WorldWideScience

Sample records for integrated model systems

  1. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  2. Cotangent Models for Integrable Systems

    Science.gov (United States)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  3. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  4. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  5. CTBT integrated verification system evaluation model supplement

    International Nuclear Information System (INIS)

    EDENBURN, MICHAEL W.; BUNTING, MARCUS; PAYNE, ARTHUR C. JR.; TROST, LAWRENCE C.

    2000-01-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0

  6. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  7. Which coordinate system for modelling path integration?

    Science.gov (United States)

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd

  8. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...... approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects...

  9. Integrated Modeling of Complex Optomechanical Systems

    Science.gov (United States)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  10. Treatment of pathological gambling - integrative systemic model.

    Science.gov (United States)

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan

    2015-03-01

    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  11. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  12. Systems Integration Operations/Logistics Model (SOLMOD)

    International Nuclear Information System (INIS)

    Vogel, L.W.; Joy, D.S.

    1990-01-01

    SOLMOD is a discrete event simulation model written in FORTRAN 77 and operates in a VAX or PC environment. The model emulates the movement and interaction of equipment and radioactive waste as it is processed through the FWMS. SOLMOD can be used to measure the impacts of different operating schedules and rules, system configurations, reliability, availability, maintainability (RAM) considerations, and equipment and other resource availabilities on the performance of processes comprising the FWMS and how these factors combine to determine overall system performance. Model outputs are a series of measurements of the amount and characteristics of waste at selected points in the FWMS and the utilization of resources needed to transport and process the waste. The model results may be reported on a yearly, monthly, weekly, or daily basis to facilitate analysis. 3 refs., 3 figs., 2 tabs

  13. Integrated modelling of near field and engineered barrier system processes

    International Nuclear Information System (INIS)

    Lamont, A.; Gansemer, J.

    1994-01-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the Engineered barrier System has been developed to assist project managers at LLNL in identifying areas where research emphasis should be placed. The model was designed to be highly modular so that a model of an individual process could be easily modified or replaced without interfering with the models of other processes. The modules modelling container failure and the dissolution of nuclides include particularly detailed, temperature dependent models of their corresponding processes

  14. Chapter 4: Establishment of the integrated modelling system

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter summarizes how the Integrated Modelling System has been established. The Danubian Lowland Information System (DLIS) has been developed, providing a central database and Geographical Information System (GIS) with facilities for data storage, maintenance, processing and presentation. In addition, data can be imported and exported in the file formats readable for the applied modelling system

  15. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  16. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  17. Modeling of Integrated Security Systems in Higher Education

    Directory of Open Access Journals (Sweden)

    Iskandar Maratovich Azhmuhamedov

    2013-06-01

    Full Text Available It is proposed the model, which takes into account the main features of the integrated system of information security: weak structure, bad formal description, fuzzy description of the status of system components and the relationships between them. Adequacy of the model is tested on the example of Astrakhan State Technical University.

  18. Integrated Spatio-Temporal Ecological Modeling System

    Science.gov (United States)

    1998-07-01

    models that we hold in our conscious (and subconscious ) minds. Chapter 3 explores how this approach is being augmented with the more formal capture...This approach makes it possible to add new simulation model components to I- STEMS without having to reprogram existing components. The steps required

  19. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  20. Integrated Control Modeling for Propulsion Systems Using NPSS

    Science.gov (United States)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  1. Integrated dynamic modeling and management system mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  2. Integrated dynamic modeling and management system mission analysis

    International Nuclear Information System (INIS)

    Lee, A.K.

    1994-01-01

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied

  3. An Integrated Simulation Tool for Modeling the Human Circulatory System

    Science.gov (United States)

    Asami, Ken'ichi; Kitamura, Tadashi

    This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.

  4. Systems Modeling to Implement Integrated System Health Management Capability

    Science.gov (United States)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close

  5. Modelling of multidimensional quantum systems by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1990-01-01

    The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs

  6. Systematic integration of experimental data and models in systems biology.

    Science.gov (United States)

    Li, Peter; Dada, Joseph O; Jameson, Daniel; Spasic, Irena; Swainston, Neil; Carroll, Kathleen; Dunn, Warwick; Khan, Farid; Malys, Naglis; Messiha, Hanan L; Simeonidis, Evangelos; Weichart, Dieter; Winder, Catherine; Wishart, Jill; Broomhead, David S; Goble, Carole A; Gaskell, Simon J; Kell, Douglas B; Westerhoff, Hans V; Mendes, Pedro; Paton, Norman W

    2010-11-29

    The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system.

  7. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  8. Integrated Baseline System (IBS) Version 2.0: Models guide

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  9. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  10. Progress in integrated energy-economy-environment model system development

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao

    1987-11-01

    The Integrated Energy-Economy-Environment Model System has been developed for providing analytical tools for the system analysis and technology assessments in the field of nuclear research and development. This model system consists of the following four model groups. The first model block installs 5 models and can serve to analyze and generate long-term scenarios on economy-energy-environment evolution. The second model block installs 2 models and can serve to analyze the structural transition phenomena in energy-economy-environment interactions. The third model block installs 2 models and can handle power reactor installation strategy problem and long-term fuel cycle analysis. The fourth model block installs 5 models and codes and can treats cost-benefit-risk analysis and assessments. This report describes mainly the progress and the outlines of application of the model system in these years after the first report on the research and development of the model system (JAERI-M 84 - 139). (author)

  11. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  12. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  13. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  14. Integrated modelling of ecosystem services and energy systems research

    Science.gov (United States)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  15. A System Dynamics Model for Integrated Decision Making ...

    Science.gov (United States)

    EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, environmental, and ecological factors into their decisions to promote community sustainability. To help achieve this goal, EPA researchers have developed systems approaches to account for the linkages among resources, assets, and outcomes managed by a community. System dynamics (SD) is a member of the family of systems approaches and provides a framework for dynamic modeling that can assist with assessing and understanding complex issues across multiple dimensions. To test the utility of such tools when applied to a real-world situation, the EPA has developed a prototype SD model for community sustainability using the proposed Durham-Orange Light Rail Project (D-O LRP) as a case study.The EPA D-O LRP SD modeling team chose the proposed D-O LRP to demonstrate that an integrated modeling approach could represent the multitude of related cross-sectoral decisions that would be made and the cascading impacts that could result from a light rail transit system connecting Durham and Chapel Hill, NC. In keeping with the SHC vision described above, the proposal for the light rail is a starting point solution for the more intractable problems of population growth, unsustainable land use, environmenta

  16. Identification of BWR feedwater control system using autoregressive integrated model

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Andoh, Yasumasa; Yamamoto, Fumiaki; Idesawa, Masato; Itoh, Kazuo.

    1983-01-01

    With the view of contributing toward more reliable interpretation of noise behavior under normal operating conditions, which is essential for correct detection and/or diagnosis of incipient anomalies in nuclear power plants by noise analysis technique, studies has been undertaken of the noise behavior in a BWR feedwater control system, with use made of a multivariate autoregressive modeling technique. Noise propagation mechanisms as well as open- and closed-loop responses in the system are identified from noise data by a method in which an autoregressive integrated model is introduced. The closed-loop responses obtained with this method are compared with transient data from an actual test, and confirmed to be reliable in estimating semi-quantitative features. Other analyses performed with this model also yield results that appear most reasonable in their physical characteristics. These results have demonstrated the effectiveness of the noise analyses technique based on the autoregressive integrated model for evaluating and diagnosing the performance of feedwater control systems. (author)

  17. Advancing coupled human-earth system models: The integrated Earth System Model Project

    Science.gov (United States)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  18. An integrated urban drainage system model for assessing renovation scheme.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J; Zhao, D

    2012-01-01

    Due to sustained economic growth in China over the last three decades, urbanization has been on a rapidly expanding track. In recent years, regional industrial relocations were also accelerated across the country from the east coast to the west inland. These changes have led to a large-scale redesign of urban infrastructures, including the drainage system. To help the reconstructed infrastructures towards a better sustainability, a tool is required for assessing the efficiency and environmental performance of different renovation schemes. This paper developed an integrated dynamic modeling tool, which consisted of three models for describing the sewer, the wastewater treatment plant (WWTP) and the receiving water body respectively. Three auxiliary modules were also incorporated to conceptualize the model, calibrate the simulations, and analyze the results. The developed integrated modeling tool was applied to a case study in Shenzhen City, which is one of the most dynamic cities and facing considerable challenges for environmental degradation. The renovation scheme proposed to improve the environmental performance of Shenzhen City's urban drainage system was modeled and evaluated. The simulation results supplied some suggestions for the further improvement of the renovation scheme.

  19. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  20. A Liouville integrable hierarchy, symmetry constraint, new finite-dimensional integrable systems, involutive solution and expanding integrable models

    International Nuclear Information System (INIS)

    Sun Yepeng; Chen Dengyuan

    2006-01-01

    A new spectral problem and the associated integrable hierarchy of nonlinear evolution equations are presented in this paper. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy. Moreover, the corresponding Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, new finite-dimensional completely integrable Hamiltonian systems in the Liouville sense. Further, an involutive representation of solution of each equation in the hierarchy is given. Finally, expanding integrable models of the hierarchy are constructed by using a new Loop algebra

  1. Model of the Russian Federation Construction Innovation System: An Integrated Participatory Systems Approach

    OpenAIRE

    Emiliya Suprun; Oz Sahin; Rodney A. Stewart; Kriengsak Panuwatwanich

    2016-01-01

    This research integrates systemic and participatory techniques to model the Russian Federation construction innovation system. Understanding this complex construction innovation system and determining the best levers for enhancing it require the dynamic modelling of a number of factors, such as flows of resources and activities, policies, uncertainty and time. To build the foundations for such a dynamic model, the employed study method utilised an integrated stakeholder-based participatory ap...

  2. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  3. The integration between Business Model Canvas and Manufacturing System Design

    Science.gov (United States)

    Prasetyawan, Y.; Maulida, N.; Lutvitasari, M. R.

    2018-04-01

    Business Model Canvas (BMC) is an increasingly popular business design tool especially for a start-up business and new business player. In general, BMC seeks a balance between effective working patterns with suppliers, good relation with customers and ability to understand and manage internal resources. This balance will expedite the implementation of Manufacturing System Design (MSD). The existing use of BMC and MSD is frequently applied separately at various business levels. BMC business plan is primarily to have engagement with customers and explore potential revenue to increase profits, while MSD primarily aims to meet production targets with available resources. The purpose of this research is to provide a roadmap to align BMC and MSD. A series of simple mathematical (modified) and integration models are created to connect BMC and MSD. Several results in various industries (new, developed and mature) are presented and used as examples of implementation.

  4. [Development method of healthcare information system integration based on business collaboration model].

    Science.gov (United States)

    Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong

    2015-02-01

    Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.

  5. The Intersystem Model of Psychotherapy: An Integrated Systems Treatment Approach

    Science.gov (United States)

    Weeks, Gerald R.; Cross, Chad L.

    2004-01-01

    This article introduces the intersystem model of psychotherapy and discusses its utility as a truly integrative and comprehensive approach. The foundation of this conceptually complex approach comes from dialectic metatheory; hence, its derivation requires an understanding of both foundational and integrational constructs. The article provides a…

  6. Integrated modeling of natural and human systems - problems and initiatives

    Science.gov (United States)

    Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.

    2009-12-01

    's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.

  7. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  8. System Dynamics Model for VMI&TPL Integrated Supply Chains

    Directory of Open Access Journals (Sweden)

    Guo Li

    2013-01-01

    Full Text Available This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods consolidation and risk sharing in VMI&TPL integrated supply chain is analyzed in detail from the aspects of bullwhip effect, inventory level, service level, and so on.

  9. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  10. Integration of a Three-Dimensional Process-Based Hydrological Model into the Object Modeling System

    Directory of Open Access Journals (Sweden)

    Giuseppe Formetta

    2016-01-01

    Full Text Available The integration of a spatial process model into an environmental modeling framework can enhance the model’s capabilities. This paper describes a general methodology for integrating environmental models into the Object Modeling System (OMS regardless of the model’s complexity, the programming language, and the operating system used. We present the integration of the GEOtop model into the OMS version 3.0 and illustrate its application in a small watershed. OMS is an environmental modeling framework that facilitates model development, calibration, evaluation, and maintenance. It provides innovative techniques in software design such as multithreading, implicit parallelism, calibration and sensitivity analysis algorithms, and cloud-services. GEOtop is a physically based, spatially distributed rainfall-runoff model that performs three-dimensional finite volume calculations of water and energy budgets. Executing GEOtop as an OMS model component allows it to: (1 interact directly with the open-source geographical information system (GIS uDig-JGrass to access geo-processing, visualization, and other modeling components; and (2 use OMS components for automatic calibration, sensitivity analysis, or meteorological data interpolation. A case study of the model in a semi-arid agricultural catchment is presented for illustration and proof-of-concept. Simulated soil water content and soil temperature results are compared with measured data, and model performance is evaluated using goodness-of-fit indices. This study serves as a template for future integration of process models into OMS.

  11. Integrated modelling of the glass-iron-clay system

    Energy Technology Data Exchange (ETDEWEB)

    Bildstein, O

    2007-01-15

    This report summarizes the results of integrated calculations on the near-field evolution in the VHLW/steel/bentonite/clay system. The calculations of the near-field evolution include different components: the vitrified waste packages, the steel container, the bentonite-based EBS (optional), the EDZ and the geological medium. Coupled reaction-transport (X-T) is used to simulate the corrosion of the steel canister and the glass alteration phase in presence of corrosion products (CPs), looking at mass transfer for chemical elements, especially iron and silica, pH, and porosity change. Calculations as performed give actual parameters for PA calculations: rate of glass alteration (through the calculated pH) as a function of time, extension of altered zone for iron-clay interactions with their own transport parameters, nature of CPs, effect on porosity distribution. According to the operational model currently used at the CEA and the calculations performed on the glass-iron-clay system, the alteration rate of glass and the evolution of the system strongly depend on the timing of CPs saturation with respect to silica sorption. The fate of silica which can be sorbed or precipitate is crucial to the lifetime of glass and to the overall evolution of the system. The other process that might influence the glass is the porosity decrease due to the precipitation of CPs and silica rich phases. However, it is difficult to assign a safety functions to clogging. It is scarcely observed in experiments, either because the conditions are not met for clogging or because the timescale of experiments does not allow for observable clogging. Moreover, the effect of mechanical stress in the NF has to be accounted for in the assessment of the effect of porosity changes. (author)

  12. Integrated modelling of the glass-iron-clay system

    International Nuclear Information System (INIS)

    Bildstein, O.

    2007-01-01

    This report summarizes the results of integrated calculations on the near-field evolution in the VHLW/steel/bentonite/clay system. The calculations of the near-field evolution include different components: the vitrified waste packages, the steel container, the bentonite-based EBS (optional), the EDZ and the geological medium. Coupled reaction-transport (X-T) is used to simulate the corrosion of the steel canister and the glass alteration phase in presence of corrosion products (CPs), looking at mass transfer for chemical elements, especially iron and silica, pH, and porosity change. Calculations as performed give actual parameters for PA calculations: rate of glass alteration (through the calculated pH) as a function of time, extension of altered zone for iron-clay interactions with their own transport parameters, nature of CPs, effect on porosity distribution. According to the operational model currently used at the CEA and the calculations performed on the glass-iron-clay system, the alteration rate of glass and the evolution of the system strongly depend on the timing of CPs saturation with respect to silica sorption. The fate of silica which can be sorbed or precipitate is crucial to the lifetime of glass and to the overall evolution of the system. The other process that might influence the glass is the porosity decrease due to the precipitation of CPs and silica rich phases. However, it is difficult to assign a safety functions to clogging. It is scarcely observed in experiments, either because the conditions are not met for clogging or because the timescale of experiments does not allow for observable clogging. Moreover, the effect of mechanical stress in the NF has to be accounted for in the assessment of the effect of porosity changes. (author)

  13. Model of the Russian Federation Construction Innovation System: An Integrated Participatory Systems Approach

    Directory of Open Access Journals (Sweden)

    Emiliya Suprun

    2016-08-01

    Full Text Available This research integrates systemic and participatory techniques to model the Russian Federation construction innovation system. Understanding this complex construction innovation system and determining the best levers for enhancing it require the dynamic modelling of a number of factors, such as flows of resources and activities, policies, uncertainty and time. To build the foundations for such a dynamic model, the employed study method utilised an integrated stakeholder-based participatory approach coupled with structural analysis (MICMAC—Matrice d'Impacts Croisés Multiplication Appliquée à un Classement Cross-Impact Matrix. This method identified the key factors of the Russian Federation construction innovation system, their causal relationship (i.e., influence/dependence map and, ultimately, a causal loop diagram. The generated model reveals pathways to improving construction innovation in the Russian Federation and underpins the future development of an operationalised system dynamics model.

  14. Vertical integration models to prepare health systems for capitation.

    Science.gov (United States)

    Cave, D G

    1995-01-01

    Health systems will profit most under capitation if their vertical integration strategy provides operational stability, a strong primary care physician base, efficient delivery of medical services, and geographic access to physicians. Staff- and equity-based systems best meet these characteristics for success because they have one governance structure and a defined mission statement. Moreover, physician bonds are strong because these systems maximize physicians' income potential and control the revenue stream.

  15. Systems integration.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A

    2006-01-01

    The paper presents a view of systems integration, from an ergonomics/human factors perspective, emphasising the process of systems integration as is carried out by humans. The first section discusses some of the fundamental issues in systems integration, such as the significance of systems boundaries, systems lifecycle and systems entropy, issues arising from complexity, the implications of systems immortality, and so on. The next section outlines various generic processes for executing systems integration, to act as guides for practitioners. These address both the design of the system to be integrated and the preparation of the wider system in which the integration will occur. Then the next section outlines some of the human-specific issues that would need to be addressed in such processes; for example, indeterminacy and incompleteness, the prediction of human reliability, workload issues, extended situation awareness, and knowledge lifecycle management. For all of these, suggestions and further readings are proposed. Finally, the conclusions section reiterates in condensed form the major issues arising from the above.

  16. Integrated modelling of Priority Pollutants in stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Ledin, Anna; Mikkelsen, Peter Steen

    2012-01-01

    The increasing focus on urban diffuse sources of Priority Pollutants (PPs) has highlighted stormwater as an important contributor to contamination of natural water bodies. This study presents an example of an integrated model developed to be able to quantify PP loads discharged by stormwater...

  17. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    Science.gov (United States)

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  18. Design of model based LQG control for integrated building systems

    NARCIS (Netherlands)

    Yahiaoui, A.; Hensen, J.L.M.; Soethout, L.L.; Paassen, van A.H.C.

    2006-01-01

    The automation of the operation of integrated building systems requires using modern control techniques to enhance the quality of the building indoor environments. This paper describes the theatrical base and practical application of an optimal dynamic regulator using modelbased Linear Quadratic

  19. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  20. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOS) and stormwater drainage systems However, some micropollutants tend to appear in more than one environmental...... medium (air, water, sediment, soil, groundwater, etc) In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment The combined model was tested on a hypothetical catchment using two scenarios...... on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS) A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations...

  1. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2009-01-01

    Integrated urban water system (IUWS) modelling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants have the tendency to occur in more than one...... environmental medium. In this work, a multimedia fate and transport model (MFTM) is “wrapped around” a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: a reference scenario...... and a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in a reduced surface water concentration for the latter scenario. However, the model also showed that this was at the expense...

  2. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  3. A systemic model for differentiating school technology integration

    Directory of Open Access Journals (Sweden)

    Tel Amiel

    2016-07-01

    Full Text Available School technology integration rarely begins with school or educator choice. It is part of a wider context where external and internal factors have direct influence on the goals and tools that are adopted over time. The objective of this study is to investigate the systemic conditions that contribute or inhibit the development of different activities by teachers making use of new media. We compiled a list of well-known conditions for technology integration success and mapped these in the historical and culturally bound perspective of activity theory (cultural historical activity theory. We conducted a multiple case study analysis of four schools, public and private. The results point to unique and distinctive scenarios even when homogeneity would be expected, reinforcing the argument that material conditions do not determine pedagogical outcomes nor do they determine changes in practice. Beyond this, the study proposes a methodology that can help elicit tensions in technology integration, pointing to avenues for school development.

  4. Experimental Investigation and Modeling of Integrated Tri-generation Systems

    Science.gov (United States)

    Cetinkaya, Eda

    Energy demand in the world is increasing with population growth and higher living standards. Today, the need for energy requires a focus on renewable sources without abandoning fossil fuels. Efficient use of energy is one of the most important tasks in modern energy systems to achieve. In addition to the energy need, growing environmental concerns are linked with energy is emerged. Multi-purpose energy generation allows a higher efficiency by generating more outputs with the same input in the same system. Tri-generation systems are expected to provide at least three commodities, such as heating, cooling, desalination, storable fuel production and some other useful outputs, in addition to power generation. In this study, an experimental investigation of gasification is presented and two integrated tri-generation systems are proposed. The first integrated tri-generation system (System 1) utilizes solar energy as input and the outputs are power, fresh water and hot water. It consists of four sub-systems, namely solar power tower system, desalination system, Rankine cycle and organic Rankine cycle (ORC). The second integrated tri-generation system (System 2) utilizes coal and biomass as input and the outputs are power, fuel and hot water. It consists of five sub-systems: gasification plant, Brayton cycle, Rankine cycle, Fischer-Tropsch synthesis plant and an organic Rankine cycle (ORC). Experimental investigation includes coal and biomass gasification, where the experimental results of synthesis gas compositions are utilized in the analysis of the second systems. To maximize efficiency, heat losses from the system should be minimized through a recovery system to make the heat a useful commodity for other systems, such as ORCs which can utilize the low-grade heat. In this respect, ORCs are first analyzed for three different configurations in terms of energy and exergy efficiencies altering working fluids to increase the power output. Among two types of coal and one type

  5. Ground Vehicle System Integration (GVSI) and Design Optimization Model.

    Science.gov (United States)

    1996-07-30

    number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will

  6. HyPEP FY-07 Report: System Integration Model Development

    Energy Technology Data Exchange (ETDEWEB)

    C. H. Oh; E. S. Kim; S. R. Sherman; R. Vilim

    2007-04-01

    The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

  7. Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics

    OpenAIRE

    Lechevalier , David; Narayanan , Anantha; Rachuri , Sudarsan; Foufou , Sebti; Lee , Y Tina

    2016-01-01

    Part 3: Interoperability and Systems Integration; International audience; To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformatio...

  8. An integrated chronic disease management model: a diagonal approach to health system strengthening in South Africa.

    Science.gov (United States)

    Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn

    2014-11-01

    The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.

  9. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  10. Integrated Multimedia Modeling System Response to Regional Land Management Change

    Science.gov (United States)

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  11. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  12. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  13. Computer-aided operations engineering with integrated models of systems and operations

    Science.gov (United States)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  14. Modelling of the activity system - development of an evaluation method for integrated system validation

    International Nuclear Information System (INIS)

    Norros, Leena; Savioja, Paula

    2004-01-01

    In this paper we present our recent research which focuses on creating an evaluation method for human-system interfaces of complex systems. The method is aimed for use in the validation of modernised nuclear power plant (NPP) control rooms, and other complex systems with high reliability requirements. The task in validation is to determine whether the human-system functions safely and effectively. This question can be operationalized to the selection of relevant operational features and their appropriate acceptance criteria. Thus, there is a need to ensure that the results of the evaluation can be generalized so that they serve the purpose of integrated system validation. The definition of the appropriate acceptance criteria provides basis for the judgement of the appropriateness of the performance of the system. We propose that the operational situations and the acceptance criteria should be defined based on modelling of the NPP operation that is comprehended as an activity system. We developed a new core-tasks modelling framework. It is a formative modelling approach that combines causal, functional and understanding explanations of system performance. In this paper we reason how modelling can be used as a medium to determine the validity of the emerging control room system. (Author)

  15. ENEL overall PWR plant models and neutronic integrated computing systems

    International Nuclear Information System (INIS)

    Pedroni, G.; Pollachini, L.; Vimercati, G.; Cori, R.; Pretolani, F.; Spelta, S.

    1987-01-01

    To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed by means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses

  16. Modeling integrated water user decisions in intermittent supply systems

    Science.gov (United States)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  17. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  18. Towards Integration of CAx Systems and a Multiple-View Product Modeller in Mechanical Design

    Directory of Open Access Journals (Sweden)

    H. Song

    2005-01-01

    Full Text Available This paper deals with the development of an integration framework and its implementation for the connexion of CAx systems and multiple-view product modelling. The integration framework is presented regarding its conceptual level and the implementation level is described currently with the connexion of a functional modeller, a multiple-view product modeller, an optimisation module and a CAD system. The integration between the multiple-view product modeller and CATIA V5 based on the STEP standard is described in detail. Finally, the presented works are discussed and future research developments are suggested. 

  19. Integrating Geohydrological Models In ATES-Systems Control

    Science.gov (United States)

    Bloemendal, Martin

    2015-04-01

    1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of

  20. Integrating Safety and Mission Assurance into Systems Engineering Modeling Practices

    Science.gov (United States)

    Beckman, Sean; Darpel, Scott

    2015-01-01

    During the early development of products, flight, or experimental hardware, emphasis is often given to the identification of technical requirements, utilizing such tools as use case and activity diagrams. Designers and project teams focus on understanding physical and performance demands and challenges. It is typically only later, during the evaluation of preliminary designs that a first pass, if performed, is made to determine the process, safety, and mission quality assurance requirements. Evaluation early in the life cycle, though, can yield requirements that force a fundamental change in design. This paper discusses an alternate paradigm for using the concepts of use case or activity diagrams to identify safety hazard and mission quality assurance risks and concerns using the same systems engineering modeling tools being used to identify technical requirements. It contains two examples of how this process might be used in the development of a space flight experiment, and the design of a Human Powered Pizza Delivery Vehicle, along with the potential benefits to decrease development time, and provide stronger budget estimates.

  1. One model to fit all? The pursuit of integrated earth system models in GAIM and AIMES

    OpenAIRE

    Uhrqvist, Ola

    2015-01-01

    Images of Earth from space popularized the view of our planet as a single, fragile entity against the vastness and darkness of space. In the 1980s, the International Geosphere-Biosphere Program (IGBP) was set up to produce a predictive understanding of this fragile entity as the ‘Earth System.’ In order to do so, the program sought to create a common research framework for the different disciplines involved. It suggested that integrated numerical models could provide such a framework. The pap...

  2. A time use survey derived integrative human-physical household system energy performance model

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Y.S. [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Architecture

    2009-07-01

    This paper reported on a virtual experiment that extrapolated the stochastic yet patterned behaviour of the integrative model of a 4-bedroom house in Chicago with 4 different household compositions. The integrative household system theory considers the household as a combination of 2 sub-systems, notably the physical system and the human system. The physical system is the materials and devices of a dwelling, and the human system is the occupants that live within the dwelling. A third element is the environment that influences the operation of the 2 sub-systems. The human-physical integrative household energy model provided a platform to simulate the effect of sub-house energy conservation measures. The virtual experiment showed that the use of the bootstrap sampling approach on American Time Use Survey (ATUS) data to determine the occupant's stochastic energy consumption behaviour has resulted in a robust complex system model. Bell-shaped distributions were presented for annual appliance, heating and cooling load demands. The virtual experiment also pointed to the development of advanced multi-zone residential HVAC system as a suitable strategy for major residential energy efficiency improvement. The load profiles generated from the integrative model simulation were found to be in good agreement with those from field studies. It was concluded that the behaviour of the integrative model is a good representation of the energy consumption behaviour of real households. 10 refs., 4 tabs., 12 figs.

  3. A variational integrators approach to second order modeling and identification of linear mechanical systems

    NARCIS (Netherlands)

    Bruschetta, M.; Saccon, A.; Picci, G.

    2014-01-01

    The theory of variational integration provides a systematic procedure to discretize the equations of motion of a mechanical system, preserving key properties of the continuous time flow. The discrete-time model obtained by variational integration theory inherits structural conditions which in

  4. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  5. An integrated model for long-term power generation planning toward future smart electricity systems

    International Nuclear Information System (INIS)

    Zhang, Qi; Mclellan, Benjamin C.; Tezuka, Tetsuo; Ishihara, Keiichi N.

    2013-01-01

    Highlights: • An integrated model for planning future smart electricity systems was developed. • The model consists of an optimization model and an hour-by-hour simulation model. • The model was applied to Tokyo area, Japan in light of the Fukushima Accident. • Paths to best generation mixes of smart electricity systems were obtained. • Detailed hourly operation patterns in smart electricity systems were obtained. - Abstract: In the present study, an integrated planning model was developed to find economically/environmentally optimized paths toward future smart electricity systems with high level penetration of intermittent renewable energy and new controllable electric devices at the supply and demand sides respectively for regional scale. The integrated model is used to (i) plan the best power generation and capacity mixes to meet future electricity demand subject to various constraints using an optimization model; (ii) obtain detailed operation patterns of power plants and new controllable electric devices using an hour-by-hour simulation model based on the obtained optimized power generation mix. As a case study, the model was applied to power generation planning in the Tokyo area, Japan, out to 2030 in light of the Fukushima Accident. The paths toward best generation mixes of smart electricity systems in 2030 based on fossil fuel, hydro power, nuclear and renewable energy were obtained and the feasibility of the integrated model was proven

  6. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    Science.gov (United States)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  7. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  8. Modeling of capacitated transportation systems for integral scheduling

    NARCIS (Netherlands)

    Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.

    2003-01-01

    Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken into account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is

  9. Modeling of capacitated transportation systems for integral scheduling

    NARCIS (Netherlands)

    Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.

    2003-01-01

    Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken nto account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is

  10. An integrated transient model for simulating the operation of natural gas transport systems

    NARCIS (Netherlands)

    Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.

    This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground

  11. Dynamic modelling of micropollutants in the integrated urban wastewater system

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson

    hovedemne. Ved integreret modellering af stofferne pyren, der typisk findes i afstrømmet regnvand, og bisphenol-A, der forekommer ofte i spildevand, illustreres det at en forenklet konceptuel model kan bidrage til at øge procesforståelsen samt til at udvikle moniteringsprogrammer og emissions kontrol......-80% af middelværdien. Endelig diskuteres tilføjelser af specifikke processer til eksisterende aktiv slam modeller, og en Monod vækst- og nedbrydningsmodel baseret på et enkelt substrat er udviklet og anvendt til at beskrive nedbrydning af det østrogene stof bisphenol-A i et pilotskala renseanlæg...

  12. Integrated Fiber Optic Sensor and Modeling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space fission systems are being developed as safe and affordable space propulsion alternatives for long-term space exploration. The characterization of...

  13. An integrated 3D design, modeling and analysis resource for SSC detector systems

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.; Adams, T.; Anderson, M.K.; Davis, M.; Easom, B.; Gliozzi, J.; Hale, W.M.; Hupp, J.; Killian, K.; Krohn, M.; Leitch, R.; Lajczok, M.; Mason, L.; Mitchell, J.; Pohlen, J.; Wright, T.

    1989-01-01

    Integrated computer aided engineering and design (CAE/CAD) is having a significant impact on the way design, modeling and analysis is performed, from system concept exploration and definition through final design and integration. Experience with integrated CAE/CAD in high technology projects of scale and scope similar to SSC detectors leads them to propose an integrated computer-based design, modeling and analysis resource aimed specifically at SSC detector system development. The resource architecture emphasizes value-added contact with data and efficient design, modeling and analysis of components, sub-systems or systems with fidelity appropriate to the task. They begin with a general examination of the design, modeling and analysis cycle in high technology projects, emphasizing the transition from the classical islands of automation to the integrated CAE/CAD-based approach. They follow this with a discussion of lessons learned from various attempts to design and implement integrated CAE/CAD systems in scientific and engineering organizations. They then consider the requirements for design, modeling and analysis during SSC detector development, and describe an appropriate resource architecture. They close with a report on the status of the resource and present some results that are indicative of its performance. 10 refs., 7 figs

  14. Human Systems Integration Synthesis Model for Ship Design

    Science.gov (United States)

    2012-09-01

    33  b.   Diesel .......................................................................................35  c.  Gas Turbine ...acquire systems capable of maximizing the output of the Navy’s Human Capital. The term Human Capital is defined by Kaplan and Norton (2004, p. 13) as...Machine—engines: steam, diesel, gas turbine , or nuclear Prior to establishing a ship’s speed requirements, one must understand the forces that

  15. Optimization model of a system of crude oil distillation units whit heat integration and meta modeling

    International Nuclear Information System (INIS)

    Lopez, Diana C; Mahecha, Cesar A; Hoyos, Luis J; Acevedo, Leonardo; Villamizar Jaime F

    2009-01-01

    The process of crude distillation impacts the economy of any refinery in a considerable manner. Therefore, it is necessary to improve it taking good advantage of the available infrastructure, generating products that conform to the specifications without violating the equipment operating constraints or plant restrictions at industrial units. The objective of this paper is to present the development of an optimization model for a Crude Distillation Unit (CDU) system at a ECOPETROL S.A. refinery in Barrancabermeja, involving the typical restrictions (flow according to pipeline capacity, pumps, distillation columns, etc) and a restriction that has not been included in bibliographic reports for this type of models: the heat integration of streams from Atmospheric Distillation Towers (ADTs) and Vacuum Distillation Towers (VDT) with the heat exchanger networks for crude pre-heating. On the other hand, ADTs were modeled with Meta models in function of column temperatures and pressures, pumparounds flows and return temperatures, stripping steam flows, Jet EBP ASTM D-86 and Diesel EBP ASTM D-86. Pre-heating trains were modeled with mass and energy balances, and design equation of each heat exchanger. The optimization model is NLP, maximizing the system profit. This model was implemented in GAMSide 22,2 using the CONOPT solver and it found new operating points with better economic results than those obtained with the normal operation in the real plants. It predicted optimum operation conditions of 3 ADTs for constant composition crude and calculated the yields and properties of atmospheric products, additional to temperatures and duties of 27 Crude Oil exchangers.

  16. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  17. THE INTEGRATION MODEL OF SYSTEMS OF DISTANCE AND OF TRADITIONAL MATHEMATICS LEARNING OF SENIOR PUPILS

    OpenAIRE

    Игорь Николаевич Макарьев

    2013-01-01

    In this article the author dwells on the content and structure of the model of integration of system of distance learning to mathematics of senior pupils and traditional paradigm of education. This kind of integration is based on such principles as independence, individualization, flexibility, nonlinearity, openness. Specifics of the methodological support of distance mathematics learning are also analyzed. Particularly the author asserts that the system of distance mathematics learning can t...

  18. Development of the Mathematical Model of Integrated Management System for an Airline

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta

    2016-12-01

    Full Text Available At the present stage of airline development the most effective way to increase safety is to introduce a systematic approach to the management of the organization. The creation of a single integrated management system including the combination of resources will make it possible to maintain the necessary level of quality of aviation services with safety as a key indicator. The article offers a model of such an integrated management system for medium level airlines.

  19. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  20. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  1. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  2. Farm Household Economic Model of The Integrated Crop Livestock System: Conceptual and Empirical Study

    Directory of Open Access Journals (Sweden)

    Atien Priyanti

    2007-06-01

    Full Text Available An integrated approach to enhance rice production in Indonesia is very prospectus throughout the implementation of adapted and liable integrated program. One of the challenges in rice crop sub sector is the stagnation of its production due to the limitation of organic matter availability. This provides an opportunity for livestock development to overcome the problems on land fertility through the use of manure as the source of organic fertilizer. Ministry of Agriculture had implemented a program on Increasing Integrated Rice Productivity with an Integrated Crop Livestock System as one of the potential components since 2002. Integrated crop livestock system program with special reference to rice field and beef cattle is an alternative to enhance the potential development of agriculture sector in Indonesia. The implementation on this integrated program is to enhance rice production and productivity through a system involving beef cattle with its goal on increasing farmers’ income. Household economic model can be used as one of the analysis to evaluate the success of the implemented crop livestock system program. The specificity of the farmers is that rationality behavior of the role as production and consumption decision making. In this case, farmers perform the production to meet home consumption based on the resources that used directly for its production. The economic analysis of farmers household can be described to anticipate policy options through this model. Factors influencing farmers’ decisions and direct interrelations to production and consumption aspects that have complex implications for the farmers’ welfare of the integrated crop livestock system program.

  3. A comparison of Capri and SEAMLESS-IFas Integrated Modelling Systems, Chapter 11 in Environmental and Agricultural Modelling: Integrated Approaches for Policy Impact Assessement

    NARCIS (Netherlands)

    Britz, W.; Perez Dominguez, I.; Heckelei, T.

    2010-01-01

    SEAMLESS-IF and CAPRI are both integrated agricultural modelling systems for policy impact assessment at EU level, linking model components across scales and between the economic and bio-physical domains. However, the overall design, focus and representation of agricultural sub-systems vary between

  4. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; van de Mortel - Fronczak, J.M.; Rooda, J.E.

    2016-01-01

    Increasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering processes based on

  5. An Evaluation Model To Select an Integrated Learning System in a Large, Suburban School District.

    Science.gov (United States)

    Curlette, William L.; And Others

    The systematic evaluation process used in Georgia's DeKalb County School System to purchase comprehensive instructional software--an integrated learning system (ILS)--is described, and the decision-making model for selection is presented. Selection and implementation of an ILS were part of an instructional technology plan for the DeKalb schools…

  6. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    Science.gov (United States)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  7. Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model

    International Nuclear Information System (INIS)

    Tuya, Delgersaikhan; Obara, Toru

    2016-01-01

    Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.

  8. Functional integral and effective Hamiltonian t-J-V model of strongly correlated electron system

    International Nuclear Information System (INIS)

    Belinicher, V.I.; Chertkov, M.V.

    1990-09-01

    The functional integral representation for the generating functional of t-J-V model is obtained. In the case close to half filling this functional integral representation reduces the conventional Hamiltonian of t-J-V model to the Hamiltonian of the system containing holes and spins 1/2 at each lattice size. This effective Hamiltonian coincides with that one obtained one of the authors by different method. This Hamiltonian and its dynamical variables can be used for description of different magnetic phases of t-J-V model. (author). 16 refs

  9. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    Science.gov (United States)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial

  10. Coupling integrated assessment and earth system models: concepts and an application to land use change

    Science.gov (United States)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  11. A Proposed Analytical Model for Integrated Pick-and-Sort Systems

    Directory of Open Access Journals (Sweden)

    Recep KIZILASLAN

    2013-11-01

    Full Text Available In this study we present an analytical approach for integration of order picking and sortation operations which are the most important, labour intensive and costly activity for warehouses. Main aim is to investigate order picking and sorting efficiencies under different design issues as a function of order wave size. Integrated analytical model is proposed to estimate the optimum order picking and order sortation efficiency. The model, which has been tested by simulations with different illustrative examples, calculates the optimum wave size that solves the trade-off between picking and sorting operations and makes the order picking and sortations efficiency maximum. Our model also allow system designer to predict the order picking and sorting capacity for different system configurations. This study presents an innovative approach for integrated warehouse operations.

  12. Comprehensive Regional Modeling for Long-Range Planning: Linking Integrated Urban Models and Geographic Information Systems

    OpenAIRE

    Johnston, Robert; de la Barra, Thomas

    2000-01-01

    This study demonstrates the sequential linking of two types of models to permit the comprehensive evaluation of regional transportation and land use policies. First, we operate an integrated urban model (TRANUS), which represents both land and travel markets with zones and networks. The travel and land use projections from TRANUS are outlined, to demonstrate the general reasonableness of the results, as this is the first application of a market-based urban model in the US. Second, the land us...

  13. Integrated management systems

    CERN Document Server

    Bugdol, Marek

    2015-01-01

    Examining the challenges of integrated management, this book explores the importance and potential benefits of using an integrated approach as a cross-functional concept of management. It covers not only standardized management systems (e.g. International Organization for Standardization), but also models of self-assessment, as well as different types of integration. Furthermore, it demonstrates how processes and systems can be integrated, and how management efficiency can be increased. The major part of this book focuses on management concepts which use integration as a key tool of management processes (e.g. the systematic approach, supply chain management, virtual and network organizations, processes management and total quality management). Case studies, illustrations, and tables are also provided to exemplify and illuminate the content, as well as examples of successful and failed integrations. Providing a particularly useful resource to managers and specialists involved in the improvement of organization...

  14. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  15. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  16. Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems.

    Science.gov (United States)

    Rodrigues, Jean-Marie; Schulz, Stefan; Souvignet, Julien

    2015-01-01

    Quality management information systems for safety as a whole or for specific vigilances share the same information types but are not interoperable. An international initiative tries to develop an integrated information model for patient safety and vigilance reporting to support a global approach of heath care quality.

  17. LIANA Model Integration System - architecture, user interface design and application in MOIRA DSS

    Directory of Open Access Journals (Sweden)

    D. Hofman

    2005-01-01

    Full Text Available The LIANA Model Integration System is the shell application supporting model integration and user interface functionality required for the rapid construction and run-time support of the environmental decision support systems (EDSS. Internally it is constructed as the framework of C++ classes and functions covering most common tasks performed by the EDSS (such as managing of and alternative strategies, running of the chain of the models, supporting visualisation of the data with tables and graphs, keeping ranges and default values for input parameters etc.. EDSS is constructed by integration of LIANA system with the models or other applications such as GIS or MAA software. The basic requirements to the model or other application to be integrated is minimal - it should be a Windows or DOS .exe file and receive input and provide output as text files. For the user the EDSS is represented as the number of data sets describing scenario or giving results of evaluation of scenario via modelling. Internally data sets correspond to the I/O files of the models. During the integration the parameters included in each the data sets as well as specifications necessary to present the data set in GUI and export or import it to/from text file are provided with MIL_LIANA language. Visual C++ version of LIANA has been developed in the frame of MOIRA project and is used as the basis for the MOIRA Software Framework - the shell and user interface component of the MOIRA Decision Support System. At present, the usage of LIANA for the creation of a new EDSS requires changes to be made in its C++ code. The possibility to use LIANA for the new EDSS construction without extending the source code is achieved by substituting MIL_LIANA with the object-oriented LIANA language.

  18. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  19. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data

  20. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, Moh' d Sami S. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data. (author)

  1. Options of system integrated environment modelling in the predicated dynamic cyberspace

    Energy Technology Data Exchange (ETDEWEB)

    Janková, Martina; Dvořák, Jiří [Institute of Informatics, Faculty of Business and Management, Brno University of Technology, Brno (Czech Republic)

    2015-03-10

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.

  2. Options of system integrated environment modelling in the predicated dynamic cyberspace

    International Nuclear Information System (INIS)

    Janková, Martina; Dvořák, Jiří

    2015-01-01

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text

  3. Modelling and monitoring of integrated urban wastewater systems: review on status and perspectives

    DEFF Research Database (Denmark)

    Benedetti, L.; Langeveld, J.; Comeau, A.

    2013-01-01

    been investigated and several new or improved systems analysis methods have become available. New/improved software tools coupled with the current high computational capacity have enabled the application of integrated modelling to several practical cases, and advancements in monitoring water quantity...... and quality have been substantial and now allow the collecting of data in sufficient quality and quantity to permit using integrated models for real-time applications too. Further developments are warranted in the field of data quality assurance and efficient maintenance....

  4. Russian and Foreign Experience of Integration of Agent-Based Models and Geographic Information Systems

    Directory of Open Access Journals (Sweden)

    Konstantin Anatol’evich Gulin

    2016-11-01

    Full Text Available The article provides an overview of the mechanisms of integration of agent-based models and GIS technology developed by Russian and foreign researchers. The basic framework of the article is based on critical analysis of domestic and foreign literature (monographs, scientific articles. The study is based on the application of universal scientific research methods: system approach, analysis and synthesis, classification, systematization and grouping, generalization and comparison. The article presents theoretical and methodological bases of integration of agent-based models and geographic information systems. The concept and essence of agent-based models are explained; their main advantages (compared to other modeling methods are identified. The paper characterizes the operating environment of agents as a key concept in the theory of agent-based modeling. It is shown that geographic information systems have a wide range of information resources for calculations, searching, modeling of the real world in various aspects, acting as an effective tool for displaying the agents’ operating environment and allowing to bring the model as close as possible to the real conditions. The authors also focus on a wide range of possibilities for various researches in different spatial and temporal contexts. Comparative analysis of platforms supporting the integration of agent-based models and geographic information systems has been carried out. The authors give examples of complex socio-economic models: the model of a creative city, humanitarian assistance model. In the absence of standards for research results description, the authors focus on the models’ elements such as the characteristics of the agents and their operation environment, agents’ behavior, rules of interaction between the agents and the external environment. The paper describes the possibilities and prospects of implementing these models

  5. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    Science.gov (United States)

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Integrating observational and modelling systems for the management of the Great Barrier Reef

    Science.gov (United States)

    Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.

    2016-02-01

    Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.

  7. Scheduling Model for Renewable Energy Sources Integration in an Insular Power System

    Directory of Open Access Journals (Sweden)

    Gerardo J. Osório

    2018-01-01

    Full Text Available Insular power systems represent an asset and an excellent starting point for the development and analysis of innovative tools and technologies. The integration of renewable energy resources that has taken place in several islands in the south of Europe, particularly in Portugal, has brought more uncertainty to production management. In this work, an innovative scheduling model is proposed, which considers the integration of wind and solar resources in an insular power system in Portugal, with a strong conventional generation basis. This study aims to show the benefits of increasing the integration of renewable energy resources in this insular power system, and the objectives are related to minimizing the time for which conventional generation is in operation, maximizing profits, reducing production costs, and consequently, reducing greenhouse gas emissions.

  8. Power System and Energy Storage Models for Laser Integration on Naval Platforms

    Science.gov (United States)

    2015-09-30

    Power System and Energy Storage Models for Laser Integration on Naval Platforms A.L. Gattozzi, J.D. Herbst, R.E. Hebner Center for... Electromechanics , University of Texas Austin, Texas a.gattozzi@cem.utexas.edu J.A. Blau, K.R. Cohn, W.B. Colson, J.E. Sylvester, M.A. Woehrman Physics...emerging technologies present significant challenges to the electric power distribution and thermal management systems, particularly for

  9. A systems modelling framework for the design of integrated process control systems

    International Nuclear Information System (INIS)

    Lind, M.

    1983-12-01

    The paper describes a systems modelling methodology, called multilevel flow modelling, or MFM, which aims at describing complex production plants as designs, i.e. as systems having goals, functions and equipment realizing these functions. The modelling concepts are based on thermodynamics and lead to a system description in terms of multiple levels of interrelated mass or energy flow structures. The paper discusses as a basis for the modelling framework the general properties of artifacts or designs, characterizes the complexity of production systems and defines the MFM concepts which allow a consistent specification of goals and functions of these systems as generated in the process design. A modelling example is given and the application of the models for the design of plant control strategies is outlined. (author)

  10. A novel integrated renewable energy system modelling approach, allowing fast FPGA controller prototyping

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Ruiz, Alberto Parera; Cirstea, Marcian

    2008-01-01

    The paper describes a new holistic approach to the modeling of integrated renewable energy systems. The method is using the DK5 modeling/design environment from Celoxica and is based on the new Handel-C programming language. The goal of the work carried out was to achieve a combined model...... containing a Xilinx Spartan II FPGA and was successfully experimentally tested. This approach enables the design and fast hardware implementation of efficient controllers for Distributed Energy Resource (DER) hybrid systems....... of a photovoltaic energy system and a wind power system, which would allow an optimized holistic digital control system design, followed by rapid prototyping of the controller into a single Field Programmable Gate Array (FPGA). Initially, the system was simulated using Matlab / Simulink, to create a reference...

  11. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  12. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    Energy Technology Data Exchange (ETDEWEB)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  13. The Integrated Use of Enterprise and System Dynamics Modelling Techniques in Support of Business Decisions

    Directory of Open Access Journals (Sweden)

    K. Agyapong-Kodua

    2012-01-01

    Full Text Available Enterprise modelling techniques support business process (reengineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulation modelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink.

  14. The blackboard model - A framework for integrating multiple cooperating expert systems

    Science.gov (United States)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  15. Integrating Urban Infrastructure and Health System Impact Modeling for Disasters and Mass-Casualty Events

    Science.gov (United States)

    Balbus, J. M.; Kirsch, T.; Mitrani-Reiser, J.

    2017-12-01

    Over recent decades, natural disasters and mass-casualty events in United States have repeatedly revealed the serious consequences of health care facility vulnerability and the subsequent ability to deliver care for the affected people. Advances in predictive modeling and vulnerability assessment for health care facility failure, integrated infrastructure, and extreme weather events have now enabled a more rigorous scientific approach to evaluating health care system vulnerability and assessing impacts of natural and human disasters as well as the value of specific interventions. Concurrent advances in computing capacity also allow, for the first time, full integration of these multiple individual models, along with the modeling of population behaviors and mass casualty responses during a disaster. A team of federal and academic investigators led by the National Center for Disaster Medicine and Public Health (NCDMPH) is develoing a platform for integrating extreme event forecasts, health risk/impact assessment and population simulations, critical infrastructure (electrical, water, transportation, communication) impact and response models, health care facility-specific vulnerability and failure assessments, and health system/patient flow responses. The integration of these models is intended to develop much greater understanding of critical tipping points in the vulnerability of health systems during natural and human disasters and build an evidence base for specific interventions. Development of such a modeling platform will greatly facilitate the assessment of potential concurrent or sequential catastrophic events, such as a terrorism act following a severe heat wave or hurricane. This presentation will highlight the development of this modeling platform as well as applications not just for the US health system, but also for international science-based disaster risk reduction efforts, such as the Sendai Framework and the WHO SMART hospital project.

  16. System-wide Benchmark Simulation Model for integrated analysis of urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores-Alsina, X.; Gernaey, K. V.

    Interactions between different components (sewer, wastewater treatment plant (WWTP) and river) of an urban wastewater system (UWS) are widely recognized (Benedetti et al., 2013). This has resulted in an increasing interest in the modelling of the UWS. System-wide models take into account the inte...

  17. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE land cover change studies and integrated assessments of groundwater and surface water resources.

  18. Integration of a finite element generator model into a simulated HVDC connected system

    Energy Technology Data Exchange (ETDEWEB)

    Preston, T W; Sturgess, J P [GEC Alsthom Engineering Research Center, Stafford (United Kingdom)

    1994-12-31

    Within most system analysis programs generators and motors are represented by an equivalent circuit model either a 2-axis model for both stators and rotor or a three-phase model of the stator and a two-axis model of the rotor. This may be adequate under certain operating conditions such as steady-state or some symmetrical faults but for inverter-fed motors or generators feeding into a rectified load a more rigorous model of the machine is required. This paper describes the theory and development of such a model, its integration with the power electronics and application to 6-pulse and 12-pulse converters, the latter being appropriate in systems similar to HVDC unit connection. (author) 5 refs., 16 figs.

  19. INTEGRATED CORPORATE STRATEGY MODEL

    Directory of Open Access Journals (Sweden)

    CATALINA SORIANA SITNIKOV

    2014-02-01

    Full Text Available Corporations are at present operating in demanding and highly unsure periods, facing a mixture of increased macroeconomic need, competitive and capital market dangers, and in many cases, the prospect for significant technical and regulative gap. Throughout these demanding and highly unsure times, the corporations must pay particular attention to corporate strategy. In present times, corporate strategy must be perceived and used as a function of various fields, covers, and characters as well as a highly interactive system. For the corporation's strategy to become a competitive advantage is necessary to understand and also to integrate it in a holistic model to ensure sustainable progress of corporation activities under the optimum conditions of profitability. The model proposed in this paper is aimed at integrating the two strategic models, Hoshin Kanri and Integrated Strategy Model, as well as their consolidation with the principles of sound corporate governance set out by the OECD.

  20. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  1. ADDRESS SYSTEM INTEGRATION BUSINESS

    Directory of Open Access Journals (Sweden)

    Lionel Manuel Carbonell-Zamora

    2016-01-01

    Full Text Available The Integrated Strategic Direction constitutes a superior stage of Direction that expresses the coordinated system of external and internal relations with full participation in order to reach the vision of the organization. It can be insured by the use of the Strategic Direction model for the integration of the Company Direction System. This model has been applied in several companies. Recently, it was applied in the Inspection State Unit of MICONS in Santiago de Cuba through the investigation thesis for master degree developed during 18 months which objective was to validate its effectiveness in a budgeted unit, obtaining positive results when the levels of integration in the direction system increased in their external and internal relations expressed in a 37 % and 15 % respectively, which impacted the increment of the efficiency and effectiveness of all processes of the organization. 

  2. Economic Comparison of Two Business Models for Implementation of Small Integrated PV Systems

    International Nuclear Information System (INIS)

    Matak, N.; Krajacic, G.; Jerkic, E.; Duic, N.

    2016-01-01

    We compared two different models for the implementation of small photovoltaic solar systems in the Croatia. The new prosumer model presented in the new Croatian law on the Renewable Energy Sources and Highly Efficient Cogeneration (OG 100/15) and PV ESCO model which is similar to net metering. The PV ESCO model is developed from authors to determine possibility to raise payback period of small integrated PV systems. The comparison was done on a 15-minute basis and there were compared values of Simple Payback Period (SPP) for different locations and systems size considering electricity demand and market prices. Internal Rate of Return (IRR) and Net Present Value (NPV) were compared for 4 different cases. Conducted comparison showed that PV ESCO model is always more favourable for the owner of PV system in terms of lower SPP and higher IRR and NPV. It has been noticed that for systems higher than 5 kWp use of PV ESCO model is recommended. For smaller systems it is not always clear which model should be used, since some losses are generated in the system on the side of the electricity supply company. For smaller systems from 2 to 5 kWp, PV ESCO model has SPP from 7.5 to 13 years and SPP value for the prosumer model is 8.7 to 15 years. This difference is higher when comparing PV system from 6 to 10 kWp. SPP for PV ESCO model, in that case, is from 10 to 13 years and in the prosumer model is from 17.5 to 28 years.(author).

  3. Model Predictive Control of Grid Connected Modular Multilevel Converter for Integration of Photovoltaic Power Systems

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Shahirinia, Amir

    2017-01-01

    Investigation of an advanced control structure for integration of Photovoltaic Power Systems through Grid Connected-Modular Multilevel Converter (GC-MMC) is proposed in this paper. To achieve this goal, a non-linear model of MMC regarding considering of negative and positive sequence components has...... been presented. Then, due to existence of unbalance voltage faults in distribution grid, non-linarites and uncertainties in model, model predictive controller which is developed for GC-MMC. They are implemented based upon positive and negative components of voltage and current to mitigate the power...

  4. A MATHEMATICAL MODEL OF OPTIMIZATION OF THE VOLUME OF MATERIAL FLOWS IN GRAIN PROCESSING INTEGRATED PRODUCTION SYSTEMS

    OpenAIRE

    Baranovskaya T. P.; Loyko V. I.; Makarevich O. A.; Bogoslavskiy S. N.

    2014-01-01

    The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of ...

  5. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  6. An Integrated Approach of Model checking and Temporal Fault Tree for System Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Digitalization of instruments and control systems in nuclear power plants offers the potential to improve plant safety and reliability through features such as increased hardware reliability and stability, and improved failure detection capability. It however makes the systems and their safety analysis more complex. Originally, safety analysis was applied to hardware system components and formal methods mainly to software. For software-controlled or digitalized systems, it is necessary to integrate both. Fault tree analysis (FTA) which has been one of the most widely used safety analysis technique in nuclear industry suffers from several drawbacks as described in. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA.

  7. Integration of model-based control systems with artificial intelligence and workstations

    International Nuclear Information System (INIS)

    Lee, M.; Clearwater, S.

    1987-01-01

    Experience with model based accelerator control started at SPEAR. Since that SPEAR. Since that time nearly all accelerator beam lines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical changes with time. Consequently, SPEAR, PEP, and SLC all use different control programs. Since many of these application programs are imbedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, these application programs have been developed for a fourth time. This time, however, the programs being developed are generic so that they will not have to be done again. An integrated system called GOLD (Generic Orbit ampersand Lattice Debugger) has been developed for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs., 4 figs

  8. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    International Nuclear Information System (INIS)

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model-based accelerator control started at SPEAR. Since that time nearly all accelerator beamlines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical changes with time. Consequently, SPEAR, PEP and SLC all use different control programs. Since many of these application programs are embedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed an integrated system called GOLD (Genetic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs

  9. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    International Nuclear Information System (INIS)

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model based accelerator control started at SPEAR. Since that time nearly all accelerator beam lines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical change with time. Consequently, SPEAR, PEP, and SLC all use different control programs. Since many of these application programs are imbedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed these application programs for a fourth time. This time, however, the programs we are developing are generic so that we will not have to do it again. We have developed an integrated system called GOLD (Generic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs

  10. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    Science.gov (United States)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  12. Integration of the virtual 3D model of a control system with the virtual controller

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  13. The development of a volume element model for energy systems engineering and integrative thermodynamic optimization

    Science.gov (United States)

    Yang, Sam

    The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in

  14. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  15. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    Science.gov (United States)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  16. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    Science.gov (United States)

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  17. DESIGN MODELING OF A UNIVERSITY’S COMPREHENSIVE-INTEGRATED SECURITY SYSTEM

    Directory of Open Access Journals (Sweden)

    Marina V. Dulyasova

    2017-03-01

    Full Text Available Introduction: the safety of higher education institutions is considered to be of great importance nowadays. Security challenges need to be addressed through a comprehensive and integrative approach. This approach provides neutralisation of various threats systemically, risk prevention, minimisation of the tangible and moral harm. The project concept of “safe university” is proposed and substantiated for the above-mentioned purposes. Materials and Methods: the authors used a special literature survey on the issue, which is divided into three main groups of publications, where the complex security of educational institutions is considered in the context of the general theory of security, in the educational-methodical plan and within the framework of sociological, psychological and pedagogical approaches. The legislative and regulatory sources also indicated, legislative and regulatory legal acts reviews, “Safe City” concept, National standard “Information security technologies: complex and integrated ones. Standard requirements to architecture and technologies of intellectual systems of monitoring for safety of the companies and the territories” (State standard specification P 56875-2016, documents of higher education institutions, media reports. The analysis and generalisation of information was coupled with project modeling of the new comprehensive system of higher education institution security. Results: the authors introduce the concept, architecture and model of the comprehensive integrated higher education institution security, monitoring based on measures and indicators pertaining to implementation of standard requirements and level of satisfaction with safety, evaluation of the taken measures in terms of efficiency. Discussion and Conclusions: the main contours of the model for comprehensive integrated security system in a higher education institution and algorithm of interaction between the subjects are determined. These

  18. Tav4SB: integrating tools for analysis of kinetic models of biological systems.

    Science.gov (United States)

    Rybiński, Mikołaj; Lula, Michał; Banasik, Paweł; Lasota, Sławomir; Gambin, Anna

    2012-04-05

    Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project's Web page: http://bioputer.mimuw.edu.pl/tav4sb/. The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.

  19. An integrated logit model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  1. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Science.gov (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  2. Integrated and visual performance evaluation model for thermal systems and its application to an HTGR cogeneration system

    International Nuclear Information System (INIS)

    Qi, Zhang; Yoshikawa, Hidekazu; Ishii, Hirotake; Shimoda, Hiroshi

    2010-01-01

    An integrated and visual model EXCEM-MFM (EXergy, Cost, Energy and Mass - Multilevel Flow Model) has been proposed in this study to comprehensively analyze and evaluate the performances of thermal systems by coupling two models: EXCEM model and MFM. In the EXCEM-MFM model, MFM is used to provide analysis frameworks for exergy, cost, energy and mass four parameters, and EXCEM is used to calculate the flow values of these four parameters for MFM based on the provided framework. In this study, we used the tools and technologies of computer science and software engineering to materialize the model. Moreover, the feasibility and application potential of this proposed EXCEM-MFM model has been demonstrated by the example application of a comprehensive performance study of a typical High Temperature Gas Reactor (HTGR) cogeneration system by taking into account the thermodynamic and economic perspectives. (author)

  3. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  4. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  5. Application of macro material flow modeling to the decision making process for integrated waste management systems

    International Nuclear Information System (INIS)

    Vigil, S.A.; Holter, G.M.

    1995-04-01

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site

  6. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  7. Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules.

    Science.gov (United States)

    Vallat, Brinda; Webb, Benjamin; Westbrook, John D; Sali, Andrej; Berman, Helen M

    2018-04-09

    Essential processes in biology are carried out by large macromolecular assemblies, whose structures are often difficult to determine by traditional methods. Increasingly, researchers combine measured data and computed information from several complementary methods to obtain "hybrid" or "integrative" structural models of macromolecules and their assemblies. These integrative/hybrid (I/H) models are not archived in the PDB because of the absence of standard data representations and processing mechanisms. Here we present the development of data standards and a prototype system for archiving I/H models. The data standards provide the definitions required for representing I/H models that span multiple spatiotemporal scales and conformational states, as well as spatial restraints derived from different experimental techniques. Based on these data definitions, we have built a prototype system called PDB-Dev, which provides the infrastructure necessary to archive I/H structural models. PDB-Dev is now accepting structures and is open to the community for new submissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Computer Modeling of Daylight-Integrated Photocontrol of Electric Lighting Systems

    Directory of Open Access Journals (Sweden)

    Richard Mistrick

    2015-05-01

    Full Text Available This article presents a variety of different approaches to both model and assess the performance of daylight-integrated electric lighting control systems. In these systems, the output of a controlled lighting zone is based on a light sensor reading and a calibrated control algorithm. Computer simulations can consider the simulated illuminance data generated from both the electric lighting system and a daylight delivery system whose performance is addressed using typical meteorological year (TMY weather data. Photosensor signals and the operation of a control system’s dimming algorithms are also included. Methods and metrics for evaluating simulated performance for the purpose of making informed design decisions that lead to the best possible installed system performance are presented.

  9. Model Data Interoperability for the United States Integrated Ocean Observing System (IOOS)

    Science.gov (United States)

    Signell, Richard P.

    2010-05-01

    Model data interoperability for the United States Integrated Ocean Observing System (IOOS) was initiated with a focused one year project. The problem was that there were many regional and national providers of oceanographic model data; each had unique file conventions, distribution techniques and analysis tools that made it difficult to compare model results and observational data. To solve this problem, a distributed system was built utilizing a customized middleware layer and a common data model. This allowed each model data provider to keep their existing model and data files unchanged, yet deliver model data via web services in a common form. With standards-based applications that used these web services, end users then had a common way to access data from any of the models. These applications included: (1) a 2D mapping and animation using a web browser application, (2) an advanced 3D visualization and animation using a desktop application, and (3) a toolkit for a common scientific analysis environment. Due to the flexibility and low impact of the approach on providers, rapid progress was made. The system was implemented in all eleven US IOOS regions and at the NOAA National Coastal Data Development Center, allowing common delivery of regional and national oceanographic model forecast and archived results that cover all US waters. The system, based heavily on software technology from the NSF-sponsored Unidata Program Center, is applicable to any structured gridded data, not just oceanographic model data. There is a clear pathway to expand the system to include unstructured grid (e.g. triangular grid) data.

  10. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 1-Decision Support System.

    Science.gov (United States)

    Davidson, Rachel A; Nozick, Linda K; Wachtendorf, Tricia; Blanton, Brian; Colle, Brian; Kolar, Randall L; DeYoung, Sarah; Dresback, Kendra M; Yi, Wenqi; Yang, Kun; Leonardo, Nicholas

    2018-03-30

    This article introduces a new integrated scenario-based evacuation (ISE) framework to support hurricane evacuation decision making. It explicitly captures the dynamics, uncertainty, and human-natural system interactions that are fundamental to the challenge of hurricane evacuation, but have not been fully captured in previous formal evacuation models. The hazard is represented with an ensemble of probabilistic scenarios, population behavior with a dynamic decision model, and traffic with a dynamic user equilibrium model. The components are integrated in a multistage stochastic programming model that minimizes risk and travel times to provide a tree of evacuation order recommendations and an evaluation of the risk and travel time performance for that solution. The ISE framework recommendations offer an advance in the state of the art because they: (1) are based on an integrated hazard assessment (designed to ultimately include inland flooding), (2) explicitly balance the sometimes competing objectives of minimizing risk and minimizing travel time, (3) offer a well-hedged solution that is robust under the range of ways the hurricane might evolve, and (4) leverage the substantial value of increasing information (or decreasing degree of uncertainty) over the course of a hurricane event. A case study for Hurricane Isabel (2003) in eastern North Carolina is presented to demonstrate how the framework is applied, the type of results it can provide, and how it compares to available methods of a single scenario deterministic analysis and a two-stage stochastic program. © 2018 Society for Risk Analysis.

  11. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    Science.gov (United States)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  12. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    International Nuclear Information System (INIS)

    Meier, W.R.; Anklam, T.M.; Erlandson, A.C.; Miles, R.R.; Simon, A.J.; Sawicki, R.; Storm, E.

    2010-01-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R and D targeted at the different options is quantified.

  13. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    International Nuclear Information System (INIS)

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2010-01-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R and D targeted at the different options is quantified.

  14. Towards An Intelligent Model-Based Decision Support System For An Integrated Oil Company (EGPC)

    International Nuclear Information System (INIS)

    Khorshid, M.; Hassan, H.; Abdel Latife, M.A.

    2004-01-01

    Decision Support System (DSS) is an interactive, flexible and adaptable computer-based support system specially developed for supporting the solution of unstructured management problems [31] DSS has become widespread for oil industry domain in recent years. The computer-based DSS, which were developed and implemented in oil industry, are used to address the complex short-term planning and operational issues associated with downstream industry. Most of these applications concentrate on the data-centered tools, while the model-centered applications of DSS are still very limited up till now [20]. This study develops an Intelligent Model-Based DSS for an integrated oil company, to help policy makers and petroleum planner in improving the effectiveness of the strategic planning in oil sector. This domain basically imposes semi-structured or unstructured decisions and involves a very complex modeling process

  15. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  16. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  17. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  18. A hybrid model for the optimum integration of renewable technologies in power generation systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis

    2011-01-01

    The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010-2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3-0.5 Euro c/kWh (in real prices), depending on the RES-E penetration level. - Research Highlights: →Development of a hybrid optimization model for the integration of renewable technologies in power generation systems. →Estimation of the optimum feed-in-tariffs to be offered to future renewable systems. →Determination of the overall cost increase in the electricity sector for the promotion of renewable technologies. →Analyses taking into account fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc.

  19. Design and Development of Smart Aquaculture System Based on IFTTT Model and Cloud Integration

    Directory of Open Access Journals (Sweden)

    Dzulqornain Muhammad Iskandar

    2018-01-01

    Full Text Available The internet of things technology (IoT is growing very rapidly. IoT implementation has been conducted in several sectors. One of them is for aquaculture. For the traditional farmers, they face problems for monitoring water quality and the way to increase the quality of the water quickly and efficiently. This paper presents a real-time monitoring and controlling system for aquaculture based on If This Then That (IFTTT model and cloud integration. This system was composed of smart sensor module which supports modularity, smart aeration system for controlling system, local network system, cloud computing system and client visualization data. In order to monitor the water condition, we collect the data from smart sensor module. Smart sensor module consists of sensor dissolved oxygen, potential of hydrogen, water temperature and water level. The components of smart aeration system are microcontroller NodeMCU v3, relay, power supply, and propeller that can produce oxygen. The system could set the IFTTT rules for the ideal water condition for the pond in any kinds of aquaculture based on its needs through the web and android application. The experimental result shows that use IFTTT model makes the aquaculture monitoring system more customizable, expandable and dynamic.

  20. MODEL - INTEGRAL METHODOLOGY FOR SUCCESSFUL DESIGNING AND IMPLEMENTING OF TQM SYSTEM IN MACEDONIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Elizabeta Mitreva

    2011-12-01

    Full Text Available The subject of this paper is linked with the valorization of the meaning and the perspectives of Total Quality Management (TQM system design and implementation within the domestic companies and creating a model-methodology for improved performance, efficiency and effectiveness. The research is designed as an attempt to depict the existing condition in the Macedonian companies regarding quality system design and implementation, analysed through 4 polls in the "house of quality" whose top is the ultimate management, and as its bases measurement, evaluation, analyzing and comparison of the quality are used. This "house" is being held by 4 subsystems e.g. internal standardization, methods and techniques for flawless work performance, education and motivation and analyses of the quality costs. The data received from the research and the proposal of the integral methodology for designing and implementing of TQM system are designed in turn to help and present useful directions to all Macedonian companies tending to become "world class" organizations. The basis in the creation of this model is the redesign of the business processes which afterword begins as a new phase of the business performance - continued improvement, rolling of Deming's Quality Circle (Plan-Do-Check-Act. The model-methodology proposed in this paper is integral and universal which means that it is applicable to all companies regardless of the business area.

  1. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  2. A Disposable Tear Glucose Biosensor—Part 2: System Integration and Model Validation

    Science.gov (United States)

    La Belle, Jeffrey T.; Bishop, Daniel K.; Vossler, Stephen R.; Patel, Dharmendra R.; Cook, Curtiss B.

    2010-01-01

    Background We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. Methods An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 μM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 μM glucose. Results From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 μM and a lower limit of detection was calculated at 43.4 μM. A linear dynamic range was demonstrated from 0 to 1000 μM with an R2 of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 μM glucose. Conclusion With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. PMID:20307390

  3. A disposable tear glucose biosensor-part 2: system integration and model validation.

    Science.gov (United States)

    La Belle, Jeffrey T; Bishop, Daniel K; Vossler, Stephen R; Patel, Dharmendra R; Cook, Curtiss B

    2010-03-01

    We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 microM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 microM glucose. From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 microM and a lower limit of detection was calculated at 43.4 microM. A linear dynamic range was demonstrated from 0 to 1000 microM with an R(2) of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 microM glucose. With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. (c) 2010 Diabetes Technology Society.

  4. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  5. Integrability of the Rabi Model

    International Nuclear Information System (INIS)

    Braak, D.

    2011-01-01

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  6. An integrated production, inventory and preventive maintenance model for a multi-product production system

    International Nuclear Information System (INIS)

    Liu, Xuejuan; Wang, Wenbin; Peng, Rui

    2015-01-01

    This paper considers a production system that can produce multiple products alternately. Products go through the system in a sequence and a complete run of all products forms a production cycle. An integrated production, inventory and preventive maintenance model is constructed, which is characterized by the delay-time concept. Two different situations are studied based on whether the unqualified products and downtime caused by the failures of the system, set-up and preventive maintenance can be ignored or not. Three cases are considered for each situation, depending on the position of the preventive maintenance epochs: the first case, where preventive maintenance is carried out at the end of each production cycle; the second case, where preventive maintenance is carried out at each set-up time of the products; and the third case, where preventive maintenance is carried out at some set-up times only, since it may not always be optimal to carry out preventive maintenance at the end of the production cycle or at each set-up time. The modeling objectives are to find the optimal number of production cycles per year and the optimal position of preventive maintenance that will maximize the expected profit per unit time. Numerical examples, using real data, are presented to illustrate the model. - Highlights: • We propose an integrated economic production quantity and preventive maintenance model. • The situation that multiple products are produced on the same system alternately is studied. • Two situations are studied based on whether the downtime and the product quality can be ignored or not. • We use enumeration method and analytical method to select the optimal preventive maintenance policy, respectively. • We use the delay-time concept to model the preventive maintenance policy

  7. Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    NARCIS (Netherlands)

    Hibbard, K.; Janetos, A.; Vuuren, van D.; Pongratz, J.; Rose, S.; Betts, R.; Herold, M.; Feddema, J.

    2010-01-01

    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated

  8. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    Science.gov (United States)

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  9. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2013-07-01

    Full Text Available Advances in the development of micro-electromechanical systems (MEMS have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS and the inertial navigation system (INS integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs, stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV and the power spectral density (PSD techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade presents error sources with short-term (high-frequency and long-term (low-frequency components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  10. The systems integration operations/logistics model as a decision-support tool

    International Nuclear Information System (INIS)

    Miller, C.; Vogel, L.W.; Joy, D.S.

    1989-01-01

    Congress has enacted legislation specifying Yucca Mountain, Nevada, for characterization as the candidate site for the disposal of spent fuel and high-level wastes and has authorized a monitored retrievable storage (MRS) facility if one is warranted. Nevertheless, the exact configuration of the facilities making up the Federal Waste Management System (FWMS) was not specified. This has left the Office of Civilian Radioactive Waste Management (OCRWM) the responsibility for assuring the design of a safe and reliable disposal system. In order to assist in the analysis of potential configuration alternatives, operating strategies, and other factors for the FWMS and its various elements, a decision-support tool known as the systems integration operations/logistics model (SOLMOD) was developed. SOLMOD is a discrete event simulation model that emulates the movement and interaction of equipment and radioactive waste as it is processed through the FWMS - from pickup at reactor pools to emplacement. The model can be used to measure the impacts of different operating schedules and rules, system configurations, and equipment and other resource availabilities on the performance of processes comprising the FWMS and how these factors combine to determine overall system performance. SOLMOD can assist in identifying bottlenecks and can be used to assess capacity utilization of specific equipment and staff as well as overall system resilience

  11. Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems.

    Science.gov (United States)

    Tsai, Chung-Hung

    2014-05-07

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  12. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

    Directory of Open Access Journals (Sweden)

    Chung-Hung Tsai

    2014-05-01

    Full Text Available Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory, technological factors (TAM, and system self-efficacy (social cognitive theory in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively, which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  13. Business and technology integrated model

    OpenAIRE

    Noce, Irapuan; Carvalho, João Álvaro

    2011-01-01

    There is a growing interest in business modeling and architecture in the areas of management and information systems. One of the issues in the area is the lack of integration between the modeling techniques that are employed to support business development and those used for technology modeling. This paper proposes a modeling approach that is capable of integrating the modeling of the business and of the technology. By depicting the business model, the organization structure and the technolog...

  14. Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning

    Science.gov (United States)

    Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.

    2015-12-01

    Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.

  15. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    Science.gov (United States)

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  16. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database

    International Nuclear Information System (INIS)

    Quock, D.E.R.; Cianciarulo, M.B.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  17. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  18. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    Science.gov (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  19. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    Science.gov (United States)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  20. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    Science.gov (United States)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  1. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    Science.gov (United States)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub-systems

  2. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

    Science.gov (United States)

    Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack

    2018-01-01

    Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost

  4. Drivers' communicative interactions: on-road observations and modelling for integration in future automation systems.

    Science.gov (United States)

    Portouli, Evangelia; Nathanael, Dimitris; Marmaras, Nicolas

    2014-01-01

    Social interactions with other road users are an essential component of the driving activity and may prove critical in view of future automation systems; still up to now they have received only limited attention in the scientific literature. In this paper, it is argued that drivers base their anticipations about the traffic scene to a large extent on observations of social behaviour of other 'animate human-vehicles'. It is further argued that in cases of uncertainty, drivers seek to establish a mutual situational awareness through deliberate communicative interactions. A linguistic model is proposed for modelling these communicative interactions. Empirical evidence from on-road observations and analysis of concurrent running commentary by 25 experienced drivers support the proposed model. It is suggested that the integration of a social interactions layer based on illocutionary acts in future driving support and automation systems will improve their performance towards matching human driver's expectations. Practitioner Summary: Interactions between drivers on the road may play a significant role in traffic coordination. On-road observations and running commentaries are presented as empirical evidence to support a model of such interactions; incorporation of drivers' interactions in future driving support and automation systems may improve their performance towards matching driver's expectations.

  5. Development of integrated models for energy-economy systems analysis at JAERI

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Yonese, Hiromi

    1984-08-01

    This report, being a revision of the preprint for distribution to participants at IEA/ETSAP Workshop held, at JAERI, Tokyo, March 1984, describes the concept of the integrated models for energy-economy systems analysis now being carried out at JAERI. In this model system, there contains four different categories of computer codes. The first one is a series of computer codes named as E 3 -SD representatively, which are utilized to develop a dynamic scenario generation in a long-term energy economy evolution. The second one, of which the main constituents are the MARKAL, i.e. an optimal energy flow analizer, and the TRANS-I/O, i.e. a multi-sectoral economy analyzer, has been developed for the analysis of structural characteristics embodied in our energy-economy system. The third one is for a strategy analysis on nuclear power reactor installation and fuel cycle development, and its main constituent is the JALTES. The fourth one is for a cost-benefit-risk analysis including various kinds of data bases. As the model system being still under development, but the idea of application of it to such a problem as '' the role of the HTGR in the prospects of future energy supply'' is also explained in the report. (author)

  6. First Integrals of Evolution Systems and Nonlinear Stability of Stationary Solutions for the Ideal Atmospheric, Oceanic Hydrodynamical and Plasma Models

    International Nuclear Information System (INIS)

    Gordin, V.A.

    1998-01-01

    First integral of the systems of nonlinear equations governing the behaviour of atmospheric, oceanic and MHD plasma models are determined. The Lyapunov stability conditions for the solutions under small initial disturbances are analyzed. (author)

  7. Integrating three lake models into a Phytoplankton Prediction System for Lake Taihu (Taihu PPS) with Python

    NARCIS (Netherlands)

    Huang, J.; Gao, J.; Hörmann, G.; Mooij, W.M.

    2012-01-01

    In the past decade, much work has been done on integrating different lake models using general frameworks to overcome model incompatibilities. However, a framework may not be flexible enough to support applications in different fields. To overcome this problem, we used Python to integrate three lake

  8. Integrated Assessment Model Evaluation

    Science.gov (United States)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  9. A Critical Review of the Integration of Geographic Information System and Building Information Modelling at the Data Level

    Directory of Open Access Journals (Sweden)

    Junxiang Zhu

    2018-02-01

    Full Text Available The benefits brought by the integration of Building Information Modelling (BIM and Geographic Information Systems (GIS are being proved by more and more research. The integration of the two systems is difficult for many reasons. Among them, data incompatibility is the most significant, as BIM and GIS data are created, managed, analyzed, stored, and visualized in different ways in terms of coordinate systems, scope of interest, and data structures. The objective of this paper is to review the relevant research papers to (1 identify the most relevant data models used in BIM/GIS integration and understand their advantages and disadvantages; (2 consider the possibility of other data models that are available for data level integration; and (3 provide direction on the future of BIM/GIS data integration.

  10. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    Science.gov (United States)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are

  11. An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability

    Directory of Open Access Journals (Sweden)

    Xulin Guo

    2013-02-01

    Full Text Available Over 50% of world’s population presently resides in cities, and this number is expected to rise to ~70% by 2050. Increasing urbanization problems including population growth, urban sprawl, land use change, unemployment, and environmental degradation, have markedly impacted urban residents’ Quality of Life (QOL. Therefore, urban sustainability and its measurement have gained increasing attention from administrators, urban planners, and scientific communities throughout the world with respect to improving urban development and human well-being. The widely accepted definition of urban sustainability emphasizes the balancing development of three primary domains (urban economy, society, and environment. This article attempts to improve the aforementioned definition of urban sustainability by incorporating a human well-being dimension. Major problems identified in existing urban sustainability indicator (USI models include a weak integration of potential indicators, poor measurement and quantification, and insufficient spatial-temporal analysis. To tackle these challenges an integrated USI model based on a hierarchical indices system was established for monitoring and evaluating urban sustainability. This model can be performed by quantifying indicators using both traditional statistical approaches and advanced geomatic techniques based on satellite imagery and census data, which aims to provide a theoretical basis for a comprehensive assessment of urban sustainability from a spatial-temporal perspective.

  12. Integrated Modeling of Solutions in the System of Distributing Logistics of a Fruit and Vegetable Cooperative

    Directory of Open Access Journals (Sweden)

    Oleksandr Velychko

    2014-12-01

    Full Text Available A mechanism of preparing rationalistic solutions in the system of distributing logistics of a fruit and vegetable cooperative has been studied considering possible alternatives and existing limitations. Belonging of separate operations of the fruit and vegetable cooperative to technological, logistical or marketing business processes has been identified. Expediency of the integrated use of logistical concept DRP, decision tree method and linear programming in management of the cooperative has been grounded. The model for preparing decisions on organizing sales of vegetables and fruit which is focused on minimization of costs of cooperative services and maximization of profits for members of the cooperation has been developed. The necessity to consider integrated model of differentiation on levels of post gathering processing and logistical service has been revealed. Methodology of representation in the economical-mathematical model of probabilities in the tree of decisions concerning the expected amount of sales and margin for members of the cooperative using different channels has been processed. A formula which enables scientists to describe limitations in linear programming concerning critical duration of providing harvest of vegetables and fruit after gathering towards a customer has been suggested.

  13. Development of integrated systems dynamics models for the sustainability assessment of nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2005-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions allowing full stakeholder involvement in deciding on the role of nuclear energy as part of a sustainable energy generation mix in the future. Integrated system dynamics models of nuclear energy systems are interesting tools for such assessment studies allowing performing material flow accounting, environmental impact, economic competitiveness and socio-political analysis and this for time-evolving nuclear energy systems. No single tool today is capable of covering all the dimensions for such integrated assessment while various developments are ongoing in different places around the world to make such tools available in the nearby future. Argonne National Laboratory has embarked on such tool development since the year 2000 and has developed various tools among which the DANESS-code shall be described in some more detail in this paper. (author)

  14. Modeling and Detecting Feature Interactions among Integrated Services of Home Network Systems

    Science.gov (United States)

    Igaki, Hiroshi; Nakamura, Masahide

    This paper presents a framework for formalizing and detecting feature interactions (FIs) in the emerging smart home domain. We first establish a model of home network system (HNS), where every networked appliance (or the HNS environment) is characterized as an object consisting of properties and methods. Then, every HNS service is defined as a sequence of method invocations of the appliances. Within the model, we next formalize two kinds of FIs: (a) appliance interactions and (b) environment interactions. An appliance interaction occurs when two method invocations conflict on the same appliance, whereas an environment interaction arises when two method invocations conflict indirectly via the environment. Finally, we propose offline and online methods that detect FIs before service deployment and during execution, respectively. Through a case study with seven practical services, it is shown that the proposed framework is generic enough to capture feature interactions in HNS integrated services. We also discuss several FI resolution schemes within the proposed framework.

  15. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling

    Science.gov (United States)

    Hyndman, D. W.; Xu, T.; Deines, J. M.; Cao, G.; Nagelkirk, R.; Viña, A.; McConnell, W.; Basso, B.; Kendall, A. D.; Li, S.; Luo, L.; Lupi, F.; Ma, D.; Winkler, J. A.; Yang, W.; Zheng, C.; Liu, J.

    2017-08-01

    Water sustainability in megacities is a growing challenge with far-reaching effects. Addressing sustainability requires an integrated, multidisciplinary approach able to capture interactions among hydrology, population growth, and socioeconomic factors and to reflect changes due to climate variability and land use. We developed a new systems modeling framework to quantify the influence of changes in land use, crop growth, and urbanization on groundwater storage for Beijing, China. This framework was then used to understand and quantify causes of observed decreases in groundwater storage from 1993 to 2006, revealing that the expansion of Beijing's urban areas at the expense of croplands has enhanced recharge while reducing water lost to evapotranspiration, partially ameliorating groundwater declines. The results demonstrate the efficacy of such a systems approach to quantify the impacts of changes in climate and land use on water sustainability for megacities, while providing a quantitative framework to improve mitigation and adaptation strategies that can help address future water challenges.

  16. Model predictive control system and method for integrated gasification combined cycle power generation

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  17. Integrated security system definition

    International Nuclear Information System (INIS)

    Campbell, G.K.; Hall, J.R. II

    1985-01-01

    The objectives of an integrated security system are to detect intruders and unauthorized activities with a high degree of reliability and the to deter and delay them until effective response/engagement can be accomplished. Definition of an effective integrated security system requires proper application of a system engineering methodology. This paper summarizes a methodology and describes its application to the problem of integrated security system definition. This process includes requirements identification and analysis, allocation of identified system requirements to the subsystem level and provides a basis for identification of synergistic subsystem elements and for synthesis into an integrated system. The paper discusses how this is accomplished, emphasizing at each step how system integration and subsystem synergism is considered. The paper concludes with the product of the process: implementation of an integrated security system

  18. A MILP model for integrated plan and evaluation of distributed energy systems

    International Nuclear Information System (INIS)

    Ren, Hongbo; Gao, Weijun

    2010-01-01

    In the last decade, technological innovations and a changing economic and regulatory environment have resulted in a renewed interest for distributed energy resources (DER). However, because of the lack of a suitable design tool, the expected potential of DER penetration is not always exerted sufficiently. In this paper, a mixed-integer linear programming (MILP) model has been developed for the integrated plan and evaluation of DER systems. Given the site's energy loads, local climate data, utility tariff structure, and information (both technical and financial) on candidate DER technologies, the model minimizes overall energy cost for a test year by selecting the units to install and determining their operating schedules. Furthermore, the economic, energetic and environmental effects of the DER system can be evaluated. As an illustrative example, an investigation has been conducted of economically optimal DER system for an eco-campus in Kitakyushu, Japan. The result illustrates that gas engine is currently the most popular DER technology from the economic point of view. Although holding reasonable economic merits, unless combined with heat recovery units, the introduction of DER technologies may result in marginal or even adverse environmental effects. Furthermore, according to the results of sensitivity analysis, the optimal system combination and corresponding economic and environmental performances are more or less sensitive to the scale of energy demand, energy prices (both electricity and city gas), as well as carbon tax rate. (author)

  19. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    Science.gov (United States)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that

  20. Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems.

    Science.gov (United States)

    Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu

    2016-01-01

    The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system.

  1. Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model.

    Science.gov (United States)

    Macmillan, Alexandra; Davies, Michael; Shrubsole, Clive; Luxford, Naomi; May, Neil; Chiu, Lai Fong; Trutnevyte, Evelina; Bobrova, Yekatherina; Chalabi, Zaid

    2016-03-08

    integrated approach to housing. The qualitative model has begun to improve the assessment of future policy options across a broad range of outcomes. Future work is needed to validate the model and increase its utility through computer simulation incorporating best quality data and evidence. Combining system dynamics modelling with other methods for weighing up policy options, as well as methods to support shifts in the conceptual frameworks underpinning policy, will be necessary to achieve shared housing goals across physical, mental, environmental, economic and social wellbeing.

  2. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    Science.gov (United States)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  3. Searching for integrable systems

    International Nuclear Information System (INIS)

    Cary, J.R.

    1984-01-01

    Lack of integrability leads to undesirable consequences in a number of physical systems. The lack of integrability of the magnetic field leads to enhanced particle transport in stellarators and tokamaks with tearing-mode turbulence. Limitations of the luminosity of colliding beams may be due to the onset of stochasticity. Enhanced radial transport in mirror machines caused by the lack of integrability and/or the presence of resonances may be a significant problem in future devices. To improve such systems one needs a systematic method for finding integrable systems. Of course, it is easy to find integrable systems if no restrictions are imposed; textbooks are full of such examples. The problem is to find integrable systems given a set of constraints. An example of this type of problem is that of finding integrable vacuum magnetic fields with rotational transform. The solution to this problem is relevant to the magnetic-confinement program

  4. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  5. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    Science.gov (United States)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  6. System Dynamics Modeling on Integrated Supply Chain Management of Potato Agribusiness

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2017-12-01

    Full Text Available The objectives of this study is to design a model of integrated supply chain management of potato agribusiness in an effort to increase revenue and bargaining position of farmers in Aceh Province. The method applied to achieve these objectives was the methodology of system dynamics. Formulation of the models was conducted by using Vensim DSS Software, followed by simulation. The result of this study showed the role of five major scenarios which were important to actualize the integrated supply chain management of potato agribusiness in Aceh Province, those were: scenario 1, increasing the productive land area, resulting in the increasing of production volume; scenario 2, using the certified potato seed named “umbi G2”, generating the higher level of production; scenario 3, providing the certified potato seed based on the needs, showing that the quantity of production increased; scenario 4, shortening the payment receivables interval of farmers and cooperatives, which showing the increasing of cash amount; scenario 5, doing certification to the potato from synergistic partnerships farmers, showing the increasing of acceptance, profitability, R/C, and cash.

  7. Integrated Visualisation and Description of Complex Systems

    National Research Council Canada - National Science Library

    Goodburn, D

    1999-01-01

    ... on system topographies and feature overlays. System information from the domain's information space is filtered and integrated into a Composite Systems Model that provides a basis for consistency and integration between all system views...

  8. Integrating social science into empirical models of coupled human and natural systems

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Kline

    2017-09-01

    Full Text Available Coupled human and natural systems (CHANS research highlights reciprocal interactions (or feedbacks between biophysical and socioeconomic variables to explain system dynamics and resilience. Empirical models often are used to test hypotheses and apply theory that represent human behavior. Parameterizing reciprocal interactions presents two challenges for social scientists: (1 how to represent human behavior as influenced by biophysical factors and integrate this into CHANS empirical models; (2 how to organize and function as a multidisciplinary social science team to accomplish that task. We reflect on these challenges regarding our CHANS research that investigated human adaptation to fire-prone landscapes. Our project sought to characterize the forest management activities of land managers and landowners (or "actors" and their influence on wildfire behavior and landscape outcomes by focusing on biophysical and socioeconomic feedbacks in central Oregon (USA. We used an agent-based model (ABM to compile biophysical and social information pertaining to actor behavior, and to project future landscape conditions under alternative management scenarios. Project social scientists were tasked with identifying actors' forest management activities and biophysical and socioeconomic factors that influence them, and with developing decision rules for incorporation into the ABM to represent actor behavior. We (1 briefly summarize what we learned about actor behavior on this fire-prone landscape and how we represented it in an ABM, and (2 more significantly, report our observations about how we organized and functioned as a diverse team of social scientists to fulfill these CHANS research tasks. We highlight several challenges we experienced, involving quantitative versus qualitative data and methods, distilling complex behavior into empirical models, varying sensitivity of biophysical models to social factors, synchronization of research tasks, and the need to

  9. Integrated System Dynamics Modelling for water scarcity assessment: case study of the Kairouan region.

    Science.gov (United States)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran

    2012-12-01

    A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures

  10. Optimization model of a system of crude oil distillation units with heat integration and metamodeling

    International Nuclear Information System (INIS)

    Lopez, Diana C; Mahecha, Cesar A; Hoyos, Luis J; Acevedo, Leonardo; Villamizar Jaime F

    2010-01-01

    The process of crude distillation impacts the economy of any refinery in a considerable manner. Therefore, it is necessary to improve it taking good advantage of the available infrastructure, generating products that conform to the specifications without violating the equipment operating constraints or plant restrictions at industrial units. The objective of this paper is to present the development of an optimization model for a Crude Distillation Unit (CDU) system at a ECOPETROL S.A. refinery in Barrancabermeja, involving the typical restrictions (flow according to pipeline capacity, pumps, distillation columns, etc) and a restriction that has not been included in bibliographic reports for this type of models: the heat integration of streams from Atmospheric Distillation Towers (ADTs) and Vacuum Distillation Towers (VDT) with the heat exchanger networks for crude pre-heating. On the other hand, ADTs were modeled with Metamodels in function of column temperatures and pressures, pump a rounds flows and return temperatures, stripping steam flows, Jet EBP ASTM D-86 and Diesel EBP ASTM D-86. Pre-heating trains were modeled with mass and energy balances, and design equation of each heat exchanger. The optimization model is NLP, maximizing the system profit. This model was implemented in GAMSide 22,2 using the CONOPT solver and it found new operating points with better economic results than those obtained with the normal operation in the real plants. It predicted optimum operation conditions of 3 ADTs for constant composition crude and calculated the yields and properties of atmospheric products, additional to temperatures and duties of 27 Crude Oil exchangers.

  11. PULSE: Integrated Parametric Modeling for a Shading System : From Daylight Optimization to Additive Manufacturing

    NARCIS (Netherlands)

    Teeling, M.V.M.T.; Turrin, M.; de Ruiter, P.; Turrin, Michela; Peters, Brady; O'Brien, William; Stouffs, Rudi; Dogan, Timur

    2017-01-01

    This paper presents a parametric approach to an integrated and performance-oriented design, from the conceptual design phase towards materialization. The novelty occurs in the use of parametric models as a way of integrating multidisciplinary design constraints, from daylight optimization to the

  12. A Few Integrable Dynamical Systems, Recurrence Operators, Expanding Integrable Models and Hamiltonian Structures by the r -Matrix Method

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Muhammad, Iqbal; Yue Chao

    2017-01-01

    We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov–Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. (paper)

  13. Integrating water data, models and forecasts - the Australian Water Resources Information System (Invited)

    Science.gov (United States)

    Argent, R.; Sheahan, P.; Plummer, N.

    2010-12-01

    working with the OGC’s Hydrology Domain Working Group on the development of WaterML 2, which will provide an international standard applicable to a sub-set of the information handled by WDTF. Making water data accessible for multiple uses, such as for predictive models and external products, has required the development of consistent data models for describing the relationships between the various data elements. Early development of the AWRIS data model has utilised a model-driven architecture approach, the benefits of which are likely to accrue in the long term, as more products and services are developed from the common core. Moving on from our initial focus on data organisation and management, the Bureau is in the early stages of developing an integrated modelling suite (the Bureau Hydrological Modelling System - BHMS) which will encompass the variety of hydrological modelling needs of the Bureau, ranging from water balances, assessments and accounts, to streamflow and hydrological forecasting over scales from hours and days to years and decades. It is envisaged that this modelling suite will also be developed, as far as possible, using standardised, discoverable services to enhance data-model and model-model integration.

  14. Donabedian's structure-process-outcome quality of care model: Validation in an integrated trauma system.

    Science.gov (United States)

    Moore, Lynne; Lavoie, André; Bourgeois, Gilles; Lapointe, Jean

    2015-06-01

    According to Donabedian's health care quality model, improvements in the structure of care should lead to improvements in clinical processes that should in turn improve patient outcome. This model has been widely adopted by the trauma community but has not yet been validated in a trauma system. The objective of this study was to assess the performance of an integrated trauma system in terms of structure, process, and outcome and evaluate the correlation between quality domains. Quality of care was evaluated for patients treated in a Canadian provincial trauma system (2005-2010; 57 centers, n = 63,971) using quality indicators (QIs) developed and validated previously. Structural performance was measured by transposing on-site accreditation visit reports onto an evaluation grid according to American College of Surgeons criteria. The composite process QI was calculated as the average sum of proportions of conformity to 15 process QIs derived from literature review and expert opinion. Outcome performance was measured using risk-adjusted rates of mortality, complications, and readmission as well as hospital length of stay (LOS). Correlation was assessed with Pearson's correlation coefficients. Statistically significant correlations were observed between structure and process QIs (r = 0.33), and process and outcome QIs (r = -0.33 for readmission, r = -0.27 for LOS). Significant positive correlations were also observed between outcome QIs (r = 0.37 for mortality-readmission; r = 0.39 for mortality-LOS and readmission-LOS; r = 0.45 for mortality-complications; r = 0.34 for readmission-complications; 0.63 for complications-LOS). Significant correlations between quality domains observed in this study suggest that Donabedian's structure-process-outcome model is a valid model for evaluating trauma care. Trauma centers that perform well in terms of structure also tend to perform well in terms of clinical processes, which in turn has a favorable influence on patient outcomes

  15. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  16. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  17. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  18. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  19. Development of an exergy-electrical analogy for visualizing and modeling building integrated energy systems

    International Nuclear Information System (INIS)

    Saloux, E.; Teyssedou, A.; Sorin, M.

    2015-01-01

    Highlights: • The exergy-electrical analogy is developed for energy systems used in buildings. • This analogy has been developed for a complete set of system arrangement options. • Different possibilities of inter-connections are illustrated using analog switches. • Adaptability and utility of the diagram over traditional ones are emphasized. - Abstract: An exergy-electrical analogy, similar to the heat transfer electrical one, is developed and applied to the case of integrated energy systems operating in buildings. Its construction is presented for the case of space heating with electric heaters, heat pumps and solar collectors. The proposed analogy has been applied to a set of system arrangement options proposed for satisfying the building heating demand (space heating, domestic hot water); different alternatives to connect the units have been presented with switches in a visualization scheme. The analogy for such situation has been performed and the study of a solar assisted heat pump using ice storage has been investigated. This diagram directly permits energy paths and their associated exergy destruction to be visualized; hence, sources of irreversibility are identifiable. It can be helpful for the comprehension of the global process and its operation as well as for identifying exergy losses. The method used to construct the diagram makes it easily adaptable to others units or structures or to others models depending on the complexity of the process. The use of switches could be very useful for optimization purposes

  20. Integrated environmental modeling system for noble gas releases at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cooper, R.E.

    1973-01-01

    The Savannah River Plant (SRP) is a large nuclear complex engaged in varied activities and is the AEC's major site for the production of weapons material. As a result of these activities, there are continuous and intermittent releases of radioactive gases to the atmosphere. Of these releases, the noble gases constitute about 11 percent of the total man-rem exposure to the population out to a distance of 100 km. Although SRP has an extensive radiological monitoring program, an environmental modeling system is necessary for adequately estimating effects on the environment. The integrated environmental modeling system in use at SRP consists of a series of computer programs that generate and use a library of environmental effects data as a function of azimuth and distance. Annual average atmospheric dispersion and azimuthal distribution of material assumed to be released as unit sources is estimated from a 2-year meteorological data base--assuming an arbitrary point of origin. The basic library of data consists of: ground-level concentrations according to isotope, and whole body gamma dose calculations that account for the total spatial distribution at discrete energy levels. These data are normalized to tritium measurements, and are subsequently used to generate similar library data that pertain to specific source locations, but always with respect to the same population grid. Thus, the total additive effects from all source points, both on- and off-site, can be estimated. The final program uses the library data to estimate population exposures for specified releases and source points for the nuclides of interest (including noble gases). Multiple source points are considered within a single pass to obtain the integrated effects from all sources

  1. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  2. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    Science.gov (United States)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  3. Integrated Approach Model of Risk, Control and Auditing of Accounting Information Systems

    Directory of Open Access Journals (Sweden)

    Claudiu BRANDAS

    2013-01-01

    Full Text Available The use of IT in the financial and accounting processes is growing fast and this leads to an increase in the research and professional concerns about the risks, control and audit of Ac-counting Information Systems (AIS. In this context, the risk and control of AIS approach is a central component of processes for IT audit, financial audit and IT Governance. Recent studies in the literature on the concepts of risk, control and auditing of AIS outline two approaches: (1 a professional approach in which we can fit ISA, COBIT, IT Risk, COSO and SOX, and (2 a research oriented approach in which we emphasize research on continuous auditing and fraud using information technology. Starting from the limits of existing approaches, our study is aimed to developing and testing an Integrated Approach Model of Risk, Control and Auditing of AIS on three cycles of business processes: purchases cycle, sales cycle and cash cycle in order to improve the efficiency of IT Governance, as well as ensuring integrity, reality, accuracy and availability of financial statements.

  4. An Integrated Knowledge Management System

    Directory of Open Access Journals (Sweden)

    Vasile Mazilescu

    2014-11-01

    Full Text Available The aim of this paper is to present a Knowledge Management System based on Fuzzy Logic (FLKMS, a real-time expert system to meet the challenges of the dynamic environment. The main feature of our integrated shell FLKMS is that it models and integrates the temporal relationships between the dynamic of the evolution of an economic process with some fuzzy inferential methods, using a knowledge model for control, embedded within the expert system’s operational knowledge base.

  5. Smart systems integration and simulation

    CERN Document Server

    Poncino, Massimo; Pravadelli, Graziano

    2016-01-01

    This book-presents new methods and tools for the integration and simulation of smart devices. The design approach described in this book explicitly accounts for integration of Smart Systems components and subsystems as a specific constraint. It includes methodologies and EDA tools to enable multi-disciplinary and multi-scale modeling and design, simulation of multi-domain systems, subsystems and components at all levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. By covering theoretical and practical aspects of smart device design, this book targets people who are working and studying on hardware/software modelling, component integration and simulation under different positions (system integrators, designers, developers, researchers, teachers, students etc.). In particular, it is a good introduction to people who have interest in managing heterogeneous components in an efficient and effective way on different domains and different abstraction l...

  6. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  7. A System Thinking Model Proposal for Enterprise Application Integration (EAI Evaluation Completeness

    Directory of Open Access Journals (Sweden)

    Irene Nakiyimba

    2014-01-01

    Full Text Available Research has identified a number of approaches for evaluating Enterprise Application Integration (EAI. The majority of these approaches focus primarily on the technical functional and non-functional capabil¬ities of an EAI solution. Although, where the technical dimensions have received considerable attention from researchers, other dimensions needed for EAI evaluation, such as stakeholder feedback, have not re¬ceived explicit consideration. As a result, attaining a consummate EAI solution is still a major challenge for many enterprises. The current EAI evaluation models simply provide piecemeal insights towards the evaluation criteria variables from limited stakeholder perceptions and do not help to understand EAI evaluation as a dynamic, feedback, time based and non-linear problem. Different stakeholders view the outcome of an EAI project from different perspectives and therefore will more likely than not arrive at different conclusions. To achieve a consensus among stakeholder perceptions, we represent EAI evaluation as a feedback analysis problem from multi-stakeholder perceptions for proper alignment with business goals, vision and mission. This paper proposes the application of System Dynamics (SD model towards guiding policy analysis for evaluating criteria factors from multi-stakeholders perceptions for EAI adoption; this will provide for holistic evaluation where emphasis is the importance of evaluation as whole (not piece meal perceptions and the interdependence of evaluation criteria factors from the diverse stakeholder perceptions is analyzed. In this paper we present a case-study performed at a large portion of the East African banking system. A total of 800 responses to questionnaires are analyzed to formulate a systems thinking model, which in turn allows us to analyze feedback loops between different stakeholders with distinct evaluation criteria. Findings result in a structured and holistic systems thinking model which

  8. Integrated Reporting Information System -

    Data.gov (United States)

    Department of Transportation — The Integrated Reporting Information System (IRIS) is a flexible and scalable web-based system that supports post operational analysis and evaluation of the National...

  9. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    Science.gov (United States)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  10. A unified expressing model of the AKNS hierarchy and the KN hierarchy, as well as its integrable coupling system

    International Nuclear Information System (INIS)

    Guo Fukui; Zhang Yufeng

    2004-01-01

    A new subalgebra of loop algebra A-tilde 1 is first constructed. Then a new Lax pair is presented, whose compatibility gives rise to a new Liouville integrable system(called a major result), possessing bi-Hamiltonian structures. It is remarkable that two symplectic operators obtained in this paper are directly constructed in terms of the recurrence relations. As reduction cases of the new integrable system obtained, the famous AKNS hierarchy and the KN hierarchy are obtained, respectively. Second, we prove a conjugate operator of a recurrence operator is a hereditary symmetry. Finally, we construct a high dimension loop algebra G-bar to obtain an integrable coupling system of the major result by making use of Tu scheme. In addition, we find the major result obtained is a unified expressing integrable model of both the AKNS and KN hierarchies, of course, we may also regard the major result as an expanding integrable model of the AKNS and KN hierarchies. Thus, we succeed to find an example of expanding integrable models being Liouville integrable

  11. Integrated management system

    International Nuclear Information System (INIS)

    Florescu, N.

    2003-01-01

    A management system is developed in order to reflect the needs of the business and to ensure that the objectives of the organization will be achieved. The process model and each individual process within the system then needs to identify the drives or requirements from external customers and stakeholders, regulations, and standards such as ISO and 50-C-Q. The processes are then developed to address these drivers. Developing the process in this way makes it fully integrated and capable of incorporating any new requirements. The International Standard (ISO 9000:2000) promotes the adoption of a process approach when developing, implementing and improving the effectiveness of a quality management system to enhance customer satisfaction by meeting customer requirements. The IAEA Code recognizes that the entire work is a process which can be planned, assessed and improved. For an organization to function effectively, numerous linked activities have to be identified and managed. By definition a process is an activity that using resources and taking into account all the constraints imposed executes the necessary operations which transform the inputs in outcomes. Running a system of processes within an organization, identification of the interaction between the processes and their management can be referred to as a 'process approach'. The advantage of such an approach is the ensuring of the ongoing control over the linkage between the individual processes composing the system as well as over their combination and interaction. Developing a management system implies: identification of the process which delivers Critical Success Factor (CSFs) of the business; identifying the support processes enabling the CSFs to be accomplished; identifying the processes that deliver the business fundamentals. An integrated management system should include all activities not only those related to Quality, Health and Safety. When developing an IMS it is necessary to identify all of the drivers

  12. Integrated modeling and analysis of ball screw feed system and milling process with consideration of multi-excitation effect

    Science.gov (United States)

    Zhang, Xing; Zhang, Jun; Zhang, Wei; Liang, Tao; Liu, Hui; Zhao, Wanhua

    2018-01-01

    The present researches about feed drive system and milling process are almost independent with each other, and ignore the interaction between the two parts, especially the influence of nonideal motion of feed drive system on milling process. An integrated modeling method of ball screw feed system and milling process with multi-excitation effect is proposed in this paper. In the integrated model, firstly an analytical model of motor harmonic torque with consideration of asymmetrical drive circuit and asymmetrical permanent magnet is given. Then, the numerical simulation procedure of cutter/workpiece engagement during milling process with displacement fluctuation induced by harmonic torque is put forward, which is followed by the solving flow for the proposed integrated model. Based on the integrated model, a new kind of quality defect shown as contour low frequency oscillation on machined surface is studied by experiments and simulations. The results demonstrate that the forming mechanism of the contour oscillation can be ascribed to the multi-excitation effect with motor harmonic torque and milling force. Moreover, the influence of different milling conditions on the contour oscillation characteristics, particularly on surface roughness, are further discussed. The results indicate that it is necessary to explain the cause of the new kind of quality defect with a view of system integration.

  13. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  14. Developing a New Integrated Model to improve the using of Classical Approach in Designing Management Information Systems

    OpenAIRE

    Mohammad M M Abu Omar; Khairul Anuar Abdullah

    2015-01-01

    Management information system (MIS) is used to solve management problems in the practical life, the designing and building of the management information systems is done by using one of the systems development methodologies. Classical approach is one of these methodologies which still suffer from some critical problems when it is used in designing and building the management information systems, it consumes more time and cost during its life cycle. This paper develops a new integrated model to...

  15. Integrated Farm System Model Version 4.3 and Dairy Gas Emissions Model Version 3.3 Software development and distribution

    Science.gov (United States)

    Modeling routines of the Integrated Farm System Model (IFSM version 4.2) and Dairy Gas Emission Model (DairyGEM version 3.2), two whole-farm simulation models developed and maintained by USDA-ARS, were revised with new components for: (1) simulation of ammonia (NH3) and greenhouse gas emissions gene...

  16. OOMM--Object-Oriented Matrix Modelling: an instrument for the integration of the Brasilia Regional Health Information System.

    Science.gov (United States)

    Cammarota, M; Huppes, V; Gaia, S; Degoulet, P

    1998-01-01

    The development of Health Information Systems is widely determined by the establishment of the underlying information models. An Object-Oriented Matrix Model (OOMM) is described which target is to facilitate the integration of the overall health system. The model is based on information modules named micro-databases that are structured in a three-dimensional network: planning, health structures and information systems. The modelling tool has been developed as a layer on top of a relational database system. A visual browser facilitates the development and maintenance of the information model. The modelling approach has been applied to the Brasilia University Hospital since 1991. The extension of the modelling approach to the Brasilia regional health system is considered.

  17. Function integrated track system

    OpenAIRE

    Hohnecker, Eberhard

    2010-01-01

    The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...

  18. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  19. Integrating model of the Project Independence Evaluation System. Volume VI. Data documentation. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B J

    1979-02-01

    This documentation describes the PIES Integrating Model as it existed on January 1, 1978. This volume contains two chapters. In Chapter I, Overview, the following subjects are briefly described: supply data, EIA projection series and scenarios, demand data and assumptions, and supply assumptions - oil and gas availabilities. Chapter II contains supply and demand data tables and sources used by the PIES Integrating Model for the mid-range scenario target years 1985 and 1990. Tabulated information is presented for demand, price, and elasticity data; coal data; imports data; oil and gas data; refineries data; synthetics, shale, and solar/geothermal data; transportation data; and utilities data.

  20. Integration of reusable systems

    CERN Document Server

    Rubin, Stuart

    2014-01-01

    Software reuse and integration has been described as the process of creating software systems from existing software rather than building software systems from scratch. Whereas reuse solely deals with the artifacts creation, integration focuses on how reusable artifacts interact with the already existing parts of the specified transformation. Currently, most reuse research focuses on creating and integrating adaptable components at development or at compile time. However, with the emergence of ubiquitous computing, reuse technologies that can support adaptation and reconfiguration of architectures and components at runtime are in demand. This edited book includes 15 high quality research papers written by experts in information reuse and integration to cover the most recent advances in the field. These papers are extended versions of the best papers which were presented at IEEE International Conference on Information Reuse and Integration and IEEE International Workshop on Formal Methods Integration, which wa...

  1. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  2. PRISMA: Program of Research to Integrate the Services for the Maintenance of Autonomy. A system-level integration model in Quebec

    Directory of Open Access Journals (Sweden)

    Margaret MacAdam

    2015-09-01

    Full Text Available The Program of Research to Integrate the Services for the Maintenance of Autonomy (PRISMA began in Quebec in 1999. Evaluation results indicated that the PRISMA Project improved the system of care for the frail elderly at no additional cost. In 2001, the Quebec Ministry of Health and Social Services made implementing the six features of the PRISMA approach a province-wide goal in the programme now known as RSIPA (French acronym. Extensive Province-wide progress has been made since then, but ongoing challenges include reducing unmet need for case management and home care services, creating incentives for increased physician participation in care planning and improving the computerized client chart, among others. PRISMA is the only evaluated international model of a coordination approach to integration and one of the few, if not the only, integration model to have been adopted at the system level by policy-makers.

  3. Intelligent Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  4. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  5. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    Science.gov (United States)

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  6. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  7. Model-based identification and use of task complexity factors of human integrated systems

    International Nuclear Information System (INIS)

    Ham, Dong-Han; Park, Jinkyun; Jung, Wondea

    2012-01-01

    Task complexity is one of the conceptual constructs that are critical to explain and predict human performance in human integrated systems. A basic approach to evaluating the complexity of tasks is to identify task complexity factors and measure them. Although a great deal of task complexity factors have been studied, there is still a lack of conceptual frameworks for identifying and organizing them analytically, which can be generally used irrespective of the types of domains and tasks. This study proposes a model-based approach to identifying and using task complexity factors, which has two facets—the design aspects of a task and complexity dimensions. Three levels of design abstraction, which are functional, behavioral, and structural aspects of a task, characterize the design aspect of a task. The behavioral aspect is further classified into five cognitive processing activity types. The complexity dimensions explain a task complexity from different perspectives, which are size, variety, and order/organization. Twenty-one task complexity factors are identified by the combination of the attributes of each facet. Identification and evaluation of task complexity factors based on this model is believed to give insights for improving the design quality of tasks. This model for complexity factors can also be used as a referential framework for allocating tasks and designing information aids. The proposed approach is applied to procedure-based tasks of nuclear power plants (NPPs) as a case study to demonstrate its use. Last, we compare the proposed approach with other studies and then suggest some future research directions.

  8. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  9. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  10. Issues affecting the electricity transmission system in Mexico under a competitive integrated model

    Energy Technology Data Exchange (ETDEWEB)

    Avila Rosales, M.A.; Gonzalez Flores, J. [Federal Electricity Commission, Mexico City (Mexico)

    2008-07-01

    The electricity sector in Mexico is undergoing a process of significant structural change. The traditional industry framework has been exposed to new market structures and greater competition, both of which are being introduced by changing regulations regarding who can generate, transmit, distribute and sell electricity. Mexico's power industry is changing to a competitive integrated model. Electricity industry restructuring is partly based on the assumption that transmission systems should be flexible, reliable, and open to all exchanges no matter where the suppliers and consumers of energy are located and who they are. However, neither the existing transmission systems nor its management infrastructure can fully support this open exchange. This paper described the primary issues affecting the transmission system in Mexico under a competitive environment and a transmission expansion planning approach that took the uncertainties associated with the location and size of new generating power stations into consideration in order to produce least-cost and robust transmission plans. The paper described the planning process, including a rigorous analysis of the economics of the resulting transmission plans. Specifically, the paper described the current regulatory framework and supply adequacy as well as current procedures and methodologies for transmission management and expansion planning. The transmission planning methodology was also presented. This included a minimum cost analysis; profit analysis; and least-cost transmission plan. It was concluded that the transmission expansion planning approach stressed that a horizon year viewpoint was important because transmission additions have long-term use. The transmission expansion planning approach, further defined the process of selecting transmission projects as one of comparing and optimizing attributes such as near-term needs; long-term utilization; contribution to overall reliability; and favorable or least

  11. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    Science.gov (United States)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  12. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    Energy Technology Data Exchange (ETDEWEB)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  13. An approach to modeling and optimization of integrated renewable energy system (ires)

    Science.gov (United States)

    Maheshwari, Zeel

    The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living

  14. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  16. An integral equation approach to the interval reliability of systems modelled by finite semi-Markov processes

    International Nuclear Information System (INIS)

    Csenki, A.

    1995-01-01

    The interval reliability for a repairable system which alternates between working and repair periods is defined as the probability of the system being functional throughout a given time interval. In this paper, a set of integral equations is derived for this dependability measure, under the assumption that the system is modelled by an irreducible finite semi-Markov process. The result is applied to the semi-Markov model of a two-unit system with sequential preventive maintenance. The method used for the numerical solution of the resulting system of integral equations is a two-point trapezoidal rule. The system of implementation is the matrix computation package MATLAB on the Apple Macintosh SE/30. The numerical results are discussed and compared with those from simulation

  17. Evaluation Of Model Based Systems Engineering Processes For Integration Into Rapid Acquisition Programs

    Science.gov (United States)

    2016-09-01

    for the required simulation allowed the MK6LE project to avoid the risk of having lower level model components not integrating together. The initial...that programs that applied MBSE at the lower levels, in particular the MK54 Torpedo program, expressed regrets of limiting the re-architecture to the

  18. On integrating modeling software for application to total-system performance assessment

    International Nuclear Information System (INIS)

    Lewis, L.C.; Wilson, M.L.

    1994-05-01

    We examine the processes and methods used to facilitate collaboration in software development between two organizations at separate locations -- Lawrence Livermore National Laboratory (LLNL) in California and Sandia National Laboratories (SNL) in New Mexico. Our software development process integrated the efforts of these two laboratories. Software developed at LLNL to model corrosion and failure of waste packages and subsequent releases of radionuclides was incorporated as a source term into SNLs computer models for fluid flow and radionuclide transport through the geosphere

  19. Model integration and a theory of models

    OpenAIRE

    Dolk, Daniel R.; Kottemann, Jeffrey E.

    1993-01-01

    Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...

  20. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In the nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model to Dynamic Safety System(DDS) shows that the estimated reliability of the system is quite reasonable and realistic

  1. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model of dynamic safety system (DSS) shows that the estimated reliability of the system is quite reasonable and realistic. (author)

  2. Integrated inventory information system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Kunte, P.D.

    The nature of oceanographic data and the management of inventory level information are described in Integrated Inventory Information System (IIIS). It is shown how a ROSCOPO (report on observations/samples collected during oceanographic programme...

  3. Systems Integration Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  4. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  5. Models and standards for production systems integration: Technological process and documents

    Directory of Open Access Journals (Sweden)

    Lečić Danica

    2005-01-01

    Full Text Available Electronic business demands from production companies to collaborate with customers, suppliers and end users and start electronic manufacturing. To achieve this goal companies have to integrate their subsystems (Application to Application-A2A and they have to collaborate with their business partners (Business to Business - B2B. For this purpose models and unique standards for integration are necessary. In this paper, ebXML and OAGI specifications have been used to present metamodel process by UML class diagram and standardized model of document Working Order for technological process in the form of OAGI BOD XML document. Based on it, from an example, model of technological process is presented by activity diagram (DA in XML form and an appearance of document Working Order. Just as well, rules of transformation DA to XML are presented.

  6. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing....... A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model....

  7. A model for the design of computer integrated manufacturing systems: Identification of information requirements of decision makers

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1990-01-01

    A predominant interest in recent design research has been the development of a general model of the design process to formulate a framework within which support systems based on modern information technology can be developed. Similarly, for manufacturing systems, advanced information systems...... and compatibility of data bases. It is, however, a question whether traditional models of work process or task procedures are suited for design of advanced information systems such as integrated manufacturing systems. Modern technology and the rapid succession of designs, materials and processes require flexible...... are developed to support production planning and control processes as they are found in the present organizations. In this case, the result has been the evolution of "islands of automation" and in the CIM literature, integration is widely discussed in terms of standardization of communication protocols...

  8. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2011-01-01

    Due to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering can play a role here because it supports system development by enabling the use of various model-based analysis techniques and tools. As a

  9. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  10. End-user satisfaction analysis on library management system unnes using technology acceptance model towards national standard of integrated library

    Science.gov (United States)

    Hardyanto, W.; Purwinarko, A.; Adhi, M. A.

    2018-03-01

    The library which is the gate of the University should be supported by the existence of an adequate information system, to provide excellent service and optimal to every user. Library management system that has been in existence since 2009 needs to be re-evaluated so that the system can meet the needs of both operator and Unnes user in particular, and users from outside Unnes in general. This study aims to evaluate and improve the existing library management system to produce a system that is accountable and able to meet the needs of end users, as well as produce a library management system that is integrated Unnes. Research is directed to produce evaluation report with Technology Acceptance Model (TAM) approach and library management system integrated with the national standard.

  11. Digital System Categorization Methodology to Support Integration of Digital Instrumentation and Control Models into PRAs

    International Nuclear Information System (INIS)

    Arndt, Steven A.

    2011-01-01

    It has been suggested that by categorizing the various digital systems used in safety critical applications in nuclear power plants, it would be possible to determine which systems should be modeled in the analysis of the larger plant wide PRA, at what level of detail the digital system should be modeled and using which methods. The research reported in this paper develops a categorization method using system attributes to permit a modeler to more effectively model the systems that will likely have the most critical contributions to the overall plant safety and to more effectively model system interactions for those digital systems where the interactions are most important to the overall accuracy and completeness of the plant PRA. The proposed methodology will categorize digital systems based on certain attributes of the systems themselves and how they will be used in the specific application. This will help determine what digital systems need to be modeled and at what level of detail, and can be used to guide PRA analysis and regulatory reviews. The three-attribute categorization strategy that was proposed by Arndt is used as the basis for the categorization methodology developed here. The first attribute, digital system complexity, is based on Type Il interactions defined by Aldemir and an overall digital system size and complexity index. The size and complexity index used are previously defined software complexity metrics. Potential sub-attributes of digital system complexity include, design complexity, software complexity, hardware complexity, system function complexity and testability. The second attribute, digital system interactions/inter-conductivity, is a combination of Rushby's coupling and Ademir's Type I interactions. Digital systems that are loosely coupled and/or have very few Type I interaction would not interact dynamically with the overall system and would have a low interactions/inter-conductivity score. Potential sub-attributes of digital system

  12. Digital System Categorization Methodology to Support Integration of Digital Instrumentation and Control Models into PRAs

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Steven A. [U.S. Nuclear Regulatory Commission, Washington D.C. (United States)

    2011-08-15

    It has been suggested that by categorizing the various digital systems used in safety critical applications in nuclear power plants, it would be possible to determine which systems should be modeled in the analysis of the larger plant wide PRA, at what level of detail the digital system should be modeled and using which methods. The research reported in this paper develops a categorization method using system attributes to permit a modeler to more effectively model the systems that will likely have the most critical contributions to the overall plant safety and to more effectively model system interactions for those digital systems where the interactions are most important to the overall accuracy and completeness of the plant PRA. The proposed methodology will categorize digital systems based on certain attributes of the systems themselves and how they will be used in the specific application. This will help determine what digital systems need to be modeled and at what level of detail, and can be used to guide PRA analysis and regulatory reviews. The three-attribute categorization strategy that was proposed by Arndt is used as the basis for the categorization methodology developed here. The first attribute, digital system complexity, is based on Type Il interactions defined by Aldemir and an overall digital system size and complexity index. The size and complexity index used are previously defined software complexity metrics. Potential sub-attributes of digital system complexity include, design complexity, software complexity, hardware complexity, system function complexity and testability. The second attribute, digital system interactions/inter-conductivity, is a combination of Rushby's coupling and Ademir's Type I interactions. Digital systems that are loosely coupled and/or have very few Type I interaction would not interact dynamically with the overall system and would have a low interactions/inter-conductivity score. Potential sub-attributes of

  13. Validation of a functional model for integration of safety into process system design

    DEFF Research Database (Denmark)

    Wu, J.; Lind, M.; Zhang, X.

    2015-01-01

    with the process system functionalities as required for the intended safety applications. To provide the scientific rigor and facilitate the acceptance of qualitative modelling, this contribution focuses on developing a scientifically based validation method for functional models. The Multilevel Flow Modeling (MFM...

  14. A model library for simulation and benchmarking of integrated urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores Alsina, Xavier; Kroll, J. S.

    2017-01-01

    This paper presents a freely distributed, open-source toolbox to predict the behaviour of urban wastewater systems (UWS). The proposed library is used to develop a system-wide Benchmark Simulation Model (BSM-UWS) for evaluating (local/global) control strategies in urban wastewater systems (UWS...

  15. Integrating Quality Improvement and Continuing Professional Development: A Model From the Mental Health Care System.

    Science.gov (United States)

    Sockalingam, Sanjeev; Tehrani, Hedieh; Lin, Elizabeth; Lieff, Susan; Harris, Ilene; Soklaridis, Sophie

    2016-04-01

    To explore the perspectives of leaders in psychiatry and continuing professional development (CPD) regarding the relationship, opportunities, and challenges in integrating quality improvement (QI) and CPD. In 2013-2014, the authors interviewed 18 participants in Canada: 10 psychiatrists-in-chief, 6 CPD leaders in psychiatry, and 2 individuals with experience integrating these domains in psychiatry who were identified through snowball sampling. Questions were designed to identify participants' perspectives about the definition, relationship, and integration of QI and CPD in psychiatry. Interviews were recorded and transcribed. An iterative, inductive method was used to thematically analyze the transcripts. To ensure the rigor of the analysis, the authors performed member checking and sampling until theoretical saturation was achieved. Participants defined QI as a concept measured at the individual, hospital, and health care system levels and CPD as a concept measured predominantly at the individual and hospital levels. Four themes related to the relationship between QI and CPD were identified: challenges with QI training, adoption of QI into the mental health care system, implementation of QI in CPD, and practice improvement outcomes. Despite participants describing QI and CPD as mutually beneficial, they expressed uncertainty about the appropriateness of aligning these domains within a mental health care context because of the identified challenges. This study identified challenges with aligning QI and CPD in psychiatry and yielded a framework to inform future integration efforts. Further research is needed to determine the generalizability of this framework to other specialties and health care professions.

  16. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    Science.gov (United States)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  17. Integrated Medical-Dental Delivery Systems: Models in a Changing Environment and Their Implications for Dental Education.

    Science.gov (United States)

    Jones, Judith A; Snyder, John J; Gesko, David S; Helgeson, Michael J

    2017-09-01

    Models and systems of the dental care delivery system are changing. Solo practice is no longer the only alternative for graduating dentists. Over half of recent graduates are employees, and more than ever before, dentists are practicing in groups. This trend is expected to increase over the next 25 years. This article examines various models of dental care delivery, explains why it is important to practice in integrated medical-dental teams, and defines person-centered care, contrasting it with patient-centered care. Systems of care in which teams are currently practicing integrated oral health care delivery are described, along with speculation on the future of person-centered care and the team approach. Critical steps in the education of dental and other health care professionals and the development of clinical models of care in moving forward are considered. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  18. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  19. Single, Integrated, Service-Centric Model of Military Health System Governance

    Science.gov (United States)

    of the research is to establish what the model of governance of the Military Health System should be. That, with other recommendations, should be the...foundation for the impending transformation. The research found that the model of governance should be a single service model with regional health...commands that support the geographic combatant commander (GCC). With an organization based on the presented model of governance , the Military Health

  20. Functional modelling for integration of human-software-hardware in complex physical systems

    International Nuclear Information System (INIS)

    Modarres, M.

    1996-01-01

    A framework describing the properties of complex physical systems composed of human-software-hardware interactions in terms of their functions is described. It is argued that such a framework is domain-general, so that functional primitives present a language that is more general than most other modeling methods such as mathematical simulation. The characteristics and types of functional models are described. Examples of uses of the framework in modeling physical systems composed of human-software-hardware (hereby we refer to them as only physical systems) are presented. It is concluded that a function-centered model of a physical system provides a capability for generating a high-level simulation of the system for intelligent diagnostic, control or other similar applications

  1. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  2. Advancing a Distributive-Bargaining and Integrative-Negotiation Integral System: A Values-Based Negotiation Model (VBM

    Directory of Open Access Journals (Sweden)

    Ivan Gan

    2017-09-01

    Full Text Available The proposed values-based negotiation model (VBM agrees with and extends principled negotiation’s recognition of personal values and emotions as important negotiation elements. First, building upon Martin Buber’s existentialist treatment of religion and secularism, VBM centers on religion as one of many possible sources of personal values that informs respectful and mutually beneficial interactions without needing one to necessarily be religious. Just as one need not be a Buddhist or a Hindu to practice yoga, negotiators of any theological outlook can profit from a model grounded in broad, common tenets drawn from a range of organized religions. Second, VBM distinguishes feelings from emotions because the long-lasting and intrinsically stimulated effects of feelings have greater implications on the perception of negotiated outcomes. VBM negotiators view negotiations as a constitutive prosocial process whereby parties consider the outcome important enough to invest time and energy. Negotiators who use VBM appeal to the goodness of their counterparts by doing good first so that both parties avoid a win-lose outcome. This counterintuitive move contradicts the self-centered but understandably normal human behavior of prioritizing one’s own interests before others’ interests. However, when one appeals to the goodness of one’s Buberian Thou counterparts, he or she stimulates positive emotions that promote understanding. Third, VBM provides a framework that draws upon an individual’s personal values (religious or otherwise and reconfigures the distributive-bargaining-and-integrative-negotiation distinction so that negotiators can freely apply distributive tactics to claim maximum intangible and tangible outcomes without compromising on their personal values or valuable relationships.

  3. Long-time integration methods for mesoscopic models of pattern-forming systems

    International Nuclear Information System (INIS)

    Abukhdeir, Nasser Mohieddin; Vlachos, Dionisios G.; Katsoulakis, Markos; Plexousakis, Michael

    2011-01-01

    Spectral methods for simulation of a mesoscopic diffusion model of surface pattern formation are evaluated for long simulation times. Backwards-differencing time-integration, coupled with an underlying Newton-Krylov nonlinear solver (SUNDIALS-CVODE), is found to substantially accelerate simulations, without the typical requirement of preconditioning. Quasi-equilibrium simulations of patterned phases predicted by the model are shown to agree well with linear stability analysis. Simulation results of the effect of repulsive particle-particle interactions on pattern relaxation time and short/long-range order are discussed.

  4. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  5. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  6. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  7. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    Directory of Open Access Journals (Sweden)

    Babak Farjad

    2017-10-01

    Full Text Available This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.

  8. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  9. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  10. Integrated Reacting Fluid Dynamics and Predictive Materials Degradation Models for Propulsion System Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...

  11. An integrated model for interaction of electromagnetic fields with biological systems

    International Nuclear Information System (INIS)

    Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.

    1999-01-01

    In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it

  12. Integral consideration of integrated management systems

    International Nuclear Information System (INIS)

    Frauenknecht, Stefan; Schmitz, Hans

    2010-01-01

    Aim of the project for the NPPs Kruemmel and Brunsbuettel (Vattenfall) is the integral view of the business process as basis for the implementation and operation of management systems in the domains quality, safety and environment. The authors describe the integral view of the business processes in the frame of integrated management systems with the focus nuclear safety, lessons learned in the past, the concept of a process-based controlling system and experiences from the practical realization.

  13. Capability Maturity Model Integration (CMMISM), Version 1.1 CMMISM for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1). Staged Representation

    National Research Council Canada - National Science Library

    2002-01-01

    .... Concepts covered by this model include systems engineering, software engineering, integrated product and process development, and supplier sourcing as well as traditional CMM concepts such as process...

  14. Integrated building and system simulation using run-time coupled distributed models

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.; Wijsman, A.J.T.M.

    2006-01-01

    In modeling and simulation of real building and heating, ventilating, and air-conditioning (HVAC) system configurations, it is frequently found that certain parts can be represented in one simulation software, while models for other parts of the configuration are only available in other software.

  15. Model-Based Design and Integration of Large Li-ion Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  16. Integrating Geographical Information Systems (GIS) with Hydrological Modelling – Applicability and Limitations

    OpenAIRE

    Rajesh VijayKumar Kherde; Dr. Priyadarshi. H. Sawant

    2013-01-01

    The evolution of Geographic information systems (GIS) facilitated the use digital terrain data for topography based hydrological modelling. The use of spatial data for hydrological modelling emerged from the great capability of GIS tools to store and handle the data associated hydro-morphology of the basin. These models utilize the spatially variable terrain data for converting rainfall into surface runoff.Manual map manipulation has always posed difficulty in analysing and designing large sc...

  17. Integrating social science into empirical models of coupled human and natural systems

    Science.gov (United States)

    Jeffrey D. Kline; Eric M. White; A Paige Fischer; Michelle M. Steen-Adams; Susan Charnley; Christine S. Olsen; Thomas A. Spies; John D. Bailey

    2017-01-01

    Coupled human and natural systems (CHANS) research highlights reciprocal interactions (or feedbacks) between biophysical and socioeconomic variables to explain system dynamics and resilience. Empirical models often are used to test hypotheses and apply theory that represent human behavior. Parameterizing reciprocal interactions presents two challenges for social...

  18. Performance assessment of sealing systems. Conceptual and integrated modelling of plugs and seals

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Andre; Buhmann, Dieter; Kindlein, Jonathan; Lauke, Thomas

    2016-08-15

    The long-time isolation of radionuclides from the biosphere is the goal of the storage of radioactive waste in deep geological repositories. For repositories in rock salt, this goal is achieved on the one hand by the impermeable undisturbed part of the salt host rock formation and on the other hand by crushed salt, which is used to backfill the mine openings in the emplacement areas and galleries created during the construction of the repository. The crushed salt backfill is compacted over time and achieves a sufficiently high hydraulic resistance to avoid inflow of brines into the emplacement areas of the repository in the long-term. Plugs and seals must additionally provide their sealing function during the early post closure phase, until the compaction of the backfill is adequate and the permeability of the backfill is sufficiently low. To assess the future development of the waste repository, an adequate knowledge of the material behaviour is necessary and related mathematical models must be developed to be able to perform predictions on the long-term safety of the repository. An integrated performance assessment model was formulated that describes the long-term behaviour of a sealing built from salt concrete. The average permeability of the sealing changes with time after its emplacement from various processes of which two were regarded in a constitutive model: first, the healing of the EDZ in the host rock around the sealing, and second, the corrosion of the salt concrete material resulting from brine attack. Empirical parameter model functions were defined for both processes to reflect the actual behaviour. The mathematical model was implemented in the integrated performance assessment model LOPOS which is used by GRS as near-field model for repositories in salt. Deterministic and probabilistic calculations were performed with realistic parameters showing how the permeability of the sealing decreases during the first 2 000 years due to the healing of the EDZ

  19. Performance assessment of sealing systems. Conceptual and integrated modelling of plugs and seals

    International Nuclear Information System (INIS)

    Ruebel, Andre; Buhmann, Dieter; Kindlein, Jonathan; Lauke, Thomas

    2016-08-01

    The long-time isolation of radionuclides from the biosphere is the goal of the storage of radioactive waste in deep geological repositories. For repositories in rock salt, this goal is achieved on the one hand by the impermeable undisturbed part of the salt host rock formation and on the other hand by crushed salt, which is used to backfill the mine openings in the emplacement areas and galleries created during the construction of the repository. The crushed salt backfill is compacted over time and achieves a sufficiently high hydraulic resistance to avoid inflow of brines into the emplacement areas of the repository in the long-term. Plugs and seals must additionally provide their sealing function during the early post closure phase, until the compaction of the backfill is adequate and the permeability of the backfill is sufficiently low. To assess the future development of the waste repository, an adequate knowledge of the material behaviour is necessary and related mathematical models must be developed to be able to perform predictions on the long-term safety of the repository. An integrated performance assessment model was formulated that describes the long-term behaviour of a sealing built from salt concrete. The average permeability of the sealing changes with time after its emplacement from various processes of which two were regarded in a constitutive model: first, the healing of the EDZ in the host rock around the sealing, and second, the corrosion of the salt concrete material resulting from brine attack. Empirical parameter model functions were defined for both processes to reflect the actual behaviour. The mathematical model was implemented in the integrated performance assessment model LOPOS which is used by GRS as near-field model for repositories in salt. Deterministic and probabilistic calculations were performed with realistic parameters showing how the permeability of the sealing decreases during the first 2 000 years due to the healing of the EDZ

  20. Performance measurement, modeling, and evaluation of integrated concurrency control and recovery algorithms in distributed data base systems

    Energy Technology Data Exchange (ETDEWEB)

    Jenq, B.C.

    1986-01-01

    The performance evaluation of integrated concurrency-control and recovery mechanisms for distributed data base systems is studied using a distributed testbed system. In addition, a queueing network model was developed to analyze the two phase locking scheme in the distributed testbed system. The combination of testbed measurement and analytical modeling provides an effective tool for understanding the performance of integrated concurrency control and recovery algorithms in distributed database systems. The design and implementation of the distributed testbed system, CARAT, are presented. The concurrency control and recovery algorithms implemented in CARAT include: a two phase locking scheme with distributed deadlock detection, a distributed version of optimistic approach, before-image and after-image journaling mechanisms for transaction recovery, and a two-phase commit protocol. Many performance measurements were conducted using a variety of workloads. A queueing network model is developed to analyze the performance of the CARAT system using the two-phase locking scheme with before-image journaling. The combination of testbed measurements and analytical modeling provides significant improvements in understanding the performance impacts of the concurrency control and recovery algorithms in distributed database systems.

  1. What Happens to Integrated Product Development Models with Product/Service-System Approaches?

    DEFF Research Database (Denmark)

    Tan, Adrian; McAloone, Timothy Charles; Andreasen, Mogens Myrup

    2006-01-01

    Integrated Product Development (IPD) has traditionally focused on the development activities relating to physical technological artefacts. With the advent of business approaches for manufacturing firms based on providing customers the utility of integrated products and services – a term dubbed...... ‘product/service-systems (PSS)’ – companies need to extend their activities to include new dimensions of development. Within the paradigm of mass production and consumption, traditional product-oriented business strategies regarded physical technological artefacts (products) as the mediators of customer...... value. Value was based on the exchange of products between a providing company and a receiving customer. The more products the company could sell, the more revenue it generated. At the point of sale the ownership and responsibility of the product was transferred from company to customer. A customer...

  2. Qualitative Analysis of Integration Adapter Modeling

    OpenAIRE

    Ritter, Daniel; Holzleitner, Manuel

    2015-01-01

    Integration Adapters are a fundamental part of an integration system, since they provide (business) applications access to its messaging channel. However, their modeling and configuration remain under-represented. In previous work, the integration control and data flow syntax and semantics have been expressed in the Business Process Model and Notation (BPMN) as a semantic model for message-based integration, while adapter and the related quality of service modeling were left for further studi...

  3. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    Energy Technology Data Exchange (ETDEWEB)

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996

  4. Systems integration (automation system). System integration (automation system)

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K; Komori, T; Fukuma, Y; Oikawa, M [Nippon Steal Corp., Tokyo (Japan)

    1991-09-26

    This paper introduces business activities on an automation systems integration (SI) started by a company in July,1988, and describes the SI concepts. The business activities include, with the CIM (unified production carried out on computers) and AMENITY (living environment) as the mainstays, a single responsibility construction ranging from consultation on structuring optimal systems for processing and assembling industries and intelligent buildings to system design, installation and after-sales services. With an SI standing on users {prime} position taken most importantly, the business starts from a planning and consultation under close coordination. On the conceptual basis of structuring optimal systems using the ompany {prime}s affluent know-hows and tools and adapting and applying with multi-vendors, open networks, centralized and distributed systems, the business is promoted with the accumulated technologies capable of realizing artificial intelligence and neural networks in its background, and supported with highly valuable business results in the past. 10 figs., 1 tab.

  5. Discrete systems and integrability

    CERN Document Server

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  6. Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2

    Directory of Open Access Journals (Sweden)

    A. Baklanov

    2017-08-01

    Full Text Available The Environment – High Resolution Limited Area Model (Enviro-HIRLAM is developed as a fully online integrated numerical weather prediction (NWP and atmospheric chemical transport (ACT model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2, in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct on radiation and (first and second indirect effects on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform – HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  7. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    Science.gov (United States)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In

  8. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    Science.gov (United States)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  9. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM and Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-02-01

    Full Text Available The integration of Building Information Modeling (BIM and Geographic Information System (GIS has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as “EEEF” criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration.

  10. Integrated management systems

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg; Remmen, Arne; Mellado, M. Dolores

    2006-01-01

    Different approaches to integration of management systems (ISO 9001, ISO 14001, OHSAS 18001 and SA 8000) with various levels of ambition have emerged. The tendency of increased compatibility between these standards has paved the road for discussions of, how to understand the different aspects of ...

  11. Integrable and superintegrable systems

    CERN Document Server

    1990-01-01

    Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.

  12. Improving the Efficiency of Medical Services Systems: A New Integrated Mathematical Modeling Approach

    Directory of Open Access Journals (Sweden)

    Davood Shishebori

    2013-01-01

    Full Text Available Nowadays, the efficient design of medical service systems plays a critical role in improving the performance and efficiency of medical services provided by governments. Accordingly, health care planners in countries especially with a system based on a National Health Service (NHS try to make decisions on where to locate and how to organize medical services regarding several conditions in different residence areas, so as to improve the geographic equity of comfortable access in the delivery of medical services while accounting for efficiency and cost issues especially in crucial situations. Therefore, optimally locating of such services and also suitable allocating demands them, can help to enhance the performance and responsiveness of medical services system. In this paper, a multiobjective mixed integer nonlinear programming model is proposed to decide locations of new medical system centers, link roads that should be constructed or improved, and also urban residence centers covered by these medical service centers and link roads under investment budget constraint in order to both minimize the total transportation cost of the overall system and minimize the total failure cost (i.e., maximize the system reliability of medical service centers under unforeseen situations. Then, the proposed model is linearized by suitable techniques. Moreover, a practical case study is presented in detail to illustrate the application of the proposed mathematical model. Finally, a sensitivity analysis is done to provide an insight into the behavior of the proposed model in response to changes of key parameters of the problem.

  13. Collective versus single-particle motion in quantum many-body systems from the perspective of an integrable model

    Energy Technology Data Exchange (ETDEWEB)

    Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas, E-mail: jens.haemmerling@uni-due.d [Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)

    2010-07-02

    We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.

  14. Collective versus single-particle motion in quantum many-body systems from the perspective of an integrable model

    International Nuclear Information System (INIS)

    Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas

    2010-01-01

    We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.

  15. Parametric Ward-Takahashi identity in disordered systems and the integral identity associated with the Calogero-Sutherland model

    International Nuclear Information System (INIS)

    Taniguchi, N.

    1997-01-01

    By utilizing the symmetric property known as the Ward-Takahashi identity in disordered systems, we explore the novel symmetry relations which hold in one-dimensional systems with inverse square interaction (the Calogero-Sutherland model). The identities emerge totally from the algebraic structure of the model. They show that the dynamical correlators are connected with one another, involving the higher-order integrals of motion. We obtain the result for the coupling strengths λ=1/2, 1, and 2, and conjecture that a similar relation may hold for arbitrary rational λ. copyright 1997 The American Physical Society

  16. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  17. Integrated modeling: a look back

    Science.gov (United States)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  18. Modeling and Simulation Resource Repository (MSRR)(System Engineering/Integrated M&S Management Approach

    Science.gov (United States)

    Milroy, Audrey; Hale, Joe

    2006-01-01

    NASA s Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model s fidelity, credibility, and quality, including the verification, validation and accreditation information. The NASA MSRR will be implemented leveraging M&S industry best practices. This presentation will discuss the requirements that will enable NASA to capture and make available the "meta data" or "simulation biography" data associated with a model. The presentation will also describe the requirements that drive how NASA will collect and document relevant information for models or suites of models in order to facilitate use and reuse of relevant models and provide visibility across NASA organizations and the larger M&S community.

  19. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    Science.gov (United States)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  20. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa

    Science.gov (United States)

    Magombeyi, M. S.; Taigbenu, A. E.

    Computerised integrated models from science contribute to better informed and holistic assessments of multifaceted policies and technologies than individual models. This view has led to considerable effort being devoted to developing integrated models to support decision-making under integrated water resources management (IWRM). Nevertheless, an appraisal of previous and ongoing efforts to develop such decision support systems shows considerable deficiencies in attempts to address the hydro-socio-economic effects on livelihoods. To date, no universal standard integration method or framework is in use. For the existing integrated models, their application failures have pointed to the lack of stakeholder participation. In an endeavour to close this gap, development and application of a seasonal time-step integrated model with prediction capability is presented in this paper. This model couples existing hydrology, agronomy and socio-economic models with feedbacks to link livelihoods of resource-constrained smallholder farmers to water resources at catchment level in the semi-arid Olifants subbasin in South Africa. These three models, prior to coupling, were calibrated and validated using observed data and participation of local stakeholders. All the models gave good representation of the study conditions, as indicated by the statistical indicators. The integrated model is of general applicability, hence can be extended to other catchments. The impacts of untied ridges, planting basins and supplemental irrigation were compared to conventional rainfed tillage under maize crop production and for different farm typologies. Over the 20 years of simulation, the predicted benefit of untied ridges and planting basins versus conventional rainfed tillage on surface runoff (Mm 3/year) reduction was 14.3% and 19.8%, respectively, and about 41-46% sediment yield (t/year) reduction in the catchment. Under supplemental irrigation, maize yield improved by up to 500% from the long

  1. CHOmine: an integrated data warehouse for CHO systems biology and modeling.

    Science.gov (United States)

    Gerstl, Matthias P; Hanscho, Michael; Ruckerbauer, David E; Zanghellini, Jürgen; Borth, Nicole

    2017-01-01

    The last decade has seen a surge in published genome-scale information for Chinese hamster ovary (CHO) cells, which are the main production vehicles for therapeutic proteins. While a single access point is available at www.CHOgenome.org, the primary data is distributed over several databases at different institutions. Currently research is frequently hampered by a plethora of gene names and IDs that vary between published draft genomes and databases making systems biology analyses cumbersome and elaborate. Here we present CHOmine, an integrative data warehouse connecting data from various databases and links to other ones. Furthermore, we introduce CHOmodel, a web based resource that provides access to recently published CHO cell line specific metabolic reconstructions. Both resources allow to query CHO relevant data, find interconnections between different types of data and thus provides a simple, standardized entry point to the world of CHO systems biology. http://www.chogenome.org. © The Author(s) 2017. Published by Oxford University Press.

  2. Integrated modeling of land-use change: the role of coupling, interactions and feedbacks between the human and Earth systems

    Science.gov (United States)

    Monier, E.; Kicklighter, D. W.; Ejaz, Q.; Winchester, N.; Paltsev, S.; Reilly, J. M.

    2016-12-01

    Land-use change integrates a large number of components of the human and Earth systems, including climate, energy, water, and land. These complex coupling elements, interactions and feedbacks take place on a variety of space and time scales, thus increasing the complexity of land-use change modeling frameworks. In this study, we aim to identify which coupling elements, interactions and feedbacks are important for modeling land-use change, both at the global and regional level. First, we review the existing land-use change modeling framework used to develop land-use change projections for the Representative Concentration Pathways (RCP) scenarios. In such framework, land-use change is simulated by Integrated Assessment Models (IAMs) and mainly influenced by economic, energy, demographic and policy drivers. IAMs focus on representing the demand for agriculture and forestry goods (crops for food and bioenergy, forest products for construction and bioenergy), the interactions with other sectors of the economy and trade between various regions of the world. Then, we investigate how important various coupling elements and feedbacks with the Earth system are for projections of land-use change at the global and regional level. We focus on the following: i) the climate impacts on land productivity and greenhouse gas emissions, which requires climate change information and coupling to a terrestrial ecosystem model/crop model; ii) the climate and economic impacts on irrigation availability, which requires coupling the LUC modeling framework to a water resources management model and disaggregating rainfed and irrigated croplands; iii) the feedback of land-use change on the global and regional climate system through land-use change emissions and changes in the surface albedo and hydrology, which requires coupling to an Earth system model. Finally, we conclude our study by highlighting the current lack of clarity in how various components of the human and Earth systems are

  3. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    International Nuclear Information System (INIS)

    Isa, Nor Ashidi Mat

    2015-01-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  4. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Science.gov (United States)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  5. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Nor Ashidi Mat [Imaging and Intelligent System Research Team (ISRT), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  6. Integration of bottom-up and top-down models for the energy system. A practical case for Denmark

    International Nuclear Information System (INIS)

    Jacobsen, H.; Morthorst, P.E.; Nielsen, L.; Stephensen, P.

    1996-07-01

    The main objective of the project was to integrate the Danish macro economic model ADAM with elements from the energy simulation model BRUS, developed at Risoe. The project has been carried out by Risoe National Laboratory with assistance from the Ministry of Finance. A theoretical part focuses on the differences between top-down and bottom-up modelling of the energy-economy interaction. A combined hybrid model seems a relevant alternative to the two traditional approaches. The hybrid model developed is called Hybris and includes models for: supply of electricity and heat, household demand for electricity, and household demand for heat. These three models interact in a iterative procedure with the macro economic model ADAM through a number of links. A reference case as well as a number of scenarios illustrating the capabilities of the model has been set up.Hybris is a simulation model which is capable of analyzing combined CO 2 reduction initiatives as regulation of the energy supply system and a CO 2 tax in an integrated and consistent way. (au) 32 tabs., 98 ills., 55 refs

  7. Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick

    Science.gov (United States)

    Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed

    2018-05-01

    The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.

  8. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  9. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integrated material accountancy system

    International Nuclear Information System (INIS)

    Calabozo, M.; Buiza, A.

    1991-01-01

    In this paper we present the system that we are actually using for Nuclear Material Accounting and Manufacturing Management in our UO 2 Fuel Fabrication Plant located at Juzbado, Salamanca, Spain. The system is based mainly on a real time data base which gather data for all the operations performed in our factory from UO 2 powder reception to fuel assemblies shipment to the customers. The accountancy is just an important part of the whole integrated system covering all the aspects related to manufacturing: planning, traceability, Q.C. analysis, production control and accounting data

  11. Mathematical Modeling and Algebraic Technique for Resolving a Single-Producer Multi-Retailer Integrated Inventory System with Scrap

    OpenAIRE

    Yuan-Shyi Peter Chiu; Chien-Hua Lee; Nong Pan; Singa Wang Chiu

    2013-01-01

    This study uses mathematical modeling along with an algebraic technique to resolve the production-distribution policy for a single-producer multi-retailer integrated inventory system with scrap in production. We assume that a product is manufactured through an imperfect production process where all nonconforming items will be picked up and scrapped in each production cycle. After the entire lot is quality assured, multiple shipments will be delivered synchronously to m different retailers in ...

  12. Methods for integrated modeling of landscape change: Interior Northwest Landscape Analysis System.

    Science.gov (United States)

    Jane L. Hayes; Alan. A. Ager; R. James Barbour

    2004-01-01

    The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are...

  13. Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes

    Czech Academy of Sciences Publication Activity Database

    Kueffer, C.; Pyšek, Petr; Richardson, D. M.

    2013-01-01

    Roč. 200, č. 3 (2013), s. 615-633 ISSN 1469-8137 R&D Projects: GA ČR(CZ) GAP504/11/1028; GA ČR GA206/09/0563 Institutional support: RVO:67985939 Keywords : model systems * invasion syndromes * multi-site studies Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  14. The integrated modeling system STONE for calculating nutrient emissions from agriculture in the Netherlands

    NARCIS (Netherlands)

    Wolf, J.; Beusen, A.H.W.; Groenendijk, P.; Kroon, T.; Rötter, R.P.; Zeijts, van H.

    2003-01-01

    For the Netherlands, a nutrient emission modeling system, called STONE, has been developed. It was designed for evaluation at the national and regional scale of the effects of changes in the agricultural sector (e.g. changes in fertilizer recommendations and cropping patterns) and in policy measures

  15. Structured approaches to large-scale systems: Variational integrators for interconnected Lagrange-Dirac systems and structured model reduction on Lie groups

    Science.gov (United States)

    Parks, Helen Frances

    This dissertation presents two projects related to the structured integration of large-scale mechanical systems. Structured integration uses the considerable differential geometric structure inherent in mechanical motion to inform the design of numerical integration schemes. This process improves the qualitative properties of simulations and becomes especially valuable as a measure of accuracy over long time simulations in which traditional Gronwall accuracy estimates lose their meaning. Often, structured integration schemes replicate continuous symmetries and their associated conservation laws at the discrete level. Such is the case for variational integrators, which discretely replicate the process of deriving equations of motion from variational principles. This results in the conservation of momenta associated to symmetries in the discrete system and conservation of a symplectic form when applicable. In the case of Lagrange-Dirac systems, variational integrators preserve a discrete analogue of the Dirac structure preserved in the continuous flow. In the first project of this thesis, we extend Dirac variational integrators to accommodate interconnected systems. We hope this work will find use in the fields of control, where a controlled system can be thought of as a "plant" system joined to its controller, and in the approach of very large systems, where modular modeling may prove easier than monolithically modeling the entire system. The second project of the thesis considers a different approach to large systems. Given a detailed model of the full system, can we reduce it to a more computationally efficient model without losing essential geometric structures in the system? Asked without the reference to structure, this is the essential question of the field of model reduction. The answer there has been a resounding yes, with Principal Orthogonal Decomposition (POD) with snapshots rising as one of the most successful methods. Our project builds on previous work

  16. Modeling and Assessment of a Biomass Gasification Integrated System for Multigeneration Purpose

    Directory of Open Access Journals (Sweden)

    Shoaib Khanmohammadi

    2016-01-01

    Full Text Available The use of biomass due to the reduction in greenhouse gas emissions and environmental impacts has attracted many researchers’ attention in the recent years. Access to an energy conversion system which is able to have the optimum performance for applying valuable low heating value fuels has been considered by many practitioners and scholars. This paper focuses on the accurate modeling of biomass gasification process and the optimal design of a multigeneration system (heating, cooling, electrical power, and hydrogen as energy carrier to take the advantage of this clean energy. In the process of gasification modeling, a thermodynamic equilibrium model based on Gibbs energy minimization is used. Also, in the present study, a detailed parametric analysis of multigeneration system for undersigning the behavior of objective functions with changing design parameters and obtaining the optimal design parameters of the system is done as well. The results show that with exergy efficiency as an objective function this parameter can increase from 19.6% in base case to 21.89% in the optimized case. Also, for the total cost rate of system as an objective function it can decrease from 154.4 $/h to 145.1 $/h.

  17. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    Science.gov (United States)

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  18. Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    Science.gov (United States)

    Xia, Weiwei; Shen, Lianfeng

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  19. Enabling model customization and integration

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2003-09-01

    Until fairly recently, the idea of dynamic model content and presentation were treated synonymously. For example, if one was to take a data flow network, which captures the dynamics of a target system in terms of the flow of data through nodal operators, then one would often standardize on rectangles and arrows for the model display. The increasing web emphasis on XML, however, suggests that the network model can have its content specified in an XML language, and then the model can be represented in a number of ways depending on the chosen style. We have developed a formal method, based on styles, that permits a model to be specified in XML and presented in 1D (text), 2D, and 3D. This method allows for customization and personalization to exert their benefits beyond e-commerce, to the area of model structures used in computer simulation. This customization leads naturally to solving the bigger problem of model integration - the act of taking models of a scene and integrating them with that scene so that there is only one unified modeling interface. This work focuses mostly on customization, but we address the integration issue in the future work section.

  20. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...

  1. Prospective and participatory integrated assessment of agricultural systems from farm to regional scales: Comparison of three modeling approaches.

    Science.gov (United States)

    Delmotte, Sylvestre; Lopez-Ridaura, Santiago; Barbier, Jean-Marc; Wery, Jacques

    2013-11-15

    Evaluating the impacts of the development of alternative agricultural systems, such as organic or low-input cropping systems, in the context of an agricultural region requires the use of specific tools and methodologies. They should allow a prospective (using scenarios), multi-scale (taking into account the field, farm and regional level), integrated (notably multicriteria) and participatory assessment, abbreviated PIAAS (for Participatory Integrated Assessment of Agricultural System). In this paper, we compare the possible contribution to PIAAS of three modeling approaches i.e. Bio-Economic Modeling (BEM), Agent-Based Modeling (ABM) and statistical Land-Use/Land Cover Change (LUCC) models. After a presentation of each approach, we analyze their advantages and drawbacks, and identify their possible complementarities for PIAAS. Statistical LUCC modeling is a suitable approach for multi-scale analysis of past changes and can be used to start discussion about the futures with stakeholders. BEM and ABM approaches have complementary features for scenarios assessment at different scales. While ABM has been widely used for participatory assessment, BEM has been rarely used satisfactorily in a participatory manner. On the basis of these results, we propose to combine these three approaches in a framework targeted to PIAAS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.

    2014-11-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  3. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  4. The on scene command and control system (OSC2) : an integrated incident command system (ICS) forms-database management system and oil spill trajectory and fates model

    International Nuclear Information System (INIS)

    Anderson, E.; Galagan, C.; Howlett, E.

    1998-01-01

    The On Scene Command and Control (OSC 2 ) system is an oil spill modeling tool which was developed to combine Incident Command System (ICS) forms, an underlying database, an integrated geographical information system (GIS) and an oil spill trajectory and fate model. The first use of the prototype OSC 2 system was at a PREP drill conducted at the U.S. Coast Guard Marine Safety Office, San Diego, in April 1998. The goal of the drill was to simulate a real-time response over a 36-hour period using the Unified Command System. The simulated spill was the result of a collision between two vessels inside San Diego Bay that caused the release of 2,000 barrels of fuel oil. The hardware component of the system which was tested included three notebook computers, two laser printers, and a poster printer. The field test was a success but it was not a rigorous test of the system's capabilities. The map display was useful in quickly setting up the ICS divisions and groups and in deploying resources. 6 refs., 1 tab., 5 figs

  5. Manufacturing scheduling systems an integrated view on models, methods and tools

    CERN Document Server

    Framinan, Jose M; Ruiz García, Rubén

    2014-01-01

    The book is devoted to the problem of manufacturing scheduling, which is the efficient allocation of jobs (orders) over machines (resources) in a manufacturing facility. It offers a comprehensive and integrated perspective on the different aspects required to design and implement systems to efficiently and effectively support manufacturing scheduling decisions. Obtaining economic and reliable schedules constitutes the core of excellence in customer service and efficiency in manufacturing operations. Therefore, scheduling forms an area of vital importance for competition in manufacturing companies. However, only a fraction of scheduling research has been translated into practice, due to several reasons. First, the inherent complexity of scheduling has led to an excessively fragmented field in which different sub problems and issues are treated in an independent manner as goals themselves, therefore lacking a unifying view of the scheduling problem. Furthermore, mathematical brilliance and elegance has sometime...

  6. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  7. Assess and control global change in agriculture through ecosystem models integrated in geographic information systems

    International Nuclear Information System (INIS)

    Ponti, Luigi; Gutierrez, Andrew Paul; Iannetta, Massimo

    2015-01-01

    ENEA has created, in collaboration with the University of California at Berkeley, the Global Change Biology project that, for the first time, has made available in Europe a technology that can be It used to interpret and effectively manage change Global agriculture. The aim of the project was to provide tools to summarize, manage and analyze data Ecological on the effects of global change in agricultural systems, using traditional Mediterranean crops (Eg. Vineyards and olive) as model systems (http: // cordis.europa.eu/project/rcn/89728_en.html). [it

  8. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Integration of multiscale dendritic spine structure and function data into systems biology models

    Directory of Open Access Journals (Sweden)

    James J Mancuso

    2014-11-01

    Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  10. Diverse methods for integrable models

    NARCIS (Netherlands)

    Fehér, G.

    2017-01-01

    This thesis is centered around three topics, sharing integrability as a common theme. This thesis explores different methods in the field of integrable models. The first two chapters are about integrable lattice models in statistical physics. The last chapter describes an integrable quantum chain.

  11. Integration of 3d Models and Diagnostic Analyses Through a Conservation-Oriented Information System

    Science.gov (United States)

    Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F.

    2017-08-01

    In the recent years, mature technologies for producing high quality virtual 3D replicas of Cultural Heritage (CH) artefacts has grown thanks to the progress of Information Technologies (IT) tools. These methods are an efficient way to present digital models that can be used with several scopes: heritage managing, support to conservation, virtual restoration, reconstruction and colouring, art cataloguing and visual communication. The work presented is an emblematic case of study oriented to the preventive conservation through monitoring activities, using different acquisition methods and instruments. It was developed inside a project founded by Lombardy Region, Italy, called "Smart Culture", which was aimed to realise a platform that gave the users the possibility to easily access to the CH artefacts, using as an example a very famous statue. The final product is a 3D reality-based model that contains a lot of information inside it, and that can be consulted through a common web browser. In the end, it was possible to define the general strategies oriented to the maintenance and the valorisation of CH artefacts, which, in this specific case, must consider the integration of different techniques and competencies, to obtain a complete, accurate and continuative monitoring of the statue.

  12. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle

    2014-01-01

    by using substance inherent properties, following an approach commonly used in large-scale MP multimedia fate and transport models. The chosen level of complexity ensures a low data requirement and minimizes the need for field measurements. Next to a synthesis of model applications, a didactic example......The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urban...... Wastewater and Stormwater system (IUWS – including drainage network, stormwater treatment units, wastewater treatment plants, sludge treatment, and the receiving water body). The models are developed by considering the high temporal variability of the processes taking place in the IUWS, providing a basis...

  13. Gossip Management at Universities Using Big Data Warehouse Model Integrated with a Decision Support System

    Directory of Open Access Journals (Sweden)

    Pelin Vardarlier

    2016-01-01

    Full Text Available Big Data has recently been used for many purposes like medicine, marketing and sports. It has helped improve management decisions. However, for almost each case a unique data warehouse should be built to benefit from the merits of data mining and Big Data. Hence, each time we start from scratch to form and build a Big Data Warehouse. In this study, we propose a Big Data Warehouse and a model for universities to be used for information management, to be more specific gossip management. The overall model is a decision support system that may help university administraitons when they are making decisions and also provide them with information or gossips being circulated among students and staff. In the model, unsupervised machine learning algorithms have been employed. A prototype of the proposed system has also been presented in the study. User generated data has been collected from students in order to learn gossips and students’ problems related to school, classes, staff and instructors. The findings and results of the pilot study suggest that social media messages among students may give important clues for the happenings at school and this information may be used for management purposes.The model may be developed and implemented by not only universities but also some other organisations.

  14. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  15. IMMIGRANTS’ INTEGRATION MODELS

    Directory of Open Access Journals (Sweden)

    CARMEN UZLĂU

    2012-05-01

    Full Text Available In the context of the European population aging trend, and while the birth rate is still at a low level, the immigrants may contribute to the support of the EU economy and to finance the national social protection systems. But this would be possible only if they have been fully integrated in the host countries, the integration policies being a task of the national governments. The European Union may still offer support and stimulation through financing, policies coordination and good practices exchange facilitation. The new measures should encourage local level actions, including cooperation between local authorities, employers, migrants’ organizations, service providers and local population. Within the EU, there live 20.1 million immigrants (approximately 4% of the entire population coming from outside European area. An important element of the common EU policy on immigration is the one regarding the development of a policy on immigrants’ integration, which should provide a fair treatment within the member states, and guarantee rights and obligations comparable with the ones of the Union citizens.

  16. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  17. Following a drop of water from the cloud, throughout the sewer system, into the receiving water - Model predictive control of integrated sewer-wastewater treatment systems

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Vezzaro, Luca; Sharma, Anitha Kumari

    This article presents selected examples of model-based prediction and control of integrated sewer-wastewater treatment systems, developed within the framework of the Storm- and Wastewater Informatics project (SWI). By exploiting all the available on-line information (e.g. radar based rainfall...... of pollutants discharged from treatment plants, etc.). The tools developed in the SWI project include (but are not limited to (i) rainfall nowcasting based on radar measurements, (ii) probabilistic flow forecasting based on data assimilation and stochastic models, (iii) prediction and optimization of wet......-weather performance of wastewater treatment plants, and (iv) integrated control of the different elements of the integrated wastewater systems. Full-scale testing of these tools in different catchment located in Denmark ensure that the developed tools can represent an important step forwards for on-line operation...

  18. Integrated Environmental Assessment Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guardanz, R; Gimeno, B S; Bermejo, V; Elvira, S; Martin, F; Palacios, M; Rodriguez, E; Donaire, I [Ciemat, Madrid (Spain)

    2000-07-01

    This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.

  19. Challenges in horizontal model integration.

    Science.gov (United States)

    Kolczyk, Katrin; Conradi, Carsten

    2016-03-11

    Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling effort and increase the acceptance of the combined model in the field. Obtaining a combined model can be challenging, especially if the submodels are large and/or come from different working groups (as is generally the case, when models stored in established repositories are used). To support this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model. The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling pathways (EGF and NGF) from the BioModels Database.

  20. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems

    Science.gov (United States)

    Elag, M.; Kumar, P.

    2016-12-01

    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic

  1. Advancing a Distributive-Bargaining and Integrative-Negotiation Integral System: A Values-Based Negotiation Model (VBM)

    OpenAIRE

    Ivan Gan

    2017-01-01

    The proposed values-based negotiation model (VBM) agrees with and extends principled negotiation’s recognition of personal values and emotions as important negotiation elements. First, building upon Martin Buber’s existentialist treatment of religion and secularism, VBM centers on religion as one of many possible sources of personal values that informs respectful and mutually beneficial interactions without needing one to necessarily be religious. Just as one need not be a Buddhist or a Hindu...

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  3. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  4. NET system integration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Mitchell, N.; Salpietro, E.; Buzzi, U.; Gritzmann, P.

    1985-01-01

    The NET system integration procedure is the process by which the requirements of the various Tokamak machine design areas are brought together to form a compatible machine layout. Each design area produces requirements which generally allow components to be built at minimum cost and operate with minimum technical risk, and the final machine assembly should be achieved with minimum departure from these optimum designs. This is carried out in NET by allowing flexibility in the maintenance and access methods to the machine internal components which must be regularly replaced by remote handling, in segmentation of these internal components and in the number of toroidal field coils

  5. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  6. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    Science.gov (United States)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  7. A Model of An Integration System for Operations and Cost Data Designed to Control Logistics Processes in Agricultural Enterprises

    Directory of Open Access Journals (Sweden)

    Karol Wajszczuk

    2011-03-01

    Full Text Available The paper presents a model of an integration system for operations and cost data designed for the needs of process controlling in agricultural enterprises, with special emphasis on logistics processes. The proposed model constituted the basis for the development of an IT tool to be used in the identification and analysis of logistics costs in agricultural enterprises in terms of the process based approach. As a result of research and programming efforts a model was developed, which made it possible in agricultural enterprises to determine the type-based relationship of cost dynamics and structure with realized actions, operating processes (including logistics processes and products, as well as the relationship of these costs with used resources, maintained stocks, applied materials and work methods. Moreover, this model facilitates cost allocation to products and processes as well as cost centers and points, and makes it possible to determine multidimensional dependencies of the result (divided into individual products on incurred costs.

  8. Modelling for an improved integrated multi-trophic aquaculture system for the production of highly valued marine species

    Directory of Open Access Journals (Sweden)

    Luana Granada

    2014-05-01

    Full Text Available Integrated multi-trophic aquaculture (IMTA is regarded as a suitable approach to limit aquaculture nutrients and organic matter outputs through biomitigation. Here, species from different trophic or nutritional levels are connected through water transfer. The co-cultured species are used as biofilters, and each level has its own independent commercial value, providing both economic and environmental sustainability. In order to better understand and optimize aquaculture production systems, dynamic modelling has been developed towards the use of models for analysis and simulation of aquacultures. Several models available determine the carrying capacity of farms and the environmental effects of bivalve and fish aquaculture. Also, in the last two decades, modelling strategies have been designed in order to predict the dispersion and deposition of organic fish farm waste, usually using the mean settling velocity of faeces and feed pellets. Cultured organisms growth, effects of light and temperature on algae growth, retention of suspended solids, biodegradation of nitrogen and wastewater treatment are examples of other modelled parameters in aquaculture. Most modelling equations have been developed for monocultures, despite the increasing importance of multi-species systems, such as polyculture and IMTA systems. The main reason for the development of multi-species models is to maximize the production and optimize species combinations in order to reduce the environmental impacts of aquaculture. Some multi-species system models are available, including from the polyculture of different species of bivalves with fish to more complex systems with four trophic levels. These can incorporate ecosystem models and use dynamic energy budgets for each trophic group. In the proposed IMTA system, the bioremediation potential of the marine seaweed Gracilaria vermiculophylla (nutrient removal performance and the Mediterranean filter-feeding polychaete Sabella

  9. TCR industrial system integration strategy

    CERN Document Server

    Bartolomé, R; Sollander, P; Martini, R; Vercoutter, B; Trebulle, M

    1999-01-01

    New turnkey data acquisition systems purchased from industry are being integrated into CERN's Technical Data Server. The short time available for system integration and the large amount of data per system require a standard and modular design. Four different integration layers have been defined in order to easily 'plug in' industrial systems. The first layer allows the integration of the equipment at the digital I/O port or fieldbus (Profibus-DP) level. A second layer permits the integration of PLCs (Siemens S5, S7 and Telemecanique); a third layer integrates equipment drivers. The fourth layer integrates turnkey mimic diagrams in the TCR operator console. The second and third layers use two new event-driven protocols based on TCP/IP. Using this structure, new systems are integrated in the data transmission chain, the layer at which they are integrated depending only on their integration capabilities.

  10. Radon integral measurement system

    International Nuclear Information System (INIS)

    Garcia H, J.M.

    1994-01-01

    The Radon Integral Measurement System (SMIR) is a device designed specially to detect, to count and to store the data of the acquisition of alpha particles emitted by Radon-222 coming from the underground. The system includes a detection chamber, a radiation detector, a digital system with bateries backup and an auxiliary photovoltaic cell. A personal computer fixes the mode in which the system works, transmitting the commands to the system by the serial port. The heart of the system is a microprocesor working with interrupts by hardware. Every external device to the microprocessor sends his own interrupt request and the microprocessor handles the interrupts with a defined priority. The system uses a real time clock, compatible with the microprocessor, to take care of the real timing and date of the acquisition. A non volatile RAM is used to store data of two bytes every 15 minutes along 41 days as a maximum. After the setting up to the system by the computer, it can operate in stand alone way for up 41 days in the working place without the lose of any data. If the memory is full the next data will be written in the first locations of the memory. The memory is divided in pages corresponding every one of this to a different day of the acquisition. The counting time for every acquisition can be programmed by the user from 15 minutes to 65535 minutes but it is recommended to use a small time not to reach the limit of 65535 counts in every acquisition period. We can take information of the system without affecting the acquisition process in the field by using a lap top computer, then the information can be stored in a file. There is a program in the computer that can show the information in a table of values or in a bar graph. (Author)

  11. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    Science.gov (United States)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  12. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  13. Integrated Medical Model Overview

    Science.gov (United States)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  14. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  15. A communication model to integrate the Request-Response and the Publish-Subscribe paradigms into ubiquitous systems.

    Science.gov (United States)

    Rodríguez-Domínguez, Carlos; Benghazi, Kawtar; Noguera, Manuel; Garrido, José Luis; Rodríguez, María Luisa; Ruiz-López, Tomás

    2012-01-01

    The Request-Response (RR) paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub) paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits.

  16. A Communication Model to Integrate the Request-Response and the Publish-Subscribe Paradigms into Ubiquitous Systems

    Directory of Open Access Journals (Sweden)

    Tomás Ruiz-López

    2012-06-01

    Full Text Available The Request-Response (RR paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits.

  17. A Communication Model to Integrate the Request-Response and the Publish-Subscribe Paradigms into Ubiquitous Systems

    Science.gov (United States)

    Rodríguez-Domínguez, Carlos; Benghazi, Kawtar; Noguera, Manuel; Garrido, José Luis; Rodríguez, María Luisa; Ruiz-López, Tomás

    2012-01-01

    The Request-Response (RR) paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub) paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits. PMID:22969366

  18. Petroleum potential of the northern Sinu-San Jacinto Basin, Colombia: an integrated petroleum system and basin modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Christian H.; Goncalves, Felix T.T.; Bedregal, Ricardo P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Azevedo, Debora A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Landau, Luis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)

    2004-07-01

    The northern Sinu-San Jacinto basin, located in the northwestern corner of South America (Colombia), belongs to the accretionary prism that resulted from the collision and subduction of the Caribbean plate under the South America plate. Despite all the previous exploratory efforts, solely a few small sub-commercial oil and gas accumulation have been found up to now. The geological and geochemical information acquired by different companies during the lasts decades was integrated with new geochemical analysis and basin modeling to characterize the petroleum systems, to reconstruct the hydrocarbon charge history in the study area and to better assess the exploratory risk. (author)

  19. Choosing the Right Systems Integration

    Directory of Open Access Journals (Sweden)

    Péči Matúš

    2014-12-01

    Full Text Available The paper examines systems integration and its main levels at higher levels of control. At present, the systems integration is one of the main aspects participating in the consolidation processes and financial flows of a company. Systems Integration is a complicated emotionconsuming process and it is often a problem to choose the right approach and level of integration. The research focused on four levels of integration, while each of them is characterized by specific conditions. At each level, there is a summary of recommendations and practical experience. The paper also discusses systems integration between the information and MES levels. The main part includes user-level integration where we describe an example of such integration. Finally, we list recommendations and also possible predictions of the systems integration as one of the important factors in the future.

  20. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modeling living systems.

    Science.gov (United States)

    Simeonov, Plamen L; Ehresmann, Andrée C

    2017-12-01

    Forty-two years ago, Capra published "The Tao of Physics" (Capra, 1975). In this book (page 17) he writes: "The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts" and that, unlike 'classical' physics, the sub-atomic and quantum "modern physics" shows resonances with Eastern thoughts and "leads us to a view of the world which is very similar to the views held by mystics of all ages and traditions." This article stresses an analogous situation in biology with respect to a new theoretical approach for studying living systems, Integral Biomathics (IB), which also exhibits some resonances with Eastern thought. Stepping on earlier research in cybernetics 1 and theoretical biology, 2 IB has been developed since 2011 by over 100 scientists from a number of disciplines who have been exploring a substantial set of theoretical frameworks. From that effort, the need for a robust core model utilizing advanced mathematics and computation adequate for understanding the behavior of organisms as dynamic wholes was identified. At this end, the authors of this article have proposed WLIMES (Ehresmann and Simeonov, 2012), a formal theory for modeling living systems integrating both the Memory Evolutive Systems (Ehresmann and Vanbremeersch, 2007) and the Wandering Logic Intelligence (Simeonov, 2002b). Its principles will be recalled here with respect to their resonances to Eastern thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A System Dynamics Model for Integrated Decision Making: The Durham-Orange Light Rail Project

    Science.gov (United States)

    EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, envi...

  2. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  3. Geometric transitions and integrable systems

    International Nuclear Information System (INIS)

    Diaconescu, D.-E.; Dijkgraaf, R.; Donagi, R.; Hofman, C.; Pantev, T.

    2006-01-01

    We consider B-model large N duality for a new class of noncompact Calabi-Yau spaces modeled on the neighborhood of a ruled surface in a Calabi-Yau threefold. The closed string side of the transition is governed at genus zero by an A 1 Hitchin integrable system on a genus g Riemann surface Σ. The open string side is described by a holomorphic Chern-Simons theory which reduces to a generalized matrix model in which the eigenvalues lie on the compact Riemann surface Σ. We show that the large N planar limit of the generalized matrix model is governed by the same A 1 Hitchin system therefore proving genus zero large N duality for this class of transitions

  4. Research on the Reliability Analysis of the Integrated Modular Avionics System Based on the AADL Error Model

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2018-01-01

    Full Text Available In recent years, the integrated modular avionics (IMA concept has been introduced to replace the traditional federated avionics. Different avionics functions are hosted in a shared IMA platform, and IMA adopts partition technologies to provide a logical isolation among different functions. The IMA architecture can provide more sophisticated and powerful avionics functionality; meanwhile, the failure propagation patterns in IMA are more complex. The feature of resource sharing introduces some unintended interconnections among different functions, which makes the failure propagation modes more complex. Therefore, this paper proposes an architecture analysis and design language- (AADL- based method to establish the reliability model of IMA platform. The single software and hardware error behavior in IMA system is modeled. The corresponding AADL error model of failure propagation among components, between software and hardware, is given. Finally, the display function of IMA platform is taken as an example to illustrate the effectiveness of the proposed method.

  5. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  6. An Integrated Approach to Modelling the Economy-Society-Ecology System in Urbanization Process

    Directory of Open Access Journals (Sweden)

    Yunqiang Liu

    2014-04-01

    Full Text Available Urbanization has become a key part of social and economic progress in the 21st Century, but achieving healthy and safe urban development has a long way to go for many developed and developing countries. Urbanization has been recognized as a complex ecosystem which is affected by economic, social, and ecological factors. With this in mind, this paper looks at many factors to first evaluate based on the matter-element (ME method and then model an Economy-Society-Ecology (ESE subsystem using a hybrid method by a fuzzy analytical hierarchy process (FAHP, and then by using the entropy method (EM to determine the relevant index weights. To avoid subjectivity when defining the model’s boundaries, the technique for order preference by similarity to an ideal solution (TOPSIS is introduced. Then, a coupling coordination degree model focusing on the degree of coordination in the ESE subsystem is established. Panel data collected from 2003 to 2012 for Chengdu, China, is then simulated to analyze the development process. The results show that: (1 The quality of urbanization continues to improve and the phasic features are presented; (2 The sensitivity analysis of subsystem weight shown that it had less effect on the coupling coordinated system; (3 The coordination in the ESE subsystem has also improved. However, the development rate of the economic subsystem is greater than that of the societal and ecological subsystem. The approach used here therefore, is shown to provide a promising basis for policy-making to support healthy urban development.

  7. A model integrating social-cultural concepts of nature into frameworks of interaction between social and natural systems

    DEFF Research Database (Denmark)

    Muhar, Andreas; Raymond, Christopher M.; van den Born, Riyan J.G.

    2018-01-01

    relationship at both individual and collective levels. We highlight the relevance of individual and collective understandings of the human-nature relationship as influencing factors for environmental behaviour, which may be reflected in natural resource management conflicts, and review the diversity......Existing frameworks for analysing interactions between social and natural systems (e.g. Social-Ecological Systems framework, Ecosystem Services concept) do not sufficiently consider and operationalize the dynamic interactions between people's values, attitudes and understandings of the human-nature....... Integrating this model into existing frameworks provides a tool for the exploration of how social-cultural concepts of nature interact with existing contexts to influence governance of social-ecological systems....

  8. Earthworms Dilong: Ancient, Inexpensive, Noncontroversial Models May Help Clarify Approaches to Integrated Medicine Emphasizing Neuroimmune Systems

    Science.gov (United States)

    Cooper, Edwin L.; Balamurugan, Mariappan; Huang, Chih-Yang; Tsao, Clara R.; Heredia, Jesus; Tommaseo-Ponzetta, Mila; Paoletti, Maurizio G.

    2012-01-01

    Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties. PMID:22888362

  9. Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling.

    Science.gov (United States)

    Carboni, Lucia; Nguyen, Thanh-Phuong; Caberlotto, Laura

    2016-12-01

    The pathophysiological basis of major depression is incompletely understood. Recently, numerous proteomic studies have been performed in rodent models of depression to investigate the molecular underpinnings of depressive-like behaviours with an unbiased approach. The objective of the study is to integrate the results of these proteomic studies in depression models to shed light on the most relevant molecular pathways involved in the disease. Network analysis is performed integrating preexisting proteomic data from rodent models of depression. The IntAct mouse and the HRPD are used as reference protein-protein interaction databases. The functionality analyses of the networks are then performed by testing overrepresented GO biological process terms and pathways. Functional enrichment analyses of the networks revealed an association with molecular processes related to depression in humans, such as those involved in the immune response. Pathways impacted by clinically effective antidepressants are modulated, including glutamatergic signaling and neurotrophic responses. Moreover, dysregulations of proteins regulating energy metabolism and circadian rhythms are implicated. The comparison with protein pathways modulated in depressive patients revealed significant overlapping. This systems biology study supports the notion that animal models can contribute to the research into the biology and therapeutics of depression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. System integration for radiation records

    International Nuclear Information System (INIS)

    Lawson, B.J.; Farrell, L.; Meacham, C.; Tapio, J.

    1994-01-01

    System integration is the process where through networking and/or software development, necessary business information is available in a common computing environment. System integration is becoming an important objective for many businesses. System integration can improve productivity and efficiency, reduce redundant stored information and errors, and improve availability of information. This paper will discuss the information flow in a radiation health environment, and how system integration can help. Information handled includes external dosimetry and internal dosimetry. The paper will focus on an ORACLE based system integration software product

  11. Digital integrated protection system

    International Nuclear Information System (INIS)

    Savornin, M.; Furet, M.

    1978-01-01

    As a result of technological progress it is now possible to achieve more elaborate protection functions able to follow more closely the phenomena to be supervised. For this reason the CEA, Framatome and Merlin/Gerin/CERCI have undertaken in commonn to develop a Digital Integrated Protection System (D.I.P.S.). This system is designed with the following aims: to improve the safety of the station, . to improve its availability, . to facilitate installation, . to facilitate tests and maintenance. The main characteristics adopted are: . possibilities of obtaining more elaborate monitoring and protection algorithm treatments, . order 4 redundancy of transducers, associated instruments and signal processing, . possibility of inhibiting part of the protection system, . standardisation of equipment, physical and electrical separation of redundant units, . use of multiplexed connections, . automation of tests. Four flow charts are presented: - DIPS with four APUP (Acquisition and Processing Unit for Protection) - APUP - LSU (Logic Safeguard Unit), number LSU corresponding to number fluidic safeguard circuits, - structure of a function unit, - main functions of the APUP [fr

  12. An Integrated Modeling Framework Forecasting Ecosystem Exposure-- A Systems Approach to the Cumulative Impacts of Multiple Stressors

    Science.gov (United States)

    Johnston, J. M.

    2013-12-01

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation

  13. Advanced Integrated Traction System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  14. State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance

    International Nuclear Information System (INIS)

    Landry, Steven J.; Lagu, Amit; Kinnari, Jouko

    2010-01-01

    A method for modeling the safety of human-integrated systems that have continuous dynamics is introduced. The method is intended to supplement more detailed reliability-based methods. Assumptions for the model are defined such that the model is demonstrably complete, enabling it to yield a set of key agent characteristics. These key characteristics identify a sufficient set of characteristics that can be used to establish the safety of particular system configurations. The method is applied for the analysis of the safety of strategic and tactical separation assurance algorithms for the next generation air transportation system. It is shown that the key characteristics for this problem include the ability of agents (human or automated) to identify configurations that can enable intense transitions from a safe to unsafe state. However, the most technologically advanced algorithm for separation assurance does not currently attempt to identify such configurations. It is also discussed how, although the model is in a form that lends itself to quantitative evaluations, such evaluations are complicated by the difficulty of accurately quantifying human error probabilities.

  15. A New Biobjective Model to Optimize Integrated Redundancy Allocation and Reliability-Centered Maintenance Problems in a System Using Metaheuristics

    Directory of Open Access Journals (Sweden)

    Shima MohammadZadeh Dogahe

    2015-01-01

    Full Text Available A novel integrated model is proposed to optimize the redundancy allocation problem (RAP and the reliability-centered maintenance (RCM simultaneously. A system of both repairable and nonrepairable components has been considered. In this system, electronic components are nonrepairable while mechanical components are mostly repairable. For nonrepairable components, a redundancy allocation problem is dealt with to determine optimal redundancy strategy and number of redundant components to be implemented in each subsystem. In addition, a maintenance scheduling problem is considered for repairable components in order to identify the best maintenance policy and optimize system reliability. Both active and cold standby redundancy strategies have been taken into account for electronic components. Also, net present value of the secondary cost including operational and maintenance costs has been calculated. The problem is formulated as a biobjective mathematical programming model aiming to reach a tradeoff between system reliability and cost. Three metaheuristic algorithms are employed to solve the proposed model: Nondominated Sorting Genetic Algorithm (NSGA-II, Multiobjective Particle Swarm Optimization (MOPSO, and Multiobjective Firefly Algorithm (MOFA. Several test problems are solved using the mentioned algorithms to test efficiency and effectiveness of the solution approaches and obtained results are analyzed.

  16. Integrated therapy safety management system.

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-09-01

    The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an 'integrated therapy safety management' is drafted. This concept could serve as a basis to improve resilience. The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for 'integrated therapy safety management'. The concept is applied by way of example for the 'medication process' to demonstrate its practical implementation. The 'integrated therapy safety management' is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of 'bridge managers'. 'Bridge managers' anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the 'bridge managers' and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  17. Integrated therapy safety management system

    Science.gov (United States)

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-01-01

    Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448

  18. An Integrated Research Program for the Modeling, Analysis and Control of Aerospace Systems

    Science.gov (United States)

    1992-03-03

    Fabiano, Jr. - Brown University Mitchell Feigenbaum - Rockefeller University Elena Fernandez - Institudo de Desarrollo Techologico, para la Industria...system. The system runs under DEC Ultrix; we have installed the GKS graphics system and language compilers (FORTRAN and C). The DELIGHT.MIMO software ...which links a sophisticated non-smooth optimization package to some linear system software , is on the system. The package was kindly furnished by

  19. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  20. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  1. Human-Systems Integration Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to baseline a Human-Systems Integration Processes (HSIP) document as a companion to the NASA-STD-3001 and Human Integration Design...

  2. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    , is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor......Wind) model, where the wind turbine storm controllers are also implemented....

  3. Optimal Vehicle Design Using the Integrated System and Cost Modeling Tool Suite

    Science.gov (United States)

    2010-08-01

    Space Vehicle Costing ( ACEIT ) • New Small Sat Model Development & Production Cost O&M Cost Module  Radiation Exposure  Radiation Detector Response...Reliability OML Availability Risk l l Tools CEA, SRM Model, POST, ACEIT , Inflation Model, Rotor Blade Des, Microsoft Project, ATSV, S/1-iABP...space STK, SOAP – Specific mission • Space Vehicle Design (SMAD) • Space Vehicle Propulsion • Orbit Propagation • Space Vehicle Costing ( ACEIT ) • New

  4. Integrated system checkout report

    International Nuclear Information System (INIS)

    1991-01-01

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab

  5. A model for planning the chemical integrated system under uncertainty by the grey programming approach

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun

    2013-01-01

    demand, and the production capacity have been considered as mutative variables, then an improved model in which some parameters are not constant has been developed and a new method to solve the grey linear programming has been proposed. In the grey programming model, the value of credibility can...

  6. Integrated DEA models and grey system theory to evaluate past-to-future performance: a case of Indian electricity industry.

    Science.gov (United States)

    Wang, Chia-Nan; Nguyen, Nhu-Ty; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better "past-present-future" insights into performance evaluation in Indian electricity industry.

  7. Integrated DEA Models and Grey System Theory to Evaluate Past-to-Future Performance: A Case of Indian Electricity Industry

    Science.gov (United States)

    Wang, Chia-Nan; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better “past-present-future” insights into performance evaluation in Indian electricity industry. PMID:25821854

  8. Scaling analysis for a Savannah River reactor scaled model integral system

    International Nuclear Information System (INIS)

    Boucher, T.J.; Larson, T.K.; McCreery, G.E.; Anderson, J.L.

    1990-11-01

    801The Savannah River Laboratory has requested that the Idaho National Engineering Laboratory perform an analysis to help define, examine, and assess potential concepts for the design of a scaled integral hydraulics test facility representative of the current Savannah River Plant reactor design. In this report the thermal-hydraulic phenomena of importance (based on the knowledge and experience of the authors and the results of the joint INEL/TPG/SRL phenomena identification and ranking effort) to reactor safety during the design basis loss-of-coolant accident were examined and identified. Established scaling methodologies were used to develop potential concepts for integral hydraulic testing facilities. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally support that a one-fourth (1/4) linear scale visual facility capable of operating at pressures up to 350 kPa (51 psia) and temperatures up to 330 K (134 degree F) will scale most hydraulic phenomena reasonably well. However, additional research will be necessary to determine the most appropriate method of simulating several of the reactor components, since the scaling methodology allows for several approaches which may only be assessed via appropriate research. 34 refs., 20 figs., 14 tabs

  9. Quantitative assessment of key parameters in qualitative vulnerability methods applied in karst systems based on an integrated numerical modelling approach

    Science.gov (United States)

    Doummar, Joanna; Kassem, Assaad

    2017-04-01

    In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.

  10. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik

    2016-01-01

    to the phase change material, mainly occurs after the fueling is completed, resulting in a hydrogen peak temperature higher than 85 C and a lower fueled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fueled at 40 C. A parametric analysis...

  11. Increase of the Integration Degree of Wind Power Plants into the Energy System Using Wind Forecasting and Power Consumption Predictor Models by Transmission System Operator

    Directory of Open Access Journals (Sweden)

    Manusov V.Z.

    2017-12-01

    Full Text Available Wind power plants’ (WPPs high penetration into the power system leads to various inconveniences in the work of system operators. This fact is associated with the unpredictable nature of wind speed and generated power, respectively. Due to these factors, such source of electricity must be connected to the power system to avoid detrimental effects on the stability and quality of electricity. The power generated by the WPPs is not regulated by the system operator. Accurate forecasting of wind speed and power, as well as power load can solve this problem, thereby making a significant contribution to improving the power supply systems reliability. The article presents a mathematical model for the wind speed prediction, which is based on autoregression and fuzzy logic derivation of Takagi-Sugeno. The new model of wavelet transform has been developed, which makes it possible to include unnecessary noise from the model, as well as to reveal the cycling of the processes and their trend. It has been proved, that the proposed combination of methods can be used simultaneously to predict the power consumption and the wind power plant potential power at any time interval, depending on the planning horizon. The proposed models support a new scientific concept for the predictive control system of wind power stations and increase their degree integration into the electric power system.

  12. Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    OpenAIRE

    Hehenberger, P.; Vogel-Heuser, B.; Bradley, D.; Eynard, B.; Tomiyama, Tetsuo; Achiche, S.

    2016-01-01

    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process w...

  13. Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model

    International Nuclear Information System (INIS)

    Lee, Duk Hee; Park, Sang Yong; Hong, Jong Chul; Choi, Sang Jin; Kim, Jong Wook

    2013-01-01

    Highlights: ► A new methodology for improving energy system analysis models was proposed. ► The MARKAL model was integrated with the diffusion model. ► The new methodology was applied to green car technology. ► The ripple effect of green car technology on the energy system can be analyzed. -- Abstract: By 2020, Korea has set itself the challenging target of reducing nationwide greenhouse gas emissions by 30%, more than the BAU (Business as Usual) scenario, as the implementation goal required to achieve the new national development paradigm of green growth. To achieve such a target, it is necessary to diffuse innovative technologies with the capacity to drastically reduce greenhouse gas emissions. To that end, the ripple effect of diffusing innovative technologies on the energy and environment must be quantitatively analyzed using an energy system analysis model such as the MARKAL (Market Allocation) model. However, energy system analysis models based on an optimization methodology have certain limitations in that a technology with superior cost competitiveness dominates the whole market and non-cost factors cannot be considered. Therefore, this study proposes a new methodology for overcoming problems associated with the use of MARKAL models, by interfacing with a forecasting model based on the discrete-choice model. The new methodology was applied to green car technology to verify its usefulness and to study the ripple effects of green car technology on greenhouse gas reduction. The results of this study can be used as a reference when establishing a strategy for effectively reducing greenhouse gas emissions in the transportation sector, and could be of assistance to future studies using the energy system analysis model.

  14. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  15. Verification of operation of the actuator control system using the integration the B&R Automation Studio software with a virtual model of the actuator system

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2017-08-01

    In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.

  16. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  17. A spring-mass-damper system dynamics-based driver-vehicle integrated model for representing heterogeneous traffic

    Science.gov (United States)

    Munigety, Caleb Ronald

    2018-04-01

    The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.

  18. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    CSIR Research Space (South Africa)

    Singh, A

    2011-05-01

    Full Text Available . In this instance the samples are made using different concentrations of intralipid and black ink. The total and diffuse transmittance and reflectance is measured on both setups and the accuracy of each model compared by evaluating the prediction errors...

  19. To assess and control global change in agriculture through ecosystem models integrated into geographic information systems

    International Nuclear Information System (INIS)

    Ponti, L.; Iannetta, M.; Gutierrez, A.P.

    2015-01-01

    The transfer of ENEA PBDM (physiologically based demographic models) GIS technology, represents an opportunity to address global change in agriculture on an ecological basis in a local context, be able to provide European governmental agencies the necessary scientific basis for developing effective policies for adaptation to global change, including climate change [it

  20. Experimental integrated photovoltaic systems

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Markovska, Natasha; Dimitrov, D.; Kocev, K.; Dimitrovski, D.

    2000-01-01

    Recently, the interest in building-integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public-awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts. (Original)

  1. Information Security and Integrity Systems

    Science.gov (United States)

    1990-01-01

    Viewgraphs from the Information Security and Integrity Systems seminar held at the University of Houston-Clear Lake on May 15-16, 1990 are presented. A tutorial on computer security is presented. The goals of this tutorial are the following: to review security requirements imposed by government and by common sense; to examine risk analysis methods to help keep sight of forest while in trees; to discuss the current hot topic of viruses (which will stay hot); to examine network security, now and in the next year to 30 years; to give a brief overview of encryption; to review protection methods in operating systems; to review database security problems; to review the Trusted Computer System Evaluation Criteria (Orange Book); to comment on formal verification methods; to consider new approaches (like intrusion detection and biometrics); to review the old, low tech, and still good solutions; and to give pointers to the literature and to where to get help. Other topics covered include security in software applications and development; risk management; trust: formal methods and associated techniques; secure distributed operating system and verification; trusted Ada; a conceptual model for supporting a B3+ dynamic multilevel security and integrity in the Ada runtime environment; and information intelligence sciences.

  2. CH4 Emission Model from Bos Primigenius Waste in Fish-Water: Implications for Integrated Livestock-Fish Farming Systems

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2013-07-01

    Full Text Available This paper studies a methane (CH4 emission model from the waste of cattle (B. primigenius based on trends in integrated livestock-fish farming adoption by farmers in Nigeria. Dung of B. primigenius was employed as substrate in fish-water, obtained from a fish-rearing farm, as a matrix medium for simulating a low-oxygen wastewater environment of an agriculture-aquaculture system. A substrate to fish-water mass ratio of 1:3 was used, developed in a laboratory-size digesting reactor system. Volumetric readings, at ambient temperature conditions and with a retention time of thirty-two days, were then subjected to the logistic probability density function, and tested against correlation coefficient and Nash-Sutcliffe coefficient of efficiency criteria. The readings show that a volume of CH4-containing gas as high as 65.3 x 10−3 dm3 was produced on the 13th day from the B. primigenius substrate. Also, production of 234.59 x 10−3 dm3/kg CH4-containing gas, totaling 703.76 x 10−3 dm3, was observed through the studied retention time. The 60% CH4 constituent model of the measured gas generation showed a potency of 2.0664 kg emission per animal, which is equivalent to 43.3944 CO2eq of global warming potential (GWP annually per animal. This bears environmental and climate change implications, and therefore alternative sustainable practices for integrated livestock-fish farming adoption are suggested.

  3. Integrated numerical modeling of a landslide early warning system in a context of adaptation to future climatic pressures

    Science.gov (United States)

    Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel

    2010-05-01

    Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We

  4. PROJECT CI-NERGY: TOWARDS AN INTEGRATED ENERGY URBAN PLANNING SYSTEM FROM A DATA MODELLING AND SYSTEM ARCHITECTURE PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2017-09-01

    Full Text Available Growing urbanisation, its related environmental impacts, and social inequalities in cities are challenges requiring a holistic urban planning perspective that takes into account the different aspects of sustainable development. One crucial point is to reconcile urban planning with environmental targets, which include decreasing energy demand and CO2 emissions, and increasing the share of renewable energy. Within this context, the project CI-NERGY aims to develop urban energy modelling, simulation and optimisation methods and tools to support decision making in urban planning. However, there are several barriers to the implementation of such tools, such as: fragmentation of involved disciplines, different stakeholders, multiplicity of scales in a city and extreme heterogeneity of data regarding all the processes to be addressed. Project CI-NERGY aims, among other goals, at overcoming these barriers, and focuses on two case study cities, Geneva in Switzerland and Vienna in Austria. In particular, project CI-NERGY faces several challenges starting with different cities, heterogeneous data sources and simulation tools, diverse user groups and their individual needs. This paper describes the experiences gathered during the project. After giving a brief overview of the project, the two case study cities, Geneva and Vienna, are briefly presented, and the focus shifts then on overall system architecture of the project, ranging from urban data modelling topics to the implementation of a Service-Oriented Architecture. Some of the challenges faced, the solutions found, as well some plans for future improvements are described and commented.

  5. Integrated System Health Management Development Toolkit

    Science.gov (United States)

    Figueroa, Jorge; Smith, Harvey; Morris, Jon

    2009-01-01

    This software toolkit is designed to model complex systems for the implementation of embedded Integrated System Health Management (ISHM) capability, which focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, and predict future anomalies), and to provide data, information, and knowledge (DIaK) to control systems for safe and effective operation.

  6. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    Science.gov (United States)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  7. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    Science.gov (United States)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  8. MEASURING INFORMATION INTEGR-ATION MODEL FOR CAD/CMM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A CAD/CMM workpiece modeling system based on IGES file is proposed. The modeling system is implemented by using a new method for labelling the tolerance items of 3D workpiece. The concept-"feature face" is used in the method. First the CAD data of workpiece are extracted and recognized automatically. Then a workpiece model is generated, which is the integration of pure 3D geometry form with its corresponding inspection items. The principle of workpiece modeling is also presented. At last, the experiment results are shown and correctness of the model is certified.

  9. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    Science.gov (United States)

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  10. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis

    2014-03-01

    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  11. Integrated Urban System and Energy Consumption Model: Public and Singular Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available The present paper illustrates the results of the first steps of a study on one aspect investigated as the preliminary step of the definition of the analysis - comprehension model of the relation between: city, buildings, and user behavior, for the reduction of energy consumption within the research project “Smart Energy Master” for the energetic governance of the territory (PON_MIUR n. pos. 04a2_00120 CUP Ricerca: E61H12000130005, at the Department of Civil, Building and Environmental Engineering - University of Naples Federico II, principal investigator prof. Carmela Gargiulo.Specifically the literary review aimed at determining if, and in what measure, the presence of public and singular buildings is present in the energy consumption estimate models,  proposed by the scientific community, for the city or neighborhood scale.The difficulties in defining the weight of these singular buildings on the total energy consumption and the impossibility to define mean values that are significant for all subsets and different types as well as for each one, have forced model makers to either ignore them completely or chose a portion of this specific stock to include.

  12. A Model of Traceability for Equipments Using RFID Tehnologies within an Integrated System

    Directory of Open Access Journals (Sweden)

    Radu LIXANDROIU

    2006-01-01

    Full Text Available Radio Frequency Identification (RFID is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tagss or transponders. An advanced automatic identification technology such as the Auto-ID system based on the Radio Frequency Identification (RFID technology has two values for inventory systems. First, the visibility provided by this technology allows an accurate knowledge on the inventory level by eliminating the discrepancy between inventory record and physical inventory. Second, the RFID technology can prevent or reduce the sources of errors. Benefits of using RFID include the reduction of labor costs, the simplification of business processes and the reduction of inventory inaccuracies. Also, RFID technology allows an knowledge on the traceability of equipments in a organization.

  13. Dynamic optimal control of homeostasis: an integrative system approach for modeling of the central nitrogen metabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    van Riel, N A; Giuseppin, M L; Verrips, C T

    2000-01-01

    The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the source of the cellular amino acids and proteins, including flavors and potentially valuable biomolecules; therefore, it is also of industrial interest. In the DOMC approach the cell is regarded as an optimally controlled system. Given the metabolic genotype, the cell faces a control problem to maintain an optimal flux distribution in a changing environment. The regulation is based on strategies and balances feedback control of homeostasis and feedforward regulation for adaptation. The DOMC approach is an integrative, holistic approach, not based on mechanistic descriptions and (therefore) not biased by the variation present in biochemical and molecular biological data. It is an effective tool to structure the rapidly increasing amount of data on the function of genes and pathways. The DOMC model is used successfully to predict the responses of pulses of ammonia and glutamine to nitrogen-limited continuous cultures of a wild-type strain and a glutamine synthetase-negative mutant. The simulation results are validated with experimental data.

  14. Integration of Adaptive Neuro-Fuzzy Inference System, Neural Networks and Geostatistical Methods for Fracture Density Modeling

    Directory of Open Access Journals (Sweden)

    Ja’fari A.

    2014-01-01

    Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.

  15. An integrated bi-level optimization model for air quality management of Beijing's energy system under uncertainty.

    Science.gov (United States)

    Jin, S W; Li, Y P; Nie, S

    2018-05-15

    In this study, an interval chance-constrained bi-level programming (ICBP) method is developed for air quality management of municipal energy system under uncertainty. ICBP can deal with uncertainties presented as interval values and probability distributions as well as examine the risk of violating constraints. Besides, a leader-follower decision strategy is incorporated into the optimization process where two decision makers with different goals and preferences are involved. To solve the proposed model, a bi-level interactive algorithm based on satisfactory degree is introduced into the decision-making processes. Then, an ICBP based energy and environmental systems (ICBP-EES) model is formulated for Beijing, in which air quality index (AQI) is used for evaluating the integrated air quality of multiple pollutants. Result analysis can help different stakeholders adjust their tolerances to achieve the overall satisfaction of EES planning for the study city. Results reveal that natural gas is the main source for electricity-generation and heating that could lead to a potentially increment of imported energy for Beijing in future. Results also disclose that PM 10 is the major contributor to AQI. These findings can help decision makers to identify desired alternatives for EES planning and provide useful information for regional air quality management under uncertainty. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Modeling and Experimental Studies for the Thermal Performance of a Ground Heat Storage System Integrated with a Greenhouse

    International Nuclear Information System (INIS)

    Kooli, Sami; Lazaar, Mariem; Hazami, Majdi; Farhat, Abdelhamid; Belghith, Ali

    2009-01-01

    A thermal model has been developed to investigate the potential of using the stored thermal energy of the ground for greenhouse heating and cooling with the help of a ground heat storage system (GHSS) integrated with the greenhouse located in the premises of CRTEn, Tunis, Tunisia. Experiments were conducted extensively throughout the years 2006-2007, and the developed model was validated against several consecutive arbitrary days experiments. The predicted and measured values of the greenhouse air temperatures and humidities that were verified, in terms of root mean square deviation and correlation coefficient, exhibited fair agreement. The results of this study showed that the GHS system kept the inside air temperature 1-3 degree higher than that of outside air at nighttime. The main reason for this low efficiency is due to the weak heat transfer area of the water-air heat exchanger. The simulation results indicate that the GHSS does not yield any significant effect for cooling greenhouses during sunny daytime. The GHSS fulfils its full potential for a heat transfer area of 150 m 2 . With this area, there occurs 4-6 degree rise of temperature in greenhouse as compared to the temperatures without GHSS and respectively 5-7.5 degree rise in greenhouse as compared to outside air

  17. Integrated systems innovations and applications

    CERN Document Server

    2015-01-01

    This book presents the results of discussions and presentation from the latest ISDT event (2014) which was dedicated to the 94th birthday anniversary of Prof. Lotfi A. Zade, father of Fuzzy logic. The book consists of three main chapters, namely: Chapter 1: Integrated Systems Design Chapter 2: Knowledge, Competence and Business Process Management Chapter 3: Integrated Systems Technologies Each article presents novel and scientific research results with respect to the target goal of improving our common understanding of KT integration.

  18. Social Ecological Model Analysis for ICT Integration

    Science.gov (United States)

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  19. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    Science.gov (United States)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  20. Integrating pro-environmental behavior with transportation network modeling: User and system level strategies, implementation, and evaluation

    Science.gov (United States)

    Aziz, H. M. Abdul

    Personal transport is a leading contributor to fossil fuel consumption and greenhouse (GHG) emissions in the U.S. The U.S. Energy Information Administration (EIA) reports that light-duty vehicles (LDV) are responsible for 61% of all transportation related energy consumption in 2012, which is equivalent to 8.4 million barrels of oil (fossil fuel) per day. The carbon content in fossil fuels is the primary source of GHG emissions that links to the challenge associated with climate change. Evidently, it is high time to develop actionable and innovative strategies to reduce fuel consumption and GHG emissions from the road transportation networks. This dissertation integrates the broader goal of minimizing energy and emissions into the transportation planning process using novel systems modeling approaches. This research aims to find, investigate, and evaluate strategies that minimize carbon-based fuel consumption and emissions for a transportation network. We propose user and system level strategies that can influence travel decisions and can reinforce pro-environmental attitudes of road users. Further, we develop strategies that system operators can implement to optimize traffic operations with emissions minimization goal. To complete the framework we develop an integrated traffic-emissions (EPA-MOVES) simulation framework that can assess the effectiveness of the strategies with computational efficiency and reasonable accuracy. The dissertation begins with exploring the trade-off between emissions and travel time in context of daily travel decisions and its heterogeneous nature. Data are collected from a web-based survey and the trade-off values indicating the average additional travel minutes a person is willing to consider for reducing a lb. of GHG emissions are estimated from random parameter models. Results indicate that different trade-off values for male and female groups. Further, participants from high-income households are found to have higher trade-off values

  1. Factors Influencing the Selection of the Systems Integration Organizational Model Type for Planning and Implementing Government High-Technology Programs

    Science.gov (United States)

    Thomas, Leann; Utley, Dawn

    2006-01-01

    While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.

  2. Integrated RIS-PACS system

    International Nuclear Information System (INIS)

    Nishihara, Eitaro; Kura, Hiroyuki; Fukushima, Yuki

    1994-01-01

    We have developed an integrated RIS-PACS (radiology information system-picture archiving and communication system) system which supports examination, interpretation, and management in the diagnostic imaging department. The system was introduced in the Toshiba Hospital in May 1993, concurrently with the renewal of the hospital facilities. The integrated RIS-PACS system consists of a radiology information management system, and an image management system. The system supports wet (immediate) reading and chronological comparative reading using viewing workstation, enables routine operations to be performed in the diagnostic imaging department without film transportation, and contributes to the improvement of management efficiency in the department. (author)

  3. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases.

    Science.gov (United States)

    Owen, Nick A; Griffiths, Howard

    2013-12-01

    A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R(2)  = 0.912 and 0.937, respectively, for K. daigremontiana and R(2)  = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Duality for discrete integrable systems

    International Nuclear Information System (INIS)

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  5. Integration of DAS (distributed acoustic sensing) vertical seismic profile and geostatistically modeled lithology data to characterize an enhanced geothermal system.

    Science.gov (United States)

    Cronin, S. P.; Trainor Guitton, W.; Team, P.; Pare, A.; Jreij, S.; Powers, H.

    2017-12-01

    In March 2016, a 4-week field data acquisition took place at Brady's Natural Lab (BNL), an enhanced geothermal system (EGS) in Fallan, NV. During these 4 weeks, a vibe truck executed 6,633 sweeps, recorded by nodal seismometers, horizontal distributed acoustic sensing (DAS) cable, and 400 meters of vertical DAS cable. DAS provides lower signal to noise ratio than traditional geophones but better spatial resolution. The analysis of DAS VSP included Fourier transform, and filtering to remove all up-going energy. Thus, allowing for accurate first arrival picking. We present an example of the Gradual Deformation Method (GDM) using DAS VSP and lithological data to produce a distribution of valid velocity models of BNL. GDM generates continuous perturbations of prior model realizations seeking the best match to the data (i.e. minimize the misfit). Prior model realizations honoring the lithological data were created using sequential Gaussian simulation, a commonly used noniterative geostatistical method. Unlike least-squares-based methods of inversion, GDM readily incorporates a priori information, such as a variogram calculated from well-based lithology information. Additionally, by producing a distribution of models, as opposed to one optimal model, GDM allows for uncertainty quantification. This project aims at assessing the integrated technologies ability to monitor changes in the water table (possibly to one meter resolution) by exploiting the dependence of seismic wave velocities on water saturation of the subsurface. This project, which was funded in part by the National Science Foundation, is a part of the PoroTomo project, funded by a grant from the U.S. Department of Energy.

  6. Systems integration of business systems. Business system ni kanshite

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, H [Nippon Steel Corp., Tokyo (Japan)

    1991-09-26

    System integration (SI) is defined as combining hardwares and softwares as the infrastructures with know-hows for their use comprehensively to respond to high-level needs of users. This paper reports the features of an SI being developed by a company (E Company), its concept on the systematized development methodology, and the conceptual models. With the primary policy placed on creative integration standing on customers positions, the SI concept comprises three parts of models for evaluations as seen from the customers, evaluations as seen from the E Company, and the development object systems to link both parts. The third part is further consisted of several lower hierarchies including a customer controlled system hierarchy (this enables customers to control the system through visualization, for example, and includes three logic models (multiple solution selection, optimal solution under restricted conditions, and numerical solution)). 2 refs., 9 figs.

  7. The Brazilian Developments on the Regional Atmospheric Modeling System (BRAMS 5.2): An Integrated Environmental Model Tuned for Tropical Areas

    Science.gov (United States)

    Freitas, Saulo R.; Panetta, Jairo; Longo, Karla M.; Rodrigues, Luiz F.; Moreira, Demerval S.; Rosario, Nilton E.; Silva Dias, Pedro L.; Silva Dias, Maria A. F.; Souza, Enio P.; Freitas, Edmilson D.; hide

    2017-01-01

    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.

  8. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  9. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  10. Engineering challenges of BioNEMS: the integration of microfluidics, micro- and nanodevices, models and external control for systems biology.

    Science.gov (United States)

    Wikswo, J P; Prokop, A; Baudenbacher, F; Cliffel, D; Csukas, B; Velkovsky, M

    2006-08-01

    Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.

  11. Towards socio-hydroinformatics: optimal design and integration of citizen-based information in water-system models

    Science.gov (United States)

    Solomatine, Dimitri; Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon Hurtado, Juan Carlos

    2017-04-01

    Traditionally, static physical sensors are used to calibrate, validate or update water-system models by water authorities to reduce predictive uncertainty. However, the main problem is scarcity of data in both spatial and temporal domains due to costly maintenance and personnel. On the other hand, the use of low-cost sensor to measure hydrological variables in a more distributed and crowdsourced way is currently expanding and creating a fertile ground to the spread of citizen observatories activities and citizen science projects. Among different citizen sciences projects, the EU-funded projects WeSenseIt (www.wesenseit.eu) and GroundTruth (www.gt20.eu) aim at developing technologies and tools supporting creation of citizen observatories. A drawback of using crowdsourced observations is related to their intrinsic uncertainty and variable life span. Current flood forecasting applications limit the use of crowdsourced observations. Although some efforts to validate model results against these observations have been made, these are mainly done in a post-event analysis. Socio-hydroinformatics aims to integrate hydroinformatics tools and citizen observatories to achieve a dynamic and bidirectional feedbacks between coupled human-water systems. On the one hand, the main technical motivation of socio-hydroinformatics is to fill the gap in hydrological applications regarding the optimal use of crowdsourced observations not only in post-event analyses but in also in real time by their optimal assimilation. On the other hand, the social motivation is to bring citizens closer to decision-making processes and to understand how their participation in the model development process could improve models. In this study, different methods were developed and implemented to optimally design networks of dynamic sensors and assimilate crowdsourced observations, with varying spatial and temporal coverage, into hydrological and hydraulic models. This very first study of socio

  12. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  13. Integrated control systems

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    This paper reports that instrument manufacturers must develop standard network interfaces to pull together interrelated systems such as automatic start-up, optimization programs, and online diagnostic systems. In the past individual control system manufacturers have developed their own data highways with proprietary hardware and software designs. In the future, electric utilities will require that future systems, irrespective of manufacturer, should be able to communicate with each other. Until now the manufactures of control systems have not agreed on the standard high-speed data highway system. Currently, the Electric Power Research Institute (EPRI), in conjunction with several electric utilities and equipment manufactures, is working on developing a standard protocol for communicating between various manufacturers' control systems. According to N. Michael of Sargent and Lundy, future control room designs will require that more of the control and display functions be accessible from the control room through CRTs. There will be less emphasis on traditional hard-wired control panels

  14. Gravitational interactions of integrable models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1995-10-01

    We couple non-linear σ-models to Liouville gravity, showing that integrability properties of symmetric space models still hold for the matter sector. Using similar arguments for the fermionic counterpart, namely Gross-Neveu-type models, we verify that such conclusions must also hold for them, as recently suggested. (author). 18 refs

  15. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  16. High-resolution modelling of health impacts and related external cost from air pollution using the integrated model system EVA

    DEFF Research Database (Denmark)

    Brandt, Jørgen; Andersen, Mikael Skou; Bønløkke, Jakob

    2015-01-01

    Proceedings from ITM 2015, 34th International Technical Meeting on Air Pollution Modelling and its Application. 4-8 May, 2015, Montpellier, France. 4 pp......Proceedings from ITM 2015, 34th International Technical Meeting on Air Pollution Modelling and its Application. 4-8 May, 2015, Montpellier, France. 4 pp...

  17. An integrated CANDU system

    International Nuclear Information System (INIS)

    Donnelly, J.

    1982-09-01

    Twenty years of experience have shown that the early choices of heavy water as moderator and natural uranium as fuel imposed a discipline on CANDU design that has led to outstanding performance. The integrated structure of the industry in Canada, incorporating development, design, supply, manufacturing, and operation functions, has reinforced this performance and has provided a basis on which to continue development in the future. These same fundamental characteristics of the CANDU program open up propsects for further improvements in economy and resource utilization through increased reactor size and the development of the thorium fuel cycle

  18. Methode de conception dirigee par les modeles pour les systemes avioniques modulaires integres basee sur une approche de cosimulation

    Science.gov (United States)

    Bao, Lin

    In the aerospace industry, with the development of avionic systems becomes more and more complex, the integrated modular avionics (IMA) architecture was proposed to replace its predecessor - the federated architecture, in order to reduce the weight, power consumption and the dimension of the avionics equipment. The research work presented in this thesis, which is considered as a part of the research project AVIO509, aims to propose to the aviation industry a set of time-effective and cost-effective solutions for the development and the functional validation of IMA systems. The proposed methodologies mainly focus on two design flows that are based on: 1) the concept of model-driven engineering design and 2) a cosimulation platform. In the first design flow, the modeling language AADL is used to describe the IMA architecture. The environment OCARINA, a code generator initially designed for POK, was modified so that it can generate avionic applications from an AADL model for the simulator SIMA (an IMA simulator compliant to the ARINC653 standards). In the second design flow, Simulink is used to simulate the external world of IMA module thanks to the availability of avionic library that can offer lots of avionics sensors and actuators, and as well as its effectiveness in creating the Simulink models. The cosimulation platform is composed of two simulators: Simulink for the simulation of peripherals and SIMA for the simulation of IMA module, the latter is considered as an ideal alternative for the super expensive commercial development environment. In order to have a good portability, a SIMA partition is reserved as the role of " adapter " to synchronize the communication between these two simulators via the TCP/IP protocol. When the avionics applications are ported to the implementation platform (such as PikeOS) after the simulation, there is only the " adapter " to be modified because the internal communication and the system configuration are the same. An avionics

  19. Two new discrete integrable systems

    International Nuclear Information System (INIS)

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  20. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  1. Integrated Debugging of Modelica Models

    Directory of Open Access Journals (Sweden)

    Adrian Pop

    2014-04-01

    Full Text Available The high abstraction level of equation-based object-oriented (EOO languages such as Modelica has the drawback that programming and modeling errors are often hard to find. In this paper we present integrated static and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those problems. The goal is an integrated debugging framework that combines classical debugging techniques with special techniques for equation-based languages partly based on graph visualization and interaction. To our knowledge, this is the first Modelica debugger that supports b