association between low birth weight and adult disease, as well as which genes may be susceptible to environmental effects. These findings increase our understanding of the molecular mechanisms involved in human development and disease progression.

  10. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  11. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    Science.gov (United States)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  12. Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liao

    2015-10-01

    Full Text Available Postmenopausal women are particularly at increased risk of developing non-alcoholic fatty liver disease (NAFLD. Here we aimed to determine the impact of postmenopausal-induced NAFLD (PM-NAFLD in an ovariectomized rat model. Sixteen six-week-old Sprague-Dawley female rats were randomly divided into two groups (eight per group, for sham-operation (Sham or bilateral ovariectomy (Ovx. Four months after surgery, indices of liver damage and liver histomorphometry were measured. Both serum aspartate aminotransferase (AST and alanine aminotranferease (ALT levels were significantly higher in the Ovx than Sham group. We performed quantitative LC-MS/MS-based proteomic profiling of livers from rats with PM-NAFLD to provide baseline knowledge of the PM-NAFLD proteome and to investigate proteins involved in PM-NAFLD by ingenuity pathways analysis (IPA to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Of the 586 identified proteins, the levels of 59 (10.0% and 48 (8.2% were significantly higher and lower, respectively, in the Ovx group compared to the Sham group. In conclusion, the changes in regulation of proteins implicated in PM-NAFLD may affect other vital biological processes in the body apart from causing postmenopause-mediated liver dysfunction. Our quantitative proteomics analysis may also suggest potential biomarkers and further clinical applications for PM-NAFLD.

  13. Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1.

    Science.gov (United States)

    Kao, Yu-Chien; Sung, Yun-Shao; Zhang, Lei; Chen, Chun-Liang; Huang, Shih-Chiang; Antonescu, Cristina R

    2017-01-01

    Ossifying fibromyxoid tumor (OFMT) is an uncommon mesenchymal neoplasm of uncertain differentiation and intermediate malignant potential. Recurrent gene fusions involving either PHF1 or BCOR have been found in 85% of OFMT, including typical and malignant examples. As a subset of OFMT still lack known genetic abnormalities, we identified two OFMTs negative for PHF1 and BCOR rearrangements, which were subjected to transcriptome analysis for fusion discovery. The RNA sequencing found a novel CREBBP-BCORL1 fusion candidate in an axillary mass of a 51 year-old male and a KDM2A-WWTR1 in a thigh mass of a 36 year-old male. The gene fusions were validated by RT-PCR and FISH in the index cases and then screened by FISH on 4 additional OFMTs lacking known fusions. An identical CREBBP-BCORL1 fusion was found in an elbow tumor from a 30 year-old male. Both OFMTs with CREBBP-BCORL1 fusions had areas of typical OFMT morphology, exhibiting uniform round to epithelioid cells arranged in cords or nesting pattern in a fibromyxoid stroma. The OFMT with KDM2A-WWTR1 fusion involved dermis and superficial subcutis, being composed of ovoid cells in a fibromyxoid background with hyalinized giant rosettes. The S100 immunoreactivity ranged from very focal to absent. Similar to other known fusion genes in OFMT, BCORL1, CREBBP and KDM2A are also involved in histone modification. In summary, we expand the spectrum of molecular abnormalities in OFMT with 2 novel fusions, CREBBP-BCORL1 and KDM2A-WWTR1, further implicating the epigenetic deregulation as the leading pathogenetic mechanism in OFMT. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Expanding the Molecular Signature of Ossifying Fibromyxoid Tumors with 2 Novel Gene Fusions: CREBBP-BCORL1 and KDM2A-WWTR1

    Science.gov (United States)

    Kao, Yu-Chien; Sung, Yun-Shao; Zhang, Lei; Chen, Chun-Liang; Huang, Shih-Chiang; Antonescu, Cristina R.

    2017-01-01

    Ossifying fibromyxoid tumor (OFMT) is an uncommon mesenchymal neoplasm of uncertain differentiation and intermediate malignant potential. Recurrent gene fusions involving either PHF1 or BCOR have been found in 85% of OFMT, including typical and malignant examples. As a subset of OFMT still lack known genetic abnormalities, we identified two OFMTs negative for PHF1 and BCOR rearrangements, which were subjected to transcriptome analysis for fusion discovery. The RNA sequencing found a novel CREBBP-BCORL1 fusion candidate in an axillary mass of a 51 year-old male and a KDM2A-WWTR1 in a thigh mass of a 36 year-old male. The gene fusions were validated by RT-PCR and FISH in the index cases and then screened by FISH on 4 additional OFMTs lacking known fusions. An identical CREBBP-BCORL1 fusion was found in an elbow tumor from a 30 year-old male. Both OFMTs with CREBBP-BCORL1 fusions had areas of typical OFMT morphology, exhibiting uniform round to epithelioid cells arranged in cords or nesting pattern in a fibromyxoid stroma. The OFMT with KDM2A-WWTR1 fusion involved dermis and superficial subcutis, being composed of ovoid cells in a fibromyxoid background with hyalinized giant rosettes. The S100 immunoreactivity ranged from very focal to absent. Similar to other known fusion genes in OFMT, BCORL1, CREBBP and KDM2A are also involved in histone modification. In summary, we expand the spectrum of molecular abnormalities in OFMT with 2 novel fusions, CREBBP-BCORL1 and KDM2A-WWTR1, further implicating the epigenetic deregulation as the leading pathogenetic mechanism in OFMT. PMID:27537276

  15. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition.

    Directory of Open Access Journals (Sweden)

    Stuart J Smith

    Full Text Available INTRODUCTION: Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS. METHODS: CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS: Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS: Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.

  16. Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration.

    Science.gov (United States)

    Huang, Jinfeng; Zhu, Yali; Sun, Bin; Yao, Yuan; Liu, Junjun

    2016-03-01

    The protonation state of the Asp dyad is important as it can reveal enzymatic mechanisms, and the information this provides can be used in the development of drugs for proteins such as memapsin 2 (BACE-1), HIV-1 protease, and rennin. Conventional molecular dynamics (MD) simulations have been successfully used to determine the preferred protonation state of the Asp dyad. In the present work, we demonstrate that the results obtained from conventional MD simulations can be greatly influenced by the particular force field applied or the values used for control parameters. In principle, free-energy changes between possible protonation states can be used to determine the protonation state. We show that protonation state prediction by the thermodynamic integration (TI) method is insensitive to force field version or to the cutoff for calculating nonbonded interactions (a control parameter). In the present study, the protonation state of the Asp dyad predicted by TI calculations was the same regardless of the force field and cutoff value applied. Contrary to the intuition that conventional MD is more efficient, our results clearly show that the TI method is actually more efficient and more reliable for determining the protonation state of the Asp dyad.

  17. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components

    Directory of Open Access Journals (Sweden)

    Chisa Shukunami, DDS, PhD

    2016-11-01

    Full Text Available Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1, a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.

  18. Proteomics-Based Identification of the Molecular Signatures of Liver Tissues from Aged Rats following Eight Weeks of Medium-Intensity Exercise

    Directory of Open Access Journals (Sweden)

    Fanghui Li

    2016-01-01

    Full Text Available Physical activity has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. Here, by combining functional and proteomics analyses, we examined how hepatic phenotypes might respond to exercise treatment in aged rats. 16 male aged (20 months old SD rats were divided into exercise and parallel control groups at random; the exercise group had 8 weeks of treadmill training with medium intensity. Whole protein samples of the liver were extracted from both groups and separated by two-dimensional gel electrophoresis. Alternatively objective protein spots with >2-fold difference in expression were selected for enzymological extraction and MS/MS identification. Results show increased activity of the manganese superoxide dismutase and elevated glutathione levels in the livers of exercise-treated animals, but malondialdehyde contents obviously decreased in the liver of the exercise group. Proteomics-based identification of differentially expressed proteins provided an integrated view of the metabolic adaptations occurring in the liver proteome during exercise, which significantly altered the expression of several proteins involved in key liver metabolic pathways including mitochondrial sulfur, glycolysis, methionine, and protein metabolism. These findings indicate that exercise may be beneficial to aged rats through modulation of hepatic protein expression profiles.

  19. Atypical Creutzfeldt-Jakob disease with PrP-amyloid plaques in white matter: molecular characterization and transmission to bank voles show the M1 strain signature.

    Science.gov (United States)

    Rossi, Marcello; Saverioni, Daniela; Di Bari, Michele; Baiardi, Simone; Lemstra, Afina Willemina; Pirisinu, Laura; Capellari, Sabina; Rozemuller, Annemieke; Nonno, Romolo; Parchi, Piero

    2017-11-23

    Amyloid plaques formed by abnormal prion protein (PrP Sc ) aggregates occur with low frequency in Creutzfeldt-Jakob disease, but represent a pathological hallmark of three relatively rare disease histotypes, namely variant CJD, sporadic CJDMV2K (methionine/valine at PRNP codon 129, PrP Sc type 2 and kuru-type amyloid plaques) and iatrogenic CJDMMiK (MM at codon 129, PrP Sc of intermediate type and kuru plaques). According to recent studies, however, PrP-amyloid plaques involving the subcortical and deep nuclei white matter may also rarely occur in CJDMM1 (MM at codon 129 and PrP Sc type 1), the most common CJD histotype.To further characterize the phenotype of atypical CJDMM1 with white matter plaques (p-CJDMM1) and unravel the basis of amyloid plaque formation in such cases, we compared clinical and histopathological features and PrP Sc physico-chemical properties between 5 p-CJDMM1 and 8 typical CJDMM1 brains lacking plaques. Furthermore, transmission properties after bioassay in two genetic lines of bank voles were also explored in the two groups.All 5 p-CJDMM1 cases had a disease duration longer than one year. Three cases were classified as sporadic CJDMM1, one as sporadic CJDMM1 + 2C and one as genetic CJDE200K-MM1. Molecular mass, protease sensitivity and thermo-solubilization of PrP Sc aggregates did not differ between p-CJDMM1 and classical CJDMM1 cases. Likewise, transmission properties such as incubation time, lesion profile and PrP Sc properties in bank voles also matched in the two groups.The present data further define the clinical-pathologic phenotype of p-CJDMM1, definitely establish it as a distinctive CJD histotype and demonstrate that PrP-plaque formation in this histotype is not a strain-specific feature. Since cases lacking amyloid plaques may also manifest a prolonged (i.e. > than one year) disease course, unidentified, host-specific factors likely play a significant role, in addition to disease duration, in generating white matter Pr

  20. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  1. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  2. THE ELECTRONIC SIGNATURE

    Directory of Open Access Journals (Sweden)

    Voiculescu Madalina Irena

    2009-05-01

    Full Text Available Article refers to significance and the digital signature in electronic commerce. Internet and electronic commerce open up many new opportunities for the consumer, yet, the security (or perceived lack of security of exchanging personal and financial data

  3. Digital signature feasibility study

    Science.gov (United States)

    2008-06-01

    The purpose of this study was to assess the advantages and disadvantages of using digital signatures to assist the Arizona Department of Transportation in conducting business. The Department is evaluating the potential of performing more electronic t...

  4. Physics Signatures at CLIC

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    A set of signatures for physics processes of potential interests for the CLIC programme at = 1 - 5 TeV are discussed. These signatures, that may correspond to the manifestation of different scenarios of new physics as well as to Standard Model precision tests, are proposed as benchmarks for the optimisation of the CLIC accelerator parameters and for a first definition of the required detector response.

  5. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble

    International Nuclear Information System (INIS)

    Tuckerman, Mark E; Alejandre, Jose; Lopez-Rendon, Roberto; Jochim, Andrea L; Martyna, Glenn J

    2006-01-01

    The constant-pressure, constant-temperature (NPT) molecular dynamics approach is re-examined from the viewpoint of deriving a new measure-preserving reversible geometric integrator for the equations of motion. The underlying concepts of non-Hamiltonian phase-space analysis, measure-preserving integrators and the symplectic property for Hamiltonian systems are briefly reviewed. In addition, current measure-preserving schemes for the constant-volume, constant-temperature ensemble are also reviewed. A new geometric integrator for the NPT method is presented, is shown to preserve the correct phase-space volume element and is demonstrated to perform well in realistic examples. Finally, a multiple time-step version of the integrator is presented for treating systems with motion on several time scales

  6. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis.

    Science.gov (United States)

    Thompson, Eric M; Hielscher, Thomas; Bouffet, Eric; Remke, Marc; Luu, Betty; Gururangan, Sridharan; McLendon, Roger E; Bigner, Darell D; Lipp, Eric S; Perreault, Sebastien; Cho, Yoon-Jae; Grant, Gerald; Kim, Seung-Ki; Lee, Ji Yeoun; Rao, Amulya A Nageswara; Giannini, Caterina; Li, Kay Ka Wai; Ng, Ho-Keung; Yao, Yu; Kumabe, Toshihiro; Tominaga, Teiji; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Low, David C Y; Seow, Wan Tew; Chang, Kenneth T E; Mora, Jaume; Pollack, Ian F; Hamilton, Ronald L; Leary, Sarah; Moore, Andrew S; Ingram, Wendy J; Hallahan, Andrew R; Jouvet, Anne; Fèvre-Montange, Michelle; Vasiljevic, Alexandre; Faure-Conter, Cecile; Shofuda, Tomoko; Kagawa, Naoki; Hashimoto, Naoya; Jabado, Nada; Weil, Alexander G; Gayden, Tenzin; Wataya, Takafumi; Shalaby, Tarek; Grotzer, Michael; Zitterbart, Karel; Sterba, Jaroslav; Kren, Leos; Hortobágyi, Tibor; Klekner, Almos; László, Bognár; Pócza, Tímea; Hauser, Peter; Schüller, Ulrich; Jung, Shin; Jang, Woo-Youl; French, Pim J; Kros, Johan M; van Veelen, Marie-Lise C; Massimi, Luca; Leonard, Jeffrey R; Rubin, Joshua B; Vibhakar, Rajeev; Chambless, Lola B; Cooper, Michael K; Thompson, Reid C; Faria, Claudia C; Carvalho, Alice; Nunes, Sofia; Pimentel, José; Fan, Xing; Muraszko, Karin M; López-Aguilar, Enrique; Lyden, David; Garzia, Livia; Shih, David J H; Kijima, Noriyuki; Schneider, Christian; Adamski, Jennifer; Northcott, Paul A; Kool, Marcel; Jones, David T W; Chan, Jennifer A; Nikolic, Ana; Garre, Maria Luisa; Van Meir, Erwin G; Osuka, Satoru; Olson, Jeffrey J; Jahangiri, Arman; Castro, Brandyn A; Gupta, Nalin; Weiss, William A; Moxon-Emre, Iska; Mabbott, Donald J; Lassaletta, Alvaro; Hawkins, Cynthia E; Tabori, Uri; Drake, James; Kulkarni, Abhaya; Dirks, Peter; Rutka, James T; Korshunov, Andrey; Pfister, Stefan M; Packer, Roger J; Ramaswamy, Vijay; Taylor, Michael D

    2016-04-01

    Patients with incomplete surgical resection of medulloblastoma are controversially regarded as having a marker of high-risk disease, which leads to patients undergoing aggressive surgical resections, so-called second-look surgeries, and intensified chemoradiotherapy. All previous studies assessing the clinical importance of extent of resection have not accounted for molecular subgroup. We analysed the prognostic value of extent of resection in a subgroup-specific manner. We retrospectively identified patients who had a histological diagnosis of medulloblastoma and complete data about extent of resection and survival from centres participating in the Medulloblastoma Advanced Genomics International Consortium. We collected from resections done between April, 1997, and February, 2013, at 35 international institutions. We established medulloblastoma subgroup affiliation by gene expression profiling on frozen or formalin-fixed paraffin-embedded tissues. We classified extent of resection on the basis of postoperative imaging as gross total resection (no residual tumour), near-total resection (30 Gy vs no craniospinal irradiation). The primary analysis outcome was the effect of extent of resection by molecular subgroup and the effects of other clinical variables on overall and progression-free survival. We included 787 patients with medulloblastoma (86 with WNT tumours, 242 with SHH tumours, 163 with group 3 tumours, and 296 with group 4 tumours) in our multivariable Cox models of progression-free and overall survival. We found that the prognostic benefit of increased extent of resection for patients with medulloblastoma is attenuated after molecular subgroup affiliation is taken into account. We identified a progression-free survival benefit for gross total resection over sub-total resection (hazard ratio [HR] 1·45, 95% CI 1·07-1·96, p=0·16) but no overall survival benefit (HR 1·23, 0·87-1·72, p=0·24). We saw no progression-free survival or overall survival

  7. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

    International Nuclear Information System (INIS)

    Song, Linze; Shi, Qiang

    2015-01-01

    We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated

  8. Infrared signatures for remote sensing

    International Nuclear Information System (INIS)

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL's capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm -1 at 2 laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at ∼10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl 4 at 770--800 cm -1 . This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO 2 laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks

  9. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Wen

    2017-03-01

    Full Text Available We propose a novel statistical framework for integrating the result from molecular quantitative trait loci (QTL mapping into genome-wide genetic association analysis of complex traits, with the primary objectives of quantitatively assessing the enrichment of the molecular QTLs in complex trait-associated genetic variants and the colocalizations of the two types of association signals. We introduce a natural Bayesian hierarchical model that treats the latent association status of molecular QTLs as SNP-level annotations for candidate SNPs of complex traits. We detail a computational procedure to seamlessly perform enrichment, fine-mapping and colocalization analyses, which is a distinct feature compared to the existing colocalization analysis procedures in the literature. The proposed approach is computationally efficient and requires only summary-level statistics. We evaluate and demonstrate the proposed computational approach through extensive simulation studies and analyses of blood lipid data and the whole blood eQTL data from the GTEx project. In addition, a useful utility from our proposed method enables the computation of expected colocalization signals using simple characteristics of the association data. Using this utility, we further illustrate the importance of enrichment analysis on the ability to discover colocalized signals and the potential limitations of currently available molecular QTL data. The software pipeline that implements the proposed computation procedures, enloc, is freely available at https://github.com/xqwen/integrative.

  10. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Animesh, E-mail: animesh@zedat.fu-berlin.de; Delle Site, Luigi, E-mail: dellesite@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Berlin (Germany)

    2015-09-07

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  11. Molecular Signatures of Chronic Pain Subtypes

    Science.gov (United States)

    2015-03-01

    inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 2009;60(11):3303–13. 100 Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Epi...Korzets A. Reflex sympathetic dystrophy of the stump in below-knee amputees. Clin J Pain 1992;8(3):270–5. 31. Sherman RA, Sherman CJ, Parker L. Chronic...sympathetic dystrophy of the stump in below-knee amputees. The Clinical journal of pain. Sep 1992;8(3):270-275. 4. Lindsay DR, Pyati S, Buchheit TE

  12. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  13. Practical quantum digital signature

    Science.gov (United States)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  14. Proteomic-Biostatistic Integrated Approach for Finding the Underlying Molecular Determinants of Hypertension in Human Plasma.

    Science.gov (United States)

    Gajjala, Prathibha R; Jankowski, Vera; Heinze, Georg; Bilo, Grzegorz; Zanchetti, Alberto; Noels, Heidi; Liehn, Elisa; Perco, Paul; Schulz, Anna; Delles, Christian; Kork, Felix; Biessen, Erik; Narkiewicz, Krzysztof; Kawecka-Jaszcz, Kalina; Floege, Juergen; Soranna, Davide; Zidek, Walter; Jankowski, Joachim

    2017-08-01

    Despite advancements in lowering blood pressure, the best approach to lower it remains controversial because of the lack of information on the molecular basis of hypertension. We, therefore, performed plasma proteomics of plasma from patients with hypertension to identify molecular determinants detectable in these subjects but not in controls and vice versa. Plasma samples from hypertensive subjects (cases; n=118) and controls (n=85) from the InGenious HyperCare cohort were used for this study and performed mass spectrometric analysis. Using biostatistical methods, plasma peptides specific for hypertension were identified, and a model was developed using least absolute shrinkage and selection operator logistic regression. The underlying peptides were identified and sequenced off-line using matrix-assisted laser desorption ionization orbitrap mass spectrometry. By comparison of the molecular composition of the plasma samples, 27 molecular determinants were identified differently expressed in cases from controls. Seventy percent of the molecular determinants selected were found to occur less likely in hypertensive patients. In cross-validation, the overall R 2 was 0.434, and the area under the curve was 0.891 with 95% confidence interval 0.8482 to 0.9349, P hypertensive patients were found to be -2.007±0.3568 and 3.383±0.2643, respectively, P hypertensives and normotensives. The identified molecular determinants may be the starting point for further studies to clarify the molecular causes of hypertension. © 2017 American Heart Association, Inc.

  15. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    Science.gov (United States)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  16. [Ginseng prescription rules and molecular mechanism in treating coronary heart disease based on data mining and integrative pharmacology].

    Science.gov (United States)

    Li, Sen; Tang, Shi-Huan; Liu, Jin-Ling; Su, Jin; He, Fu-Yuan

    2018-04-01

    The ancient dragon Materia Medica, Compendium of Materia Medica and other works recorded that the main effect of ginseng is tonifying qi. It is reported that the main active ingredient of ginseng is ginsenoside. Modern studies have found that ginseng mono saponins are effective for cardiovascular related diseases. This paper preliminary clarified the efficacy of traditional ginseng-nourishing qi and cardiovascular disease through the traditional Chinese medicine (TCM) inheritance auxiliary platform and integration platform of association of pharmacology. With the help of TCM inheritance auxiliary platform-analysis of "Chinese medicine database", Chinese medicine treatment of modern diseases that ginseng rules, so the traditional effect associated with modern medicine and pharmacology; application integration platform enrichment analysis on the target of drug and gene function, metabolic pathway, to further explore the molecular mechanism of ginseng in the treatment of coronary heart disease, aimed at mining the molecular mechanism of ginseng in the treatment of coronary heart disease. Chinese medicine containing ginseng 307 prescriptions, 87 kinds of disease indications, western medicine disease Chinese medicine therapy for ginseng main coronary heart disease; analysis of molecular mechanism of ginseng pharmacology integration platform for the treatment of coronary heart disease. Ginsenosides(Ra₁, Ra₂, Rb₁, Rb₂, Rg₁, Ro) bind these targets, PRKAA1, PRKAA2, NDUFA4, COX5B, UQCRC1, affect chemokines, non-alcoholic fatty liver, gonadotropin, carbon metabolism, glucose metabolism and other pathways to treat coronary heart disease indirectly. The molecular mechanism of Panax ginseng's multi-component, multi-target and synergistic action is preliminarily elucidated in this paper. Copyright© by the Chinese Pharmaceutical Association.

  17. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  18. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein–Zernike self-consistent field approach

    International Nuclear Information System (INIS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-01-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S N 2 reaction (Cl − + CH 3 Cl → ClCH 3 + Cl − ) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF

  19. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  20. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    Science.gov (United States)

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    Science.gov (United States)

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  2. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Wei-Ming Xu

    2018-01-01

    Full Text Available Background: Ischemic heart disease (IHD has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated.Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures.Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules. These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620 and Renin-angiotensin system (hsa04614, with the molecular functions of angiotensin maturation (GO:0002003 and response to bacterium (GO:0009617, which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO and published biomedical literatures.Conclusion: A network medicine

  3. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease.

    Science.gov (United States)

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  4. Signatures of the Invisible

    CERN Multimedia

    Strom, D

    2003-01-01

    On the Net it is possible to take a look at art from afar via Virtual Museums. One such exhibition was recently in the New York Museum of Modern Art's branch, PS1. Entitled 'Signatures of the Invisible' it was a collaborative effort between artists and physicists (1/2 page).

  5. Calculation of two-center one-electron molecular integrals with STOs. [BICEN

    Energy Technology Data Exchange (ETDEWEB)

    Rico, J.F.; Lopez, R.; Paniagua, M.; Ramirez, G. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1991-05-01

    A program for the calculation of two-center one-electron integrals (overlap, nuclear attraction and kinetic energy) between real Slater-type orbitals (STOs) is reported. The integrals are obtained by recursion over simple auxiliary matrices, whose elements are calculated in terms of further auxiliary functions evaluated in a quick and accurate way. (orig.).

  6. Calculation of two-center one-electron molecular integrals with STOs

    International Nuclear Information System (INIS)

    Rico, J.F.; Lopez, R.; Paniagua, M.; Ramirez, G.

    1991-01-01

    A program for the calculation of two-center one-electron integrals (overlap, nuclear attraction and kinetic energy) between real Slater-type orbitals (STOs) is reported. The integrals are obtained by recursion over simple auxiliary matrices, whose elements are calculated in terms of further auxiliary functions evaluated in a quick and accurate way. (orig.)

  7. Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction.

    Science.gov (United States)

    Weckwerth, Wolfram

    2008-02-01

    In recent years, genomics has been extended to functional genomics. Toward the characterization of organisms or species on the genome level, changes on the metabolite and protein level have been shown to be essential to assign functions to genes and to describe the dynamic molecular phenotype. Gas chromatography (GC) and liquid chromatography coupled to mass spectrometry (GC- and LC-MS) are well suited for the fast and comprehensive analysis of ultracomplex metabolite samples. For the integration of metabolite profiles with quantitative protein profiles, a high throughput (HTP) shotgun proteomics approach using LC-MS and label-free quantification of unique proteins in a complex protein digest is described. Multivariate statistics are applied to examine sample pattern recognition based on data-dimensionality reduction and biomarker identification in plant systems biology. The integration of the data reveal multiple correlative biomarkers providing evidence for an increase of information in such holistic approaches. With computational simulation of metabolic networks and experimental measurements, it can be shown that biochemical regulation is reflected by metabolite network dynamics measured in a metabolomics approach. Examples in molecular plant physiology are presented to substantiate the integrative approach.

  8. Double path integral method for obtaining the mobility of the one-dimensional charge transport in molecular chain.

    Science.gov (United States)

    Yoo-Kong, Sikarin; Liewrian, Watchara

    2015-12-01

    We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.

  9. Epigenetic signature of birth weight discordance in adult twins

    DEFF Research Database (Denmark)

    Tan, Qihua; Nielsen, Morten Frost Munk; Heijmans, Bastiaan T

    2014-01-01

    between birth weight and adult life health while controlling for not only genetics but also postnatal rearing environment. We performed an epigenome-wide profiling on blood samples from 150 pairs of adult monozygotic twins discordant for birth weight to look for molecular evidence of epigenetic signatures...... profiling did not reveal epigenetic signatures of birth weight discordance although some sites displayed age-dependent intra-pair differential methylation in the extremely discordant twin pairs....

  10. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Dam, van J.C.J.; Schaap, P.J.; Martins dos Santos, V.A.P.; Suarez Diez, M.

    2014-01-01

    Background: Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each

  11. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  12. The Need for Novel Informatics Tools for Integrating and Planning Research in Molecular and Cellular Cognition

    Science.gov (United States)

    Silva, Alcino J.; Müller, Klaus-Robert

    2015-01-01

    The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…

  13. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Nymark, Marianne; Valle, Kristin C; Brembu, Tore

    2009-01-01

    Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investiga...

  14. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    Science.gov (United States)

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  15. A Directed Signature Scheme and its Applications

    OpenAIRE

    Lal, Sunder; Kumar, Manoj

    2004-01-01

    This paper presents a directed signature scheme with the property that the signature can be verified only with the help of signer or signature receiver. We also propose its applications to share verification of signatures and to threshold cryptosystems.

  16. Molecular biogeography: towards an integrated framework for conserving pan-African biodiversity.

    Directory of Open Access Journals (Sweden)

    Yoshan Moodley

    2007-05-01

    Full Text Available Biogeographic models partition ecologically similar species assemblages into discrete ecoregions. However, the history, relationship and interactions between these regions and their assemblages have rarely been explored.Here we develop a taxon-based approach that explicitly utilises molecular information to compare ecoregion history and status, which we exemplify using a continentally distributed mammalian species: the African bushbuck (Tragelaphus scriptus. We reveal unprecedented levels of genetic diversity and structure in this species and show that ecoregion biogeographic history better explains the distribution of molecular variation than phenotypic similarity or geography. We extend these data to explore ecoregion connectivity, identify core habitats and infer ecological affinities from them.This analysis defines 28 key biogeographic regions for sub-Saharan Africa, and provides a valuable framework for the incorporation of genetic and biogeographic information into a more widely applicable model for the conservation of continental biodiversity.

  17. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    International Nuclear Information System (INIS)

    Mrugalla, Florian; Kast, Stefan M

    2016-01-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute–solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute–solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems. (paper)

  18. Integration of molecular imaging in treatment planning and delivery of modern radiotherapy

    International Nuclear Information System (INIS)

    Jacob, V.; Wilkens, J.J.

    2011-01-01

    Among various imaging modalities currently available, positron emission tomography (PET) has the potential to visualize processes on a molecular level. Molecular imaging, often also referred to as functional or biological imaging, brought a new dimension to diagnostics and therapy of cancer by providing images of metabolism and other processes in the human body and in tumours. PET was first applied for diagnostics and staging of various tumours with high diagnostic precision. Modern radiotherapy asks increasingly for individualized treatment strategies, taking molecular imaging into account. Technical developments over the last years, in particular methods to register various imaging modalities within software packages for treatment planning and target delineation, facilitated the use of PET imaging in radiotherapy. In order to exploit the full potential of modern high-precision radiotherapy, exact imaging procedures are necessary, for example for precise target volume definition. In the long run, concepts employing an inhomogeneous dose prescription based on biological imaging may become routine in clinical applications, leading to individualized, biologically adaptive therapy. (orig.)

  19. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    Science.gov (United States)

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  20. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE

    Directory of Open Access Journals (Sweden)

    Constantinos Yeles

    2017-11-01

    Full Text Available Ionizing radiation-induced bystander effects (RIBE encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR, something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.

  1. Personalizing Chinese medicine by integrating molecular features of diseases and herb ingredient information: application to acute myeloid leukemia.

    Science.gov (United States)

    Huang, Lin; Li, Haichang; Xie, Duoli; Shi, Tieliu; Wen, Chengping

    2017-06-27

    Traditional Chinese Medicine (TCM) has been widely used as a complementary medicine in Acute Myeloid Leukemia (AML) treatment. In this study, we proposed a new classification of Chinese Medicines (CMs) by integrating the latest discoveries in disease molecular mechanisms and traditional medicine theory. We screened out a set of chemical compounds on basis of AML differential expression genes and chemical-protein interactions and then mapped them to Traditional Chinese Medicine Integrated Database. 415 CMs contain those compounds and they were categorized into 8 groups according to the Traditional Chinese Pharmacology. Pathway analysis and synthetic lethality gene pairs were applied to analyze the dissimilarity, generality and intergroup relations of different groups. We defined hub CM pairs and alternative CM groups based on the analysis result and finally proposed a formula to form an effective anti-AML prescription which combined the hub CM pairs with alternative CMs according to patients' molecular features. Our method of formulating CMs based on patients' stratification provides novel insights into the new usage of conventional CMs and will promote TCM modernization.

  2. Integration of a zebrafish research project into a molecular biology course to support critical thinking and course content goals.

    Science.gov (United States)

    Felzien, Lisa K

    2016-11-12

    Engaging undergraduates in research is essential for teaching them to think like scientists, and it has become a desired component of classroom and laboratory instruction. Research projects that span an entire semester expose students to a variety of concepts and techniques and allow students to use experiments to learn scientific principles, understand why specific techniques are applicable, critically analyze varied data, and examine how experimentation leads to acquiring knowledge. To provide an experience with these features, a semester long research project was integrated into a combined lecture and laboratory course, Molecular Biology. The project utilized the zebrafish model to examine gene expression during embryonic development and required students to develop and test hypotheses about the timing of expression of previously uncharacterized genes. The main goals for the project were to provide opportunities for students to develop critical thinking skills required for conducting research and to support the content goals of the course. To determine whether these goals were met, student performance on the steps of the project and related pre-test and post-test questions was examined. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):565-573, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics

    Directory of Open Access Journals (Sweden)

    Andreas eWanninger

    2015-05-01

    Full Text Available Morphology, the description and analysis of organismal form, is one of the oldest biological disciplines that has significantly contributed to our understanding as to how animals function and how the overwhelming diversity of phenotypes evolved. The early discovery that comparative studies of morphogenesis add to our understanding of the evolutionary history and interrelationships of organisms led to the formulation of highly influential evolutionary principles, including Haeckel’s theory of recapitulation or Hatschek’s trochozoon-hypothesis, and established the intellectual foundation of a research area today termed EvoDevo. While the rapid integration of molecular techniques into systematics, phylogenetics, and developmental biology from the 1980s onwards made some consider morphology as having little to contribute to evolutionary research, methodological progress together with a revived focus on morphogenesis has resulted in an unexpected renaissance of evolutionary developmental morphology, here termed MorphoEvoDevo. Herein, I briefly summarize some classical landmark contributions and progress achieved by studies using the MorphoEvoDevo approach. I will focus on the role of morphology in modern evolutionary biology, especially with respect to the molecular-driven approaches such as phylogenetics and developmental genetics. I argue that, while MorphoEvoDevo may well survive as an independent field of research, in times of increased competition for funding it will significantly profit from integration of the molecular disciplines into research programs with a strong emphasis on morphology. After all, morphological data are indispensable for reconstruction of phenotypic ground patterns and character evolution, and only a holistic approach incorporating all major subdisciplines of the evolutionary biosciences may ultimately result in a deep understanding, from molecules to ecosystems, of the driving forces that have shaped our organismal

  4. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    DEFF Research Database (Denmark)

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude

    2017-01-01

    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahep...

  5. Identification of a New Mullet Species Complex Based on an Integrative Molecular and Cytogenetic Investigation of Mugil hospes (Mugilidae: Mugiliformes).

    Science.gov (United States)

    Nirchio, Mauro; Paim, Fabilene G; Milana, Valentina; Rossi, Anna R; Oliveira, Claudio

    2018-01-01

    Mullets are very common fishes included in the family Mugilidae, (Mugiliformes), which are characterized by both a remarkably uniform external morphology and internal anatomy. Recently, within this family, different species complexes were molecularly identified within Mugil , a genus which is characterized by lineages that sometimes show very different karyotypes. Here we report the results of cytogenetic and molecular analyses conducted on Mugil hospes , commonly known as the hospe mullet, from Ecuador. The study aims to verify whether the original described species from the Pacific Ocean corresponds to that identified in the Atlantic Ocean, and to identify species-specific chromosome markers that can add new comparative data about Mugilidae karyotype evolution. The karyotype of M. hospes from Ecuador is composed of 48 acrocentric chromosomes and shows two active nucleolar organizer regions (NORs). In situ hybridization, using different types of repetitive sequences (rDNAs, U1 snDNA, telomeric repeats) as probes, identified species-specific chromosome markers that have been compared with those of other species of the genus Mugil . Cytochrome c oxidase subunit I (COI) sequence analysis shows only 92-93% similarity with sequences previously deposited under this species name in GenBank, all of which were from the Atlantic Ocean. Phylogenetic reconstructions indicate the presence of three well-supported hospe mullet lineages whose molecular divergence is compatible with the presence of distinct species. Indeed, the first lineage includes samples from Ecuador, whereas the other two lineages include the Atlantic samples and correspond to M. brevirostris from Brazil and Mugil sp. R from Belize/Venezuela. Results here provided reiterate the pivotal importance of an integrative molecular and cytogenetic approach in the reconstruction of the relationships within Mugilidae.

  6. Identification of a New Mullet Species Complex Based on an Integrative Molecular and Cytogenetic Investigation of Mugil hospes (Mugilidae: Mugiliformes

    Directory of Open Access Journals (Sweden)

    Mauro Nirchio

    2018-02-01

    Full Text Available Mullets are very common fishes included in the family Mugilidae, (Mugiliformes, which are characterized by both a remarkably uniform external morphology and internal anatomy. Recently, within this family, different species complexes were molecularly identified within Mugil, a genus which is characterized by lineages that sometimes show very different karyotypes. Here we report the results of cytogenetic and molecular analyses conducted on Mugil hospes, commonly known as the hospe mullet, from Ecuador. The study aims to verify whether the original described species from the Pacific Ocean corresponds to that identified in the Atlantic Ocean, and to identify species-specific chromosome markers that can add new comparative data about Mugilidae karyotype evolution. The karyotype of M. hospes from Ecuador is composed of 48 acrocentric chromosomes and shows two active nucleolar organizer regions (NORs. In situ hybridization, using different types of repetitive sequences (rDNAs, U1 snDNA, telomeric repeats as probes, identified species-specific chromosome markers that have been compared with those of other species of the genus Mugil. Cytochrome c oxidase subunit I (COI sequence analysis shows only 92–93% similarity with sequences previously deposited under this species name in GenBank, all of which were from the Atlantic Ocean. Phylogenetic reconstructions indicate the presence of three well-supported hospe mullet lineages whose molecular divergence is compatible with the presence of distinct species. Indeed, the first lineage includes samples from Ecuador, whereas the other two lineages include the Atlantic samples and correspond to M. brevirostris from Brazil and Mugil sp. R from Belize/Venezuela. Results here provided reiterate the pivotal importance of an integrative molecular and cytogenetic approach in the reconstruction of the relationships within Mugilidae.

  7. MelanomaDB: a Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways

    Directory of Open Access Journals (Sweden)

    Alexander Joseph Trevarton

    2013-07-01

    Full Text Available Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g. mutations in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html . A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research . This illustrates dysregulation of specific signalling pathways, both across 310 exome-sequenced melanomas and in individual tumours and identifies novel features about the distribution of somatic variants in melanoma. We suggest that this database can provide a context in which to interpret the tumour molecular profiles of individual melanoma patients relative to biological information and available

  8. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells.

    Science.gov (United States)

    Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A

    2018-01-01

    Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the

  9. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  10. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    Directory of Open Access Journals (Sweden)

    Maria P. Lambros

    2015-01-01

    Full Text Available Qingre Liyan decoction (QYD, a Traditional Chinese medicine, and N-acetyl cysteine (NAC have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1, protective genes (EGFR and PPARD, and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs. NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors.

  11. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-01-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO 3 ) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000 deg. C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO 3 , producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN/GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO 3 modulators on compact optoelectronic/electronic chips

  12. Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Asaka, Masamitsu N; Kato, Kohsuke

    2018-01-01

    circular dichroism spectroscopy, and nano-electrospray ionisation mass spectrometry. In situ intramolecular activation of the nuclease domain was observed, resulting in specific cleavage of DNA with moderate activity. This study represents a new approach to AN design through integrated nucleases consisting......Application of artificial nucleases (ANs) in genome editing is still hindered by their cytotoxicity related to off-target cleavages. This problem can be targeted by regulation of the nuclease domain. Here, we provide an experimental survey of computationally designed integrated zinc finger...... nucleases, constructed by linking the inactivated catalytic centre and the allosteric activator sequence of the colicin E7 nuclease domain to the two opposite termini of a zinc finger array. DNA specificity and metal binding were confirmed by electrophoretic mobility shift assays, synchrotron radiation...

  13. Extension of the AMBER molecular dynamics software to Intel's Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Needham, Perri J.; Bhuiyan, Ashraf; Walker, Ross C.

    2016-04-01

    We present an implementation of explicit solvent particle mesh Ewald (PME) classical molecular dynamics (MD) within the PMEMD molecular dynamics engine, that forms part of the AMBER v14 MD software package, that makes use of Intel Xeon Phi coprocessors by offloading portions of the PME direct summation and neighbor list build to the coprocessor. We refer to this implementation as pmemd MIC offload and in this paper present the technical details of the algorithm, including basic models for MPI and OpenMP configuration, and analyze the resultant performance. The algorithm provides the best performance improvement for large systems (>400,000 atoms), achieving a ∼35% performance improvement for satellite tobacco mosaic virus (1,067,095 atoms) when 2 Intel E5-2697 v2 processors (2 ×12 cores, 30M cache, 2.7 GHz) are coupled to an Intel Xeon Phi coprocessor (Model 7120P-1.238/1.333 GHz, 61 cores). The implementation utilizes a two-fold decomposition strategy: spatial decomposition using an MPI library and thread-based decomposition using OpenMP. We also present compiler optimization settings that improve the performance on Intel Xeon processors, while retaining simulation accuracy.

  14. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

    Science.gov (United States)

    Wu, Jinrong; Cai, Li-Heng; Weitz, David A

    2017-10-01

    Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks.

    Science.gov (United States)

    Wan, Haixiao; Shen, Jianxiang; Gao, Naishen; Liu, Jun; Gao, Yangyang; Zhang, Liqun

    2018-03-28

    Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

  16. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    Science.gov (United States)

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  17. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  18. Modem Signature Analysis.

    Science.gov (United States)

    1982-10-01

    AD-A127 993 MODEM SIGNATURE ANALISIS (U) PAR TECHNOLOGY CORP NEW / HARTFORD NY V EDWARDS ET AL. OCT 82 RADC-TR-82-269 F30602-80-C-0264 NCLASSIFIED F/G...as an indication of the class clustering and separation between different classes in the modem data base. It is apparent from the projection that the...that as the clusters disperse, the likelihood of a sample crossing the boundary into an adjacent region and causing a symbol decision error increases. As

  19. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.

    Science.gov (United States)

    Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís

    2012-05-01

    MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)

  20. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    Science.gov (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  1. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  2. GenFlow: generic flow for integration, management and analysis of molecular biology data

    Directory of Open Access Journals (Sweden)

    Marcio Katsumi Oikawa

    2004-01-01

    Full Text Available A large number of DNA sequencing projects all over the world have yielded a fantastic amount of data, whose analysis is, currently, a big challenge for computational biology. The limiting step in this task is the integration of large volumes of data stored in highly heterogeneous repositories of genomic and cDNA sequences, as well as gene expression results. Solving this problem requires automated analytical tools to optimize operations and efficiently generate knowledge. This paper presents an information flow model , called GenFlow, that can tackle this analytical task.

  3. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration

    Science.gov (United States)

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-01

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  4. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  5. Comparisons of perturbation and integral equation theories for the angular pair correlation function in molecular fluids

    International Nuclear Information System (INIS)

    Murad, S.; Gubbins, K.E.; Gray, C.G.

    1983-01-01

    We compare several recently proposed theories for the angular pair correlation function g(rω 1 ω 2 ), including first- and second-order perturbation theory (the u-expansion), a Pade approximant to this series, first-order f-expansion, the single superchain, generalized mean field, linearized hypernetted chain, and quadratic hypernetted chain approximations. Numerical results from these theories are compared with available computer simulation data for four model fluids whose intermolecular pair potential is of the form u 0 +usub(a), where u 0 is a hard-sphere of Lennard-Jones model, while usub(a) is a dipole-dipole or quadrupole-quadrupole interaction; we refer to these model fluids as HS+μμ, HS+QQ, LJ+μμ, and LJ+QQ. Properties studied include the angular pair correlation function and its spherical harmonic components, the thermodynamic properties, and the angular correlation parameters G 1 and G 2 that are related to the dielectric and Kerr constants. The second-order perturbation theory is superior to the integral equation theories for the thermodynamic harmonics of g(rω 1 ω 2 ) and for the thermodynamic properties themselves at moderate multipole strengths. For other harmonics and properties, the integral equation theories are better, with the quadratic hypernetted chain approximation being the best overall. (orig.)

  6. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    Science.gov (United States)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  7. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel

    DEFF Research Database (Denmark)

    Bjelkmar, Pär; Niemelä, Perttu S; Vattulainen, Ilpo

    2009-01-01

    transitions occur in membrane proteins-not to mention numerous applications in drug design. Here, we present a full 1 micros atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements......Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how...... and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations....

  8. Electronic Signature (eSig)

    Data.gov (United States)

    Department of Veterans Affairs — Beginning with the Government Paperwork Elimination Act of 1998 (GPEA), the Federal government has encouraged the use of electronic / digital signatures to enable...

  9. Expressiveness considerations of XML signatures

    DEFF Research Database (Denmark)

    Jensen, Meiko; Meyer, Christopher

    2011-01-01

    XML Signatures are used to protect XML-based Web Service communication against a broad range of attacks related to man-in-the-middle scenarios. However, due to the complexity of the Web Services specification landscape, the task of applying XML Signatures in a robust and reliable manner becomes...... more and more challenging. In this paper, we investigate this issue, describing how an attacker can still interfere with Web Services communication even in the presence of XML Signatures. Additionally, we discuss the interrelation of XML Signatures and XML Encryption, focussing on their security...

  10. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  11. Integrated biochemical, molecular genetic, and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current

    Science.gov (United States)

    Bucklin, Ann; Wiebe, Peter H.; Smolenack, Sara B.; Copley, Nancy J.; Clarke, M. Elizabeth

    2002-03-01

    Integrated assessment of the euphausiid Nematoscelis difficilis (Crustacea; Euphausiacea) and the zooplankton assemblage of the California Current was designed to investigate individual, population, and community responses to mesoscale variability in biological and physical characters of the ocean. Zooplankton samples and observational data were collected along a cross-shelf transect of the California Current in association with the California Cooperative Fisheries Investigations (CalCOFI) Survey during October 1996. The transect crossed three domains defined by temperature and salinity: nearshore, mid-Current, and offshore. Individual N. difficilis differed in physiological condition along the transect, with higher size-corrected concentrations of four central metabolic enzymes (citrate synthetase, hexokinase, lactate dehydrogenase (LDH), and phosphoglucose isomerase (PGI)) for euphausiids collected in nearshore waters than in mid-Current and offshore waters. There was little variation in the DNA sequences of the genes encoding PGI and LDH (all DNA changes were either silent or heterozygous base substitutions), suggesting that differences in enzyme concentration did not result from underlying molecular genetic variation. The population genetic makeup of N. difficilis varied from sample to sample based on haplotype frequencies of mitochondrial cytochrome oxidase I (mtCOI; P=0.029). There were significant differences between pooled nearshore and offshore samples, based on allele frequencies at two sites of common substitutions in the mtCOI sequence ( P=0.020 and 0.026). Silhouette and bioacoustical backscattering measurements of the zooplankton assemblage of the top 100 m showed marked diel vertical migration of the scattering layer, of which euphausiids were a small but significant fraction. The biochemical and molecular assays are used as indices of complex physiological (i.e., growth and condition) and genetic (i.e., mortality) processes; the bioacoustical

  12. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori, E-mail: tachi@yokohama-cu.ac.jp [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2016-08-14

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and “reduced” isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is −8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  13. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    International Nuclear Information System (INIS)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-01-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and “reduced” isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is −8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  14. Systematic study of imidazoles inhibiting IDO1 via the integration of molecular mechanics and quantum mechanics calculations.

    Science.gov (United States)

    Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng

    2017-05-05

    Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  16. Protein Nano-Object Integrator (ProNOI for generating atomic style objects for molecular modeling

    Directory of Open Access Journals (Sweden)

    Smith Nicholas

    2012-12-01

    Full Text Available Abstract Background With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system. Results Here we report the Protein Nano-Object Integrator (ProNOI which allows for generating atomic-style geometrical objects with user desired shape and dimensions. Unlimited number of objects can be created and combined with biological macromolecules in Protein Data Bank (PDB format file. Once the objects are generated, the users can use sliders to manipulate their shape, dimension and absolute position. In addition, the software offers the option to charge the objects with either specified surface or volumetric charge density and to model them with user-desired dielectric constants. According to the user preference, the biological macromolecule atoms can be assigned charges and radii according to four different force fields: Amber, Charmm, OPLS and PARSE. The biological macromolecules and the atomic-style objects are exported as a position, charge and radius (PQR file, or if a default dielectric constant distribution is not selected, it is exported as a position, charge, radius and epsilon (PQRE file. As illustration of the capabilities of the ProNOI, we created a composite object in a shape of a robot, aptly named the Clemson Robot, whose parts are charged with various volumetric charge densities and holds the barnase-barstar protein complex in its hand. Conclusions The Protein Nano-Object Integrator (ProNOI is a convenient tool for

  17. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    Science.gov (United States)

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different

  18. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy.

    Science.gov (United States)

    Hay, Jodie F; Lappin, Katrina; Liberante, Fabio; Kettyle, Laura M; Matchett, Kyle B; Thompson, Alexander; Mills, Ken I

    2017-09-15

    Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

  19. IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics.

    Science.gov (United States)

    Hintzsche, Jennifer D; Yoo, Minjae; Kim, Jihye; Amato, Carol M; Robinson, William A; Tan, Aik Choon

    2018-04-20

    With the advancement of next generation sequencing technology, researchers are now able to identify important variants and structural changes in DNA and RNA in cancer patient samples. With this information, we can now correlate specific variants and/or structural changes with actionable therapeutics known to inhibit these variants. We introduce the creation of the IMPACT Web Portal, a new online resource that connects molecular profiles of tumors to approved drugs, investigational therapeutics and pharmacogenetics associated drugs. IMPACT Web Portal contains a total of 776 drugs connected to 1326 target genes and 435 target variants, fusion, and copy number alterations. The online IMPACT Web Portal allows users to search for various genetic alterations and connects them to three levels of actionable therapeutics. The results are categorized into 3 levels: Level 1 contains approved drugs separated into two groups; Level 1A contains approved drugs with variant specific information while Level 1B contains approved drugs with gene level information. Level 2 contains drugs currently in oncology clinical trials. Level 3 provides pharmacogenetic associations between approved drugs and genes. IMPACT Web Portal allows for sequencing data to be linked to actionable therapeutics for translational and drug repurposing research. The IMPACT Web Portal online resource allows users to query genes and variants to approved and investigational drugs. We envision that this resource will be a valuable database for personalized medicine and drug repurposing. IMPACT Web Portal is freely available for non-commercial use at http://tanlab.ucdenver.edu/IMPACT .

  20. Integrative taxonomy of ciliates: Assessment of molecular phylogenetic content and morphological homology testing.

    Science.gov (United States)

    Vďačný, Peter

    2017-10-01

    The very diverse and comparatively complex morphology of ciliates has given rise to numerous taxonomic concepts. However, the information content of the utilized molecular markers has seldom been explored prior to phylogenetic analyses and taxonomic decisions. Likewise, robust testing of morphological homology statements and the apomorphic nature of diagnostic characters of ciliate taxa is rarely carried out. Four phylogenetic techniques that may help address these issues are reviewed. (1) Split spectrum analysis serves to determine the exact number and quality of nucleotide positions supporting individual nodes in phylogenetic trees and to discern long-branch artifacts that cause spurious phylogenies. (2) Network analysis can depict all possible evolutionary trajectories inferable from the dataset and locate and measure the conflict between them. (3) A priori likelihood mapping tests the suitability of data for reconstruction of a well resolved tree, visualizes the tree-likeness of quartets, and assesses the support of an internal branch of a given tree topology. (4) Reconstruction of ancestral morphologies can be applied for analyzing homology and apomorphy statements without circular reasoning. Since these phylogenetic tools are rarely used, their principles and interpretation are introduced and exemplified using various groups of ciliates. Finally, environmental sequencing data are discussed in this light. Copyright © 2017 The Author. Published by Elsevier GmbH.. All rights reserved.

  1. An integrated view of molecular changes, histopathology and outcomes in kidney transplants.

    Science.gov (United States)

    Halloran, P F; de Freitas, D G; Einecke, G; Famulski, K S; Hidalgo, L G; MengeL, M; Reeve, J; Sellares, J; Sis, B

    2010-10-01

    Data-driven approaches to deteriorating kidney transplants, incorporating histologic, molecular and HLA antibody findings, have created a new understanding of transplant pathology and why transplants fail. Transplant dysfunction is best understood in terms of three elements: diseases, the active injury-repair response and the cumulative burden of injury. Progression to failure is mainly attributable to antibody-mediated rejection, nonadherence and glomerular disease. Antibody-mediated rejection usually develops late due to de novo HLA antibodies, particularly anti-class II, and is often C4d negative. Pure treated T cell-mediated rejection does not predispose to graft loss because it responds well, even with endothelialitis, but it may indicate nonadherence. The cumulative burden of injury results in atrophy-fibrosis (nephron loss), arterial fibrous intimal thickening and arteriolar hyalinosis, but these are not progressive without ongoing disease/injury, and do not explain progression. Calcineurin inhibitor toxicity has been overestimated because burden-of-injury lesions invite this default diagnosis when diseases such as antibody-mediated rejection are missed. Disease/injury triggers a stereotyped active injury-repair response, including de-differentiation, cell cycling and apoptosis. The active injury-repair response is the strongest correlate of organ function and future progression to failure, but should always prompt a search for the initiating injury or disease.

  2. Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes.

    Science.gov (United States)

    Lee, Michael S; Menter, David G; Kopetz, Scott

    2017-03-01

    Although clinical management of colon cancer generally has not accounted for the primary tumor site, left-sided and right-sided colon cancers harbor different clinical and biologic characteristics. Right-sided colon cancers are more likely to have genome-wide hypermethylation via the CpG island methylator phenotype (CIMP), hypermutated state via microsatellite instability, and BRAF mutation. There are also differential exposures to potential carcinogenic toxins and microbiota in the right and left colon. Gene expression analyses further shed light on distinct biologic subtypes of colorectal cancers (CRCs), with 4 consensus molecular subtypes (CMSs) identified. Importantly, these subtypes are differentially distributed between right- and left-sided CRCs, with greater proportions of the "microsatellite unstable/immune" CMS1 and the "metabolic" CMS3 subtypes found in right-sided colon cancers. This review summarizes important biologic distinctions between right- and left-sided CRCs that likely impact prognosis and may predict for differential responses to biologic therapy. Given the inferior prognosis of stage III-IV right-sided CRCs and emerging data suggesting that anti-epidermal growth factor receptor antibody therapy is associated with worse survival in right-sided stage IV CRCs compared with left-sided cancers, these biologic differences between right- and left-sided CRCs provide critical context and may provide opportunities to personalize therapy. Copyright © 2017 by the National Comprehensive Cancer Network.

  3. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  4. Assessment of sperm nucleus integrity in infertile men: a novel research field for anthropology in the molecular era.

    Science.gov (United States)

    Lavranos, Giagkos; Manolakou, Panagiota; Katsiki, Evangelia; Angelopoulou, Roxani

    2013-12-01

    Anthropology has always been particularly interested in the origin of human life and the development towards adulthood. Although originally working with skeletal measurements and bio-morphological markers in modern populations, it has now entered the growing field of applied molecular biology. This relatively recent advance allows the detailed study of major events in human development and senescence. For instance, sperm DNA integrity and chromatin re-organization are crucial factors for fertilization and embryo development. Clinical researchers have developed improved methods for the evaluation of DNA integrity and protaminosis in sperm nuclei, such as the TUNEL and the CMA3 assays. DNA damage in spermatozoal nuclei is detected using the TUNEL assay which depends on the specific enzymatic reaction of TdT with the end strand breaks of DNA. Protaminosis in spermatozoal nucleus is evaluated using CMA3 assay, which is based on the in situ competition between CMA3 and protamines. Such measurements may provide useful data on human reproductive health, aiding the explanation of demographic differences across the world.

  5. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  6. Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation

    Directory of Open Access Journals (Sweden)

    Karagiannis George S

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis (AT is a chronic inflammatory disease characterized by the accumulation of inflammatory cells, lipoproteins and fibrous tissue in the walls of arteries. AT is the primary cause of heart attacks and stroke and is the leading cause of death in Western countries. To date, the pathogenesis of AT is not well-defined. Studies have shown that the dedifferentiation of contractile and quiescent vascular smooth muscle cells (SMC to the proliferative, migratory and synthetic phenotype in the intima is pivotal for the onset and progression of AT. To further delineate the mechanisms underlying the pathogenesis of AT, we analyzed the early molecular pathways and networks involved in the SMC phenotype transformation. Methods Quiescent human coronary artery SMCs were treated with minimally-oxidized LDL (moxLDL, for 3 hours and 21 hours, respectively. Transcriptomic data was generated for both time-points using microarrays and was subjected to pathway analysis using Gene Set Enrichment Analysis, GeneMANIA and Ingenuity software tools. Gene expression heat maps and pathways enriched in differentially expressed genes were compared to identify functional biological themes to elucidate early and late molecular mechanisms of moxLDL-induced SMC dedifferentiation. Results Differentially expressed genes were found to be enriched in cholesterol biosynthesis, inflammatory cytokines, chemokines, growth factors, cell cycle control and myogenic contraction themes. These pathways are consistent with inflammatory responses, cell proliferation, migration and ECM production, which are characteristic of SMC dedifferentiation. Furthermore, up-regulation of cholesterol synthesis and dysregulation of cholesterol metabolism was observed in moxLDL-induced SMC. These observations are consistent with the accumulation of cholesterol and oxidized cholesterol esters, which induce proinflammatory reactions during atherogenesis. Our data implicate for the

  7. Deciphering the Origin of the 2012 Cholera Epidemic in Guinea by Integrating Epidemiological and Molecular Analyses

    Science.gov (United States)

    Rebaudet, Stanislas; Mengel, Martin A.; Koivogui, Lamine; Moore, Sandra; Mutreja, Ankur; Kande, Yacouba; Yattara, Ousmane; Sarr Keita, Véronique; Njanpop-Lafourcade, Berthe-Marie; Fournier, Pierre-Edouard; Garnotel, Eric; Keita, Sakoba; Piarroux, Renaud

    2014-01-01

    Cholera is typically considered endemic in West Africa, especially in the Republic of Guinea. However, a three-year lull period was observed from 2009 to 2011, before a new epidemic struck the country in 2012, which was officially responsible for 7,350 suspected cases and 133 deaths. To determine whether cholera re-emerged from the aquatic environment or was rather imported due to human migration, a comprehensive epidemiological and molecular survey was conducted. A spatiotemporal analysis of the national case databases established Kaback Island, located off the southern coast of Guinea, as the initial focus of the epidemic in early February. According to the field investigations, the index case was found to be a fisherman who had recently arrived from a coastal district of neighboring Sierra Leone, where a cholera outbreak had recently occurred. MLVA-based genotype mapping of 38 clinical Vibrio cholerae O1 El Tor isolates sampled throughout the epidemic demonstrated a progressive genetic diversification of the strains from a single genotype isolated on Kaback Island in February, which correlated with spatial epidemic spread. Whole-genome sequencing characterized this strain as an “atypical” El Tor variant. Furthermore, genome-wide SNP-based phylogeny analysis grouped the Guinean strain into a new clade of the third wave of the seventh pandemic, distinct from previously analyzed African strains and directly related to a Bangladeshi isolate. Overall, these results highly suggest that the Guinean 2012 epidemic was caused by a V. cholerae clone that was likely imported from Sierra Leone by an infected individual. These results indicate the importance of promoting the cross-border identification and surveillance of mobile and vulnerable populations, including fishermen, to prevent, detect and control future epidemics in the region. Comprehensive epidemiological investigations should be expanded to better understand cholera dynamics and improve disease control

  8. Characterization of Whole Grain Pasta: Integrating Physical, Chemical, Molecular, and Instrumental Sensory Approaches.

    Science.gov (United States)

    Marti, Alessandra; Cattaneo, Stefano; Benedetti, Simona; Buratti, Susanna; Abbasi Parizad, Parisa; Masotti, Fabio; Iametti, Stefania; Pagani, Maria Ambrogina

    2017-11-01

    The consumption of whole-grain food-including pasta-has been increasing steadily. In the case of whole-grain pasta, given the many different producers, it seems important to have some objective parameters to define its overall quality. In this study, commercial whole-grain pasta samples representative of the Italian market have been characterized from both molecular and electronic-senses (electronic nose and electronic tongue) standpoint in order to provide a survey of the properties of different commercial samples. Only 1 pasta product showed very low levels of heat damage markers (furosine and pyrraline), suggesting that this sample underwent to low temperature dry treatment. In all samples, the furosine content was directly correlated to protein structural indices, since protein structure compactness increased with increasing levels of heat damage markers. Electronic senses were able to discriminate among pasta samples according to the intensity of heat treatment during the drying step. Pasta sample with low furosine content was discriminated by umami taste and by sensors responding to aliphatic and inorganic compounds. Data obtained with this multidisciplinary approach are meant to provide hints for identifying useful indices for pasta quality. As observed for semolina pasta, objective parameters based on heat-damage were best suited to define the overall quality of wholegrain pasta, almost independently of compositional differences among commercial samples. Drying treatments of different intensity also had an impact on instrumental sensory traits that may provide a reliable alternative to analytical determination of chemical markers of heat damage in all cases where there is a need for avoiding time-consuming procedures. © 2017 Institute of Food Technologists®.

  9. Signature change events: a challenge for quantum gravity?

    International Nuclear Information System (INIS)

    White, Angela; Weinfurtner, Silke; Visser, Matt

    2010-01-01

    Within the framework of either Euclidean (functional integral) quantum gravity or canonical general relativity the signature of the manifold is a priori unconstrained. Furthermore, recent developments in the emergent spacetime programme have led to a physically feasible implementation of (analogue) signature change events. This suggests that it is time to revisit the sometimes controversial topic of signature change in general relativity. Specifically, we shall focus on the behaviour of a quantum field defined on a manifold containing regions of different signature. We emphasize that regardless of the underlying classical theory, there are severe problems associated with any quantum field theory residing on a signature-changing background. (Such as the production of what is naively an infinite number of particles, with an infinite energy density.) We show how the problem of quantum fields exposed to finite regions of Euclidean-signature (Riemannian) geometry has similarities with the quantum barrier penetration problem. Finally we raise the question as to whether signature change transitions could be fully understood and dynamically generated within (modified) classical general relativity, or whether they require the knowledge of a theory of quantum gravity.

  10. Molecular subgroups of medulloblastoma

    OpenAIRE

    Northcott, Paul A; Dubuc, Adrian M; Pfister, Stefan; Taylor, Michael D

    2012-01-01

    Recent efforts at stratifying medulloblastomas based on their molecular features have revolutionized our understanding of this morbidity. Collective efforts by multiple independent groups have subdivided medulloblastoma from a single disease into four distinct molecular subgroups characterized by disparate transcriptional signatures, mutational spectra, copy number profiles and, most importantly, clinical features. We present a summary of recent studies that have contributed to our understand...

  11. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  12. Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.

    Science.gov (United States)

    Quarta, Carmelo; Clemmensen, Christoffer; Zhu, Zhimeng; Yang, Bin; Joseph, Sini S; Lutter, Dominik; Yi, Chun-Xia; Graf, Elisabeth; García-Cáceres, Cristina; Legutko, Beata; Fischer, Katrin; Brommage, Robert; Zizzari, Philippe; Franklin, Bernardo S; Krueger, Martin; Koch, Marco; Vettorazzi, Sabine; Li, Pengyun; Hofmann, Susanna M; Bakhti, Mostafa; Bastidas-Ponce, Aimée; Lickert, Heiko; Strom, Tim M; Gailus-Durner, Valerie; Bechmann, Ingo; Perez-Tilve, Diego; Tuckermann, Jan; Hrabě de Angelis, Martin; Sandoval, Darleen; Cota, Daniela; Latz, Eicke; Seeley, Randy J; Müller, Timo D; DiMarchi, Richard D; Finan, Brian; Tschöp, Matthias H

    2017-10-03

    Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Signatures de l'invisible

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    "Signatures of the Invisible" is an unique collaboration between contemporary artists and contemporary physicists which has the potential to help redefine the relationship between science and art. "Signatures of the Invisible" is jointly organised by the London Institute - the world's largest college of art and design and CERN*, the world's leading particle physics laboratory. 12 leading visual artists:

  14. An interpretation of signature inversion

    International Nuclear Information System (INIS)

    Onishi, Naoki; Tajima, Naoki

    1988-01-01

    An interpretation in terms of the cranking model is presented to explain why signature inversion occurs for positive γ of the axially asymmetric deformation parameter and emerges into specific orbitals. By introducing a continuous variable, the eigenvalue equation can be reduced to a one dimensional Schroedinger equation by means of which one can easily understand the cause of signature inversion. (author)

  15. Cell short circuit, preshort signature

    Science.gov (United States)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  16. Ship Signature Management System : Functionality

    NARCIS (Netherlands)

    Arciszewski, H.F.R.; Lier, L. van; Meijer, Y.G.S.; Noordkamp, H.W.; Wassenaar, A.S.

    2010-01-01

    A signature of a platform is the manner in which the platform manifests itself to a certain type of sensor and how observable it is when such a sensor is used to detect the platform. Because many military platforms use sensors in different media, it is the total of its different signatures that

  17. Genomic Signatures of Sexual Conflict.

    Science.gov (United States)

    Kasimatis, Katja R; Nelson, Thomas C; Phillips, Patrick C

    2017-10-30

    Sexual conflict is a specific class of intergenomic conflict that describes the reciprocal sex-specific fitness costs generated by antagonistic reproductive interactions. The potential for sexual conflict is an inherent property of having a shared genome between the sexes and, therefore, is an extreme form of an environment-dependent fitness effect. In this way, many of the predictions from environment-dependent selection can be used to formulate expected patterns of genome evolution under sexual conflict. However, the pleiotropic and transmission constraints inherent to having alleles move across sex-specific backgrounds from generation to generation further modulate the anticipated signatures of selection. We outline methods for detecting candidate sexual conflict loci both across and within populations. Additionally, we consider the ability of genome scans to identify sexually antagonistic loci by modeling allele frequency changes within males and females due to a single generation of selection. In particular, we highlight the need to integrate genotype, phenotype, and functional information to truly distinguish sexual conflict from other forms of sexual differentiation. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integration from fossil records and molecular analyses.

    Science.gov (United States)

    Meng, Hong-Hu; Jacques, Frédéric Mb; Su, Tao; Huang, Yong-Jiang; Zhang, Shi-Tao; Ma, Hong-Jie; Zhou, Zhe-Kun

    2014-08-10

    Given that most species that have ever existed on earth are extinct, it stands to reason that the evolutionary history can be better understood with fossil taxa. Bauhinia is a typical genus of pantropical intercontinental disjunction among the Asian, African, and American continents. Geographic distribution patterns are better recognized when fossil records and molecular sequences are combined in the analyses. Here, we describe a new macrofossil species of Bauhinia from the Upper Miocene Xiaolongtan Formation in Wenshan County, Southeast Yunnan, China, and elucidate the biogeographic significance through the analyses of molecules and fossils. Morphometric analysis demonstrates that the leaf shapes of B. acuminata, B. championii, B. chalcophylla, B. purpurea, and B. podopetala closely resemble the leaf shapes of the new finding fossil. Phylogenetic relationships among the Bauhinia species were reconstructed using maximum parsimony and Bayesian inference, which inferred that species in Bauhinia species are well-resolved into three main groups. Divergence times were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method under a relaxed clock, and inferred that the stem diversification time of Bauhinia was ca. 62.7 Ma. The Asian lineage first diverged at ca. 59.8 Ma, followed by divergence of the Africa lineage starting during the late Eocene, whereas that of the neotropical lineage starting during the middle Miocene. Hypotheses relying on vicariance or continental history to explain pantropical disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. We suggest that Bauhinia originated in the middle Paleocene in Laurasia, probably in Asia, implying a possible Tethys Seaway origin or an "Out of Tropical Asia", and dispersal of legumes. Its present pantropical disjunction resulted from disruption of the boreotropical flora by climatic cooling after the Paleocene-Eocene Thermal Maximum (PETM). North Atlantic land

  19. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma.

    Science.gov (United States)

    Muir, Kyle; Hazim, Antonious; He, Ying; Peyressatre, Marion; Kim, Do-Young; Song, Xiaoling; Beretta, Laura

    2013-08-01

    Nonalcoholic steatohepatitis (NASH) is a common preneoplastic condition of hepatocellular carcinoma (HCC). Mice with hepatocytic deletion of Pten develop NASH and HCC later in life. This model is highly valuable for studies aimed at identifying the molecular mechanism by which metabolic disorders contribute to tumor development. We applied proteomic and lipidomic profiling approaches to Pten-null NASH liver and tumors. Circulating fatty acid composition was also characterized in these mice. The relevance to human NASH and HCC was further validated. This integrative proteomic and lipidomic study from mouse to human and from liver to blood identified the following disease signatures: (i) an HCC signature: upregulated hepatic scd1/scd2, fads2, and acsl5:acsl1 ratio, elevated vaccenic and erucic acids, and reduced margaric and linoleic acids in both liver and plasma; (ii) a NASH signature that correlates with tumor burden: upregulated hepatic elovl6, elevated oleic, adrenic, and osbond acids, and reduced cervonic acid in liver and plasma; and (iii) a NASH signature: reduced hepatic and circulating lignoceric and eicosapentaenoic acids. Altogether, these results show the role of lipid-modifying enzymes converting saturated fatty acids (SFA) to monounsaturated fatty acids (MUFA) in HCC and the importance of an increased ratio of long chain n6-polyunsaturated fatty acids over n3-polyunsaturated fatty acids in NASH and HCC risk. They also highlight the relevance of the Pten-null model for studies related to NASH and HCC and show that circulating lipid metabolome provides a direct read of lipid changes in the liver. Most importantly, novel candidate targets for HCC diagnosis, therapy, risk assessment, and prevention were identified. ©2013 AACR.

  20. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov.

    Science.gov (United States)

    Gupta, Radhey S; Naushad, Sohail; Baker, Sheridan

    2015-03-01

    The Halobacteria constitute one of the largest groups within the Archaea. The hierarchical relationship among members of this large class, which comprises a single order and a single family, has proven difficult to determine based upon 16S rRNA gene trees and morphological and physiological characteristics. This work reports detailed phylogenetic and comparative genomic studies on >100 halobacterial (haloarchaeal) genomes containing representatives from 30 genera to investigate their evolutionary relationships. In phylogenetic trees reconstructed on the basis of 32 conserved proteins, using both neighbour-joining and maximum-likelihood methods, two major clades (clades A and B) encompassing nearly two-thirds of the sequenced haloarchaeal species were strongly supported. Clades grouping the same species/genera were also supported by the 16S rRNA gene trees and trees for several individual highly conserved proteins (RpoC, EF-Tu, UvrD, GyrA, EF-2/EF-G). In parallel, our comparative analyses of protein sequences from haloarchaeal genomes have identified numerous discrete molecular markers in the form of conserved signature indels (CSI) in protein sequences and conserved signature proteins (CSPs) that are found uniquely in specific groups of haloarchaea. Thirteen CSIs in proteins involved in diverse functions and 68 CSPs that are uniquely present in all or most genome-sequenced haloarchaea provide novel molecular means for distinguishing members of the class Halobacteria from all other prokaryotes. The members of clade A are distinguished from all other haloarchaea by the unique shared presence of two CSIs in the ribose operon protein and small GTP-binding protein and eight CSPs that are found specifically in members of this clade. Likewise, four CSIs in different proteins and five other CSPs are present uniquely in members of clade B and distinguish them from all other haloarchaea. Based upon their specific clustering in phylogenetic trees for different gene

  1. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  2. Echinococcus oligarthrus in the subtropical region of Argentina: First integration of morphological and molecular analyses determines two distinct populations.

    Science.gov (United States)

    Arrabal, Juan Pablo; Avila, Hector Gabriel; Rivero, Maria Romina; Camicia, Federico; Salas, Martin Miguel; Costa, Sebastián A; Nocera, Carlos G; Rosenzvit, Mara C; Kamenetzky, Laura

    2017-06-15

    Echinococcosis is a parasitic zoonosis that is considered as a neglected disease by the World Health Organization. The species Echinococcus oligarthrus is one of the causative agents of Neotropical echinococcosis, which is a poorly understood disease that requires a complex medical examination, may threaten human life, and is frequently associated with a low socioeconomic status. Morphological and genetic diversity in E. oligarthrus remains unknown. The aim of this work is to identify and characterize E. oligarthrus infections in sylvatic animals from the Upper Paraná Atlantic Forest in the province of Misiones, Argentina, by following an integrative approach that links morphological, genetic and ecological aspects. This study demonstrates, for the first time, one of the complete life cycles of E. oligarthrus in an important ecoregion. The Upper Paraná Atlantic Forest constitutes the largest remnant continuous forest of the Atlantic Forest, representing 7% of the world's biodiversity. This is the first molecular determination of E. oligarthrus in Argentina. In addition, the agouti (Dasyprocta azarae), the ocelot (Leopardus pardalis) and the puma (Puma concolor) were identified as sylvatic hosts of Neotropical echinococcosis caused by E. oligarthrus. Mitochondrial and nuclear molecular marker analyses showed a high genetic diversity in E. oligarthrus. Moreover, the genetic distance found among E. oligarthrus isolates is higher than the one observed among Echinococcus granulosus genotypes, which clearly indicates that there are at least two different E. oligarthrus populations in Argentina. This study provides valuable information to understand the underlying conditions that favour the maintenance of E. oligarthrus in sylvatic cycles and to evaluate its zoonotic significance for devising preventive measures for human and animal wellbeing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  4. On psychoanalytic supervision as signature pedagogy.

    Science.gov (United States)

    Watkins, C Edward

    2014-04-01

    What is signature pedagogy in psychoanalytic education? This paper examines that question, considering why psychoanalytic supervision best deserves that designation. In focusing on supervision as signature pedagogy, I accentuate its role in building psychoanalytic habits of mind, habits of hand, and habits of heart, and transforming theory and self-knowledge into practical product. Other facets of supervision as signature pedagogy addressed in this paper include its features of engagement, uncertainty, formation, and pervasiveness, as well as levels of surface, deep, and implicit structure. Epistemological, ontological, and axiological in nature, psychoanalytic supervision engages trainees in learning to do, think, and value what psychoanalytic practitioners in the field do, think, and value: It is, most fundamentally, professional preparation for competent, "good work." In this paper, effort is made to shine a light on and celebrate the pivotal role of supervision in "making" or developing budding psychoanalysts and psychoanalytic psychotherapists. Now over a century old, psychoanalytic supervision remains unparalleled in (1) connecting and integrating conceptualization and practice, (2) transforming psychoanalytic theory and self-knowledge into an informed analyzing instrument, and (3) teaching, transmitting, and perpetuating the traditions, practice, and culture of psychoanalytic treatment.

  5. Measurement-device-independent quantum digital signatures

    Science.gov (United States)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  6. Ricebase: a breeding and genetics platform for rice, integrating individual molecular markers, pedigrees and whole-genome-based data.

    Science.gov (United States)

    Edwards, J D; Baldo, A M; Mueller, L A

    2016-01-01

    Ricebase (http://ricebase.org) is an integrative genomic database for rice (Oryza sativa) with an emphasis on combining datasets in a way that maintains the key links between past and current genetic studies. Ricebase includes DNA sequence data, gene annotations, nucleotide variation data and molecular marker fragment size data. Rice research has benefited from early adoption and extensive use of simple sequence repeat (SSR) markers; however, the majority of rice SSR markers were developed prior to the latest rice pseudomolecule assembly. Interpretation of new research using SNPs in the context of literature citing SSRs requires a common coordinate system. A new pipeline, using a stepwise relaxation of stringency, was used to map SSR primers onto the latest rice pseudomolecule assembly. The SSR markers and experimentally assayed amplicon sizes are presented in a relational database with a web-based front end, and are available as a track loaded in a genome browser with links connecting the browser and database. The combined capabilities of Ricebase link genetic markers, genome context, allele states across rice germplasm and potentially user curated phenotypic interpretations as a community resource for genetic discovery and breeding in rice. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.

  7. Fast and General Method To Predict the Physicochemical Properties of Druglike Molecules Using the Integral Equation Theory of Molecular Liquids.

    Science.gov (United States)

    Palmer, David S; Mišin, Maksim; Fedorov, Maxim V; Llinas, Antonio

    2015-09-08

    We report a method to predict physicochemical properties of druglike molecules using a classical statistical mechanics based solvent model combined with machine learning. The RISM-MOL-INF method introduced here provides an accurate technique to characterize solvation and desolvation processes based on solute-solvent correlation functions computed by the 1D reference interaction site model of the integral equation theory of molecular liquids. These functions can be obtained in a matter of minutes for most small organic and druglike molecules using existing software (RISM-MOL) (Sergiievskyi, V. P.; Hackbusch, W.; Fedorov, M. V. J. Comput. Chem. 2011, 32, 1982-1992). Predictions of caco-2 cell permeability and hydration free energy obtained using the RISM-MOL-INF method are shown to be more accurate than the state-of-the-art tools for benchmark data sets. Due to the importance of solvation and desolvation effects in biological systems, it is anticipated that the RISM-MOL-INF approach will find many applications in biophysical and biomedical property prediction.

  8. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    Directory of Open Access Journals (Sweden)

    Ram Vinay Pandey

    Full Text Available Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  9. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    Science.gov (United States)

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  10. A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models

    Science.gov (United States)

    Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.

    2018-03-01

    We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.

  11. Initial Semantics for Strengthened Signatures

    Directory of Open Access Journals (Sweden)

    André Hirschowitz

    2012-02-01

    Full Text Available We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax. Our strengthened arities admit colimits, which allows the treatment of the λ-calculus with explicit substitution.

  12. Retail applications of signature verification

    Science.gov (United States)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  13. Magnetic Signature Analysis & Validation System

    National Research Council Canada - National Science Library

    Vliet, Scott

    2001-01-01

    The Magnetic Signature Analysis and Validation (MAGSAV) System is a mobile platform that is used to measure, record, and analyze the perturbations to the earth's ambient magnetic field caused by object such as armored vehicles...

  14. Signature Pedagogy: A Literature Review of Social Studies and Technology Research

    Science.gov (United States)

    Beck, Dennis; Eno, Jenni

    2012-01-01

    A literature review of 121 peer-reviewed articles, books, and conference proceedings was conducted to determine the signature pedagogies of social studies education and technology integration. The authors found that the signature social studies pedagogy is based on two primary instructional models: direct-instruction and inquiry-based,…

  15. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd

    DEFF Research Database (Denmark)

    Wang, Zichen; Monteiro, Caroline D.; Jagodnik, Kathleen M.

    2016-01-01

    Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene...... signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization....

  16. Digital "Testimonio" as a Signature Pedagogy for Latin@ Studies

    Science.gov (United States)

    Benmayor, Rina

    2012-01-01

    This article proposes the curricular integration of digital "testimonio" as a "signature" pedagogy in Latin@ Studies. The "testimonio" tradition of urgent narratives and the creative multimedia languages of digital storytelling--text, voice, image, and sound--invite historically marginalized subjects, especially younger generations, to author and…

  17. 21 CFR 11.50 - Signature manifestations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Signature manifestations. 11.50 Section 11.50 Food... RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.50 Signature manifestations. (a) Signed electronic...: (1) The printed name of the signer; (2) The date and time when the signature was executed; and (3...

  18. 76 FR 30542 - Adult Signature Services

    Science.gov (United States)

    2011-05-26

    ... POSTAL SERVICE 39 CFR Part 111 Adult Signature Services AGENCY: Postal Service\\TM\\. ACTION: Final..., Domestic Mail Manual (DMM[supreg]) 503.8, to add a new extra service called Adult Signature. This new service has two available options: Adult Signature Required and Adult Signature Restricted Delivery. DATES...

  19. 1 CFR 18.7 - Signature.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents submitted...

  20. Attribute-Based Digital Signature System

    NARCIS (Netherlands)

    Ibraimi, L.; Asim, Muhammad; Petkovic, M.

    2011-01-01

    An attribute-based digital signature system comprises a signature generation unit (1) for signing a message (m) by generating a signature (s) based on a user secret key (SK) associated with a set of user attributes, wherein the signature generation unit (1) is arranged for combining the user secret

  1. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    International Nuclear Information System (INIS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-01-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme. (paper)

  2. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  3. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis.

    Directory of Open Access Journals (Sweden)

    Emmanuel Dias-Neto

    2009-12-01

    Full Text Available Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i the counting of transducing units and (ii the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges.We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU, with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs approximately 250-fold for generating 10(6 ligand sequences.Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is superior to TU-counting plus Sanger

  4. Determining uranium speciation in contaminated soils by molecular spectroscopic methods: Examples from the Uranium in Soils Integrated Demonstration

    International Nuclear Information System (INIS)

    Allen, P.G.; Berg, J.M.; Chisholm-Brause, C.J.; Conradson, S.D.; Donohoe, R.J.; Morris, D.E.; Musgrave, J.A.; Tait, C.D.

    1994-01-01

    The US Department of Energy's former uranium production facility located at Fernald, OH (18 mi NW of Cincinnati) is the host site for an Integrated Demonstration for remediation of uranium-contaminated soils. A wide variety of source terms for uranium contamination have been identified reflecting the diversity of operations at the facility. Most of the uranium contamination is contained in the top ∼1/2 m of soil, but uranium has been found in perched waters indicating substantial migration. In support of the development of remediation technologies and risk assessment, we are conducting uranium speciation studies on untreated and treated soils using molecular spectroscopies. Untreated soils from five discrete sites have been analyzed. We have found that ∼80--90% of the uranium exists as hexavalent UO 2 2+ species even though many source terms consisted of tetravalent uranium species such as UO 2 . Much of the uranium exists as microcrystalline precipitates (secondary minerals). There is also clear evidence for variations in uranium species from the microscopic to the macroscopic scale. However, similarities in speciation at sites having different source terms suggest that soil and groundwater chemistry may be as important as source term in defining the uranium speciation in these soils. Characterization of treated soils has focused on materials from two sites that have undergone leaching using conventional extractants (e.g., carbonate, citrate) or novel chelators such as Tiron. Redox reagents have also been used to facilitate the leaching process. Three different classes of treated soils have been identified based on the speciation of uranium remaining in the soils. In general, the effective treatments decrease the total uranium while increasing the ratio of U(IV) to U(VI) species

  5. Identification of host response signatures of infection.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to the pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for

  6. A Provably Secure Aggregate Signature Scheme for Healthcare Wireless Sensor Networks.

    Science.gov (United States)

    Shen, Limin; Ma, Jianfeng; Liu, Ximeng; Miao, Meixia

    2016-11-01

    Wireless sensor networks (WSNs) are being used in a wide range of applications for healthcare monitoring, like heart rate monitors and blood pressure monitors, which can minimize the need for healthcare professionals. In medical system, sensors on or in patients produce medical data which can be easily compromised by a vast of attacks. Although signature schemes can protect data authenticity and data integrity, when the number of users involved in the medical system becomes huge, the bandwidth and storage cost will rise sharply so that existing signature schemes are inapplicability for WSNs. In this paper, we propose an efficient aggregate signature scheme for healthcare WSNs according to an improved security model, which can combine multiple signatures into a single aggregate signature. The length of such an aggregate signature may be as long as that of an individual one, which can greatly decrease the bandwidth and storage cost for networks.

  7. Medicinal Chemistry and Molecular Modeling: An Integration to Teach Drug Structure-Activity Relationship and the Molecular Basis of Drug Action

    Science.gov (United States)

    Carvalho, Ivone; Borges, Aurea D. L.; Bernardes, Lilian S. C.

    2005-01-01

    The use of computational chemistry and the protein data bank (PDB) to understand and predict the chemical and molecular basis involved in the drug-receptor interactions is discussed. A geometrical and chemical overview of the great structural similarity in the substrate and inhibitor is provided.

  8. A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration

    International Nuclear Information System (INIS)

    Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan

    2007-01-01

    We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains

  9. An algorithm to discover gene signatures with predictive potential

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2010-09-01

    Full Text Available Abstract Background The advent of global gene expression profiling has generated unprecedented insight into our molecular understanding of cancer, including breast cancer. For example, human breast cancer patients display significant diversity in terms of their survival, recurrence, metastasis as well as response to treatment. These patient outcomes can be predicted by the transcriptional programs of their individual breast tumors. Predictive gene signatures allow us to correctly classify human breast tumors into various risk groups as well as to more accurately target therapy to ensure more durable cancer treatment. Results Here we present a novel algorithm to generate gene signatures with predictive potential. The method first classifies the expression intensity for each gene as determined by global gene expression profiling as low, average or high. The matrix containing the classified data for each gene is then used to score the expression of each gene based its individual ability to predict the patient characteristic of interest. Finally, all examined genes are ranked based on their predictive ability and the most highly ranked genes are included in the master gene signature, which is then ready for use as a predictor. This method was used to accurately predict the survival outcomes in a cohort of human breast cancer patients. Conclusions We confirmed the capacity of our algorithm to generate gene signatures with bona fide predictive ability. The simplicity of our algorithm will enable biological researchers to quickly generate valuable gene signatures without specialized software or extensive bioinformatics training.

  10. Theoretical Characterizaiton of Visual Signatures (Muzzle Flash)

    Science.gov (United States)

    Kashinski, D. O.; Scales, A. N.; Vanderley, D. L.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.

    2014-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet and infrared spectra of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. We are currently employing quantum chemistry methods at various levels of sophistication to optimize molecular geometries, compute vibrational frequencies, and determine the optical spectra of specific gas-phase molecules and radicals of interest. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A comparison of computational results to experimental values found in the literature is used to assess the affect of basis set and functional choice on calculation accuracy. The current status of this work will be presented at the conference. Work supported by the ARL, and USMA.

  11. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  12. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    OpenAIRE

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-01-01

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular com...

  13. State conditions transferability of vapor-liquid equilibria via fluctuation solution theory with correlation function integrals from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.J.; Hansen, Flemming Yssing

    2007-01-01

    on isobaric–isothermal molecular dynamics (NPT-MD) simulations, using force field parameters published in the literature and fitted CHARMM force field parameters. Systems studied previously [S. Christensen, G.H. Peters, F.Y. Hansen, J.P. O’Connell, J. Abildskov, Molecular Simulation 33 (2007) 449...

  14. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    Energy Technology Data Exchange (ETDEWEB)

    Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Weare, Jonathan Q., E-mail: weare@uchicago.edu [Department of Mathematics, University of Chicago, Chicago, Illinois 60637 (United States); Weare, John H., E-mail: jweare@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up

  15. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.

    Science.gov (United States)

    Bylaska, Eric J; Weare, Jonathan Q; Weare, John H

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a

  16. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    International Nuclear Information System (INIS)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-01-01

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t i (trajectory positions and velocities x i = (r i , v i )) to time t i+1 (x i+1 ) by x i+1 = f i (x i ), the dynamics problem spanning an interval from t 0 …t M can be transformed into a root finding problem, F(X) = [x i − f(x (i−1 )] i =1,M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H 2 O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a

  17. Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Richard J., E-mail: Richard.J.Cooper@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Pedentchouk, Nikolai; Hiscock, Kevin M.; Disdle, Paul [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Krueger, Tobias [IRI THESys, Humboldt University, 10099 Berlin (Germany); Rawlins, Barry G. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom)

    2015-07-01

    apportionment of organic matter sources. Median organic matter contributions ranged from 22% to 52% for trees, 29% to 50% for herbaceous perennials, 17% to 34% for C{sub 3} graminoids and 3% to 7% for C{sub 4} graminoids. The results presented here clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach. - Highlights: • Organic contributions from trees, herbs and C{sub 3}/C{sub 4} graminoids are apportioned. • δ{sup 2}H provides strong discrimination between plant functional types. • δ{sup 13}C provides strong contrasts between C{sub 3} and C{sub 4} plants. • δ{sup 2}H and δ{sup 13}C values could not differentiate aquatic and terrestrial species. • n-Alkane ratios compliment isotopic discrimination.

  18. Supplementary Material for: Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro

    KAUST Repository

    Bortell, Nikki; Basova, Liana; Semenova, Svetlana; Fox, Howard; Ravasi, Timothy; Marcondes, Maria

    2017-01-01

    Abstract Background Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. Methods We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. Results We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. Conclusions Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.

  19. Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    Full Text Available BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI commonly associated with refractory mesial temporal lobe epilepsy (RMTLE. In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS or without (NFS febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs. Co-expression network analysis showed that: i CA3 transcriptomic profiles differ according to the IPI; ii FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE: CA3 transcriptional signatures and dentate gyrus morphology fairly

  20. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro

    KAUST Repository

    Bortell, Nikki

    2017-03-09

    BackgroundAstrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use.MethodsWe developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders.ResultsWe identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes.ConclusionsGene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.

  1. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro

    KAUST Repository

    Bortell, Nikki; Basova, Liana; Semenova, Svetlana; Fox, Howard S.; Ravasi, Timothy; Marcondes, Maria Cecilia G.

    2017-01-01

    BackgroundAstrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use.MethodsWe developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders.ResultsWe identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes.ConclusionsGene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.

  2. Gene-expression signatures of Atlantic salmon's plastic life cycle.

    Science.gov (United States)

    Aubin-Horth, Nadia; Letcher, Benjamin H; Hofmann, Hans A

    2009-09-15

    How genomic expression differs as a function of life history variation is largely unknown. Atlantic salmon exhibits extreme alternative life histories. We defined the gene-expression signatures of wild-caught salmon at two different life stages by comparing the brain expression profiles of mature sneaker males and immature males, and early migrants and late migrants. In addition to life-stage-specific signatures, we discovered a surprisingly large gene set that was differentially regulated-at similar magnitudes, yet in opposite direction-in both life history transitions. We suggest that this co-variation is not a consequence of many independent cellular and molecular switches in the same direction but rather represents the molecular equivalent of a physiological shift orchestrated by one or very few master regulators.

  3. Gene-expression signatures of Atlantic salmon's plastic life cycle

    Science.gov (United States)

    Aubin-Horth, N.; Letcher, B.H.; Hofmann, H.A.

    2009-01-01

    How genomic expression differs as a function of life history variation is largely unknown. Atlantic salmon exhibits extreme alternative life histories. We defined the gene-expression signatures of wild-caught salmon at two different life stages by comparing the brain expression profiles of mature sneaker males and immature males, and early migrants and late migrants. In addition to life-stage-specific signatures, we discovered a surprisingly large gene set that was differentially regulated-at similar magnitudes, yet in opposite direction-in both life history transitions. We suggest that this co-variation is not a consequence of many independent cellular and molecular switches in the same direction but rather represents the molecular equivalent of a physiological shift orchestrated by one or very few master regulators. ?? 2009 Elsevier Inc. All rights reserved.

  4. Five Guidelines for Selecting Hydrological Signatures

    Science.gov (United States)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to

  5. Molecular Signatures and Phylogenomic Analysis of the Genus Burkholderia: Proposal for Division of this Genus into the Emended Genus Burkholderia Containing Pathogenic Organisms and a New Genus Paraburkholderia gen. nov. Harboring Environmental Species

    Directory of Open Access Journals (Sweden)

    Aman eSawana

    2014-12-01

    Full Text Available The genus Burkholderia contains large number of diverse species which are not reliably distinguished by the available biochemical or molecular characteristics. We report here results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequences, Burkholderia species grouped into two major clades. Within these main clades a number of smaller clades were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs that are uniquely found in different clades of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I which contains all clinically relevant members of the genus as well as the phytopathogenic Burkholderia species. The second main clade (Clade II composed of the environmental Burkholderia species, is also distinguished by 2 of the identified CSIs. Additionally, our work has also identified 3 CSIs that are specific for the Burkholderia cepacia complex, 4 CSIs that are uniquely found in the Burkholderia pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and for development of novel diagnostic assays for the clinically important members of the group. Based upon the results from different lines of studies, a division of the genus Burkholderia into two genera is proposed. In this new proposal, the emended genus Burkholderia will contain only the clinically relevant and phytopathogenic Burkholderia species, whereas all other Burkholderia spp. are transferred to a new genus

  6. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer.

    Science.gov (United States)

    Nguyen, Minh Nam; Choi, Tae Gyu; Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-10-13

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies.

  7. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  8. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    Directory of Open Access Journals (Sweden)

    María Prieto-Calvo

    2014-12-01

    Full Text Available High hydrostatic pressure (HHP is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200–900 cm−1, mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  9. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques.

    Science.gov (United States)

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-12-18

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  10. Digital Signature Schemes with Complementary Functionality and Applications

    OpenAIRE

    S. N. Kyazhin

    2012-01-01

    Digital signature schemes with additional functionality (an undeniable signature, a signature of the designated confirmee, a signature blind, a group signature, a signature of the additional protection) and examples of their application are considered. These schemes are more practical, effective and useful than schemes of ordinary digital signature.

  11. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  12. Induced Temporal Signatures for Point-Source Detection

    International Nuclear Information System (INIS)

    Stephens, Daniel L.; Runkle, Robert C.; Carlson, Deborah K.; Peurrung, Anthony J.; Seifert, Allen; Wyatt, Cory R.

    2005-01-01

    Detection of radioactive point-sized sources is inherently divided into two regimes encompassing stationary and moving detectors. The two cases differ in their treatment of background radiation and its influence on detection sensitivity. In the stationary detector case the statistical fluctuation of the background determines the minimum detectable quantity. In the moving detector case the detector may be subjected to widely and irregularly varying background radiation, as a result of geographical and environmental variation. This significant systematic variation, in conjunction with the statistical variation of the background, requires a conservative threshold to be selected to yield the same false-positive rate as the stationary detection case. This results in lost detection sensitivity for real sources. This work focuses on a simple and practical modification of the detector geometry that increase point-source recognition via a distinctive temporal signature. A key part of this effort is the integrated development of both detector geometries that induce a highly distinctive signature for point sources and the development of statistical algorithms able to optimize detection of this signature amidst varying background. The identification of temporal signatures for point sources has been demonstrated and compared with the canonical method showing good results. This work demonstrates that temporal signatures are efficient at increasing point-source discrimination in a moving detector system

  13. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  14. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors.

    Science.gov (United States)

    Ory, Catherine; Ugolin, Nicolas; Hofman, Paul; Schlumberger, Martin; Likhtarev, Illya A; Chevillard, Sylvie

    2013-11-01

    We previously identified two highly discriminating and predictive radiation-induced transcriptomic signatures by comparing series of sporadic and postradiotherapy thyroid tumors (322-gene signature), and by reanalyzing a previously published data set of sporadic and post-Chernobyl thyroid tumors (106-gene signature). The aim of the present work was (i) to compare the two signatures in terms of gene expression deregulations and molecular features/pathways, and (ii) to test the capacity of the postradiotherapy signature in classifying the post-Chernobyl series of tumors and reciprocally of the post-Chernobyl signature in classifying the postradiotherapy-induced tumors. We now explored if postradiotherapy and post-Chernobyl papillary thyroid carcinomas (PTC) display common molecular features by comparing molecular pathways deregulated in the two tumor series, and tested the potential of gene subsets of the postradiotherapy signature to classify the post-Chernobyl series (14 sporadic and 12 post-Chernobyl PTC), and reciprocally of gene subsets of the post-Chernobyl signature to classify the postradiotherapy series (15 sporadic and 12 postradiotherapy PTC), by using conventional principal component analysis. We found that the five genes common to the two signatures classified the learning/training tumors (used to search these signatures) of both the postradiotherapy (seven PTC) and the post-Chernobyl (six PTC) thyroid tumor series as compared with the sporadic tumors (seven sporadic PTC in each series). Importantly, these five genes were also effective for classifying independent series of postradiotherapy (five PTC) and post-Chernobyl (six PTC) tumors compared to independent series of sporadic tumors (eight PTC and six PTC respectively; testing tumors). Moreover, part of each postradiotherapy (32 genes) and post-Chernobyl signature (16 genes) cross-classified the respective series of thyroid tumors. Finally, several molecular pathways deregulated in post

  15. Comparison of transcriptomic signature of post-Chernobyl and post radiotherapy thyroid tumors

    International Nuclear Information System (INIS)

    Ory, Catherine; Ugolin, Nicolas; Chevillard, Sylvie; Hofman, Paul; Schlumberger, Martin; Likhtarev, Illya A.

    2013-01-01

    We previously identified two highly discriminating and predictive radiation-induced transcriptomic signatures by comparing series of sporadic and post radiotherapy thyroid tumors (322-gene signature), and by reanalyzing a previously published data set of sporadic and post-Chernobyl thyroid tumors (106-gene signature). The aim of the present work was (i) to compare the two signatures in terms of gene expression de-regulations and molecular features/pathways, and (ii) to test the capacity of the post radiotherapy signature in classifying the post-Chernobyl series of tumors and reciprocally of the post-Chernobyl signature in classifying the post radiotherapy-induced tumors. We now explored if post radiotherapy and post-Chernobyl papillary thyroid carcinomas (PTC) display common molecular features by comparing molecular pathways deregulated in the two tumor series, and tested the potential of gene subsets of the post radiotherapy signature to classify the post-Chernobyl series (14 sporadic and 12 post-Chernobyl PTC), and reciprocally of gene subsets of the post-Chernobyl signature to classify the post radiotherapy series (15 sporadic and 12 post radiotherapy PTC), by using conventional principal component analysis. We found that the five genes common to the two signatures classified the learning/training tumors (used to search these signatures) of both the post radiotherapy (seven PTC) and the post-Chernobyl (six PTC) thyroid tumor series as compared with the sporadic tumors (seven sporadic PTC in each series). Importantly, these five genes were also effective for classifying independent series of post radiotherapy (five PTC) and post-Chernobyl (six PTC) tumors compared to independent series of sporadic tumors (eight PTC and six PTC respectively; testing tumors). Moreover, part of each post radiotherapy (32 genes) and post-Chernobyl signature (16 genes) cross-classified the respective series of thyroid tumors. Finally, several molecular pathways deregulated in post

  16. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  17. Unique loss of heterozygosity of murine thymic lymphomas as a candidate of radiation signature

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko [National Inst. of Radiological Sciences, Chiba (Japan); Wakana, Shigeharu; Okumoto, Masaaki

    1999-06-01

    Signature(s) of prior exposure to carcinogens have immediate application to the identification of environmental risk factors. Such signatures have been sought to aid in developing policies for the protection from risks of environmental carcinogens. Although ionizing radiation is a potent carcinogenic agent, little is known about possible radiation signatures. This is because radiation induces a broad spectrum of DNA lesions. Here we describe a diversity of K-ras mutations and a unique locus with frequent loss of heterozygisity (LOH) on chromosome 11 of radiation induced thymic lymphomas. The latter locus has never been observed to be similarly altered in either ethylnitrosourea-induced or spontaneously developed lymphomas. These results describe, to our knowledge for the first time, a molecular basis for radiation signature. (author)

  18. Signature Pedagogy in Theatre Arts

    Science.gov (United States)

    Kornetsky, Lisa

    2017-01-01

    Critique in undergraduate theatre programs is at the heart of training actors at all levels. It is accepted as the signature pedagogy and is practiced in multiple ways. This essay defines critique and presents the case for why it is used as the single most important way that performers come to understand the language, values, and discourse of the…

  19. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  20. Quark-Gluon Plasma Signatures

    CERN Document Server

    Vogt, Ramona

    1998-01-01

    Aspects of quark-gluon plasma signatures that can be measured by CMS are discussed. First the initial conditions of the system from minijet production are introduced, including shadowing effects. Color screening of the Upsilon family is then presented, followed by energy loss effects on charm and bottom hadrons, high Pt jets and global observables.

  1. Galaxy interactions : The HI signature

    NARCIS (Netherlands)

    Sancisi, R; Barnes, JE; Sanders, DB

    1999-01-01

    HI observations are an excellent tool for investigating tidal interactions. Ongoing major and minor interactions which can lead to traumatic mergers or to accretion and the triggering of star formation, show distinct HI signatures. Interactions and mergers in the recent past can also be recognized

  2. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species.

    Science.gov (United States)

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  3. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    Science.gov (United States)

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  4. An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer.

    Science.gov (United States)

    Omer, Ankur; Singh, Poonam

    2017-05-01

    A serious challenge in cancer treatment is to reposition the activity of various already known drug candidates against cancer. There is a need to rewrite and systematically analyze the detailed mechanistic aspect of cellular networks to gain insight into the novel role played by various molecules. Most Human Immunodeficiency Virus infection-associated cancers are caused by oncogenic viruses like Human Papilloma Viruses and Epstein-Bar Virus. As the onset of AIDS-associated cancers marks the severity of AIDS, there might be possible interconnections between the targets and mechanism of both the diseases. We have explored the possibility of certain antiviral compounds to act against major AIDS-associated cancers: Kaposi's Sarcoma, Non-Hodgkin Lymphoma, and Cervical Cancer with the help of systems pharmacology approach that includes screening for targets and molecules through the construction of a series of drug-target and drug-target-diseases network. Two molecules (Calanolide A and Chaetochromin B) and the target "HRAS" were finally screened with the help of molecular docking and molecular dynamics simulation. The results provide novel antiviral molecules against HRAS target to treat AIDS defining cancers and an insight for understanding the pharmacological, therapeutic aspects of similar unexplored molecules against various cancers.

  5. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  6. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data.

    Science.gov (United States)

    Kocis, Petr; Tolar, Martin; Yu, Jeremy; Sinko, William; Ray, Soumya; Blennow, Kaj; Fillit, Howard; Hey, John A

    2017-06-01

    Amyloid beta (Aβ) oligomers play a critical role in the pathogenesis of Alzheimer's disease (AD) and represent a promising target for drug development. Tramiprosate is a small-molecule Aβ anti-aggregation agent that was evaluated in phase III clinical trials for AD but did not meet the primary efficacy endpoints; however, a pre-specified subgroup analysis revealed robust, sustained, and clinically meaningful cognitive and functional effects in patients with AD homozygous for the ε4 allele of apolipoprotein E4 (APOE4/4 homozygotes), who carry an increased risk for the disease. Therefore, to build on this important efficacy attribute and to further improve its pharmaceutical properties, we have developed a prodrug of tramiprosate ALZ-801 that is in advanced stages of clinical development. To elucidate how tramiprosate works, we investigated its molecular mechanism of action (MOA) and the translation to observed clinical outcomes. The two main objectives of this research were to (1) elucidate and characterize the MOA of tramiprosate via an integrated application of three independent molecular methodologies and (2) present an integrated translational analysis that links the MOA, conformation of the target, stoichiometry, and pharmacokinetic dose exposure to the observed clinical outcome in APOE4/4 homozygote subjects. We used three molecular analytical methods-ion mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR), and molecular dynamics-to characterize the concentration-related interactions of tramiprosate versus Aβ42 monomers and the resultant conformational alterations affecting aggregation into oligomers. The molecular stoichiometry of the tramiprosate versus Aβ42 interaction was further analyzed in the context of clinical pharmacokinetic dose exposure and central nervous system Aβ42 levels (i.e., pharmacokinetic-pharmacodynamic translation in humans). We observed a multi-ligand interaction of tramiprosate with monomeric Aβ42

  7. Online Signature Verification on MOBISIG Finger-Drawn Signature Corpus

    Directory of Open Access Journals (Sweden)

    Margit Antal

    2018-01-01

    Full Text Available We present MOBISIG, a pseudosignature dataset containing finger-drawn signatures from 83 users captured with a capacitive touchscreen-based mobile device. The database was captured in three sessions resulting in 45 genuine signatures and 20 skilled forgeries for each user. The database was evaluated by two state-of-the-art methods: a function-based system using local features and a feature-based system using global features. Two types of equal error rate computations are performed: one using a global threshold and the other using user-specific thresholds. The lowest equal error rate was 0.01% against random forgeries and 5.81% against skilled forgeries using user-specific thresholds that were computed a posteriori. However, these equal error rates were significantly raised to 1.68% (random forgeries case and 14.31% (skilled forgeries case using global thresholds. The same evaluation protocol was performed on the DooDB publicly available dataset. Besides verification performance evaluations conducted on the two finger-drawn datasets, we evaluated the quality of the samples and the users of the two datasets using basic quality measures. The results show that finger-drawn signatures can be used by biometric systems with reasonable accuracy.

  8. A new species of Tometes Valenciennes 1850 (Characiformes: Serrasalmidae from Tocantins-Araguaia River Basin based on integrative analysis of molecular and morphological data.

    Directory of Open Access Journals (Sweden)

    Marcelo C Andrade

    Full Text Available A new large serrasalmid species of Tometes is described from the Tocantins-Araguaia River Basin. Tometes siderocarajensis sp. nov. is currently found in the rapids of the Itacaiúnas River Basin, and formerly inhabited the lower Tocantins River. The new species can be distinguished from all congeners, except from T. ancylorhynchus, by the presence of lateral space between 1st and 2nd premaxillary teeth, and by the absence of lateral cusps in these two teeth. However, T. siderocarajensis sp. nov. can be differentiated from syntopic congener T. ancylorhynchus by an entirely black with mottled red body in live specimens, densely pigmented pelvic fins with a high concentration of dark chromatophores, and the presence of 39 to 41 rows of circumpeduncular scales (vs. silvery body coloration with slightly reddish overtones on middle flank during breeding period in live specimens, hyaline to slightly pale coloration on distalmost region of pelvic fins, and 30 to 36 rows of circumpeduncular scales. Additionally, molecular sequence shows that T. siderocarajensis sp. nov. is reciprocally monophyletic, and diagnosable from all congeners by having two autapomorphic molecular characters in the mitochondrial gene COI. The phylogenetic reconstruction still show that T. siderocarajensis sp. nov. is closely related to T. trilobatus. This is the first molecular study using an integrative taxonomic approach based on morphological and molecular sequence data for all described species of Tometes. These findings increase the number of formally described species of Tometes to seven. A key to the Tometes species is provided.

  9. Unsupervised signature extraction from forensic logs

    NARCIS (Netherlands)

    Thaler, S.M.; Menkovski, V.; Petkovic, M.; Altun, Y.; Das, K.; Mielikäinen, T.; Malerba, D.; Stefanowski, J.; Read, J.; Žitnik, M.; Ceci, M.

    2017-01-01

    Signature extraction is a key part of forensic log analysis. It involves recognizing patterns in log lines such that log lines that originated from the same line of code are grouped together. A log signature consists of immutable parts and mutable parts. The immutable parts define the signature, and

  10. 7 CFR 718.9 - Signature requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Signature requirements. 718.9 Section 718.9... MULTIPLE PROGRAMS General Provisions § 718.9 Signature requirements. (a) When a program authorized by this chapter or Chapter XIV of this title requires the signature of a producer; landowner; landlord; or tenant...

  11. 42 CFR 424.36 - Signature requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Signature requirements. 424.36 Section 424.36... (CONTINUED) MEDICARE PROGRAM CONDITIONS FOR MEDICARE PAYMENT Claims for Payment § 424.36 Signature requirements. (a) General rule. The beneficiary's own signature is required on the claim unless the beneficiary...

  12. 17 CFR 12.12 - Signature.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Signature. 12.12 Section 12.12... General Information and Preliminary Consideration of Pleadings § 12.12 Signature. (a) By whom. All... document on behalf of another person. (b) Effect. The signature on any document of any person acting either...

  13. 25 CFR 213.10 - Lessor's signature.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Lessor's signature. 213.10 Section 213.10 Indians BUREAU... MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING How to Acquire Leases § 213.10 Lessor's signature... thumbprint which shall be designated as “right” or “left” thumbmark. Such signatures must be witnessed by two...

  14. Signature effects in 2-qp rotational bands

    International Nuclear Information System (INIS)

    Jain, A.K.; Goel, A.

    1992-01-01

    The authors briefly review the progress in understanding the 2-qp rotational bands in odd-odd nuclei. Signature effects and the phenomenon of signature inversion are discussed. The Coriolis coupling appears to have all the ingredients to explain the inversion. Some recent work on signature dependence in 2-qp bands of even-even nuclei is also discussed; interesting features are pointed out

  15. 27 CFR 17.6 - Signature authority.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Signature authority. 17.6... PRODUCTS General Provisions § 17.6 Signature authority. No claim, bond, tax return, or other required... other proper notification of signature authority has been filed with the TTB office where the required...

  16. High-speed high-security signatures

    NARCIS (Netherlands)

    Bernstein, D.J.; Duif, N.; Lange, T.; Schwabe, P.; Yang, B.Y.

    2011-01-01

    This paper shows that a $390 mass-market quad-core 2.4GHz Intel Westmere (Xeon E5620) CPU can create 108000 signatures per second and verify 71000 signatures per second on an elliptic curve at a 2128 security level. Public keys are 32 bytes, and signatures are 64 bytes. These performance figures

  17. Some Proxy Signature and Designated verifier Signature Schemes over Braid Groups

    OpenAIRE

    Lal, Sunder; Verma, Vandani

    2009-01-01

    Braids groups provide an alternative to number theoretic public cryptography and can be implemented quite efficiently. The paper proposes five signature schemes: Proxy Signature, Designated Verifier, Bi-Designated Verifier, Designated Verifier Proxy Signature And Bi-Designated Verifier Proxy Signature scheme based on braid groups. We also discuss the security aspects of each of the proposed schemes.

  18. Nonlinear control of magnetic signatures

    Science.gov (United States)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  19. Nonlinear analysis of dynamic signature

    Science.gov (United States)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.