WorldWideScience

Sample records for integrated luminosity collected

  1. Calculation of integrated luminosity for beams stored in the Tevatron collider

    International Nuclear Information System (INIS)

    Finley, D.A.

    1989-01-01

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing β function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs

  2. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  3. Determination of the integrated luminosity at HERA using elastic QED Compton events

    International Nuclear Information System (INIS)

    Aaron, F.D.; Andreev, V.

    2012-04-01

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep→eγp. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  4. Determination of the Integrated Luminosity at HERA using Elastic QED Compton Events

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2012-10-10

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep \\rightarrow ep. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  5. Determination of the integrated luminosity at HERA using elastic QED Compton events

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Pandurovic, M.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Kogler, R.; Nowak, K.; Dodonov, V.; Povh, B.; Dossanov, A.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Soloviev, Y.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep→eγp. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3 %. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process. (orig.)

  6. Determination of the integrated luminosity at HERA using elastic QED Compton events

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-04-15

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep{yields}e{gamma}p. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  7. Angular analysis of the B-0 -> K*(0) mu(+) mu(-) decay using 3 fb(-1) of integrated luminosity

    NARCIS (Netherlands)

    Aaij, R.; Beteta, C. Abelian; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Arnerio, S.; Arnhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    2016-01-01

    An angular analysis of the B-0 -> K*(0) (-> K+pi(-))mu(+)mu(-) decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb(-1) of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and

  8. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  9. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  10. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    Sopczak, Andre; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  11. Precision of MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Benes, Petr; Bergmann, Benedikt; Biskup, Bartolomej; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek [IEAP CTU in Prague (Czech Republic); Asbah, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Kladiva, Edward [IEP SAS Kosice (Slovakia)

    2015-07-01

    A network consisting of MPX detectors based on Medipix2 silicon pixel devices were originally adapted for measuring the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. We demonstrate that the MPX network, which consists of 16 MPX detectors, is a self-contained luminosity monitor system. As the MPX detectors are collecting data independently of the ATLAS data-recording chain, they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors close enough to the primary interaction point are used to perform van der Meer calibration scans with good precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s)=8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The variations of the MPX luminosity measurements around the fitted curve lead to a relative uncertainty on the luminosity measurement below 0.3% for one minute time intervals.

  12. LHC Luminosity Performance

    CERN Document Server

    AUTHOR|(CDS)2091107; Fuchsberger, Kajetan; Papotti, Giulia

    This thesis adresses several approaches with the common goal of assessing, understanding and improving the luminosity of the Large Hadron Collider (LHC). To better exploit existing margins for maximum luminosity while fulfilling the requirements of the LHC experiments, new techniques for luminosity levelling are studied and developed to an operational state, such as changing the crossing angle or $\\beta^*$ (beam size) at the interaction points with the beams in collisions. In 2017 LHC operation, the crossing angle reduction in collisions improved the integrated luminosity by $\\mathrm{\\sim} 2\\,\\mathrm{fb^{-1}}$ ($\\mathrm{\\sim} 4\\,\\mathrm{\\%}$ of the yearly production). For additional diagnostics, a new method for measuring beam sizes and orbits for each circulating bunch using the luminosity measurement during beam separation scans is shown. The results of these Emittance Scans improved the understanding of the LHC luminosity reach and of the orbit offsets introduced by beam-beam long-range effects.

  13. Luminosity monitoring and measurement at CDF

    International Nuclear Information System (INIS)

    Cronin-Hennessy, D.; Beretvas, A.; Derwent, P.F.

    2000-01-01

    Using two telescopes of beam-beam counters, CDF (Collider Detector at Fermilab) has measured the luminosity to an accuracy of 4.1% (3.6%) in run Ib (Ia). For run Ib (Ia) the average luminosity was 9.1(3.3)x10 30 cm -2 s -1 . For a typical data set the integrated luminosity was 86.47 (19.65) pb -1 in run Ib (Ia) resulting in a total integrated luminosity of 106.1±4.1 pb -1 . This paper shows how we have determined the accuracy of our results

  14. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  15. LHCb Upgrades and operation at 1034 cm-2 s-1 luminosity –A first study

    CERN Document Server

    Efthymiopoulos, Ilias; Baglin, Vincent; Burkhardt, Helmut; Cerutti, Francesco; Claudet, Serge; Di Girolamo, Beniamino; De Maria, Riccardo; Esposito, Luigi Salvatore; Karastathis, Nikos; Lindner, Rolf; Papaphilippou, Yannis; Pellegrini, Dario; Redaelli, Stefano; Roesler, Stefan; Sanchez Galan, Francisco; Thomas, Eric; Tsinganis, Andrea; Wollmann, Daniel; Wilkinson, Guy; Schwarz, Philip; CERN. Geneva. ATS Department

    2018-01-01

    Presently, the LHCb experiment at IP8 operates at reduced luminosity (~4.0 1032 cm-2 s-1) compared to ATLAS and CMS experiments. The LHCb collaboration is proposing an Upgrade II during HL-LHC operation, where the beams at IP8 will collide at high-luminosity (~1-2 1034 cm-2 s-1), comparable to the present high-luminosity regions IP1&IP5. The LHCb experiment aims to collect more than 300 fb-1 by the end of the HL-LHC operation. A feasibility study of operating IP8 at high-luminosity whilst preserving the performance at IP1 and IP5 and on the impact to the LHC machine and experimental cavern was done. Optics studies shows that solutions allowing to reach an integrated luminosity of 40 to 50 fb-1 per year to LHCb/IP8 at the cost of a reduction of about 5% in the integrated luminosity of the main experiments ATLAS and CMS, under the assumption that there are no lifetime limitations besides burn-off, are feasible. Energy deposition in the machine elements of the IR straight section 8 and LHC infrastructure and...

  16. Semi-empirical model for optimising future heavy-ion luminosity of the LHC

    CERN Document Server

    Schaumann, M

    2014-01-01

    The wide spectrum of intensities and emittances imprinted on the LHC Pb bunches during the accumulation of bunch trains in the injector chain result in a significant spread in the single bunch luminosities and lifetimes in collision. Based on the data collected in the 2011 Pb-Pb run, an empirical model is derived to predict the single-bunch peak luminosity depending on the bunch’s position within the beam. In combination with this model, simulations of representative bunches are used to estimate the luminosity evolution for the complete ensemble of bunches. Several options are being considered to improve the injector performance and to increase the number of bunches in the LHC, leading to several potential injection scenarios, resulting in different peak and integrated luminosities. The most important options for after the long shutdown (LS) 1 and 2 are evaluated and compared.

  17. Luminosity Targets for FCC-hh

    CERN Document Server

    Zimmermann, F.; Buffat, X.; Schulte, D.

    2016-01-01

    We discuss the choice of target values for the peak and integrated luminosity of a future high-energy frontier circular hadron collider (FCC-hh). We review the arguments on the physics reach of a hadron collider. Next we show that accelerator constraints will limit the beam current and the turnaround time. Taking these limits into account, we derive an expression for the ultimate integrated luminosity per year, depending on a possible pile-up limit imposed by the physics experiments. We finally benchmark our result against the planned two phases of FCC-hh [1, 2, 3

  18. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  19. High Luminosity LHC Project Description

    CERN Document Server

    Apollinari, Giorgio; Rossi, Lucio

    2014-01-01

    The High Luminosity LHC (HL-LHC) is a novel configuration of the Large Hadron Collider, aiming at increasing the luminosity by a factor five or more above the nominal LHC design, to allow increasing the integrated luminosity, in the high luminosity experiments ATLAS and CMS, from the 300 fb-1 of the LHC original design up to 3000 fb-1 or more. This paper contains a short description of the main machine parameters and of the main equipment that need to be developed and installed. The preliminary cost evaluation and the time plan are presented, too. Finally, the international collaboration that is supporting the project, the governance and the project structure are discussed, too.

  20. Luminosity performance reach after LS1

    International Nuclear Information System (INIS)

    Herr, W.

    2012-01-01

    Based on past experience (2010/2011), in particular expected limitations from beam-beam effects, and taking into account the expected beam quality from the LHC injectors, the peak and integrated luminosity at top energy is discussed for different scenarios (e.g. bunch spacing, beta*). In particular it will be shown which are the key parameters to reach the nominal luminosity and it is also shown that peak luminosities two times larger than nominal (or higher) are possible. Possible test in 2012 are discussed

  1. Current Status of Luminosity Measurement with the CMD-3 Detector at the VEPP-2000 e + e − Collider

    CERN Document Server

    Ryzhenenkov, A E; Amirkhanov, A N; Anisenkov, A V; Aulchenko, V M; Banzarov, V Sh; Bashtovoy, N S; Bondar, A E; Bragin, A V; Eidelman, S I; Epifanov, D A; Epshteyn, L B; Erofeev, A L; Fedotovich, G V; Gayazov, S E; Grebenuk, A A; Gribanov, S S; Grigoriev, D N; Ignatov, F V; Ivanov, V L; Karpov, S V; Kazanin, V F; Korobov, A A; Kovalenko, O A; Kozyrev, A N; Kozyrev, E A; Krokovny, P P; Kuzmenko, A E; Kuzmin, A S; Logashenko, I B; Lukin, P A; Mikhailov, K Yu; Okhapkin, V S; Pestov, Yu N; Popov, A S; Razuvaev, G P; Ruban, A A; Ryskulov, N M; Shebalin, V E; Shemyakin, D N; Shwartz, B A; Sibidanov, A L; Solodov, E P; Talyshev, A A; Titov, V M; Vorobiov, A I; Yudin, Yu V

    2017-01-01

    The CMD-3 detector has taken data at the electron-positron collider VEPP-2000 since december 2010. The collected data sample corresponds to an integrated luminosity of 60 pb-6 in the c.m. energy range from 0.32 up to 2 GeV. Preliminary results of the luminosity measurement are presented for various energy ranges and its accuracy is estimated to be 1%.

  2. Preliminary accelerator plans for maximizing the integrated LHC luminosity

    CERN Document Server

    Benedikt, Michael; Ruggiero, F; Ostojic, R; Scandale, Walter; Shaposhnikova, Elena; Wenninger, J

    2006-01-01

    A working group on "Proton Accelerators for the Future" (PAF) has been created in May 2005 by the CERN direction to elaborate a baseline scenario of the possible development and upgrade of the present Proton Accelerator Complex. This report is the result of the investigation conducted until the end of 2005, in close connection with the working group on "Physics Opportunities with Future Proton Accelerators" (POFPA) and is consistent with their recommendations. Focused on the goal of maximizing the integrated luminosity for the LHC experiments, a scenario of evolution is proposed, subject to further refinement using the future experience of commissioning and running-in the collider and its injector complex. The actions to be taken in terms of consolidation, R & D and improvement are outlined. The benefits for other types of physics are mentioned and will be investigated in more detail in the future.

  3. An early separation scheme for the LHC luminosity upgrade

    CERN Document Server

    Sterbini, G

    2010-01-01

    The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...

  4. Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

    International Nuclear Information System (INIS)

    Testa, M.

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) is expected to start providing proton-proton collisions by 2026. In the following 10 years it will deliver about 3000 fb −1 of integrated luminosity, more than a factor 10 of the data that will be collected by the end of Run3 at LHC in 2023. For such amount of data, an instantaneous luminosity of ∼ 7.5 × 10 34 cm −2 s −1 is needed. At this luminosity an unprecedented average number of pile-up collision per bunch crossing of 200 is expected. The ATLAS and CMS detectors will be upgraded to fully exploit the HL-LHC potential in this harsh environment. In this document the performances of the ATLAS and CMS upgraded detectors will be described. Their impact on crucial measurements of the Higgs boson sector, of the vector boson fusion process and on new physics searches, will be reported as well.

  5. LUCID: the ATLAS Luminosity Detector

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2018-01-01

    A precise measurement of luminosity is a key component of the ATLAS program: its uncertainty is a systematics for all cross-section measurements, from Standard Model processes to new discoveries, and for some precise measurements it can be dominant. To be predictive a precision compatible with PDF uncertainty ( 1-2%) is desired. LUCID (LUminosity Cherenkov Integrating Detector) is sensitive to charged particles generated by the pp collisions. It is the only ATLAS dedicated detector for this purpose and the referred one during the second run of LHC data taking.

  6. LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

    CERN Document Server

    Sbrizzi, A

    2007-01-01

    The LUCID (LUminosity Cherenkov Integrating Detector) apparatus is composed by two symmetric arms deployed at about 17 m from the ATLAS interaction point. The purpose of this detector, which will be installed in january 2008, is to monitor the luminosity delivered by the LHC machine to the ATLAS experiment. An absolute luminosity calibration is needed and it will be provided by a Roman Pot type detector with the two arms placed at about 240 m from the interaction point. Each arm of the LUCID detector is based on an aluminum vessel containing 20 Cherenkov tubes, 15 mm diameter and 1500 mm length, filled with C4F10 radiator gas at 1.5 bar. The Cherenkov light generated by charged particles above the threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. The challenging aspect of this detector is its readout in an environment characterized by the high dose of radiation (about 0.7 Mrad/year at 10^33cm^2 s^-1) it must withstand. In order to fulfill these radiation hardness requirem...

  7. The LUCID detector ATLAS luminosity monitor and its electronic system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00378808; The ATLAS collaboration

    2016-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  8. Upper limits on the total cosmic-ray luminosity of individual sources

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.C.; De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo (Brazil); Supanitsky, A.D., E-mail: rita@ifsc.usp.br, E-mail: vitor@ifsc.usp.br, E-mail: supanitsky@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, Buenos Aires (Argentina)

    2014-07-01

    In this paper, upper limits on the total luminosity of ultra-high-energy cosmic-rays (UHECR) E > 10{sup 18} eV) are determined for five individual sources. The upper limit on the integral flux of GeV--TeV gamma-rays is used to extract the upper limit on the total UHECR luminosity of individual sources. The correlation between upper limit on the integral GeV--TeV gamma-ray flux and upper limit on the UHECR luminosity is established through the cascading process that takes place during propagation of the cosmic rays in the background radiation fields, as explained in reference [1]. Twenty-eight sources measured by FERMI-LAT, VERITAS and MAGIC observatories have been studied. The measured upper limit on the GeV--TeV gamma-ray flux is restrictive enough to allow the calculation of an upper limit on the total UHECR cosmic-ray luminosity of five sources. The upper limit on the UHECR cosmic-ray luminosity of these sources is shown for several assumptions on the emission mechanism. For all studied sources an upper limit on the ultra-high-energy proton luminosity is also set.

  9. Upper limits on the total cosmic-ray luminosity of individual sources

    International Nuclear Information System (INIS)

    Anjos, R.C.; De Souza, V.; Supanitsky, A.D.

    2014-01-01

    In this paper, upper limits on the total luminosity of ultra-high-energy cosmic-rays (UHECR) E > 10 18 eV) are determined for five individual sources. The upper limit on the integral flux of GeV--TeV gamma-rays is used to extract the upper limit on the total UHECR luminosity of individual sources. The correlation between upper limit on the integral GeV--TeV gamma-ray flux and upper limit on the UHECR luminosity is established through the cascading process that takes place during propagation of the cosmic rays in the background radiation fields, as explained in reference [1]. Twenty-eight sources measured by FERMI-LAT, VERITAS and MAGIC observatories have been studied. The measured upper limit on the GeV--TeV gamma-ray flux is restrictive enough to allow the calculation of an upper limit on the total UHECR cosmic-ray luminosity of five sources. The upper limit on the UHECR cosmic-ray luminosity of these sources is shown for several assumptions on the emission mechanism. For all studied sources an upper limit on the ultra-high-energy proton luminosity is also set

  10. The CMS Pixel Detector Upgrade and R\\&D for the High Luminosity LHC

    CERN Document Server

    Viliani, Lorenzo

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) at CERN is expected to collide protons at a centre-of-mass energy of 14\\,TeV and to reach an unprecedented peak instantaneous luminosity of $5 \\times 10^{34}\\,{\\rm cm}^{-2} {\\rm s}^{-1}$ with an average number of pileup events of 140. This will allow the ATLAS and CMS experiments to collect integrated luminosities of up to $3000\\,{\\rm fb}^{-1}$ during the project lifetime. To cope with this extreme scenario the CMS detector will be substantially upgraded before starting the HL-LHC, a plan known as CMS Phase-2 Upgrade. In the upgrade the entire CMS silicon pixel detector will be replaced and the new detector will feature increased radiation hardness, higher granularity and capability to handle higher data rate and longer trigger latency. In this report the Phase-2 Upgrade of the CMS silicon pixel detector will be reviewed, focusing on the features of the detector layout and on the development of new pixel devices.

  11. High Luminosity LHC Studies with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to L = 7.5 $\\times$ 1034cm$^{-2}s$^{-1}$, corresponding to an average of 200 inelastic p-p collisions per bunch crossing ($\\mu$ = 200). Fast simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions. This talk will focus on the results of physics prospects studies for benchmark analyses involving in particular boosted hadronic objects (e.g. ttbar resonances, HH resonances), and on results of Jet/EtMiss studies of jet performance and pileup mitigation techniques that will be critical in HL-LHC analyses.

  12. Luminosity monitor

    International Nuclear Information System (INIS)

    Underwood, D. G.

    1998-01-01

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10 -3 raw asymmetry in an experiment, an error of 10 -4 in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, - and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come

  13. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  14. Evolution of the CMS ECAL Performance and R&D Studies for Calorimetry Options at High Luminosity LHC

    CERN Document Server

    Lucchini, Marco Toliman; Auffray, Etiennette

    During the past years the Large Hadron Collider (LHC) at CERN operated with a maximum center-of-mass energy of $\\sqrt{s} = 8$~TeV, a peak luminosity of around $7\\times 10^{33}$~cm$^{-2}$s$^{-1}$ and collected about $23$~fb$^{-1}$ of data which lead to the discovery of a Higgs Boson in July 2012. To further constrain the properties of the newly discovered Higgs boson, the decision to extend the LHC program has recently been made. In this framework, a major upgrade of the beam optics in the interaction region will take place around 2022 to achieve a leveled peak luminosity of $\\mathcal{L} = 5\\times10^{34}$~cm$^{-2}$s$^{-1}$. These will be the operating conditions during the High Luminosity LHC (HL-LHC) which is expected to deliver an integrated luminosity of 3000~fb$^{-1}$ by 2035. During HL-LHC phase the radiation levels will become much higher with respect to the nominal values for which the CMS detector was designed. Therefore it is of crucial importance to identify and quantify the effects ofradiation damag...

  15. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  16. Angular analysis of the $B^{0}\\rightarrow K^{*0}\\mu^{+}\\mu^{-}$ decay using 3 fb$^{-1}$ of integrated luminosity

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Fabianska, Maria; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano

    2016-02-16

    An angular analysis of the $B^{0}\\rightarrow K^{*0}(\\rightarrow K^{+}\\pi^{-})\\mu^{+}\\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\\,{\\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\\!P$-averaged observables and $C\\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1< q^{2} <6.0 \\mathrm{\\,Ge\\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\\!P$-averaged ob...

  17. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444244; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  18. A new record peak luminosity for the LHC

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Two weeks of dedicated machine development paid off last weekend when the LHC ran for physics with three nominal intensity (∼1011 protons) bunches in each beam.   This brought a new record peak luminosity of around 8×1029 cm-2 s-1, and allowed the LHC to double the integrated luminosity delivered to the experiments since 30 March from 16 to 32 inverse nanobarns over the weekend. After a few more fills in this configuration, the number of bunches will be raised to six per beam, which will in turn allow the peak luminosity to break the 1030 cm-2 s-1 barrier for the first time, well on the way to achieving the 2010 objective of 1032 cm-2 s-1. This peak luminosity goal requires 800 nominal bunches per beam squeezed to a beta of 3.5 metres. The plan for 2011 is to run the LHC in this configuration over about 10 months, thus achieving the objective of recording one inverse femtobarn of data in total. The machine development period also allowed the TOTEM detectors to be set up with 45...

  19. Luminosity measurement at LEP using the very small angle tagger of DELPHI

    International Nuclear Information System (INIS)

    Haakansson, A.

    1993-01-01

    In this thesis, the analysis of the luminosity measurement from Bhabha scattering within the polar angular region (5 to 7 mrad) covered by the Very Small Angle Tagger (VSAT) in the DELPHI experiment at LEP, is presented. Both by analytical integration and using Monte Carlo simulation, it is shown that the acceptance corrections to the detector can be reliably calculated, obtaining a relative luminosity measurement at the precision level of 0.1%. The absolute experimental error on the luminosity measurement is estimated to be 0.8%. Furthermore, measurement of the beam spot using the VSAT detector are described. The application of the relative luminosity measurement in the extraction of the hadronic lineshape parameters of the Z-particle is also presented

  20. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  1. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  2. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  3. Luminosity monitor at PEP

    International Nuclear Information System (INIS)

    Fox, J.D.; Franklin, M.E.B.

    1981-02-01

    The luminosity monitor system utilized by the MKII Detector and by the PEP operators is described. This system processes information from 56 photomultipliers and calculates independent luminosities for each of the 3 colliding bunches in PEP. Design considerations, measurement techniques, and sources of error in the luminosity measurement are discussed

  4. Performance of the new high precision luminosity monitor of DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.; Benvenuti, A.C.; Giordano, V.; Guerzoni, M.; Navarria, F.L.; Perrotta, A.; Camporesi, T.; Obraztsov, V.; Paganoni, M.; Vallazza, E.; Bozzo, M.; Cereseto, R.; Barreira, G.; Espirito Santo, M.C.; Maio, A.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Carling, H.; Falk, E.; Hedberg, V.; Jarlskog, G.; Kronkvist, I.; Bonesini, M.; Chignoli, F.; Ferrari, P.; Gumenyuk, S.; Leoni, R.; Mazza, R.; Negri, P.; Petrovykh, L.; Terranova, F.; Dharmasiri, D.R.; Nossum, B.; Read, A.L.; Skaali, B.; Rohne, O.; Castellani, L.; Pegoraro, M.; Fenyuk, A.; Ivanyushenkov, I.; Karyukhin, A.; Konopliannikov, A.; Shalanda, N.; Sen'ko, V.; Vlasov, E.; Zaitsev, A.; Bigi, M.; Cassio, V.; Gamba, D.; Gouz, I.; Migliore, E.; Romero, A.; Simonetti, L.; Trapani, P.P.; Bari, M.; Della Ricca, G.; Lanceri, L.; Poropat, P.; Prest, M.

    1997-01-01

    The STIC calorimeter was installed in the DELPHI detector in 1994. The main goal is to measure the luminosity with an accuracy better than 0.1%. The calorimeter was built using the ''Shashlik'' technique. The light is collected by wavelength shifting fibers and readout by phototetrodes that can operate inside the magnetic field. The detector performance during the 1994-1995 data taking is presented. The different contributions to the systematic error on the luminosity measurement are discussed. (orig.)

  5. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  6. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  7. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  8. Luminosity upgrade possibilities for the PEP-II B-Factory

    CERN Document Server

    Sullivan, M

    2003-01-01

    PEP-II is an asymmetric e sup + e sup - collider being constructed in the SLAC PEP tunnel by SLAC, LBNL, and LLNL. The two beams have energies of 3.1 GeV and 9.0 GeV and are made to collide at a single interaction point. PEP-II has a 2200 m circumference. The nominal parameters for PEP-II are listed in Table 1. The High Energy Ring (HER) of PEP-II started commissioning in 1997. The Low Energy Ring (LER) will be commissioned in the summer of 1998. The BaBar detector is to be installed starting January 1999. Studies for increasing the luminosity in PEP-II beyond the design are underway. A brief summary of the possibilities are presented here. Improvements to the integrated luminosity will be implemented gradually. Major luminosity improvements will likely come in two phased upgrades. Several of these possibilities are summarized in Table 1.

  9. LUMINOSITY UPGRADE POSSIBILITIES FOR THE PEP-II B-FACTORY

    International Nuclear Information System (INIS)

    Sullivan, Michael K

    2003-01-01

    PEP-II is an asymmetric e + e - collider being constructed in the SLAC PEP tunnel by SLAC, LBNL, and LLNL. The two beams have energies of 3.1 GeV and 9.0 GeV and are made to collide at a single interaction point. PEP-II has a 2200 m circumference. The nominal parameters for PEP-II are listed in Table 1. The High Energy Ring (HER) of PEP-II started commissioning in 1997. The Low Energy Ring (LER) will be commissioned in the summer of 1998. The BaBar detector is to be installed starting January 1999. Studies for increasing the luminosity in PEP-II beyond the design are underway. A brief summary of the possibilities are presented here. Improvements to the integrated luminosity will be implemented gradually. Major luminosity improvements will likely come in two phased upgrades. Several of these possibilities are summarized in Table 1

  10. TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Bendo, G.; Dale, D.; Engelbracht, C.; Kennicutt, R.; Lee, J. C.; Van Zee, L.; Moustakas, J.

    2010-01-01

    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 μm and 24 μm bands. To do so, we use data for 45'' subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy survey (LVL), and Engelbracht et al. samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 μm, the warm dust at 24 μm, and the cold dust at 70 μm and 160 μm, we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 μm are not available.

  11. INTEGRAL and XMM-Newton observations of the low-luminosity and X-ray-rich burst GRB 040223

    Energy Technology Data Exchange (ETDEWEB)

    McGlynn, S.; Hanlon, L.; Foley, S. [College Univ., Dublin (Iran, Islamic Republic of). Department of Experimental Physics; McBreen, S. [ESTEC, Noordwijk (Netherlands). Astrophysics Mission Division, RSSD of ESA; Moran, L. [Southampton Univ., Southampton (United Kingdom). School of Physics and Astronomy; Preece, R. [Alabama Univ., Huntsville (United States); Kienlin, A. von [Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany); Williams, O.R. [SCI-SDG, Noordwijk (Netherlands). Science Operation and Data Systems Division of ESA-ESTEC

    2005-07-15

    GRB 040223 was observed by INTEGRAL and XMM-Newton. GRB 040223 has a peak flux of (1.6{+-}0.13) x 10{sup -8} ergs cm{sup -2} s{sup -1}, a fluence of (4.4{+-}0.4) x 10{sup -7} ergs cm{sup -2} and a steep photon power law index of -2.3{+-}0.2, in the energy range 20-200 keV. The steep spectrum implies it is an X-ray-rich GRB with emission up to 200 keV and E{sub peak} < 20 keV. If E{sub peak} is < 10 keV, it would qualify as an X-ray flash with high-energy emission. The X-ray data has a spectral index {beta}{sub x} = -1.7{+-}0.2, a temporal decay of t{sup -0.75{+-}}{sup 0.25} and a large column density of 1.8 x 10{sup 22} cm{sup -2}. The luminosity-lag relationship was used to obtain a redshift z 0.1{sub -0.02}{sup +0.04}. The isotropic energy radiated in {gamma}-rays and X-ray luminosity after 10 hours are factors of 1000 and 100 less than classical GRBs. GRB 040223 is consistent with the extrapolation of the Amati relation into the region that includes XRF 030723 and XRF 020903.

  12. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  13. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  14. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run 2

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into "telescopes", each consisting of three planes. It was installed during LS1 at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to identify events where a hit is registered in all three sensors in a telescope corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. In this talk, we will present results from 2016 running and preliminary 2017 results, including commissioning and operational history, luminosity calibration using Va...

  15. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run2

    CERN Document Server

    Lujan, Paul Joseph

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into telescopes, each consisting of three sensor planes. It was installed in CMS at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2 of the LHC. The online bunch-by-bunch luminosity measurement employs the fast-or capability of the pixel readout chip to identify events where a hit is registered in all three sensors in a telescope, corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. This paper presents results from the 2016 running of the PLT, including commissioning and operational history, luminosity calibration using Van der Meer scans, and...

  16. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  17. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  18. Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets

    Science.gov (United States)

    Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.

  19. Regional integrated system of separated collection

    International Nuclear Information System (INIS)

    Markuskova, I.

    2008-01-01

    Since 2002 Palarikovo manages and ensures Regional integrated system of separated collection. In the present time 28 villages of the region are associated in Association of villages for sustainable treatment of municipal wastes with settlement in Palarikovo. In accordance with hierarchy of goals of national strategy in the field of treatment of municipal wastes the key aims of activity are centred on economical and sustainable treatment of municipal wastes, which consist in reduction of quantity and harmfulness of municipal wastes by destruction by unloading or combustion. The steps for achievement of this aim consist in (1) prevention of formation of wastes, (2) using of usable subjects (establishing of centre for repeated using in Regional collecting court), (3) by rigorous realisation of recycling program - by collection of separated commodities with a view to mainly material recycling as well as composting program. By starting of integrated regional system of separated collection were integrated 18 villages with 24,000 inhabitants into common separated collection. In the present time this association has 28 members (villages of the region) with total population 55,904. Operating of the Regional integrated system of separated collection in Palarikovo is reviewed

  20. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  1. Upgrade of the ATLAS detectors and trigger at the High Luminosity LHC: tracking and timing for pile-up suppression

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2018-01-01

    The High Luminosity-Large Hadron Collider  is expected to start data-taking in 2026 and to provide an integrated luminosity of 3000 fb-1, giving a factor 10 more data than will be collected by 2023. This high statistics will make it possible to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale. The luminosity is expected to be 7.5 ×1034 cm-2 s-1, corresponding to about 200 proton-proton pile-up interactions, which will increase the rates at each level of the trigger and degrade the reconstruction performance. To cope with such a harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted and the Trigger-DAQ system will be upgraded. In this talk an overview of two new sub-detectors enabling powerful pile-up suppression, a new Inner Tracker and a proposed High Granularity Timing Detector, will be given, describing the two technologies, their performance, and their interplay. Emphasis will also be given to the possi...

  2. Upgrade of the ATLAS detectors and trigger at the High Luminosity LHC: tracking and timing for pile-up suppression

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2018-01-01

    The High Luminosity-Large Hadron Collider is expected to start data-taking in 2026 and to provide an integrated luminosity of 3000 fb^{-1}, giving a factor 10 more data than will be collected by 2023. This high statistics will make it possible to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale. The luminosity is expected to be 7.5 \\times 10^{34} cm^{-2} s^{-1}, corresponding to about 200 proton-proton pile-up interactions, which will increase the rates at each level of the trigger and degrade the reconstruction performance. To cope with such a harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted and the Trigger-DAQ system will be upgraded. In this talk an overview of two new sub-detectors enabling powerful pile-up suppression, a new Inner Tracker and a proposed High Granularity Timing Detector, will be given, describing the two technologies, their performance, and their interplay. Emphasis will also be giv...

  3. Evolution of the cluster X-ray luminosity function

    DEFF Research Database (Denmark)

    Mullis, C.R.; Vikhlinin, A.; Henry, J.P.

    2004-01-01

    We report measurements of the cluster X-ray luminosity function out to z = 0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z similar to 0.6 at luminosities of less...... than a few times 10(44) h(50)(-2) ergs s(-1) (0.5 - 2.0 keV). However, for 0.6 cluster deficit using integrated number counts...... independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z = 0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently...

  4. Precision luminosity measurement at LHCb with beam-gas imaging

    International Nuclear Information System (INIS)

    Barschel, Colin

    2014-01-01

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy √(s)=8 TeV and √(s)=2.76 TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. Therefore, a new method has been developed using all reconstructed vertices in order to improve the understanding of the vertex resolution. In addition to the overlap integral, the knowledge of the colliding bunch populations is required to measure the luminosity. The determination of the bunch populations relies on LHC instruments to measure the bunch population fractions and the total beam intensity. Studies performed as part of this work resulted in a reduction of the bunch current normalization uncertainty from ±2.7% to ±0.2% and making it possible to achieve precision luminosity measurements at all LHC experiments. Furthermore, information on beam-gas interactions not originating from nominally filled bunches was analyzed to determine the charge fraction not participating in bunch collisions. The knowledge of this fraction is required to correct the total beam intensity. The reference cross-section of pp interactions with at least two tracks in the vertex detector

  5. Luminosity class of neutron reflectometers

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru

    2016-10-21

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  6. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  7. Luminosity measurement at AMY

    International Nuclear Information System (INIS)

    Kurihara, Y.

    1995-01-01

    A precise measurement of a luminosity is required by experiments with high statistics. The largest sources of a systematic error of a luminosity measurement are an alignment of the tube chambers which measure a polar angle of Bhabha events and a higher order correction for the Bhabha cross section calculation. We describe a resent study for these uncertainties and how to reduce the systematic errors from these sources. The total systematic error of the luminosity measurement of 1.8% can be reduced to 1.0% by this study. (author)

  8. The low-luminosity stellar mass function

    International Nuclear Information System (INIS)

    Kroupa, Pavel; Tout, C.A.; Gilmore, Gerard

    1990-01-01

    The stellar mass function for low-mass stars is constrained using the stellar luminosity function and the slope of the mass-luminosity relation. We investigate the range of mass functions for stars with absolute visual magnitude fainter than M V ≅ +5 which are consistent with both the local luminosity function and the rather poorly determined mass-absolute visual magnitude relation. Points of inflexion in the mass-luminosity relation exist because of the effects of H - , H 2 and of other molecules on the opacity and equation of state. The first two of these correspond to absolute magnitudes M V ≅ +7 and M V ≅ +12, respectively, at which structure is evident in the stellar luminosity function (a flattening and a maximum, respectively). Combining the mass-luminosity relation which shows these inflexion points with a peaked luminosity function, we test smooth mass functions in the mass range 0.9-0.1 the solar mass. (author)

  9. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  10. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  11. High Luminosity LHC: challenges and plans

    Science.gov (United States)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  12. High Luminosity LHC: Challenges and plans

    International Nuclear Information System (INIS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.

    2016-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3 Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  13. LHC Report: A new luminosity record

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    After about one month of operation, the LHC has already accumulated an integrated luminosity of 28 pb-1, which corresponds to over 50% of the total delivered to the experiments in 2010. This impressive start to the LHC run in 2011 bodes well for the rest of year.   Following careful collimator set-up and validation, the first phase of beam commissioning 2011 has come to an end. The first stable beams were declared on Sunday 13 March with a moderate 3 bunches per beam and an initial luminosity of 1.6 × 1030 cm-2s-1. Machine protection tests continued during the following week as the commissioning team made absolutely sure that all critical systems (beam dumps, beam interlock system, etc.) were functioning properly. When these tests had finished, the way was opened to increased intensity and the LHC quickly moved through the first part of its planned, staged intensity increase. Fills with increasing numbers of bunches were delivered to the experiments, culminating in a fill with 200...

  14. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  15. CMS Luminosity Calibration for the pp Reference Run at $\\sqrt{s}=5.02~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The measurement of the integrated luminosity delivered to the CMS Experiment during the very first LHC proton-proton run at $5.02~\\mathrm{TeV}$ center-of-mass energy is presented. The Pixel Cluster Counting method is used and the absolute luminosity scale calibration is derived from an analysis of Van der Meer Scans performed in November 2015. The overall uncertainty on the luminosity measurement is $2.3\\%$. The time stability of such calibrations is also studied and taken into account for the final systematic uncertainty.

  16. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  17. Luminosity measurement at CMS

    CERN Document Server

    Karacheban, Olena

    2017-01-01

    Luminosity is a key quantity of any collider, since it allows for the determinationof the absolute cross sections from the observed rates in a detector. Since theHiggs boson discovery in 2012, the highest priority at the Large Hadron Collider(LHC) has been given to an accurate understanding of the electroweak scale anda search for new physics. Precise luminosity measurements in such conditions areof crucial importance, as they determine the precision of any physics cross sectionmeasurement.To increase the production of particles of interest, usually of low cross section,the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 × 1034 cm−2 s−1was reached with 1011 protons per bunch and a bunch spacing of 25 ns. In suchconditions radiation hard detectors with extremely fast response time are required,especially for instrumentation near the beam.The Compact Muon Solenoid experiment is equipped with three online luminomet...

  18. Measurement of the integrated Luminosities of cross-section scan data samples around the {\\rm{\\psi }}(3770) mass region

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Begzsuren, K.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chang, W. L.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Cossio, F.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Gilman, A.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, L. M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Guskov, A.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Irshad, M.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kurth, M.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. W.; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, L. Z.; Libby, J.; Lin, C. X.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, D. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. L.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lusso, S.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mangoni, A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu; Muramatsu, H.; Mustafa, A.; Nakhoul, S.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peng, Z. Y.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shan, X. Y.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, X.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tan, Y. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, C. W.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, F.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, S. L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. F.; Zhang, T. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Q.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, A. N.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2018-05-01

    To investigate the nature of the {{\\psi }}(3770) resonance and to measure the cross section for {{{e}}}+{{{e}}}-\\to {{D}}\\bar{{{D}}}, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16+/- 0.04+/- 0.61 {pb}}-1, where the first uncertainty is statistical and the second systematic. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11235011, 11335008, 11425524, 11625523, 11635010), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the CAS Center for Excellence in Particle Physics (CCEPP), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1332201, U1532257, U1532258), CAS Key Research Program of Frontier Sciences (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359, Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Science and Technology fund, The Swedish Research Council, U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069), University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  19. Collective symplectic integrators

    International Nuclear Information System (INIS)

    McLachlan, Robert I; Modin, Klas; Verdier, Olivier

    2014-01-01

    We construct symplectic integrators for Lie–Poisson systems. The integrators are standard symplectic (partitioned) Runge–Kutta methods. Their phase space is a symplectic vector space equipped with a Hamiltonian action with momentum map J whose range is the target Lie–Poisson manifold, and their Hamiltonian is collective, that is, it is the target Hamiltonian pulled back by J. The method yields, for example, a symplectic midpoint rule expressed in 4 variables for arbitrary Hamiltonians on so(3) ∗ . The method specializes in the case that a sufficiently large symmetry group acts on the fibres of J, and generalizes to the case that the vector space carries a bifoliation. Examples involving many classical groups are presented. (paper)

  20. Luminosity measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The measurement of the luminosity delivered by the LHC is pivotal for several key physics analyses. During the first three years of running, tremendous steps forwards have been made in the comprehension of the subtleties related to luminosity monitoring and calibration, which led to an unprecedented accuracy at a hadron collider. The detectors and corresponding algorithms employed to estimate online and offline the luminosity in CMS are described. Details are given concerning the procedure based on the Van der Meer scan technique that allowed a very precise calibration of the luminometers from the determination of the LHC beams parameters. What is being prepared in terms of detector and online software upgrades for the next LHC run is also summarized.

  1. Target and collection optimization for muon colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-01

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target (∼ one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

  2. Reverberation Mapping of High-Luminosity Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Shai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Brandt, William N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Department of Physics, Pennsylvania State University, University Park, PA (United States); Maoz, Dan; Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Shemmer, Ohad, E-mail: shai@wise.tau.ac.il [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-10-30

    Over the past three decades reverberation mapping (RM) has been applied to about 100 AGNs. Their broad line region (BLR) sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 10{sup 46} erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606). We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  3. Luminosity Optimization Feedback in the SLC

    International Nuclear Information System (INIS)

    1999-01-01

    The luminosity optimization at the SLC has been limited by the precision with which one can measure the micron size beams at the Interaction Point. Ten independent tuning parameters must be adjusted. An automated application has been used to scan each parameter over a significant range and set the minimum beam size as measured with a beam-beam deflection scan. Measurement errors limited the accuracy of this procedure and degraded the resulting luminosity. A new luminosity optimization feedback system has been developed using novel dithering techniques to maximize the luminosity with respect to the 10 parameters, which are adjusted one at a time. Control devices are perturbed around nominal setpoints, while the averaged readout of a digitized luminosity monitor measurement is accumulated for each setting. Results are averaged over many pulses to achieve high precision and then fitted to determine the optimal setting. The dithering itself causes a small loss in luminosity, but the improved optimization is expected to significantly enhance the performance of the SLC. Commissioning results are reported

  4. Selected issues for the LHC luminosity upgrade

    International Nuclear Information System (INIS)

    Laface, E.

    2008-12-01

    The Large Hadron Collider started its operations on September 10. 2008. In a realistic forecast it is supposed to demonstrate (or confute) the existence of the Higgs boson for the year 2014. After this date the physics of rare events will be explored more in details and an upgrade of the luminosity can make an important difference in the program of experiments at CERN. This thesis proposes several ideas to increase the luminosity of ATLAS and CMS experiments and the acceptance of TOTEM experiment. The main object of study is the Interaction Region, that consists in the set of magnets in charge to provide the final beam focalization for the collisions. The Interaction Region is studied with the methods of beam optics and beam dynamics to design new layouts for the upgrade. These layouts are also explored from the point of view of integrability in the existing experiments developing the analysis of energy deposition and misalignment tolerances. This study was performed with the use of analytical methods for the general considerations and numerical methods for the parameters optimization. (author)

  5. LHC Report: a break from luminosity production

    CERN Multimedia

    Jan Uythoven for the LHC team

    2016-01-01

    The LHC has been in great shape over the last few months, delivering over 20 fb-1 of integrated luminosity before the ICHEP conference in Chicago at the beginning of August. This is not much below the 25 fb-1 target for the whole of 2016. With this success in mind, a break in luminosity production was taken for six days, starting on 26 July 2016, for a machine development period.   This year, 20 days of the LHC schedule are devoted to machine development with the aim of carrying out detailed studies of the accelerator. The 20 days are divided over five different periods, called MD blocks. They can be seen as an investment in the future, so the machine can produce collisions more efficiently in the months and years to come. A detailed programme is worked out for each MD block, whereby different specialist teams are assigned periods of four to twelve hours, depending on the topic, to perform their previously approved tests. The MD program continues 24 hours per day, as in normal physics operation. One...

  6. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  7. The luminosity of galactic components and morphological segregation

    International Nuclear Information System (INIS)

    Solanes, J. M.; Salvador-Sole, E.; Sanroma, M.

    1989-01-01

    The luminosities of the bulge and disk components of disk galaxies are analyzed, and the possible correlation of these luminosities with morphological type and local density is explored. Galaxies of different types are found to be located in distinct bands in the bulge-to-disk luminosity ratio vs total luminosity diagram, allowing the determination of the typical bulge luminosity function of disk galaxies of different types from their respective total luminosity functions, along with a better characterization of morphological segregation among disk galaxies. No evidence for any bulge luminosity segregation is found, and disks appear to be less luminous with increasing local density. 33 refs

  8. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  9. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  10. CLIC Luminosity Monitoring

    CERN Document Server

    Apyan, Armen; Gschwendtner, Edda; Lefevre, Thibault; Tygier, Sam; Appleby, Robert B

    2012-01-01

    The CLIC post-collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14 MW to the main beam dump. Luminosity monitoring for CLIC is based on high energy muons produced by beamstrahlung photons in the main dump. Threshold Cherenkov counters are proposed for the detection of these muons. The expected rates and layout for these detectors is presented. Another method for luminosity monitoring is to directly detect the beamstrahlung photons in the post-collision line. Full Monte Carlo simulation has been performed to address its feasibility.

  11. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    Despite the excellent performance of the Large Hadron Collider (LHC) at CERN an upgrade to a High-Luminosity LHC (HL-LHC) with a peak instantaneous luminosity of up to $7.5\\times 10^{34}$ fb$^{-1}$ will be required after collecting a total dataset of approximately 300 fb$^{-1}$ by the end of Run 3 (in 2023). The upgrade will substantially increase the statistics available to the experiments for addressing the remaining open puzzles of particle physics. The HL-LHC is expected to start operating in 2026 and to deliver up to 4000 fb$^{-1}$ within twelve years. The corresponding upgrades of the ATLAS detector and the ATLAS beauty physics program at the HL-LHC are being discussed. As examples, preliminary results on the expected sensitivities for the search for CP-violation in the decay channel $B^0_s \\to J/\\psi \\,\\phi$ using the parameters $\\Delta\\Gamma_s$ and $\\phi_s$ as well as projections for the branching fractions of the rare decays $B^0_s \\to \\mu^+\\mu^-$ and $B^0\\to\\mu^+\\mu^-$ are provided.

  12. Silicon Sensors for High-Luminosity Trackers - RD50 Collaboration Status Report

    CERN Document Server

    Kuehn, Susanne

    2014-01-01

    The revised schedule for the Large Hadron Collider (LHC) upg rade foresees a significant increase of the luminosity of the LHC by upgrading towards the HL-LHC ( High Luminosity-LHC). The final upgrade is planned for around the year 2023, followed by the HL-LHC running. This is motivated by the need to harvest the maximum physics potenti al from the machine. It is clear that the high integrated luminosity of 3000 fb − 1 will result in very high radiation levels, which manifest a serious challenge for the detectors. This is espe cially true for the tracking detectors installed close to the interaction point. For HL-LHC, all-s ilicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silico n sensors to be employed in the innermost layers. Within the RD50 Collaboration, a massive R&D; program is underway, with an open cooperation across experimental boundaries to deve lop silicon sensors with sufficient radiation tolerance. This report presents several researc h topics...

  13. Online luminosity measurement at BES III

    International Nuclear Information System (INIS)

    Song Wenbo; Fu Chengdong; Mo Xiaohu; He Kanglin; Zhu Kejun; Li Fei; Zhao Shujun

    2010-01-01

    As a crucial parameter of both accelerator and detector, the realization of online luminosity measurement is of great importance. Several methods of luminosity measurement are recapitulated and the emphasis is laid on the algorithm of using e + e - and γγ final states. Taking into account the status at the beginning of the joint commissioning of detector and accelerator, the information from end cap electromagnetic calorimeter is used to select the good event. With the help of online Event filter, the luminosity is calculated and the monitoring of online cross section of hadron is realized. The preliminary results indicate that the online luminosity measurement is stable and its role for machine tuning and monitoring of the overall running status is indispensable. (authors)

  14. Upgrade plans for the Hadronic-Endcap Calorimeter of ATLAS for the high luminosity stage of the LHC

    CERN Document Server

    Ahmadov, F; The ATLAS collaboration; Cheplakov, A; Dominguez, R; Fischer, A; Habring, J; Hambarzumjan, A; Javadov, N; Kiryunin, A; Kurchaninov, L; Menke, S; Molinas Conde, I; Nagel, M; Oberlack, H; Reimann, O; Schacht, P; Strizenec, P; Vogt, S; Wichmann, G; Cadabeschi, Mircea Ioan; Langstaff, Reginald Roy; Lenckowski, Mark Stanley

    2015-01-01

    The expected increase of the instantaneous luminosity of a factor seven and of the total integrated luminosity by a factor 3-5 at the second phase of the upgraded high luminosity LHC compared to the design goals for LHC makes it necessary to re-evaluate the radiation hardness of the read-out electronics of the ATLAS Hadronic Endcap Calorimeter. The current cold electronics made of GaAs ASICs have been tested with neutron and proton beams to study their degradation under irradiation and the effect it would have on the ATLAS physics programme. New, more radiation hard technologies which could replace the current amplifiers have been studied as well: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons and protons with fluences up to ten times the total expected fluences for ten years of running of the high luminosity LHC. The performance measurements of the current read-out electronics and potential future technologies and expected performance degradations under high luminosity ...

  15. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  16. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation, and LHC relative luminosity measurement.

    CERN Document Server

    Arfaoui, Samir; Monnier, E

    2011-01-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In oder to do so,it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity ...

  17. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation and LHC relative luminosity measurement

    International Nuclear Information System (INIS)

    Arfaoui, S.

    2011-10-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In order to do so, it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity determination. (author)

  18. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xinfa [School of Science, Nanchang University, Jiangxi 330031 (China); Yu Guisheng [Department of Natural Science, Nanchang Teachers College, Jiangxi 330103 (China)

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  19. Precision luminosity measurements at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-12-05

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at $\\sqrt{s}$ = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determin...

  20. Detector Performance and Upgrade Plans of the Pixel Luminosity Telescope for Online per-Bunch Luminosity Measurement at CMS

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors. It was installed during LS1 and has been providing luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to quickly identify likely tracks at the full 40MHz interaction rate. In addition, the full pixel information is read out at a lower rate, allowing for more detailed offline analysis. In this talk, we will present details of the commissioning, performance and operational history of the currently installed hardware and upgrade plans for LS2.

  1. Measurement of integrated luminosity and center-of-mass energy of data taken by BESIII at

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Küuhn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; (BESIII Collaboration

    2017-11-01

    To study the nature of the state Y (2175), a dedicated data set of e+e- collision data was collected at the center-of-mass energy of 2.125 GeV with the BESIII detector at the BEPCII collider. By analyzing large-angle Bhabha scattering events, the integrated luminosity of this data set is determined to be 108.49±0.02±0.85 pb-1, where the first uncertainty is statistical and the second one is systematic. In addition, the center-of-mass energy of the data set is determined with radiative dimuon events to be 2126.55±0.03±0.85 MeV, where the first uncertainty is statistical and the second one is systematic. Supported in part by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11235011, 11322544, 11335008, 11425524, 11635010, 11675184, 11735014), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1232201, U1332201, U1532257, U1532258), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG (Collaborative Research Center CRC 1044, FOR 2359), Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11505010), The Swedish Resarch Council; U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069), U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  2. Operational results from the LHC luminosity monitors

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  3. properties and luminosity functions

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2007-01-01

    Full Text Available In this article, we present an investigation of a sample of 1072 stars extracted from the Villanova Catalog of Spectroscopically Identified White Dwarfs (2005 on-line version, studying their distribution in the Galaxy, their physical properties and their luminosity functions. The distances and physical properties of the white dwarfs are determined through interpolation of their (B-V or (b-y colors in model grids. The solar position relative to the Galactic plane, luminosity function, as well as separate functions for each white dwarf spectral type are derived and discussed. We show that the binary fraction does not vary significantly as a function of distance from the Galactic disk out to 100 pc. We propose that the formation rates of DA and non-DAs have changed over time and/or that DAs evolve into non-DA types. The luminosity functions for DAs and DBs have peaks possibly related to a star burst event.

  4. Detectors and luminosity for hadron colliders

    International Nuclear Information System (INIS)

    Diebold, R.

    1983-01-01

    Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector

  5. Toward A Collection of Cloud Integration Patterns

    OpenAIRE

    Ritter, Daniel; Rinderle-Ma, Stefanie

    2015-01-01

    Cloud computing is one of the most exciting IT trends nowadays. It poses several challenges on application integration with respect to, for example, security. In this work we collect and categorize several new integration patterns and pattern solutions with a focus on cloud integration requirements. Their evidence and examples are based on extensive literature and system reviews.

  6. The Size-Luminosity Relationship of Quasar Narrow-Line Regions

    Science.gov (United States)

    Dempsey, Ross; Zakamska, Nadia L.

    2018-04-01

    The presence of an active galactic nucleus (AGN) can strongly affect its host. Due to the copious radiative power of the nucleus, the effects of radiative feedback can be detected over the entire host galaxy and sometimes well into the intergalactic space. In this paper we model the observed size-luminosity relationship of the narrow-line regions (NLRs) of AGN. We model the NLR as a collection of clouds in pressure equilibrium with the ionizing radiation, with each cloud producing line emission calculated by Cloudy. The sizes of the NLRs of powerful quasars are reproduced without any free parameters, as long as they contain massive (105M⊙ to 107M⊙) ionization-bounded clouds. At lower AGN luminosities the observed sizes are larger than the model sizes, likely due to additional unmodeled sources of ionization (e.g., star formation). We find that the observed saturation of sizes at ˜10kpc which is observed at high AGN luminosities (Lion ≃ 1046erg/s) is naturally explained by optically thick clouds absorbing the ionizing radiation and preventing illumination beyond a critical distance. Using our models in combination with observations of the [O III]/IR ratio and the [O III] size - IR luminosity relationship, we calculate the covering factor of the obscuring torus (and therefore the type 2 fraction within the quasar population) to be f = 0.5, though this is likely an upper bound. Finally, because the gas behind the ionization front is invisible in ionized gas transitions, emission-based NLR mass calculations underestimate the mass of the NLR and therefore of the energetics of ionized-gas winds.

  7. Missing mass from low-luminosity stars

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1986-01-01

    Results from a deep photometric survey for low-luminosity stars show a turnup to the luminosity function at faint magnitudes, and reopen the possibility that the missing mass in the solar neighbourhood is made up of stars after all. (author)

  8. Luminosity enhancements at SLAC

    International Nuclear Information System (INIS)

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point

  9. Effective pile-up density as a measure of the experimental data quality for High-Luminosity LHC operational scenarios.

    CERN Document Server

    Medina Medrano, Luis Eduardo; Arduini, Gianluigi; Napsuciale, Mauro

    2018-01-01

    The High-Luminosity LHC (HL-LHC) experiments will operate at unprecedented level of event pile-up from proton-proton collisions at 14TeV center-of-mass energy. In this paper we study the performance of the baseline and a series of alternative scenarios in terms of the delivered integrated luminosity and its quality (pile-up density). A new figure-of-merit is introduced, the effective pile-up density, a concept that reflects the expected detector efficiency in the reconstruction of event vertices for a given operational scenario, acting as a link between the machine and experimental slides. Alternative scenarios have been proposed either to improve the baseline performance, or tot provide operational schemes in the case of particular limitations. Simulations of the evolution of optimum fills with the latest set of parameters of the HL-LHC are performed with β* - levelling, and results are discussed in terms of both the integrated luminosity and the effective pile-up density. The crab kissing scheme, a propose...

  10. Luminosity measurement at CMS

    International Nuclear Information System (INIS)

    Karacheban, Olena

    2017-10-01

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10 34 cm -2 s -1 was reached with 10 11 protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using van der Meer (Vd

  11. Luminosity measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena

    2017-10-15

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10{sup 34} cm{sup -2} s{sup -1} was reached with 10{sup 11} protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using

  12. Fast luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1994-01-01

    In 1990 the LEP-5 experiment measured luminosity at LEP by detecting the single bremsstrahlung photons emitted in the e + e - collisions. In 1991 the experiment was upgraded to exploit the intrinsic high speed of the method which allows luminosity measurement of the single bunches of LEP. In this paper the LEP-5 upgrade is described and the results of a test performed are discussed. ((orig.))

  13. The CMS High Granularity Calorimeter for the High Luminosity LHC

    CERN Document Server

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  14. ECFA 2016: Prospects for selected standard model measurements with the CMS experiment at the High-Luminosity LHC

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The prospects for selected standard model measurements at the High-Luminosity LHC presented at ECFA 2016 workshop are summarized. The extrapolations assume proton-proton collision data at a centre-of-mass energy of 14$\\,$TeV corresponding to an integrated luminosity of up to $3\\,\\text{ab}^{-1}$. The achievable precision for top quark mass measurements based on different analysis strategies is estimated. Searches for flavour-changing neutral currents in top quark decays are studied and expected limits are set, based on different scenarios for the extrapolation of systematic uncertainties to the High-Luminosity LHC run conditions. The feasibility of a dedicated track trigger for the $B_s \\rightarrow \\phi \\phi$ decay studies is discussed.

  15. Physical Parameters of Late Type Spiral Galaxies - III. Mass and Mass to Luminosity Ratio of NGC 7793

    Directory of Open Access Journals (Sweden)

    Chang-Ha Kim

    1986-12-01

    Full Text Available The mass distribution and other related quantities were calculated by fitting the observed rotation curve(Davoust and de Vaucouleur 1980 to Brandt and Belton's mass distribution model. One of n values for mass model is determined as 1.5(Vm = 95 km/s and two pairs of them are determined as 0.8(Vm = 95 km/s and 2.0 and 0.8(Vm = 55 km/s and 2.0 because f the hump in observed rotation curve. Total masses and integrated mass to luminosity ratios are 1.8 x 10^10*Msolar, 1.5 x 10^10*Msolar, 1.4 x 10^10*Msolar, and 6.57, 5.33, 5.26 for three cases according to n values. Integrated mass to luminosity ratio in Holmberg radius is 3.44, 3.26, 3.00 in good agreement with the typical value of Sd type suggested by Faber and Gallagher(1979. Presented halo masses which are fifty percent of total masses and halo mass to luminosity ratios given as 75.83, 53.50, 58.75 are values less than Turner's(1976.

  16. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  17. Altered luminosity functions for relativistically beamed objects. II - Distribution of Lorentz factors and parent populations with complex luminosity functions

    International Nuclear Information System (INIS)

    Urry, C.M.; Padovani, P.

    1991-01-01

    In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs

  18. OLYMPUS luminosity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Ozgur [Hampton University, Hampton, Virginia (United States); Collaboration: OLYMPUS-Collaboration

    2013-07-01

    The OLYMPUS experiment at DESY has been measuring the ratio of positron-proton and electron-proton elastic scattering cross sections to quantify the effect of two-photon exchange, which is widely considered to be responsible for the discrepancy between measurements of the proton electric to magnetic form factor ratio with the Rosenbluth and polarization transfer methods. In order to control the systematic uncertainties to the percent level, the luminosities are monitored redundantly with high precision by measuring the rates for symmetric Moller and Bhabha scattering, and by measuring the ep-elastic count rates at forward angles and low momentum transfer with tracking telescopes based on GEM (Gas Electron Multiplier) and MWPC (Multi Wire Proportional Chamber) technology. During two data taking periods, performances of GEM and MWPC luminosity monitors are presented.

  19. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379172; The ATLAS collaboration

    2016-01-01

    Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will be reached at the high-luminosity LHC run with a proton-proton centre-of-mass energy of 14 TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosities 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson couplings to elementary fermions and bosons, its trilinear self-coulping, as well as perspectives on the searches for partners associated with it. Benchmark studies are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a parameterised simulation of the upgraded ATLAS detector is used and expected pileup condition...

  20. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Béjar Alonso, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Brüning, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lamont, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  1. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    International Nuclear Information System (INIS)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.; Lamont, M.; Rossi, L.

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  2. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  3. Mind the Gap: Integrating Special Collections Teaching

    Science.gov (United States)

    Samuelson, Todd; Coker, Cait

    2014-01-01

    Instruction is a vital part of the academic librarian's public services mission, but the teaching efforts of special collections librarians can be overlooked due to the culture and particularities of teaching in an archival setting. This article documents the challenges special collections librarians face in integrating their teaching program into…

  4. Luminosity distribution in the central regions of Messier 87: Isothermal core, point source, or black hole

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; Nieto, J.

    1979-01-01

    A combination of photographic and photoelectric photometry with the McDonald 2 m reflector is used to derive a precise mean luminosity profile μ/sub B/(r*) of M87 (jet excluded) at approx.0''.6 resolution out to r*=70''. Within 8'' from the center the luminosity is less than predicted by extrapolation of the r/sup 1/4/ law defined by the main body of the galaxy (8'' 0 =30.5) the structural length of the underlying isothermal is α=2''.78=170 pc, the mass of the ''black hole'' M 0 =1.7.10 9 M/sub sun/ and the luminosity of the point source (B 0 =16.95, M 0 =-13.55) equals 4.2% of the integrated luminosity B (6'') =13.52 of the galaxy within r*=6''. These results agree closely with and confirm the work of the Hale team. Comparison of the McDonald and Hale data suggests that the central source may have been slightly brighter (approx.0.5 mag) in 1964 than in 1975--1977

  5. IRAS bright galaxy sample. II. The sample and luminosity function

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Neugebauer, G.; Madore, B.F.; Danielson, G.E.; David Dunlap Observatory, Richmond Hill, Canada; Palomar Observatory; California Institute of Technology, Pasadena)

    1987-01-01

    A statistically complete sample of 324 of the brightest infrared galaxies discovered at 60 microns in the IRAS all-sky survey is described. The results show that far-infrared emission is a significant luminosity component in the local universe, representing 25 percent of the luminosity emitted by stars in the same volume. Above 10 to the 11th solar luminosities, the infrared luminous galaxies are the dominant population of objects in the universe, being as numerous as the Seyfert galaxies and more numerous than quasars at higher luminosities. The infrared luminosity appears to be independent of the optical luminosity of galaxies. Most infrared bright galaxies appear to require much of the interstellar matter to be contributing to the observed infrared luminosity. Approximately 60-80 percent of the far-infrared luminosity of the local universe can be attributed, directly or indirectly, to recent or ongoing star formation. 67 references

  6. On the distinction between density and luminosity evolution

    International Nuclear Information System (INIS)

    Bahcall, J.N.

    1977-01-01

    It is shown that the assumptions of pure density evolution and pure luminosity evolution lead to observable differences in the distribution of sources for all convergent luminosity functions. The proof given is valid for sources with an arbitrary number of intrinisic luminosities (e.g., optical, infrared, and radio) and also holds in the special cases of mixed evolution that are considered. (author)

  7. Studies on the measurement of differential luminosity using Bhabha events at the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Andre Philippe

    2009-04-15

    }{sub E}= 0.0010 for positrons with a precision of a few percent. The total error from the measured differential luminosity and beam energy spreads on the mass of a toy particle measured in a production threshold scan is found to be 7 MeV/c{sup 2} for a 250 GeV/c{sup 2} particle, with an integrated luminosity of 5fb{sup -1} per scanning point. (orig.)

  8. Studies on the measurement of differential luminosity using Bhabha events at the International Linear Collider

    International Nuclear Information System (INIS)

    Sailer, Andre Philippe

    2009-04-01

    from the measured differential luminosity and beam energy spreads on the mass of a toy particle measured in a production threshold scan is found to be 7 MeV/c 2 for a 250 GeV/c 2 particle, with an integrated luminosity of 5fb -1 per scanning point. (orig.)

  9. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hils, Maximilian, E-mail: maximilian.hils@tu-dresden.de

    2016-07-11

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton–proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10{sup 34} cm{sup −2} s{sup −1}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5–7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb{sup −1}. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  10. Luminosity Measurements at LHCb for Run II

    CERN Multimedia

    Coombs, George

    2018-01-01

    A precise measurement of the luminosity is a necessary component of many physics analyses, especially cross-section measurements. At LHCb two different direct measurement methods are used to determine the luminosity: the “van der Meer scan” (VDM) and the “Beam Gas Imaging” (BGI) methods. A combined result from these two methods gave a precision of less than 2% for Run I and efforts are ongoing to provide a similar result for Run II. Fixed target luminosity is determined with an indirect method based on the single electron scattering cross-section.

  11. The performance of the CDF luminosity monitor

    CERN Document Server

    Acosta, D; Konigsberg, J; Korytov, A; Mitselmakher, G; Necula, V; Nomerotski, A; Pronko, A; Sukhanov, A; Safonov, A; Tsybychev, D; Wang, S M; Wong, M

    2002-01-01

    We describe the initial performance of the detector used for the luminosity measurement in the CDF experiment in Run II at the Tevatron. The detector consists of low-mass gaseous Cherenkov counters with high light yield (approx 100 photoelectrons) and monitors the process of inelastic pp-bar scattering. It allows for several methods of precise luminosity measurements at peak instantaneous luminosities of 2x10 sup 3 sup 2 cm sup - sup 2 s sup - sup 1 , corresponding to an average of six pp-bar interactions per bunch crossing.

  12. High Luminosity LHC (HL-LHC) general infographics

    CERN Multimedia

    Landua, Fabienne

    2016-01-01

    The High-Luminosity LHC, which is expected to be operational after 2025, will increase the LHC’s luminosity by a factor of 10. To achieve this major upgrade, several technologies, some of which are completely innovative, are being developed.

  13. Correlation function of the luminosity distances

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-09-01

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation function of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.

  14. Evidence for collective multi-particle correlations in pPb collisions

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bierwagen, Katharina; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-06-29

    The second-order azimuthal anisotropy Fourier harmonics, $v_2$, are obtained in pPb and PbPb collisions over a wide pseudorapidity ($\\eta$) range based on correlations among six or more charged particles. The pPb data, corresponding to an integrated luminosity of 35 nb$^{-1}$, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semi-peripheral PbPb collision data at $\\sqrt{s_{\\mathrm{NN}}}$ = 2.76 TeV, corresponding to an integrated luminosity of 2.5 $\\mu$b$^{-1}$ and covering a similar range of particle multiplicities as the pPb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the $v_2$ coefficients, extending previous studies of two- and four-particle correlations. For both the pPb and PbPb systems, the $v_2$ values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data supp...

  15. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR -L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533 +0.035 -0.033 , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR -L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  16. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    Science.gov (United States)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  17. Improvement to the D0 luminosity monitor constant

    International Nuclear Information System (INIS)

    Bantley, J.

    1996-03-01

    The D0 experiment has previously calculated its luminosity using the visible cross section (luminosity monitor constant) for its Level 0 trigger, σ L0 = 48.2 mb, based on the world average pp inelastic cross sections at √s = 1.8 TeV. The error on luminosity had been set at 12%. Recent studies using the MBR and DTUJET Monte Carlo event generators and unbiased D0 data samples have resulted in a more precise determination of the D0 luminosity monitor constant. The result, σ L0 = 46.7 ± 2.5 mb, lowers the central value by 3.1% and reduces the error to 5.4%. 12 refs., 7 figs., 9 tabs

  18. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  19. The process e-p→γep as a fast luminosity monitor for the HERA-collider

    International Nuclear Information System (INIS)

    Gaemers, K.J.F.; Horst, M. van der

    1988-09-01

    The process e - →γe - p as a fast luminosity monitor for HERA. Results are given and discussed for the differential cross-sections and the integrated cross-section. It is possible to use expressions derived in the form of an event generator. 7 refs.; 4 figs

  20. Search for direct top squark pair production in the fully hadronic final state in proton-proton collisions at sqrt(s) = 13 TeV corresponding to an integrated luminosity of 12.9/fb

    CERN Document Server

    CMS Collaboration

    2016-01-01

    A search for direct production of top squark pairs in events with jets and large transverse momentum imbalance is presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 12.9/fb. Two analyses are performed, a ``low $\\Delta m$" analysis that targets scenarios with a very small difference in mass between the top squark and the neutralino, and a ``high $\\Delta m$" analysis that targets topologies typical for larger mass splittings. No significant excess of events above the expected background from standard model processes is observed. Exclusion limits are set in the context of simplified models of top squark pair production under various decay hypotheses, ranging up to 860 GeV in the case of the high $\\Delta m$ analysis and up to 450 GeV in the case of the low $\\Delta m$ analysis.

  1. GAMMA-RAY BURST LUMINOSITY RELATIONS: TWO-DIMENSIONAL VERSUS THREE-DIMENSIONAL CORRELATIONS

    International Nuclear Information System (INIS)

    Yu Bo; Qi Shi; Lu Tan

    2009-01-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons that prevent the extensive applications of GRBs in cosmology. In this paper, we extend the two-dimensional (2D) luminosity relations with τ lag , V, E peak , and τ RT as the luminosity indicators to three dimensions (3D) using the same set of luminosity indicators to explore the possibility of decreasing the intrinsic scatters. We find that, for the 3D luminosity relations between the luminosity and an energy scale (E peak ) and a timescale (τ lag or τ RT ), their intrinsic scatters are considerably smaller than those of corresponding 2D luminosity relations. Enlightened by the result and the definition of the luminosity (energy released in units of time), we discussed possible reasons behind this result, which may give us helpful suggestions on seeking more precise luminosity relations for GRBs in the future.

  2. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  3. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  4. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2017-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  5. A novel technique for determining luminosity in electron-scattering/positron-scattering experiments from multi-interaction events

    Science.gov (United States)

    Schmidt, A.; O'Connor, C.; Bernauer, J. C.; Milner, R.

    2018-01-01

    The OLYMPUS experiment measured the cross-section ratio of positron-proton elastic scattering relative to electron-proton elastic scattering to look for evidence of hard two-photon exchange. To make this measurement, the experiment alternated between electron beam and positron beam running modes, with the relative integrated luminosities of the two running modes providing the crucial normalization. For this reason, OLYMPUS had several redundant luminosity monitoring systems, including a pair of electromagnetic calorimeters positioned downstream from the target to detect symmetric Møller and Bhabha scattering from atomic electrons in the hydrogen gas target. Though this system was designed to monitor the rate of events with single Møller/Bhabha interactions, we found that a more accurate determination of relative luminosity could be made by additionally considering the rate of events with both a Møller/Bhabha interaction and a concurrent elastic ep interaction. This method was improved by small corrections for the variance of the current within bunches in the storage ring and for the probability of three interactions occurring within a bunch. After accounting for systematic effects, we estimate that the method is accurate in determining the relative luminosity to within 0.36%. This precise technique can be employed in future electron-proton and positron-proton scattering experiments to monitor relative luminosity between different running modes.

  6. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  7. Unified treatment of the luminosity distance in cosmology

    International Nuclear Information System (INIS)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio

    2016-01-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  8. Unified treatment of the luminosity distance in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio, E-mail: jyoo@physik.uzh.ch, E-mail: fulvio@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Zürich (Switzerland)

    2016-09-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  9. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  10. The BRAN luminosity detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.; Placidi, M.; Ratti, A.; Turner, W.C. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bravin, E. [CERN, 1211 Geneva 23 (Switzerland); Miyamoto, R. [European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2017-03-11

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×10{sup 34} cm{sup −2} s{sup −1} with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  11. LEP3: A High Luminosity e+e- Collider to Study the Higgs Boson

    CERN Document Server

    Blondel, A U; Assmann, R W; Butterworth, A; Janot, P; Jimenez, J M; Grojean, C; Milanese, A; Modena, M; Osborne, J A; Zimmermann, F; Piekarz, H; Oide, K; Yokoya, K; Ellis, J; Klute, M; Zanetti, M; Velasco, M; Telnov, V; Rivkin, L; Cai, Y

    2012-01-01

    The LHC experiments have discovered a new particle with a mass around 125 GeV that is a strong candidate for the scalar Higgs boson expected in the Standard Model. An e+e− collider operating close to the ZH threshold (at a centre-of-mass energy of 240 GeV) could be the tool of choice for studying this unique particle in detail. We present here the concept of a storage ring collider, which we call LEP3. Preliminary studies show that at a centre-of-mass energy of 240 GeV, near-constant luminosities of 1034 cm-2s-1 are possible in up to four collision points, while respecting a number of constraints including beamstrahlung limits. With an integrated luminosity of 100fb-1 per year and per interaction point, 20,000 e+e- - ZH events would be produced per year and per experiment. LEP3 could also operate in multi-bunch mode at the Z resonance, with luminosities of several×1035cm-2s-1, yielding O(1011) Z decays per year, as well as just above the WW threshold, potentially improving our knowledge of W and Z propert...

  12. LHCb: LHCb Muon System Performance at High Luminosity

    CERN Multimedia

    Pinci, D

    2013-01-01

    The LHCb detector was conceived to operate with an average Luminosity of $2 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. During the last year of LHC run, the whole apparatus has shown to be able to perfectly acquire and manage data produced at a Luminosity as high as $4 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. In these conditions, all sub-detectors operated at average particle rates higher than the design ones and in particular the Multi-Wire Proportional Chambers equipping the Muon System had to sustain a particle rate as high as 250 kHz/cm$^{2}$. In order to study the possibility of increasing the Luminosity of operation of the whole experiment several tests were performed. The effective beam Luminosity at the interaction point of LHCb was increased in several steps up to $10^{33}$ cm$^{-2}$ s$^{-1}$ and in each step the behavior of all the detectors in the Muon System was recorded. The data analysis has allowed to study the performance of the Muon System as a function of the LHC Luminosity and the results are r...

  13. Seeking the epoch of maximum luminosity for dusty quasars

    International Nuclear Information System (INIS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-01-01

    Infrared luminosities νL ν (7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL ν (7.8 μm) ≳ 10 47 erg s –1 ; luminosity functions show one quasar Gpc –3 having νL ν (7.8 μm) > 10 46.6 erg s –1 for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν (0.25 μm), have the largest values of the ratio νL ν (0.25 μm)/νL ν (7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  14. The period-luminosity relation for Cepheids

    International Nuclear Information System (INIS)

    Brodie, J.P.

    1980-01-01

    Numerical simulations of the empirical determination of the period-luminosity-colour relation for classical Cepheids are presented. In this study the quantitative effects of random errors, reddening, sample size and the presence of both colour and period cut-offs (imposed by the finite extent of the instability strip) on the observational redetermination of the original relation are evaluated. Both random errors in the photometry and correlated errors in the reddening corrections are shown to have systematic effects. Especially sensitive to these errors is the colour coefficient in the period-luminosity-colour relation, where the ratio of the error to the width of the instability strip is the determining factor. With present observations only broad confidence limits can be placed on present knowledge of the intrinsic period-luminosity-colour relation and/or its variations from galaxy to galaxy. (author)

  15. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2018-01-01

    After the long shut-down, the LHC Run2 has started with new running conditions with respect to Run1: in particular the centre of mass energy has reached 13 TeV and the bunch-spacing is now 25 ns. In order to cope with these changes, the ATLAS luminosity monitor LUCID and its electronics have been completely rebuilt. This note describes the new detector and electronics, the new luminosity algorithms and the new calibration systems, with a brief review of the first results about the stability of the measurement and evaluation of systematic uncertainties for the 2015 data-taking.

  16. High precision measurements of the luminosity at LEP

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  17. THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Yan, Lin; Capak, Peter; Faisst, Andreas; Masters, Daniel [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125 (United States); Diaz-Santos, Tanio [Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile); Armus, Lee, E-mail: shemmati@ipac.caltech.edu [Spitzer Science Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2017-01-01

    We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, based on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.

  18. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)758889; The ATLAS collaboration

    2016-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  19. 76 FR 17145 - Agency Information Collection Activities: Business Transformation-Automated Integrated Operating...

    Science.gov (United States)

    2011-03-28

    ... Collection Activities: Business Transformation--Automated Integrated Operating Environment (IOE), New... through efforts like USCIS' Business Transformation initiative. The IOE will be implemented by USCIS and... information collection. (2) Title of the Form/Collection: Business Transformation-- Automated Integrated...

  20. Luminosity function of the brightest galaxies in the IRAS survey

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Madore, B.F.; Neugebauer, G.; Persson, C.J.; Persson, S.E.; Rice, W.L.

    1987-01-01

    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

  1. Luminosity Measurement at the Compact Linear Collider

    CERN Document Server

    Schwartz, Rina; Levy, Aharon

    The compact linear collider (CLIC) is a proposed high energy accelera- tor, planned to collide electrons with positrons at a maximal center-of-mass energy of 3 TeV, and a peak luminosity of 5.9·1034 cm−2s−1. Complementary to the large hadron collider, CLIC is to provide high precision measurements of both known and new physics processes. The required relative precision of luminosity measurement at the CLIC is 10−2. The measurement will be done by the luminosity calorimeter (Lumi- Cal), designed to measure the rate of low angles Bhabha scattering events, a process with well-known cross-section from electroweak theory. Beam-beam effects, which are of unprecedented intensity at the CLIC, influence the lumi- nosity spectrum shape and create a significant amount of background charge deposits in the LumiCal, thus setting a challenge on the requirement for precision. The ability of the LumiCal to provide accurate luminosity mea- surement depends on its ability to perform accurate energy reconstruction of Bhab...

  2. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  3. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Denney, Kelly D.; Vestergaard, Marianne [Dark Cosmology Center, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li Weidong [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gates, Elinor L. [University of California Observatories/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Peyton Hall - Ivy Lane, Princeton, NJ 08544 (United States); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Woo, Jong-Hak, E-mail: bentz@chara.gsu.edu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  4. Luminosity Variations in Post-AGB Stars

    Science.gov (United States)

    Mesler, Robert; Henson, G.

    2007-12-01

    Although much is known about AGB stars and planetary nebulae, relatively little is known about the phase of a star's life in which it transitions between those two states. We have measured the variations in luminosity of a sample of known Post-AGB stars (as well as several candidates) relative to nearby, non-variable stars in order to compare them with theoretical models. The typical behavior of the observed variations is described and an attempt is made to discern whether any periodicity might be present. Luminosity variations were found to be on the order of a few hundredths to a few tenths of a magnitude for the stars that were surveyed, with occasional fluctuations of up to a magnitude. This agrees with current models of Post-AGB stars. Each star fell into one of three categories, which were termed groups 1, 2, and 3. Group 1 stars showed long term, non-periodic luminosity variations on the scale of weeks or longer and were most likely to display some sort of short term, coherent luminosity oscillation (each of which lasted for only a few cycles). Group 2 stars showed erratic, short-term magnitude variations occurring on scales of several days. Group 3 stars showed little or no variation in magnitude. Of the 27 Post-AGB stars that were sampled, five fell into group 1, fifteen fell into group 2, and seven fell into group 3. The luminosity variations tended to be color-independent, and occurred on timescales ranging nearly continuously from a few days to more than a year. No clear periodic behavior was found in any star in our sample. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  5. Challenges in Finding AGNs in the Low Luminosity Regime

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  6. An Investigation of X-ray Luminosity versus Crystalline Powder Granularity

    Energy Technology Data Exchange (ETDEWEB)

    Borade, Ramesh; Bourret-Courchesne, Edith; ,

    2012-03-07

    At the High-throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a "full-size" scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi{sub 4}Ge{sub 3}O{sub 12} (BGO), Lu{sub 2}SiO{sub 5}:Ce (LSO), YAlO{sub 3}:Ce (YAP:Ce), and CsBa{sub 2}I{sub 5}:Eu{sup 2+} (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-{micro}m crystal grain sizes for BGO and LSO, for 310- to 600-{micro}m crystal grain sizes for CBI, and for crystal grains larger than 165{micro}m for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000- {micro}m crystal grain size range down to the 20- to 36-{micro}m range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-{micro}m crystal grains to the 20- to 36-{micro}m range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-{micro}m crystal grain range to the 36- to 50-{micro}m range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 {micro}m.

  7. An investigation of X-ray luminosity versus crystalline powder granularity

    International Nuclear Information System (INIS)

    Janecek, Martin; Borade, Ramesh; Bourret-Courchesne, Edith; Derenzo, Stephen E.

    2011-01-01

    At the High-Throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a “full-size” scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi 4 Ge 3 O 12 (BGO), Lu 2 SiO 5 :Ce 3+ (LSO), YAlO 3 :Ce 3+ (YAP:Ce), and CsBa 2 I 5 :Eu 2+ (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-μm crystal grain sizes for BGO and LSO, for 310- to 600-μm crystal grain sizes for CBI, and for crystal grains larger than 165 μm for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000-μm crystal grain size range down to the 20- to 36-μm range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-μm crystal grains to the 20- to 36-μm range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-μm crystal grain range to the 36- to 50-μm range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 μm.

  8. Luminosity distribution in galaxies. I. The elliptical galaxy NGC 3379 as a luminosity distribution standard

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; Capaccioli, M.

    1979-01-01

    A standard mean luminosity profile in the B band of the El galaxy NGC 3379 along its east-west x-axis is derived from four sets of medium- and low-resolution photographic and photoelectric McDonald data. The 154 mean points cover a range in excess of 11 mag down to μ/sub B/=27.8 mag arcsec -2 (x=7'.3), with possible detection out to x=16'.3 (μ/sub B/approx. =30.9).The profile is presented within +- 0.08 mag at all x>10'' by μ 1 =14.076+3.0083 x/sup 1/4/ (x in arcsec). Near the center the galaxy is brighter than μ 1 by up to 0.35 mag; the excess can be represented by a Gaussian core μ/sub II/=18.565+0.03965 r 2 (r in arcsec) contributing 19.8% of the integrated magnitude B=11.97 within r* =12'' and 4.0% of the total magnitude B/sub T/=10.225 of the galaxy.This two-component model convolved by the appropriate point spread function represents the data within a standard deviation of 0.04 mag over the whole range. Other analytical formulae give generally poorer fits. There is no evidence for a tidal cutoff or a tidal extension.The integrated magnitudes derived from the model agree with aperture photometry (47 values) within 0.05 mag

  9. Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders

    CERN Multimedia

    Joram, C; Gregor, I; Dierlamm, A H; Wilson, F F; Sloan, T; Tuboltsev, Y V; Marone, M; Artuso, M; Cindro, V; Bruzzi, M; Bhardwaj, A; Bohm, J; Mikestikova, M; Walz, M; Breindl, M A; Ruzin, A; Marunko, S; Guskov, J; Haerkoenen, J J; Pospisil, S; Fadeyev, V; Makarenko, L; Kaminski, P; Zelazko, J; Pintilie, L; Radu, R; Nistor, S V; Ullan comes, M; Storasta, J V; Gaubas, E; Lacasta llacer, C; Kilminster, B J; Garutti, E; Buhmann, P; Khomenkov, V; Poehlsen, J A; Fernandez garcia, M; Buttar, C; Eklund, L M; Munoz sanchez, F J; Eremin, V; Aleev, A; Modi, B; Sicho, P; Gisen, A J; Nikolopoulos, K; Van beuzekom, M G; Kozlowski, R; Lozano fantoba, M; Leroy, C; Pernegger, H; Del burgo, R; Vila alvarez, I; Palomo pinto, F R; Lounis, A; Eremin, I; Fadeeva, N; Rogozhkin, S; Shivpuri, R K; Arsenovich, T; Ott, J; Abt, M; Loenker, J; Savic, N; Monaco, V; Visser, J; Lynn, D; Horazdovsky, T; Solar, M; Dervan, P J; Meng, L; Spencer, E N; Kazuchits, N; Brzozowski, A; Kozubal, M; Nistor, L C; Marti i garcia, S; Gomez camacho, J J; Fretwurst, E; Hoenniger, F; Schwandt, J; Hartmann, F; Marchiori, G; Maneuski, D; De capua, S; Williams, M R J; Mandic, I; Gadda, A; Preiss, J; Macchiolo, A; Nisius, R; Grinstein, S; Gonella, L; Wennloef, H L O; Slavicek, T; Masek, P; Casse, G; Flores, D; Tuuva, T; Jimenez ramos, M D C; Charron, S; Rubinskiy, I; Jansen, H; Eichhorn, T V; Matysek, M; Andersson-lindstroem, G; Donegani, E; Bomben, M; Oshea, V; Muenstermann, D; Holmkvist, C W; Oh, A; Lopez paz, I; Verbitskaya, E; Mitina, D; Grigoriev, E; Zaluzhnyy, A; Mikuz, M; Kramberger, G; Scaringella, M; Ranjeet, R; Jain, A; Luukka, P R; Tuominen, E M; Allport, P P; Cartiglia, N; Brigljevic, V; Kohout, Z; Quirion, D; Lauer, K; Collins, P; Gallrapp, C; Rohe, T V; Chauveau, J; Villani, E G; Fox, H; Parkes, C J; Nikitin, A; Spiegel, L G; Creanza, D M; Menichelli, D; Mcduff, H; Carna, M; Weers, M; Weigell, P; Bortoletto, D; Staiano, A; Bellan, R; Szumlak, T; Sopko, V; Pawlowski, M; Pintilie, I; Pellegrini, G; Rafi tatjer, J M; Moll, M; Eckstein, D; Klanner, R; Gomez, G; Gersabeck, M; Cobbledick, J L; Shepelev, A; Golubev, A; Apresyan, A; Lipton, R J; Borgia, A; Zavrtanik, M; Manna, N; Ranjan, K; Chhabra, S; Beyer, J; Korolkov, I; Heintz, U; Sadrozinski, H; Seiden, A; Surma, B; Esteban, S; Kazukauskas, V; Kalendra, V; Mekys, A; Nachman, B P; Tackmann, K; Steinbrueck, G; Pohlsen, T; Calderini, G; Svihra, P; Murray, D; Bolla, G; Zontar, D; Focardi, E; Seidel, S C; Winkler, A D; Altenheiner, S; Parzefall, U; Moser, H; Sopko, B; Buckland, M D; Vaitkus, J V; Ortlepp, T

    2002-01-01

    The requirements at the Large Hadron Collider (LHC) at CERN have pushed the present day silicon tracking detectors to the very edge of the current technology. Future very high luminosity colliders or a possible upgrade scenario of the LHC to a luminosity of 10$^{35}$ cm$^{-2}$s$^{-1}$ will require semiconductor detectors with substantially improved properties. Considering the expected total fluences of fast hadrons above 10$^{16}$ cm$^{-2}$ and a possible reduced bunch-crossing interval of $\\approx$10 ns, the detector must be ultra radiation hard, provide a fast and efficient charge collection and be as thin as possible.\\\\ We propose a research and development program to provide a detector technology, which is able to operate safely and efficiently in such an environment. Within this project we will optimize existing methods and evaluate new ways to engineer the silicon bulk material, the detector structure and the detector operational conditions. Furthermore, possibilities to use semiconductor materials othe...

  10. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Danielle A.; Skillman, Evan D. [Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Marble, Andrew R.; Engelbracht, Charles W. [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Van Zee, Liese [Astronomy Department, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Lee, Janice C. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Johnson, Benjamin D., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: cengelbracht@as.arizona.edu, E-mail: amarble@nso.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jlee@stsci.edu, E-mail: calzetti@astro.umass.edu, E-mail: ddale@uwyo.edu, E-mail: johnson@iap.fr [Institut d' Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris (France)

    2012-08-01

    We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] {lambda}4363 line at a strength of 4{sigma} or greater, and thus determine oxygen abundances using the 'direct' method. Our results provide the first 'direct' estimates of oxygen abundance for 19 of these galaxies. 'Direct' oxygen abundances were compared to B-band luminosities, 4.5 {mu}m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a 'Combined Select' sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with 'direct' oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the B band and 4.5 {mu}m luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) = (6.27 {+-} 0.21) + (- 0.11 {+-} 0.01)M{sub B} and 12 + log(O/H) = (6.10 {+-} 0.21) + (- 0.10 {+-} 0.01)M{sub [4.5]} with dispersions of {sigma} = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of 12 + log(O/H) = (5.61 {+-} 0.24) + (0.29 {+-} 0.03)log (M{sub *}), which agrees with previous studies; however, the dispersion ({sigma} = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available

  11. Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1

    Science.gov (United States)

    Zhang, Keming; Schiminovich, David

    2018-01-01

    We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.

  12. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  13. Measurement of the luminosity in the ZEUS experiment at HERA II

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, L.; Bold, T. [AGH Univ. of Science and Technology, Cracow (Poland); Andruszkow, J. [Polish Academy of Sciences, Cracow (Poland). Inst. of Nuclear Physics] [and others

    2013-06-15

    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.

  14. Physics potential of ATLAS detector with high luminosity

    International Nuclear Information System (INIS)

    Zhou, Bing

    2004-01-01

    The ATLAS detector is designed to exploit the full physics potential in the TeV energy region opened up by the Large Hadron Collider at a center of mass energy of 14 TeV with very high luminosities. The physics performance of the ATLAS detector on Higgs, extra-dimension and strong symmetry breaking scenario is summarized in this note. ATLAS experiment has great discovery potential for these new phenomena with high luminosity. Triple gauge couplings are very sensitive for probing new physics at TeV scale. We show that ATLAS can measure these couplings very precisely with high luminosity. (orig.)

  15. Luminosity Optimization With Offset, Crossing Angle, and Distortion

    CERN Document Server

    Wu, Juhao

    2005-01-01

    In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to cancel the luminosity loss first analytically and then with simulation.

  16. Emittance scans for CMS luminosity calibration in 2017

    CERN Document Server

    CMS Collaboration

    2018-01-01

    Emittance scans are short van der Meer type scans performed at the beginning and at the end of LHC fills. The beams are scanned against each other in X and Y planes in 7 displacement steps. These scans are used for LHC diagnostics and since 2017 for a cross check of the CMS luminosity calibration. An XY pair of scans takes around 3 minutes. The BRIL project provides to LHC three independent online luminosity measurement from the Pixel Luminosity Telescope (PLT), the Fast Beam Condition Monitor (BCM1F) and the Forward calorimeter (HF). The excellent performance of the BRIL detector front-ends, fast back-end electronics and CMS XDAQ based data processing and publication allow the use of emittance scans for linearity and stability studies of the luminometers. Emittance scans became a powerful tool and dramatically improved the understanding of the luminosity measurement during the year. Since each luminometer is independently calibrated in every scan the measurements are independent and ratios of luminometers ca...

  17. LHC Report: Boost in bunches brings record luminosity

    CERN Multimedia

    2011-01-01

    Having hit a luminosity of around 8.4x1032 cm-2 s-1 with 768 bunches per beam, the LHC went into a 5-day machine development (MD) program on Wednesday 4 May. Operators are now working on increasing the number of particle bunches in the machine towards a 2011 maximum of around 1380 bunches. The team is already hitting major milestones, recording another record-breaking peak luminosity on Monday 23 May.   Former LHC Project Leader Lyn Evans (to the right) and Laurette Ponce, the engineer-in-charge when the recent luminosity record was achieved. The MD periods improve our understanding of the machine, with the aim of increasing its short- and long-term performance. This one also included tests of the machine’s configurations for special physics runs and a future high luminosity LHC. It was an intense program and overall it went very well, with most measurements carried out successfully. Highlights included: commissioning a dedicated machine setup for TOTEM and ALFA; succe...

  18. Two giant outbursts of V0332+53 observed with INTEGRAL

    Science.gov (United States)

    Ferrigno, Carlo; Ducci, Lorenzo; Bozzo, Enrico; Kretschmar, Peter; Kühnel, Matthias; Malacaria, Christian; Pottschmidt, Katja; Santangelo, Andrea; Savchenko, Volodymyr; Wilms, Jörn

    2016-10-01

    Context. In July 2015, the high-mass X-ray binary V0332+53 underwent a giant outburst, a decade after the previous one. V0332+53 hosts a strongly magnetized neutron star. During the 2004-2005 outburst, an anti-correlation between the centroid energy of its fundamental cyclotron resonance scattering features (CRSFs) and the X-ray luminosity was observed. Aims: The long (≈100 d) and bright (Lx ≈ 1038 erg s-1) 2015 outburst provided the opportunity to study the unique properties of the fundamental CRSF during another outburst and to study its dependence on the X-ray luminosity. Methods: The source was observed by the INTEGRAL satellite for ~330 ks. We exploit the spectral resolution at high energies of the SPectrometer on INTEGRAL (SPI) and the Joint European X-ray Monitors to characterize its spectral properties, focusing in particular on the CRSF-luminosity dependence. We complement the data of the 2015 outburst with those collected by SPI in 2004-2005, which have so far been left unpublished. Results: We find a highly significant anti-correlation of the centroid energy of the fundamental CRSF and the 3-100 keV luminosity of E1 ∝ -0.095(8)L37 keV. This trend is observed for both outbursts. We confirm the correlation between the width of the fundamental CRSF and the X-ray luminosity previously found in the JEM-X and IBIS dataset of the 2004-2005 outburst. By exploiting the RXTE/ASM and Swift/BAT monitoring data, we also report on the detection of a ~34 d modulation superimposed on the mean profiles and roughly consistent with the orbital period of the pulsar. We discuss possible interpretations of such variability.

  19. High precision electromagnetic calorimetry with 40 MHz readout: the CMS crystal ECAL for the High-Luminosity LHC

    CERN Document Server

    Orimoto, Toyoko Jennifer

    2017-01-01

    The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) will be upgraded to meet the challenging running conditions expected after the High-Luminosity upgrade of the LHC (HL-LHC). Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. The detector will have to sustain an instantaneous luminosity of above $5 \\times 10^{34} cm^2 s^{-1}$, maintaining a performance similar to the one of LHC Run I for an integrated luminosity of 3 to 5 $ab^{-1}$. This poses stringent requirements on the radiation resistance of detector components, the readout and data transfer from the front end to the back end electronics, as well as the latency of the trigger system. The barrel region of the CMS ECAL will be able to retain the current lead tungstate crystals and avalanche photodiode detectors which will meet the energy measurement performance requirements throughout t...

  20. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  1. Notes on LEP luminosity performance in July and August

    CERN Document Server

    Assmann, R W

    1998-01-01

    The LEP luminosity performance at 94.5 GeV is examined for two periods of the 1998 run. The analysis is meant to complement other ongoing studies. The studies presented here analyze the performance in terms of specific luminosity. The large amount of available data is filtered through quality cuts and appropriate averaging and binning algorithms. The results show that the beam-beam limit is being a pproached in high current LEP operation. This is seen in an increase of vertical beam size and a reduction of specific luminosity with current. Though the effect is clear for both analyzed periods of time, it is also shown that the full beam-beam limit is not yet reached. Over a fill the reduction of specific luminosity with beam current is less than half of the one expected in the fully beam-beam limited regime. It is shown that the measured positron lifetime can be fully explained from the beam-beam interaction. It turns out that the beam lifetime is indeed an excellent way to measure the ab solute luminosity in ...

  2. Run II performance of luminosity and beam condition monitors at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Hamburg (Germany)

    2016-07-01

    The BRIL (Beam Radiation Instrumentation and Luminosity) system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. Many of the BRIL subsystems have been upgraded and others have been added for LHC Run II to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) delivers an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. An overview of the performance during 2015 LHC running for the new/updated BRIL subsystems will be given, including the uncertainties of the luminosity measurements.

  3. Possible relationship between metal abundance and luminosity for disk galaxies

    International Nuclear Information System (INIS)

    Bothun, G.D.; Romanishin, W.; Strom, S.E.; Strom, K.M.

    1984-01-01

    Near-infrared colors have been measured for a sample of 31 late-type galaxies in the Pegasus I and Pisces clusters; system luminosities in the sample cover the range -19< M/sub H/<-23.5. The color index (J-K) correlates strongly with the absolute H magnitude; lower-luminosity systems have bluer colors. These observations are consistent with the assumption that the mean metal abundance of the old disk population decreases systematically with luminosity. The systematic variation of (B-H) with absolute H magnitude reported recently by Tully et al. derives in part from this proposed systematic change of metallicity with luminosity. However, one must still posit a relative increase in the number of newly formed stars and/or a systematic smaller age for lower-luminosity disks in order to fully explain the observed (B-H), H relation

  4. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  5. Physics potential of precision measurements of the LHC luminosity

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The uncertainty in the determination of the LHC luminosity is rapidly becoming a limiting factor for the analysis and interpretation of many important LHC processes. In this talk first of all we discuss the theoretical accuracy of total cross sections and examine in which cases the luminosity error is or will be dominant. We then review the impact of LHC data in PDF determinations, with enphasis on the effects of the luminosity uncertainty. We explore the requirements for the accuracy of the 2011 luminosity determination from the point of view of standard candle cross section and other important processes. Finally we discuss what we can learn from the accurate measurement of cross section ratios at different center of mass energies for processes like W, ttbar and dijet production.

  6. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236332; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitized and then...

  7. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. Currently, an analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitiz...

  8. The spectrometer system for measuring ZEUS luminosity at HERA

    International Nuclear Information System (INIS)

    Helbich, M.; Ning, Y.; Paganis, S.; Ren, Z.; Schmidke, W.B.; Sciulli, F.; Schneekloth, U.; Buettner, C.; Caldwell, A.; Sutiak, J.

    2006-01-01

    The upgrade of the HERA accelerator has provided much increased collider luminosity. In turn, the improvements have necessitated a new design for the ZEUS luminosity measurements. The intense synchrotron radiation field, as well as the high probability of a bremsstrahlung photon in each bunch crossing, posed new experimental constraints. In this report, we describe how these challenges were met with the ZEUS luminosity spectrometer system. The design, testing and commissioning of the device are described, and the results from the initial operational experience are reported

  9. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  10. Evidence for Collective Multiparticle Correlations in p-Pb Collisions.

    Science.gov (United States)

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Randle-conde, A; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Aldá Júnior, W L; Alves, G A; Brito, L; Correa Martins Junior, M; Dos Reis Martins, T; Molina, J; Mora Herrera, C; Pol, M E; Rebello Teles, P; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Hadjiiska, R; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Zhang, F; Zhang, L; Zou, W; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Chapon, E; Charlot, C; Dahms, T; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Bernet, C; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Heister, A; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Sammet, J; Schael, S; Schulte, J F; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behr, J; Behrens, U; Bell, A J; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garay Garcia, J; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Kirschenmann, H; Klanner, R; Kogler, R; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Ott, J; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Gilbert, A; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Mozer, M U; Müller, T; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Röcker, S; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Tziaferi, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Ventura, S; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Ryu, M S; Kim, J Y; Moon, D H; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, J H; Park, I C; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Wan Abdullah, W A T; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; Dupont-Sagorin, N; Elliott-Peisert, A; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marini, A C; Marionneau, M; Martinez Ruiz del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Musella, P; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Perrozzi, L; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Taroni, S; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Isildak, B; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Albayrak, E A; Gülmez, E; Kaya, M; Kaya, O; Yetkin, T; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Elwood, A; Ferguson, W; Fulcher, J; Futyan, D; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Pastika, N; Scarborough, T; Wu, Z; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Sagir, S; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Pierini, M; Spiropulu, M; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Krohn, M; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, J R; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Silkworth, C; Turner, P; Varelas, N; Bilki, B; Clarida, W; Dilsiz, K; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Xiao, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Gray, J; Kenny, R P; Majumder, D; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Chakaberia, I; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Lu, Y; Mignerey, A C; Pedro, K; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bierwagen, K; Busza, W; Cali, I A; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Nourbakhsh, S; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Meier, F; Ratnikov, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Lynch, S; Marinelli, N; Musienko, Y; Pearson, T; Planer, M; Ruchti, R; Smith, G; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Malik, S; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Miller, D H; Neumeister, N; Primavera, F; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Zablocki, J; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Hindrichs, O; Khukhunaishvili, A; Korjenevski, S; Petrillo, G; Verzetti, M; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Dalchenko, M; De Mattia, M; Dildick, S; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Roe, J; Rose, A; Safonov, A; Suarez, I; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wolfe, E; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Vuosalo, C; Woods, N

    2015-07-03

    The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in p-Pb and PbPb collisions over a wide pseudorapidity (η) range based on correlations among six or more charged particles. The p-Pb data, corresponding to an integrated luminosity of 35  nb-1, were collected during the 2013 LHC p-Pb run at a nucleon-nucleon center-of-mass energy of 5.02  TeV by the CMS experiment. A sample of semiperipheral PbPb collision data at √sNN=2.76  TeV, corresponding to an integrated luminosity of 2.5  μb-1 and covering a similar range of particle multiplicities as the p-Pb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the p-Pb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Δη) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a p-Pb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multiparticle dynamics of collision systems with a very small overlapping region.

  11. Developing a Test Collection for the Evaluation of Integrated Search

    DEFF Research Database (Denmark)

    Lykke, Marianne; Larsen, Birger; Lund, Haakon

    2010-01-01

    he poster discusses the characteristics needed in an information retrieval (IR) test collection to facilitate the evaluation of integrated search, i.e. search across a range of different sources but with one search box and one ranked result list, and describes and analyses a new test collection c...... assessments. The test collection may be used for systems- as well as user-oriented evaluation.......he poster discusses the characteristics needed in an information retrieval (IR) test collection to facilitate the evaluation of integrated search, i.e. search across a range of different sources but with one search box and one ranked result list, and describes and analyses a new test collection...... constructed for this purpose. The test collection consists of approx. 18,000 monographic records, 160,000 papers and journal articles in PDF and 275,000 abstracts with a varied set of metadata and vocabularies from the physics domain, 65 topics based on real work tasks and corresponding graded relevance...

  12. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  13. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  14. Attaining high luminosity in linear e+e- colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1990-11-01

    The attainment of high luminosity in linear colliders is a complex problem because of the interdependence of the critical parameters. For instance, changing the number of particles per bunch affects the damping ring design and thus the emittance; it affects the wakefields in the linac and thus the momentum spread; the momentum spread affects the final focus design and thus the final β*; but the emittance change also affects the final focus design; and all these come together to determine the luminosity, disruption and beamstrahlung at the intersection. Changing the bunch length, or almost any other parameter, has a similar chain reaction. Dealing with this problem by simple scaling laws is very difficult because one does not know which parameter is going to be critical, and thus which should be held constant. One can only maximize the luminosity by a process of search and iteration. The process can be facilitated with the aid of a computer program. Examples can then be optimized for maximum luminosity, and compared to the optimized solutions with different approaches. This paper discusses these approaches

  15. Nuclear mid-infrared properties of nearby low-luminosity AGN

    International Nuclear Information System (INIS)

    Asmus, D; Duschl, W J; Hönig, S F; Gandhi, P; Smette, A

    2012-01-01

    We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGN's lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 μm emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 /amemission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR- X-ray correlation found previously for AGN is extended to a range from 10 40 to 10 45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR-X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.

  16. The CMS High-Granularity Calorimeter (HGCAL) for Operation at the High-Luminosity LHC

    CERN Document Server

    Pitters, Florian Michael

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm^2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors will...

  17. High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group

    CERN Document Server

    Rossi, L

    2012-01-01

    The Large Hadron Collider (LHC) is the largest scientific instrument ever built. It has been exploring the new energy frontier since 2009, gathering a global user community of 7,000 scientists. It will remain the most powerful accelerator in the world for at least two decades, and its full exploitation is the highest priority in the European Strategy for Particle Physics, adopted by the CERN Council and integrated into the ESFRI Roadmap. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about 10 years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 13 tesla superconducting magnets, very compact and ultra-precise superconduc...

  18. Overview of a high luminosity μ+μ- collider

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of a 4 TeV high luminosity μ + μ - collider, and of a 0.5 TeV lower luminosity demonstration machine. The authors discuss the various systems in such muon colliders

  19. Integrability conditions for a determination of collective submanifolds: Pt. 1

    International Nuclear Information System (INIS)

    Nishiyama, S.; Komatsu, T.

    1984-01-01

    The integrability conditions of a time-dependent Hartree-Bogolubov (TDHB) equation to determine collective submanifolds from the group-theoretical viewpoint are studied. The basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe collective co-ordinate. This manner enables us to take a one-form ω which is linearly composed of a TDHB Hamiltonian and infinitesimal generators induced by collective variable differentials of a SOsub(2N) (Bogolubov) canonical transformation. The integrability conditions of our system read dω - ω.ω = 0, which is a fundamental equation to determine the collective submanifolds in the TDHB method. This equation may work well in the large scale beyond a SOsub(2N) RPA as the small-amplitude limit, with an appropriate boundary condition

  20. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  1. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  2. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  3. EU supports the LHC high-luminosity study

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The design collision energy and luminosity of the LHC are already at record numbers, making the machine one of the most complex scientific instruments ever built. However, to extend its discovery potential even further, a major upgrade of the LHC will be required around 2020. This will increase its average luminosity by a factor of 5 to 10 beyond its design value. Fifteen worldwide institutions and the European Union are supporting the initial design phase of the project through the HiLumi LHC programme, whose kick-off meeting will take place on 16-18 November.   The CERN team that has successfully built and tested the Short Magnet Coil – a small 40 cm long magnet capable of producing a 12.5 T magnetic field. The upgrade of the LHC will require about 10 years of design, construction and implementation. The new machine configuration will be called “High Luminosity LHC” (HL-LHC). The similarly named “HiLumi LHC” is the EU programme that supports...

  4. An Anthropology of Luminosity

    DEFF Research Database (Denmark)

    Bille, Mikkel; Sørensen, Tim Flohr

    2007-01-01

    of luminosity in the practice of day-to-day activities. The article surveys an array of past conceptions of light within philosophy, natural science and more recent approaches to light in the fields of anthropology and material culture studies. A number of implications are discussed, and by way of three case...

  5. Very high-luminosity infrared galaxies - are they very young?

    International Nuclear Information System (INIS)

    Burbidge, G.

    1986-01-01

    It is proposed that most of the very high-luminosity IRAS galaxies, those which emit greater than or equal to 10 to the 12th solar luminosities nearly all in the far infrared out to 100 microns, are very young systems with ages less than or equal to 10 to the 9th years. The luminosity comes largely from stars with masses near 100 solar masses which evolve rapidly, ejecting much of their mass as elements heavier than hydrogen. The gas ejected condenses into dust in circumstellar shells. The prototype star in the Galaxy which shows all of these attributes is Eta Car. It is shown that total masses of order 10 to the 7th-10 to the 8th solar masses condensed into such stars can produce the observed luminosities, and that 10-100 generations of such stars will produce enough dust (about 10 to the 8th solar masses) to explain the observed infrared luminosities. If this hypothesis is correct the composition of gas and dust may well be highly anomalous, and there should be no old stars with ages about 10 to the 10th years present. Initial star formation is probably triggered by interactions with close companion galaxies. 40 references

  6. Luminosity excesses in low-mass young stellar objects - a statistical study

    International Nuclear Information System (INIS)

    Strom, K.M.; Strom, S.E.; Kenyon, S.J.; Hartmann, L.

    1988-01-01

    This paper presents a statistical study in which the observed total luminosity is compared quantitatively with an estimate of the stellar luminosity for a sample of 59 low-mass young stellar objects (YSOs) in the Taurus-Auriga complex. In 13 of the analyzed YSOs, luminosity excesses greater than 0.20 are observed together with greater than 0.6 IR excesses, which typically contribute the bulk of the observed excess luminosity and are characterized by spectral energy distributions which are flat or rise toward long wavelengths. The analysis suggests that YSOs showing the largest luminosity excesses typically power optical jets and/or molecular outflows or have strong winds, as evidenced by the presence of O I emission, indicating a possible correlation between accretion and mass-outflow properties. 38 references

  7. The luminosity function of quasars

    Science.gov (United States)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  8. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  9. Gauge-invariance and infrared divergences in the luminosity distance

    International Nuclear Information System (INIS)

    Biern, Sang Gyu; Yoo, Jaiyul

    2017-01-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  10. Gauge-invariance and infrared divergences in the luminosity distance

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-04-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  11. DISTRIBUTION OF MAXIMAL LUMINOSITY OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Taghizadeh-Popp, M.; Szalay, A. S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Ozogany, K.; Racz, Z. [Institute for Theoretical Physics-HAS, Eoetvoes University, Pazmany setany 1/a, 1117 Budapest (Hungary); Regoes, E., E-mail: mtaghiza@pha.jhu.edu [European Laboratory for Particle Physics (CERN), Geneva (Switzerland)

    2012-11-10

    Extreme value statistics is applied to the distribution of galaxy luminosities in the Sloan Digital Sky Survey. We analyze the DR8 Main Galaxy Sample (MGS), as well as the luminous red galaxies (LRGs). Maximal luminosities are sampled from batches consisting of elongated pencil beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index {xi}, effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that the luminosity distribution function may decay as a power law at the high-luminosity end. Assuming, however, {xi} = 0, a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good agreement provided that uncertainties arising from both the finite batch size and the batch-size distribution are accounted for. For a volume-limited sample of LRGs, results show that they can be described as being the extremes of a luminosity distribution with an exponentially decaying tail, provided that the uncertainties related to batch-size distribution are taken care of.

  12. Prospects of a search for $t\\bar{t}$ resonances at the High Luminosity LHC with an upgraded ATLAS Detector

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    A study of the expected mass reach of a search for new high-mass resonances decaying to a top quark pair using a simulation of the upgraded ATLAS experiment and using an integrated luminosity of 3000 fb$^{-1}$ from the High Luminosity LHC has been made. The simulation of the upgraded ATLAS experiment under HL-LHC conditions, including pileup, was done using parameterised estimates of the performance. Expected upper limits are set on the cross section of a $t\\bar{t}$ resonance in a benchmark model for several signal masses and show that particles with masses up to 4 TeV can be seen.

  13. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  14. Luminosity with more bunches in PEP

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1990-12-01

    The near term accelerator physics program for PEP includes experiments in a collider mode with up to 9 bunches in each beam. In this memo, luminosity data from the 3 x 3 configuration is first used to calculate vertical beam size, emittance and tune shift as a function of current. The data is then used to extrapolate to the case with either 6 x 6 or 9 x 9 bunches colliding in PEP. Vertical emittance growth from the separated bunch optics and dispersion at the IP are included in the calculations. The conclusion is that given a 90 mA current drive limitation in PEP, operating with 6 x 6 bunches yields the maximum luminosity. 9 refs., 6 figs

  15. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Asensi Tortajada, Ignacio; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed (at a rate of maximum 100 kHz). The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and of...

  16. Luminosity Anti-leveling with Crossing Angle (MD 1669)

    CERN Document Server

    Gorzawski, Arkadiusz; Ponce, Laurette; Salvachua Ferrando, Belen Maria; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    A significant fraction of the LHC luminosity ($\\sim$30\\% in 2016) is lost due to the presence (and necessity) of the crossing angles at the IPs. At the LHC the crossing angle is typically set to a value that provides sufficient separation of the beams at the start of fills for the peak bunch intensities. As the bunch intensity decays during a fill, it is possible to reduce the crossing angle and recover some luminosity. A smooth crossing angle reduction procedure must be developed to take advantage of this option during stable beam operation. During this MD a smooth procedure for luminosity leveling with crossing angle was tested. It was demonstrated that the orbit was well controlled, beam losses were low and the offset leveled experiments ALICE and LHCb were not affected by crossing angle leveling in ATLAS and CMS.

  17. A luminosity measurement at LEP using the L3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N.

    1996-06-25

    To perform high precision measurements at particle colliders it is crucial to know the exact intensity of the colliding beams. In particle physics this quantity is generally referred to as the luminosity. The determination of the luminosity in one of the experiments (L3) is the topic of this thesis. The implementation and the use of a silicon strip detector in L3, will be described in detail. In chapter one the most important parameters measured at LEP are discussed, preceded by a short introduction to the Standard Model. The process generally used for luminosity measurements in electron positron colliders is small angle Bhabha scattering. This process is discussed at the end of chapter one. In chapter two the characteristics of the collider and the L3 experiment are given. Together with the signature of the small angle Bhabha scattering, these experimental conditions determine the specifications for the design of the luminosity monitor. The general features of silicon strip detectors for their application in high energy physics are presented in chapter three. Some special attention is given to the behaviour of the sensors used for the tracking detector in the luminosity monitor. The more specific design details of the luminosity monitor are constricted to chapter four. In chapter five the conversion from detector signals into ccordinates relevant for the analysis is explained. The selection of the small angle Bhabha scattering events and the subsequent determination of the luminosity, are presented in chapter six. Systematic uncertainties are carefully studied. Important for a good understanding of the Bhabha selection are the events where a photon is produced in the scattering process. These events are separately studied. In chapter seven a comparison is presented between the radiative events observed in the data and their modelling in the Bhlumi Monte Carlo programme. (orig.).

  18. A luminosity measurement at LEP using the L3 detector

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    1996-01-01

    To perform high precision measurements at particle colliders it is crucial to know the exact intensity of the colliding beams. In particle physics this quantity is generally referred to as the luminosity. The determination of the luminosity in one of the experiments (L3) is the topic of this thesis. The implementation and the use of a silicon strip detector in L3, will be described in detail. In chapter one the most important parameters measured at LEP are discussed, preceded by a short introduction to the Standard Model. The process generally used for luminosity measurements in electron positron colliders is small angle Bhabha scattering. This process is discussed at the end of chapter one. In chapter two the characteristics of the collider and the L3 experiment are given. Together with the signature of the small angle Bhabha scattering, these experimental conditions determine the specifications for the design of the luminosity monitor. The general features of silicon strip detectors for their application in high energy physics are presented in chapter three. Some special attention is given to the behaviour of the sensors used for the tracking detector in the luminosity monitor. The more specific design details of the luminosity monitor are constricted to chapter four. In chapter five the conversion from detector signals into ccordinates relevant for the analysis is explained. The selection of the small angle Bhabha scattering events and the subsequent determination of the luminosity, are presented in chapter six. Systematic uncertainties are carefully studied. Important for a good understanding of the Bhabha selection are the events where a photon is produced in the scattering process. These events are separately studied. In chapter seven a comparison is presented between the radiative events observed in the data and their modelling in the Bhlumi Monte Carlo programme. (orig.)

  19. Polycrystalline CdTe detectors: A luminosity monitor for the LHC

    Science.gov (United States)

    Gschwendtner, E.; Placidia, M.; Schmicklera, H.

    2003-09-01

    The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches caused by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (108 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring human intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40 MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fulfill the requirements and are considered as LHC luminosity monitors. In this paper the interaction region is shown and the characteristics of the CdTe detectors are presented.

  20. Polycrystalline CdTe detectors: A luminosity monitor for the LHC

    International Nuclear Information System (INIS)

    Gschwendtner, E.; Placidia, M.; Schmicklera, H.

    2003-01-01

    The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches caused by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (108 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring human intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40 MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fulfill the requirements and are considered as LHC luminosity monitors. In this paper the interaction region is shown and the characteristics of the CdTe detectors are presented

  1. The luminosity distributions of edge-on spiral galaxies: Pt. 1

    International Nuclear Information System (INIS)

    Shaw, M.A.; Gilmore, G.

    1989-01-01

    An objective, non-linear, least-squares algorithm is presented for modelling the observed two-dimensional luminosity distributions in edge-on spiral and lenticular galaxies. The technique has three particular advantages: the entire projected 2D luminosity distribution is fitted; a wide range of combinations of luminosity components can be tested, and an objective criterion is provided which allows one to specify the adequacy of the imposed parametric representation. One may therefore discriminate between the efficacy of different luminosity profiles as a valid representation of an observed galaxy, thereby addressing such questions as whether spiral bulges are adequately described by an r 1/4 law, as well as testing the need for multicomponent modelling of galaxies. We find that the Sbc galaxy NGC 891 is adequately described by a simple two-component model. For NGC 4565, a three-component combination is required. (author)

  2. The luminosity function for globular clusters, 4: M3

    International Nuclear Information System (INIS)

    Simoda, Mahiro; Fukuoka, Takashi

    1976-01-01

    The subgiant-turnoff portion (V = 17.2 - 20.0 mag) of the luminosity function for the globular cluster M3 has been determined from photometry of the stars within the annuli 3'-8' and 6'-8' for V = 17.2 - 19.0 mag and 19.0 - 20.0 mag, respectively, by using plates taken with the Kitt Peak 2.1-m reflector. Our result shows that the luminosity function for M3 has a similar steep rise in the subgiant portion as other clusters so far studied (M5, M13, and M92), in direct conflict with the result by SANDAGE (1954, 1957). A probable cause of this discrepancy is given. Comparison with theoretical luminosity functions by SIMODA and IBEN (1970) suggests that theory and observation are not inconsistent if the initial helium abundance of M3 stars is taken to be about 20 percent. It is suggested that M13 has a larger helium abundance than M3 and M92 from the intercomparison of their luminosity functions and color-magnitude diagrams. (auth.)

  3. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  4. Detector Developments for the High Luminosity LHC Era (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  5. Evolution of the cluster x-ray luminosity function slope

    International Nuclear Information System (INIS)

    Henry, J.P.; Soltan, A.; Briel, U.; Gunn, J.E.

    1982-01-01

    We report the results of an X-ray survey of 58 clusters of galaxies at moderate and high redshifts. Using a luminosity-limited subsample of 25 objects, we find that to a redshift of 0.5 the slope (i.e., power-law index) of the luminosity function of distant clusters is independent of redshift and consistent with that of nearby clusters. The time scale for change in the slope must be greater than 9 billion years. We cannot measure the normalization of the luminosity function because our sample is not complete. We discuss the implications of our data for theoretical models. In particular, Perrenod's models with high Ω are excluded by the present data

  6. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  7. Luminosity measurements at LHCb using dimuon pairs produced via elastic two photon fusion.

    CERN Document Server

    Anderson, J

    2010-01-01

    This note outlines the feasibility of using the elastic two photon process pp$\\rightarrow$ p+$\\mu^{+}\\mu^{-}+p$ to make luminosity measurements at LHCb. The overall efficiency at LHCb for recording and selecting pp$\\rightarrow$ p+$\\mu^{+}\\mu^{-}+p$ events produced within 1.6<$\\eta$<5 has been determined using Monte-Carlo to be 0.0587 $\\pm$ 0.0008, yielding 5210$\\pm$71(stat.) events for an integrated luminosity of 1fb$^{-1}$. The main background processes where dimuons are produced via inelastic two-photon fusion and double Pomeron exchange have been studied using the full LHCb detector simulation while the other background sources, including backgrounds caused by K/$\\pi$ mis-identification, have been studied at four vector level. The background is estimated to be (4.1 $\\pm$ 0.5(stat.) $\\pm$ 0.6(syst.))% of the signal level. Most of this background comes from K/$\\pi$ mis-identification, although the largest source of uncertainty in the estimation is due to knowledge of the number of events produced via d...

  8. A composite plot of far-infrared versus radio luminosity, and the origin of far-infrared luminosity in quasars

    International Nuclear Information System (INIS)

    Sopp, H.M.; Alexander, P.

    1991-01-01

    We have constructed a composite plot of far-infrared versus radioluminosity for late-type galaxies, Seyferts, quasars and radio galaxies. The most striking result is that the radio and far-infrared luminosities of radio-quiet quasars are correlated and follow the same correlation as normal star-forming galaxies and ultra-luminous infrared galaxies, whereas the radio-loud quasars have luminosities in both bands similar to those of radio galaxies. We conclude that the far-infrared emission from radio-quiet quasars is from star-forming host galaxies and not from active galactic nuclei. The far-infrared radio plot may be a powerful discriminator between host galaxy type. (author)

  9. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  10. Ultraviolet luminosity density of the universe during the epoch of reionization.

    Science.gov (United States)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-08

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  11. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  12. Measurement of the Inclusive $Z \\to ee$ Production Cross Section in Proton-Proton Collisions at $\\sqrt{s}$ = 7TeV and $Z \\to ee$ Decays as Standard Candles for Luminosity at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Jeremy [Princeton U.

    2011-01-01

    This thesis comprises a precision measurement of the inclusive \\Zee production cross section in proton-proton collisions provided by the Large Hadron Collider (LHC) at a center-of-mass energy of $\\sqrt{s}=7$~TeV and the absolute luminosity based on \\Zee decays. The data was collected by the Compact Muon Solenoid (CMS) detector near Geneva, Switzerland during the year of 2010 and corresponds to an integrated luminosity of $\\int\\mathcal{L}dt = 35.9\\pm 1.4$~pb$^{-1}$. Electronic decays of $Z$ bosons allow one of the first electroweak measurements at the LHC, making the cross section measurement a benchmark of physics performance after the first year of CMS detector and LHC machine operations. It is the first systematic uncertainty limited \\Zee cross section measurement performed at $\\sqrt{s}=7$~TeV. The measured cross section pertaining to the invariant mass window $M_{ee}\\in (60,120)$~GeV is reported as: $\\sigma(pp\\to Z+X) \\times \\mathcal{B}( Z\\to ee ) = 997 \\pm 11 \\mathrm{(sta t)} \\pm 19 \\mathrm{(syst)} \\pm 40 \\mathrm{(lumi)} \\textrm{ pb}$, which agrees with the theoretical prediction calculated to NNLO in QCD. Leveraging \\Zee decays as ``standard candles'' for measuring the absolute luminosity at the LHC is examined; they are produced copiously, are well understood, and have clean detector signatures. Thus the consistency of the inclusive \\Zee production cross section measurement with the theoretical prediction motivates inverting the measurement to instead use the \\Zee signal yield to measure the luminosity. The result, which agrees with the primary relative CMS luminosity measurement calibrated using Van der Meer separation scans, is not only the most precise absolute luminosity measurement performed to date at a hadron collider, but also the first one based on a physics signal at the LHC.

  13. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  14. Search for Resonant s-channel Higgs Production at a future high-luminosity e+e- collider (FCC-ee)

    CERN Document Server

    Wojcik, George

    2014-01-01

    In this project, the plausibility of measuring direct resonant s-channel Higgs production at a future high-luminosity e+e- collider machine (of the FCC-ee type) is examined. Using PYTHIA8 to generate expected samples for signal (e+e--->H-->WW*,ZZ*,bbar,gluon-gluon) and backgrounds (e+e- -->Z*,gamma*-->qqbar,tautau,WW,ZZ) in seven possible Higgs decay channels (combining isolated leptons, neutrinos and heavy-quark, light-quark and gluon jets), a total combined statistical significance of 3.6 sigma per experiment is obtained at an integrated luminosity of 10 $ab^{-1}$. This preliminary result, not accounting yet for signal loss from ISR and beam energy spreading, seems to confirm the possibility to access (or at least put strong constraints) on the fundamental Yukawa coupling of the Higgs boson to electrons.

  15. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  16. Introductory Overview of Intermediate-luminosity X-ray Objects

    Science.gov (United States)

    Colbert, E. J. M.

    2001-05-01

    Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.

  17. VY Canis Majoris: The Astrophysical Basis of Its Luminosity

    Science.gov (United States)

    Gehrz, Robert D.; Humphreys, R. M.; Jones, T. J.

    2006-12-01

    The luminosity of the famous red supergiant VY CMa ( L = 4 5 x 105 L ) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Implications for its location on the HR Diagram and its apparent size are discussed.

  18. Physics at high luminosity muon colliders and a facility overview

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Physics potentials at future colliders including high luminosity μ + μ - colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included

  19. Vertex counting as a luminosity measure at ATLAS and determination of the electroweak Zjj production cross-section

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00358758

    This thesis presents two analyses of data recorded by the ATLAS detector during proton-proton collisions at the LHC. The first is the implementation of a vertex counting algorithm to measure the luminosity recorded by ATLAS during collisions at a centre-of-mass energy of $\\sqrt{s}=$8 TeV in 2012. This comprises a Monte Carlo closure test for validation of the method and its corrections, the calibration of the method using the van der Meer scans performed in 2012 and the application of the method to physics runs. It also includes tests of the internal and external consistency of the algorithm and the potential to use this algorithm to measure the luminosity of data collected during proton-proton collisions at $\\sqrt{s}=$13 TeV. \\par The second analysis is the measurement of the inclusive and purely electroweak production of dijets in association with a $Z$ boson, performed using the 3.2 $\\text{fb}^{-1}$ of data collected during collisions at a centre-of-mass energy of $\\sqrt{s}=$13 TeV in 2015. Cross-section ...

  20. Luminosity dependence in the ratio of X-ray to infrared emission of QSOs

    International Nuclear Information System (INIS)

    Worrall, D.M.

    1987-01-01

    The correlation of X-ray and near-infrared luminosity is studied for a sample of radio-quiet QSOs. The X-ray to infrared ratio is found to decrease as the infrared luminosity increases. No preference is found between the correlations of X-ray luminosity with optical or infrared luminosity. This implies that optical and infrared emission are equally good predictors of X-ray emission. Source models which directly link infrared and X-ray emission are discussed, and a preference is found for a specific synchrotron self-Compton model. This model predicts the correct luminosity dependence of the X-ray to infrared ratio if certain conditions apply. 55 references

  1. Electron-positron annihilation at high luminosity colliding beams

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Khodzhamiryan, A.Yu.

    1977-01-01

    Experiments are discussed, which can be carried out at the electron-positron storage rings with increased luminosity (up to 10 34 cm -2 sec -1 ) and corresponding improvement of detectors at total energy region up to 10 GeV. This improvement of the experimental conditions may provide valuable physical information from the theoretical point of view. The comparison is made with analogous experimental possibilities of the projected high energy e + e - storage rings with luminosity up to 10 32 cm -2 sec -1

  2. The GRB variability/peak luminosity correlation: new results

    International Nuclear Information System (INIS)

    Guidorzi, C.; Rossi, F.; Hurley, K.; Mundell, C.G.

    2005-01-01

    We test the correlation between time variability and isotropic-equivalent peak luminosity found by Reichart et al. (ApJ, 552 (2001) 57) using a set of 26 Gamma-Ray Bursts (GRBs) with known redshift. We confirm the correlation, thought with a larger spread around the best-fit power-law obtained by Reichart et al. which in turn does not provide an acceptable description any longer. In addiction, we find no evidence for correlation between variability and beaming-corrected peak luminosity for a subset of 14 GRBs whose beaming angles have been taken from Ghirlanda et al. (ApJ, 616 (2004) 331). Finally, we investigate the possible connection for some GRBs between the location in the variability/peak luminosity space and some afterglow properties, such as the detectability in the optical band, by adding some GRBs whose redshifts, unknown from direct measurements, have been derived assuming the Amati at al. (AeA, 390 (2002) 81) relationship

  3. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  4. Polycrystalline CdTe Detectors A Luminosity Monitor for the LHC

    CERN Document Server

    Gschwendtner, E; Schmickler, Hermann

    2003-01-01

    The luminosity at the four interaction points of the Large Hadron Collider must be continuously monitored in order to provide an adequate tool for the control and optimization of the collision parameters and the beam optics. At both sides of the interaction points absorbers are installed to protect the super-conducting accelerator elements from quenches causes by the deposited energy of collision products. The luminosity detectors will be installed in the copper core of these absorbers to measure the electromagnetic and hadronic showers caused by neutral particles that are produced at the proton-proton collision in the interaction points. The detectors have to withstand extreme radiation levels (10^8 Gy/yr at the design luminosity) and their long-term operation has to be assured without requiring humain intervention. In addition the demand for bunch-by-bunch luminosity measurements, i.e. 40MHz detection speed, puts severe constraints on the detectors. Polycrystalline CdTe detectors have a high potential to fu...

  5. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    Science.gov (United States)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  6. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-01-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec -2 . Light profiles were initially fitted with a Sersic's R 1/n model, but we found that 205 (∼48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n ∼ 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter (∼0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M R = -23.8 ± 0.6 mag for single profile BCGs and M R = -24.0 ± 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 ± 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a single = 3.29 ± 0.06 and a double = 2.79 ± 0.08. Also, the logarithmic slope of the metric luminosity α is higher in double profile BCGs (α double = 0.65 ± 0.12) than in single profile BCGs (α single = 0.59 ± 0.14). The mean isophote outer ellipticity (calculated at μ ∼ 24 mag arcsec -2 ) is higher in double profile BCGs (e double = 0.30 ± 0.10) than in single profile BCGs (e single = 0.26 ± 0.11). Similarly, the mean absolute value of inner minus outer ellipticity is also higher in double profile BCGs. From a

  7. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    International Nuclear Information System (INIS)

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil

    2014-01-01

    The relation between galaxy luminosity L and halo virial velocity v vir required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v rot . Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v rot and v vir by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v rot -v vir relation that we obtain in this way can fully account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v rot on v vir , which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.

  8. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  9. To High Luminosity and beyond!

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    This week marks a major milestone for the High Luminosity LHC (HL-LHC - see here) project, as it moves from the design study to the machine construction phase. HL-LHC will extend the LHC’s discovery potential, increasing luminosity by a factor of 10 beyond the original design value and allowing the scientific community to study new phenomena.    Composer Domenico Vicinanza (left) directs the musical performance of sonified LHC data during a special Hi-Lumi event (see box). The green light was given during the 5th Joint HiLumi LHC-LARP annual meeting that took place at CERN from 26 to 30 October 2015. The meeting saw the participation of more than 230 experts from all over the world to discuss the results and achievements of the HiLumi LHC Design Study. During the week, these experts approved the first version of the HL-LHC Technical Design Report – the document that, following the Preliminary Design Report issued in 2014, describes in detail how the LHC upgrade progra...

  10. Recent improvements in luminosity at PEP

    International Nuclear Information System (INIS)

    Helm, R.; Allen, M.; Chao, A.

    1983-03-01

    We will describe improvements which have led to new records for peak and average luminosity at PEP. Comparison of recent results with several earlier lattice and optical modifications shows rather good correlation with the predictions of a beam-beam simulation program

  11. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  12. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  13. Investigation of Properties of Novel Silicon Pixel Assemblies Employing Thin n-in-p Sensors and 3D-Integration

    CERN Document Server

    Weigell, Philipp

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300/fb¹ , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running|especially if the luminosity is raised to about 5x10^35/(cm²s¹ ) as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost-effective pixel assemblies with...

  14. VY Canis Majoris: The Astrophysical Basis of Its Luminosity

    OpenAIRE

    Humphreys, Roberta M.

    2006-01-01

    The luminosity of the famous red supergiant VY CMa (L ~ 4 - 5 x 10e5 Lsun) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Both contradict a recent paper by Massey, Levesque and Plez (2006). Implications for its location on the HR Diagram and its apparent size are discussed.

  15. High-Luminosity LHC moves to the next phase

    CERN Multimedia

    2015-01-01

    This week saw several meetings vital for the medium-term future of CERN.    From Monday to Wednesday, the Resource Review Board, RRB, that oversees resource allocation in the LHC experiments, had a series of meetings. Thursday then saw the close-out meeting for the Hi-Lumi LHC design study, which was partially funded by the European Commission. These meetings focused on the High Luminosity upgrade for the LHC, which responds to the top priority of the European Strategy for Particle Physics adopted by the CERN Council in 2013. This upgrade will transform the LHC into a facility for precision studies, the logical next step for the high-energy frontier of particle physics. It is a challenging upgrade, both for the LHC and the detectors. The LHC is already the highest luminosity hadron collider ever constructed, generating up to a billion collisions per second at the heart of the detectors. The High Luminosity upgrade will see that number rise by a factor of five from 2025. For the detectors...

  16. CORNELL: Bunch trains provide higher luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    The new colliding beam technique - ''bunch trains'' - at Cornell's electron-positron Storage Ring (CESR) has led to a new world record for colliding beam luminosity - 3.3 x 10{sup 32} cm{sup -2}s{sup -1}. In the bid to increase reaction rate for any particular process, this luminosity is pushed as high as possible. Once all other luminosityincreasing cards have been played, the only practical way of making a large gain in luminosity is to increase the frequency of bunch-bunch collisions by increasing the number of bunches stored in the ring. However this is not without its own problems: • If the two beams travel the same orbit, the n bunches in one beam collide with the n bunches of the other at 2n points around the ring, and the resulting cumulative nonlinear beam-beam effect (tune shift) severely limits the luminosity attainable at any interaction point. • The destabilizing wakefield effects of bunches on each other increase as the number of bunches increases and the spacing between them decreases. • The synchrotron radiation emitted by the beams becomes a severe problem as the total beam current is raised: to overcome these effects means supplying radiofrequency power to maintain the beam energy, carrying away heat from the vacuum chamber walls, pumping out desorbed gases, and controlling Xray backgrounds in the experiment. In 1979, CESR was designed to run with a single bunch of electrons and a single bunch of positrons circulating on the same orbit and colliding head-on at two diametrically opposite points in the ring, where the CLEO and CUSB experiments were then located. Ideally one could store multiple bunches and solve the multiple collision point problem by using separate rings for the two beams, as in the CERN ISR proton-proton collider and in the original DORIS two-ring configuration at DESY, Hamburg, making the two beams intersect only at the experiments. A less expensive version of this two-ring scheme was accomplished at CESR in 1983, using

  17. Classical Cepheid luminosities from binary companions

    International Nuclear Information System (INIS)

    Evans, N.R.

    1991-01-01

    Luminosities for the classical Cepheids Eta Aql, W Sgr, and SU Cas are determined from IUE spectra of their binary companions. Spectral types of the companions are determined from the spectra by comparison with the spectra of standard stars. The absolute magnitude inferred from these spectral types is used to determine the absolute magnitude of the Cepheid, either directly or from the magnitude difference between the two stars. For the temperature range of the companions (A0 V), distinctions of a quarter of a spectral subclass can be made in the comparison between the companions and standard stars. The absolute magnitudes for Eta Aql and W Sgr agree well with the period-luminosity-color relation of Feast and Walker (1987). Random errors are estimated to be 0.3 mag. SU Cas, however, is overluminous for pulsation in the fundamental mode, implying that it is pulsating in an overtone. 58 refs

  18. A multi-structural and multi-functional integrated fog collection system in cactus.

    Science.gov (United States)

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  19. A multi-structural and multi-functional integrated fog collection system in cactus

    Science.gov (United States)

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  20. Luminosity-Environment Relation in the Lowz Sample of the SDSS-III

    Directory of Open Access Journals (Sweden)

    Deng Xin-Fa

    2016-06-01

    Full Text Available In this work, we examine the environmental dependence of the u-, g-, r-, i- and z-band luminosities in the LOWZ sample of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10. To decrease the radial selection effect, we divide the LOWZ sample into subsamples with a redshift bin size of Δz = 0.01 and analyze the environmental dependence of luminosities for these subsamples in each redshift bin. It is found that all five band luminosities of the LOWZ galaxy sample in the redshift region z=0.16–0.23 show substantial correlation with the local environment, especially in the redshift bins 0.19–0.20 and 0.20–0.21. The environmental dependence of all five band luminosities in the LOWZ galaxy sample becomes weak with increasing redshift, like the one in the apparent-magnitude limited Main galaxy sample.

  1. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Bradley, Larry D.; Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oesch, Pascal A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Holwerda, Benne W. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. Michael, E-mail: kschmidt@physics.ucsb.edu [CASA, Department of Astrophysical and Planetary Science, University of Colorado, Center for Astrophysics and Space Astronomy, 389-UCB, Boulder, CO 80309 (United States)

    2014-05-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin{sup 2} of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin{sup 2} of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m{sub J} ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M{sup ⋆}=−20.15{sub −0.38}{sup +0.29}, a faint-end slope of α=−1.87{sub −0.26}{sup +0.26}, and a number density of log{sub 10} ϕ{sup ⋆}[Mpc{sup −3}]=−3.24{sub −0.24}{sup +0.25}. Integrated down to M = –17.7, this luminosity function yields a luminosity density log{sub 10} ϵ[erg s{sup −1} Hz{sup −1} Mpc{sup −3}]=25.52{sub −0.05}{sup +0.05}. Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of

  2. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    International Nuclear Information System (INIS)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C.; Trenti, Michele; Bradley, Larry D.; Stiavelli, Massimo; Oesch, Pascal A.; Holwerda, Benne W.; Shull, J. Michael

    2014-01-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin 2 of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin 2 of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m J ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M ⋆ =−20.15 −0.38 +0.29 , a faint-end slope of α=−1.87 −0.26 +0.26 , and a number density of log 10  ϕ ⋆ [Mpc −3 ]=−3.24 −0.24 +0.25 . Integrated down to M = –17.7, this luminosity function yields a luminosity density log 10  ϵ[erg s −1 Hz −1 Mpc −3 ]=25.52 −0.05 +0.05 . Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of reionization. By assuming theoretically motivated priors on the clumping factor and the photon

  3. Luminosity measurements for the R scan experiment at BESIII

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2017-06-01

    By analyzing the large-angle Bhabha scattering events e+e- → (γ)e+e- and diphoton events e+e- → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are important inputs for the R value and J/ψ resonance parameter measurements. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11322544, 11335008, 11375170, 11275189, 11079030, 11475164, 11475169, 11005109, 10979095, 11275211), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201, U1532102). (KJCX2-YW-N29, KJCX2-YW-N45). 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  4. Triggering at high luminosity: fake triggers from pile-up

    International Nuclear Information System (INIS)

    Johnson, R.

    1983-01-01

    Triggers based on a cut in transverse momentum (p/sub t/) have proved to be useful in high energy physics both because they indicte that a hard constituent scattering has occurred and because they can be made quickly enough to gate electronics. These triggers will continue to be useful at high luminosities if overlapping events do not cause an excessive number of fake triggers. In this paper, I determine if this is indeed a problem at high luminosity machines

  5. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  6. The Evolution in the Faint-End Slope of the Quasar Luminosity Function

    OpenAIRE

    Hopkins, Philip F.; Hernquist, Lars; Cox, Thomas J.; Di Matteo, Tiziana; Robertson, Brant; Springel, Volker

    2005-01-01

    (Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for quasar lifetimes where the lifetime depends on both the instantaneous and peak quasar luminosities. This motivates a new interpretation of the QLF in which the bright end consists of quasars radiating at nearly their peak luminosities, but the fai...

  7. ATLAS Future Plans: Upgrade and the Physics with High Luminosity

    Directory of Open Access Journals (Sweden)

    Rajagopalan S.

    2013-05-01

    Full Text Available The ATLAS experiment is planning a series of detector upgrades to cope with the planned increases in instantaneous luminosity and multiple interactions per crossing to maintain its physics capabilities. During the coming decade, the Large Hadron Collider will collide protons on protons at a center of mass energy up to 14 TeV with luminosities steadily increasing in a phased approach to over 5 × 1034 cm−2s−1. The resulting large data sets will significantly enhance the physics reach of the ATLAS detector building on the recent discovery of the Higgs-like boson. The planned detector upgrades being designed to cope with the increasing luminosity and its impact on the ATLAS physics program will be discussed.

  8. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  9. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    Science.gov (United States)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  10. Commissioning of the Absolute Luminosity For ATLAS detector at the LHC

    CERN Document Server

    Jakobsen, Sune; Hansen, Peter; Hansen, Jørgen Beck

    The startup of the LHC (Large Hadron Collider) has initialized a new era in particle physics. The standard model of particle physics has for the last 40 years with tremendous success described all measurements with phenomenal precision. The experiments at the LHC are testing the standard model in a new energy regime. To normalize the measurements and understand the potential discoveries of the LHC experiments it is often crucial to know the interaction rate - the absolute luminosity. The ATLAS (A Toroidal LHC ApparatuS) detector will measure luminosity by numerous methods. But for most of the methods only the relative luminosity is measured with good precision. The absolute scale has to be provided from elsewhere. ATLAS is like the other LHC experiments mainly relying of absolute luminosity calibration from van der Meer scans (beam separation scans). To cross check and maybe even improve the precision; ATLAS has built a sub-detector to measure the flux of protons scattered under very small angles as this flux...

  11. The detonation of a sub-Chandrasekhar-mass white dwarf at the origin of the low-luminosity Type Ia supernova 1999by

    Science.gov (United States)

    Blondin, Stéphane; Dessart, Luc; Hillier, D. John

    2018-03-01

    While Chandrasekhar-mass (MCh) models with a low 56Ni yield can match the peak luminosities of fast-declining, 91bg-like Type Ia supernovae (SNe Ia), they systematically fail to reproduce their faster light-curve evolution. Here, we illustrate the impact of a low ejecta mass on the radiative display of low-luminosity SNe Ia, by comparing a sub-MCh model resulting from the pure central detonation of a C-O white dwarf (WD) to an MCh delayed-detonation model with the same 56Ni yield of 0.12 M⊙. Our sub-MCh model from a 0.90 M⊙ WD progenitor has a ˜5 d shorter rise time in the integrated UV-optical-IR (uvoir) luminosity, as well as in the B band, and a ˜20 per cent higher peak uvoir luminosity (˜1 mag brighter peak MB). This sub-MCh model also displays bluer maximum-light colours due to the larger specific heating rate, and larger post-maximum uvoir and B-band decline rates. The luminosity decline at nebular times is also more pronounced, reflecting the enhanced escape of gamma rays resulting from the lower density of the progenitor WD. The deficit of stable nickel in the innermost ejecta leads to a notable absence of forbidden lines of [Ni II] in the nebular spectra. In contrast, the MCh model displays a strong line due to [Ni II] 1.939 μm, which could in principle serve to distinguish between different progenitor scenarios. Our sub-MCh model offers an unprecedented agreement with optical and near-infrared observations of the 91bg-like SN 1999by, making a strong case for a WD progenitor significantly below the Chandrasekhar-mass limit for this event and other low-luminosity SNe Ia.

  12. K0 finding efficiencies in increasing luminosities

    International Nuclear Information System (INIS)

    Hassard, J.F.; Margetides S.

    1993-01-01

    In early LHC running it is anticipated that experiments will obtain luminosities of 10 32 cm -2 sec -1 , during which typically only one interaction per event will be obtained. But at higher luminosities, necessary for any Higgs and myriad other searches, experiments will have to deal with up to 50 distinct primary processes. Most will be minimum bias, and easily distinguished in terms of trigger. They can still, of course, confuse analysis of high P T events. When it comes to B events, the confusion even from minimum bias events becomes more acute, since B events are not open-quotes high P T close quotes in this environment. The need for vertex discrimination, particularly in z, is well understood; however, a collateral effect - the increasing difficulty in finding tracks at all - has received little attention. The authors show the distribution of the K 0 in the Pythia process B → J/ψK 0 in the space γ vs. η. Confusion in reconstructing the K 0 is acute for many reasons, not the least of which is the way their pions are boosted forward, and even out of acceptance. Extra luminosity merely increases the problems in finding K 0 's, so it must not be assumed that 10 33 cm -2 sec -1 is ten times better than 10 32 cm -2 sec -1

  13. Recent luminosity improvements at the SLC

    International Nuclear Information System (INIS)

    Raimondi, P.; Usher, T.; Akre, R.

    1998-07-01

    The luminosity of the SLAC Linear Collider (SLC) has been increased by more than a factor of three during the 1997--98 run. Improved alignment and emittance tuning techniques throughout the accelerator resulted in minimal emittance growth from the damping rings to the final focus. In particular, a revised strategy for wakefield cancellation using precision beam size measurements at the entrance of the final focus proved effective for optimizing emittance. The final focus lattice was modified to provide stronger demagnification near the interaction point and to remove residual higher-order aberrations. Beam sizes as small as 1.5 by 0.65 microns were achieved at full beam intensity of 4 10 10 particles per pulse. With these parameters, the mutual focusing of the beams in collision becomes significant, resulting in a further increase in the luminosity. Recorded SLD event rates confirmed the theoretical calculations of the disruption enhancement which was typically 50 to 100%

  14. Advantages of a vertical integration process in the design of DNW MAPS

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2015-01-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors

  15. Advantages of a vertical integration process in the design of DNW MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L. [Università di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); Manazza, A. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2015-06-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors.

  16. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  17. Reduction of beta* and increase of luminosity at RHIC

    International Nuclear Information System (INIS)

    Pilat, F.; Bai, M.; Bruno, D.; Cameron, P.; Della Penna, A.; Drees, A.; Litvinenko, V.; Luo, Y.; Malitsky, N.; Marr, G.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-01-01

    The reduction of β* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1m achieved a 30% increase in delivered luminosity. The key ingredients allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation, to minimize beam losses in the final focus triplets, the main aperture limitations for the collision optics. We will describe the operational strategy used to reduce the β*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase. We will conclude with future plans for the beta squeeze

  18. THE WYOMING SURVEY FOR Hα. II. Hα LUMINOSITY FUNCTIONS AT z∼ 0.16, 0.24, 0.32, AND 0.40

    International Nuclear Information System (INIS)

    Dale, Daniel A.; Cook, David O.; Moore, Carolynn A.; Staudaher, Shawn M.; Barlow, Rebecca J.; Cohen, Seth A.; Johnson, L. Clifton; Kattner, ShiAnne M.; Schuster, Micah D.

    2010-01-01

    The Wyoming Survey for Hα, or WySH, is a large-area, ground-based imaging survey for Hα-emitting galaxies at redshifts of z ∼ 0.16, 0.24, 0.32, and 0.40. The survey spans up to 4 deg 2 in a set of fields of low Galactic cirrus emission, using twin narrowband filters at each epoch for improved stellar continuum subtraction. Hα luminosity functions are presented for each Δz ∼ 0.02 epoch based on a total of nearly 1200 galaxies. These data clearly show an evolution with look-back time in the volume-averaged cosmic star formation rate. Integrals of Schechter fits to the incompleteness- and extinction-corrected Hα luminosity functions indicate star formation rates per comoving volume of 0.010, 0.013, 0.020, 0.022 h 70 M sun yr -1 Mpc -3 at z ∼ 0.16, 0.24, 0.32, and 0.40, respectively. Combined statistical and systematic measurement uncertainties are on the order of 25%, while the effects of cosmic variance are at the 20% level. The bulk of this evolution is driven by changes in the characteristic luminosity L * of the Hα luminosity functions, with L * for the earlier two epochs being a factor of 2 larger than L * at the latter two epochs; it is more difficult with this data set to decipher systematic evolutionary differences in the luminosity function amplitude and faint-end slope. Coupling these results with a comprehensive compilation of results from the literature on emission line surveys, the evolution in the cosmic star formation rate density over 0 ∼< z ∼< 1.5 is measured.

  19. SLHC, the High-Luminosity Upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  20. Robust Tracking at the High Luminosity LHC

    CERN Document Server

    Woods, Natasha Lee; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5×10^34cm^-2s^-1 which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  1. The quasar luminosity function from a variability-selected sample

    Science.gov (United States)

    Hawkins, M. R. S.; Veron, P.

    1993-01-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.

  2. Period--luminosity--color relations and pulsation modes of pulsating variable stars

    International Nuclear Information System (INIS)

    Breger, M.; Bregman, J.N.

    1975-01-01

    The periods of delta Scuti, RR Lyrae, dwarf Cepheid, and W Virginis variables have been investigated for their dependence on luminosity, color, mass, and pulsation modes. A maximum-likelihood method, which includes consideration of the observational errors in each coordinate, has been applied to obtain observational period-luminosity-color (P-L-C) relations

  3. CORNELL: Bunch trains provide higher luminosity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The new colliding beam technique - ''bunch trains'' - at Cornell's electron-positron Storage Ring (CESR) has led to a new world record for colliding beam luminosity - 3.3 x 10 32 cm -2 s -1 . In the bid to increase reaction rate for any particular process, this luminosity is pushed as high as possible. Once all other luminosityincreasing cards have been played, the only practical way of making a large gain in luminosity is to increase the frequency of bunch-bunch collisions by increasing the number of bunches stored in the ring. However this is not without its own problems: • If the two beams travel the same orbit, the n bunches in one beam collide with the n bunches of the other at 2n points around the ring, and the resulting cumulative nonlinear beam-beam effect (tune shift) severely limits the luminosity attainable at any interaction point. • The destabilizing wakefield effects of bunches on each other increase as the number of bunches increases and the spacing between them decreases. • The synchrotron radiation emitted by the beams becomes a severe problem as the total beam current is raised: to overcome these effects means supplying radiofrequency power to maintain the beam energy, carrying away heat from the vacuum chamber walls, pumping out desorbed gases, and controlling Xray backgrounds in the experiment. In 1979, CESR was designed to run with a single bunch of electrons and a single bunch of positrons circulating on the same orbit and colliding head-on at two diametrically opposite points in the ring, where the CLEO and CUSB experiments were then located. Ideally one could store multiple bunches and solve the multiple collision point problem by using separate rings for the two beams, as in the CERN ISR proton-proton collider and in the original DORIS two-ring configuration at DESY, Hamburg, making the two beams intersect only at the experiments. A less expensive version of this two-ring scheme was accomplished at CESR in

  4. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase 0 occurs during 2013-2014 and prepares the LHC to reach peak luminosities of 1034 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 1034 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). With luminosity leveling, the average luminosity will increase with a factor 10. The main TileCal upgrade is focused on the HL-LHC period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased rad...

  5. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  6. KEKB B-Factory, the luminosity frontier

    International Nuclear Information System (INIS)

    Oide, Katsunobu

    2009-01-01

    The experiment at the KEKB B-Factory, as well as PEP-II, brought the final blow on the 2008 Nobel Prize in Physics for the Kobayashi-Maskawa theory. A few key issues will be described on the design and performance of KEKB to make the world's highest luminosity possible. (author)

  7. A computational- And storage-cloud for integration of biodiversity collections

    Science.gov (United States)

    Matsunaga, A.; Thompson, A.; Figueiredo, R. J.; Germain-Aubrey, C.C; Collins, M.; Beeman, R.S; Macfadden, B.J.; Riccardi, G.; Soltis, P.S; Page, L. M.; Fortes, J.A.B

    2013-01-01

    A core mission of the Integrated Digitized Biocollections (iDigBio) project is the building and deployment of a cloud computing environment customized to support the digitization workflow and integration of data from all U.S. nonfederal biocollections. iDigBio chose to use cloud computing technologies to deliver a cyberinfrastructure that is flexible, agile, resilient, and scalable to meet the needs of the biodiversity community. In this context, this paper describes the integration of open source cloud middleware, applications, and third party services using standard formats, protocols, and services. In addition, this paper demonstrates the value of the digitized information from collections in a broader scenario involving multiple disciplines.

  8. 78 FR 16259 - Agency Information Collection Activities; Comment Request; Integrated Postsecondary Education...

    Science.gov (United States)

    2013-03-14

    ... collection system designed to collect basic data from all postsecondary institutions in the United States and...; Comment Request; Integrated Postsecondary Education Data System (IPEDS) 2013-2016 AGENCY: National Center... Postsecondary Education Data System (IPEDS) 2013-2016. OMB Control Number: 1850-0582. Type of Review: Revision...

  9. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  10. High luminosity μ+ μ- collider: Report of a feasibility study

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.; Tollestrup, A.; Sessler, A.

    1996-12-01

    Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity μ + μ - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. We briefly mention the luminosity requirements of hadrons and lepton machines and their high-energy-physics advantages and disadvantages in reference to their effective center of mass energy. Finally, we present an R ampersand D plan to determine whether such machines are practical

  11. Report of the Working Group on High Luminosities at LEP

    International Nuclear Information System (INIS)

    Blucher, E.; Jowett, J.; Merritt, F.; Mikenberg, G.; Panman, J.; Renard, F.M.; Treille, D.

    1991-01-01

    The availability of an order-of-magnitude increase in the luminosity of LEP (CERN's Large Electron-Positron Collider) can dramatically increase its physics output. With the help of a pretzel scheme, it should be possible to increase the peak luminosity beyond 10 32 cm -2 s -1 at the Z energy and to significantly increase the luminosity around the W-pari threshold. This report spells out the physics possibilities opened up by the availability of several 10 7 Z events. The three domains of physics that benefit mostly from this abundance are very accurate measurements of Standard Model parameters, rare decays of the Z, and the physics of fermion-antifermion states such as B physics. The possibilities and implications for the machine and the experiments are presented. The physics possibilities are explored and compared with those at other accelerators. (orig.)

  12. Progenitors of low-luminosity Type II-Plateau supernovae

    Science.gov (United States)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  13. Electron-electron luminosity in the Next Linear Collider -- a preliminary study

    International Nuclear Information System (INIS)

    Zimmermann, F.; Thompson, K.A.; Helm, R.H.

    1997-11-01

    In this paper, the authors discuss some operational aspects of electron-electron collisions at the Next Linear Collider (NLC) and estimate the luminosity attainable in such a machine. They also consider the use of two future technologies which could simplify the operation and improve the luminosity in an e - e - collider: polarized rf guns and plasma lenses

  14. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  15. Modification of redshift and luminosity by voids in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Humitaka

    1985-03-01

    Propagation of light in a clumpy universe is examined for redshift and luminosity. Taking a spherical void model and Swiss Chesse model, the modification is found to be the third order of (Hrsub(b)/c) for the redshift and the first order of it for the luminosity, rsub(b) being the radius of a void or a Swiss Cheese hole.

  16. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    International Nuclear Information System (INIS)

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-01-01

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 μm silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log νL ν (7.8 μm)/L(X) = –0.31 ± 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log νL ν (7.8 μm) = (37.2 ± 0.5) + 0.87 log BHM for luminosity in erg s –1 and BHM in M ☉ . The 100 most luminous type 1 quasars as measured in νL ν (7.8 μm) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 μm from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 μm using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 IR = 10 14.4 L ☉ . Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L bol estimated from rest-frame optical or ultraviolet luminosities are compared to L IR . For the local AGN, the median log L IR /L bol = –0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L IR /L bol = 0.1, with extremes indicating that ultraviolet-derived L bol can be seriously underestimated even for type 1

  17. Luminosity and beta function measurement at the electron-positron collider ring LEP

    CERN Document Server

    Castro, P

    1996-01-01

    The optimization of luminosity needs a fast signal which is provided with the measurement of the rate of small angle Bhabba scattered e+ and e-. It is shown that, despite the excess of background particles received at the detectors, luminosity measurements are possible by using appropriate techniques. The results presented include examples of luminosity optimization with the adjustment of the vertical beam separation at interaction points. The correlation between changes in measured beam sizes and changes in luminosity is shown. In the second part, a new method to obtain precise optics measurements is presented. The procedure to measure the phase advance using 1000-turn orbit measurements of a horizontally or vertically excited beam is described. Beta, alpha and phase advance functions can be obtained exclusively from the phase advances at beam position monitors. This method has been used to measure optics imperfections at LEP. Results of these experiments are compared with simulation results using MAD Measur...

  18. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  19. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2024 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  20. Tile Calorimeter Upgrade Program for the Luminosity Increasing at the LHC

    CERN Document Server

    Cerqueira, Augusto Santiago; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal is a sampling calorimeter with approximately 10,000 channels and is operating successfully (data quality efficiency above 99%) in ATLAS, since the start of the LHC collisions. The LHC is scheduled to undergo a major upgrade, in 2022, for the High Luminosity LHC (HL-LHC), where the luminosity will be increased by a factor of 10 above the original design value. The ATLAS upgrade program for high luminosity is split into three phases: Phase 0 occurred during 2013-2014 (Long Shutdown 1), and prepared the LHC for run 2; Phase 1, foreseen for 2019 (Long Shutdown 2), will prepare the LHC for run 3, whereafter the peak luminosity reaches 2-3 x 10^{34} cm^{2}s^{-1}; finally, Phase 2, which is foreseen for 2023 (Long Shutdown 3), will prepare the collider for the HL-LHC operation (5-7 x 10^{34} cm^{2}s^{-1}). The TileCal main activities for Phase 0 were the installation of the new low v...

  1. ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Kilerci Eser, E.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Peterson, B. M.; Denney, K. D. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, M. C., E-mail: ecekilerci@dark-cosmology.dk, E-mail: vester@dark-cosmology.dk, E-mail: kelly@astronomy.ohio-state.edu, E-mail: peterson@astronomy.ohio-state.edu, E-mail: bentz@chara.gsu.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.

  2. ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.

    2015-01-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex

  3. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars

    Science.gov (United States)

    2012-05-11

    extensively studied at radio (Dunlop & Peacock 1990; Wall et al. 2005), soft X-ray (Giommi & Padovani 1994; Rector et al. 2000; Wolter & Celotti 2001...FSRQs) evolve positively (i.e., there were more blazars in the past, Dunlop & Peacock 1990) up to a redshift cutoff which depends on luminosity (e.g...luminosity of 1048 erg s−1. The LDDE model provides a good fit to the LAT data and is able to reproduce the observed distribution in Figure 2. The log

  4. Operative integration to the first collective agreement 1998-2003

    International Nuclear Information System (INIS)

    2004-01-01

    The article describes the process followed from the time of Operational Integration of the two AIEs-ANA and CNV II-which operated the Asco-I and II and Vandellos-II nuclear power plants, and and the merger of these two ventures up to the signing of a single Collective Agreement that, in the framework of labor-relations, allowed for a process of consolidation that gave rise to unified corporate regulation and planning of human resources. In 1998 , the year in which the process began, there were two companies-ANA and CNV II-with two Collective Agreements, two Pension Plans and two Corporate Headquarters located in Barcelona. Now there is only one company-ANAV-with a single Collective Agreement a single Pension Plan with two sub-plans, and generational changeover in its final phase with the target staff and no excess. (Author)

  5. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Cool, Richard J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Brown, Michael J. I.; Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S.; Dey, Arjun; Jannuzi, Buell T.; Moustakas, John

    2012-01-01

    We present the galaxy optical luminosity function for the redshift range 0.05 2 in the Boötes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z) (0.54±0.64) for red galaxies and (1 + z) (1.64±0.39) for blue galaxies.

  6. THE BIVARIATE SIZE-LUMINOSITY RELATIONS FOR LYMAN BREAK GALAXIES AT z {approx} 4-5

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Su, Jian [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ravindranath, Swara, E-mail: kuanghan@pha.jhu.edu [The Inter-University Center for Astronomy and Astrophysics, Pune University Campus, Pune 411007, Maharashtra (India)

    2013-03-01

    We study the bivariate size-luminosity distribution of Lyman break galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator, we find that the Schechter function parameters for B {sub 435}-dropouts and are consistent with the values in the literature, but the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.

  7. THE BIVARIATE SIZE-LUMINOSITY RELATIONS FOR LYMAN BREAK GALAXIES AT z ∼ 4-5

    International Nuclear Information System (INIS)

    Huang, Kuang-Han; Su, Jian; Ferguson, Henry C.; Ravindranath, Swara

    2013-01-01

    We study the bivariate size-luminosity distribution of Lyman break galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator, we find that the Schechter function parameters for B 435 -dropouts and are consistent with the values in the literature, but the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.

  8. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  9. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  10. RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Vorobyov, Eduard I., E-mail: michael.dunham@yale.edu, E-mail: eduard.vorobiev@univie.ac.at [Institute of Astronomy, University of Vienna, Vienna 1180 (Austria)

    2012-03-01

    We determine the observational signatures of protostellar cores by coupling two-dimensional radiative transfer calculations with numerical hydrodynamical simulations that predict accretion rates that both decline with time and feature short-term variability and episodic bursts caused by disk gravitational instability and fragmentation. We calculate the radiative transfer of the collapsing cores throughout the full duration of the collapse, using as inputs the core, disk, protostellar masses, radii, and mass accretion rates predicted by the hydrodynamical simulations. From the resulting spectral energy distributions, we calculate standard observational signatures (L{sub bol}, T{sub bol}, L{sub bol}/L{sub smm}) to directly compare to observations. We show that the accretion process predicted by these models reproduces the full spread of observed protostars in both L{sub bol}-T{sub bol} and L{sub bol}-M{sub core} space, including very low luminosity objects, provides a reasonable match to the observed protostellar luminosity distribution, and resolves the long-standing luminosity problem. These models predict an embedded phase duration shorter than recent observationally determined estimates (0.12 Myr versus 0.44 Myr), and a fraction of total time spent in Stage 0 of 23%, consistent with the range of values determined by observations. On average, the models spend 1.3% of their total time in accretion bursts, during which 5.3% of the final stellar mass accretes, with maximum values being 11.8% and 35.5% for the total time and accreted stellar mass, respectively. Time-averaged models that filter out the accretion variability and bursts do not provide as good of a match to the observed luminosity problem, suggesting that the bursts are required.

  11. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR -L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR -L relationship.

  12. Online calculation of the Tevatron collider luminosity using accelerator instrumentation

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1997-07-01

    The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)

  13. ATLAS physics prospects with the High-Luminosity LHC

    CERN Document Server

    Khanov, Alexander; The ATLAS collaboration

    2016-01-01

    Run-I at the LHC was very successful with the discovery of a new boson of about 125 GeV mass with properties compatible with those of the Higgs boson predicted by Standard Model.Precise measurements of the properties of this new boson, and the search for new physics beyond the Standard Model, are primary goals of the just restarted LHC running at 13 TeV collision energy and all future running at the LHC, including its luminosity upgrade, HL-LHC, that should allow the collection of 3000 fb-1 of data per experiment. The physics prospects with a pp centre-of-mass energy of 14 TeV are presented for 300 and 3000 fb-1. The ultimate precision attainable on measurements of the couplings of the 125 GeV boson to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with it. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions. Supersymmetry is one of the best motivated extensions of the Standard Mode...

  14. Comparison of star formation rates from Hα and infrared luminosity as seen by Herschel

    Science.gov (United States)

    Domínguez Sánchez, H.; Mignoli, M.; Pozzi, F.; Calura, F.; Cimatti, A.; Gruppioni, C.; Cepa, J.; Sánchez Portal, M.; Zamorani, G.; Berta, S.; Elbaz, D.; Le Floc'h, E.; Granato, G. L.; Lutz, D.; Maiolino, R.; Matteucci, F.; Nair, P.; Nordon, R.; Pozzetti, L.; Silva, L.; Silverman, J.; Wuyts, S.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Magnelli, B.; Pelló, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Riguccini, L.; Tanaka, M.; Tasca, L. A. M.; Tresse, L.; Vergani, D.; Zucca, E.

    2012-10-01

    We empirically MD test the relation between the SFR(LIR) derived from the infrared luminosity, LIR, and the SFR(Hα) derived from the Hα emission line luminosity using simple conversion relations. We use a sample of 474 galaxies at z = 0.06-0.46 with both Hα detection [from 20k redshift Cosmological Evolution (zCOSMOS) survey] and new far-IR Herschel data (100 and 160 μm). We derive SFR(Hα) from the Hα extinction corrected emission line luminosity. We find a very clear trend between E(B - V) and LIR that allows us to estimate extinction values for each galaxy even if the Hβ emission line measurement is not reliable. We calculate the LIR by integrating from 8 up to 1000 μm the spectral energy distribution (SED) that is best fitting our data. We compare the SFR(Hα) with the SFR(LIR). We find a very good agreement between the two star formation rate (SFR) estimates, with a slope of m = 1.01 ± 0.03 in the log SFR(LIR) versus log SFR(Hα) diagram, a normalization constant of a = -0.08 ± 0.03 and a dispersion of σ = 0.28 dex. We study the effect of some intrinsic properties of the galaxies in the SFR(LIR)-SFR(Hα) relation, such as the redshift, the mass, the specific star formation rate (SSFR) or the metallicity. The metallicity is the parameter that affects most the SFR comparison. The mean ratio of the two SFR estimators log[SFR(LIR)/SFR(Hα)] varies by ˜0.6 dex from metal-poor to metal-rich galaxies [8.1 statistics of this sub-sample. Herschel is a European Space Agency (ESA) space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  15. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  16. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  17. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00127668; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 1034cm2s1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow ...

  18. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5x10ˆ34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will a...

  19. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    International Nuclear Information System (INIS)

    Singal, J.; Petrosian, V.; Stawarz, Ł.; Lawrence, A.

    2013-01-01

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R ≥ –1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  20. The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; Stevenson, M.

    2012-04-16

    Fermi has provided the largest sample of {gamma}-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution of FSRQs in the 10 keV-100GeV band and show that there is no correlation of the peak {gamma}-ray luminosity with {gamma}-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sub -1.0}{sup +1.6}% ({+-}3% systematic uncertainty) in the 0.1-100GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sub -2.2}{sup +3.3}, that most are seen within 5{sup o} of the jet axis, and that they represent only {approx}0.1% of the parent population.

  1. Using Micromegas in ATLAS to Monitor the Luminosity

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    Five small prototype micromegas detectors were positioned in the ATLAS detector during LHC running at $\\sqrt{s} = 8\\, \\mathrm{TeV}$. A $9\\times 4.5\\, \\mathrm{cm^2}$ two-gap detector was placed in front of the electromagnetic calorimeter and four $9\\times 10\\, \\mathrm{cm^2}$ detectors on the ATLAS Small Wheels, the first station of the forward muon spectrometer. The one attached to the calorimeter was exposed to interaction rates of about $70\\,\\mathrm{kHz/cm^2}$ at ATLAS luminosity $\\mathcal{L}=5\\times 10^{33}\\,\\mathrm{cm^{-2}s^{-1}}$ two orders of magnitude higher than the rates in the Small Wheel. We compare the currents drawn by the detector installed in front of the electromagnetic calorimeter with the luminosity measurement in ATLAS experiment.

  2. Beam delivery system tuning and luminosity monitoring in the Compact Linear Collider

    Directory of Open Access Journals (Sweden)

    B. Dalena

    2012-05-01

    Full Text Available Emittance preservation in the beam delivery system (BDS is one of the major challenges in the Compact Linear Collider (CLIC. The fast detuning of the final focus optics requires an on-line tuning procedure in order to keep luminosity close to the maximum. In this paper we discuss different tuning techniques to mitigate the displacement of magnets in the CLIC BDS and in particular in the final focus system. Some of them require a fast luminosity measurement. Here we study the possibility to use beam-beam background processes at CLIC 3 TeV c.m. energy as a fast luminosity signal. In particular, the hadron multiplicity in the detector region is investigated.

  3. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    Science.gov (United States)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 1040 ergs s -1, corresponding to a star formation rate of 0.01 Msolar yr-1. Our cumulative z~=5 Lyα luminosity function is consistent with a power-law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  5. Modified use of Van de Meer method for luminosity determination

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1975-01-01

    Modifications are suggested which should improve the accuracy of the Van de Meer method of determining beam luminosity at the CERN ISR. Four bending magnets would be inserted between the quadrupoles of a given experimental straight section, connected in series, and shimmed so that the machine parameters are not affected. The magnets would be driven with a zigzag current power supply with a uniform rate of current change. Experiments requiring accurate luminosity determination would be run while the deflection magnets are being driven with the oscillatory current pattern. (U.S.)

  6. VizieR Online Data Catalog: Quasar luminosity function (Hawkins+, 1993)

    Science.gov (United States)

    Hawkins, M. R. S.; Veron, P.

    1994-11-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sigh of the 'break' found in the recent UVX sample of Boyle, Shanks & Peterson. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved. (1 data file).

  7. On the existence of a luminosity threshold of GRB jets in massive stars

    Science.gov (United States)

    Aloy, M. A.; Cuesta-Martínez, C.; Obergaulinger, M.

    2018-05-01

    Motivated by the many associations of γ-ray bursts (GRBs) with energetic supernova (SN) explosions, we study the propagation of relativistic jets within the progenitor star in which a SN shock wave may be launched briefly before the jets start to propagate. Based on analytic considerations and verified with an extensive set of 2D axisymmetric relativistic hydrodynamic simulations, we have estimated a threshold intrinsic jet luminosity, L_j^thr, for successfully launching a jet. This threshold depends on the structure of the progenitor and, thus, it is sensitive to its mass and to its metallicity. For a prototype host of cosmological long GRBs, a low-metallicity star of 35 M⊙, it is L_j^thr˜eq 1.35× 10^{49} erg s-1. The observed equivalent isotropic γ-ray luminosity, L_{γ ,iso,BO} ˜eq 4 ɛ _γ L_j θ _BO^{-2}, crucially depends on the jet opening angle after breakout, θBO, and on the efficiency for converting the intrinsic jet luminosity into γ-radiation, ɛγ. Highly energetic jets can produce low-luminosity events if either their opening angle after the breakout is large, which is found in our models, or if the conversion efficiency of kinetic and internal energy into radiation is low enough. Beyond this theoretical analysis, we show how the presence of a SN shock wave may reduce this luminosity threshold by means of numerical simulations. We foresee that the high-energy transients released by jets produced near the luminosity threshold will be more similar to llGRBs or XRFs than to GRBs.

  8. Contribution of terms containing Z-boson exchange to the luminosity measurements at LEP

    Science.gov (United States)

    Beenakker, W.; Pietrzyk, B.

    1992-12-01

    We have investigated the contribution of terms containing Z-boson exchange to the luminosity measurements at LEP. Comparing the Monte Carlo program BABAMC and the semi-analytical program ALIBABA, we have determined the technical precision of the corresponding O( α) calculation in BABAMC to be 0.03%. Using the ALIBABA program we have assessed the higher-order corrections to these Z-boson exchange contributions to be of the order of 0.1% for the present luminosity measurements. The total theoretical error on the luminosity calculation for LEP experiments is at present not larger than 0.3%.

  9. Integrating Biodiversity Data into Botanic Collections.

    Science.gov (United States)

    Horn, Thomas

    2016-01-01

    Today's species names are entry points into a web of publicly available knowledge and are integral parts of legislation concerning biological conservation and consumer safety. Species information usually is fragmented, can be misleading due to the existence of different names and might even be biased because of an identical name that is used for a different species. Safely navigating through the name space is one of the most challenging tasks when associating names with data and when decisions are made which name to include in legislation. Integrating publicly available dynamic data to characterise plant genetic resources of botanic gardens and other facilities will significantly increase the efficiency of recovering relevant information for research projects, identifying potentially invasive taxa, constructing priority lists and developing DNA-based specimen authentication. To demonstrate information availability and discuss integration into botanic collections, scientific names derived from botanic gardens were evaluated using the Encyclopedia of Life, The Catalogue of Life and The Plant List. 98.5% of the names could be verified by the combined use of these providers. Comparing taxonomic status information 13 % of the cases were in disagreement. About 7 % of the verified names were found to be included in the International Union for Conservation of Nature Red List, including one extinct taxon and three taxa with the status "extinct in the wild". As second most important factor for biodiversity loss, potential invasiveness was determined. Approximately 4 % of the verified names were detected using the Global Invasive Species Information Network, including 208 invasive taxa. According to Delivering Alien Invasive Species Inventories for Europe around 20 % of the verified names are European alien taxa including 15 of the worst European invasive taxa. Considering alternative names in the data recovery process, success increased up to 18 %.

  10. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    In this talk for BEAUTY 2018 the ATLAS upgrade plans for the high-luminosity phase of the LHC are presented. Especially, prospects for the flagship B physics analyses $B_s^0 \\to J/\\psi \\phi$ (with $J/\\psi \\to \\mu^+\\mu^-$) and $B_{(s)}^0 \\to \\mu^+\\mu^-$ analyses are discussed.

  11. NbTi Superferric Corrector Magnets for the LHC Luminosity Upgrade

    CERN Document Server

    Volpini, G; Bellomo, G; Broggi, F; Paccalini, A; Pedrini, D; Leone, A; Quadrio, M; Somaschini, L; Sorbi, M; Todero, M; Uva, C; Fessia, P; Todesco, E; Toral, F

    2015-01-01

    CERN and INFN, Italy, have signed an agreement for R&D activities relating to high-luminosity LHC superconducting magnets, which include the design, construction, and cryogenic test of a set of five prototypes, one for each type foreseen, from the skew quadrupole to the dodecapole. The reference layout of these magnets is based on a superferric design type, which allows reaching the required integrated field strength with a relatively simple design. Since the number of magnets of all the types required for the series is 36, emphasis has been put on modularity, reliability, ease of construction, and on the use of an available superconducting wire. This paper presents the status of the development work being performed at INFN, LASA Laboratory, and at CERN, focusing on the following issues: the electromagnetic 2- and 3-D design including harmonic component study; the fringe field analysis; the magnet powering and quench protection; mechanical and construction main choices.

  12. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-01-01

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M 1450 2 , then extend to lower luminosities (M 1450 2 of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 1450 * ∼-27). The bright-end slope is steep (β ∼ 1450 < –26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate ∼30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  13. Symmetric Moeller/Bhabha luminosity monitor for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Perez Benito, Roberto; Rodriguez Pineiro, David [Helmholtz-Institut Mainz, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); O' Connor, Colton [Massachusetts Institute of Technology, Cambridge, MA (United States); Diefenbach, Juergen; Glaeser, Boris [Institut fuer Kernphysik, Mainz (Germany); Khaneft, Dmitry [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Ma, Yue [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    The OLYMPUS experiment is motivated by the discrepancy between the proton electric to magnetic form factor ratio measured using unpolarized and polarized electron scattering. This discrepancy can be explained by a two-photon exchange (TPE) contribution in lepton-hadron scattering. Measuring the ratio of electron-proton and positron-proton elastic scattering cross sections the contribution of the TPE can be determined. For this purpose, very precise measurements of the relative luminosity have to be performed. The symmetric Moeller/Bhabha luminosity monitor, made of calorimetric lead fluoride (PbF{sub 2}) Cherenkov detectors, provides precise data from counting coincidences Moeller and Bhabha events. High sensitivity to the geometrical acceptance and alignment requires accurate study of systematic uncertainties.

  14. H α AS A LUMINOSITY CLASS DIAGNOSTIC FOR K- AND M-TYPE STARS

    International Nuclear Information System (INIS)

    Jennings, Jeff; Levesque, Emily M.

    2016-01-01

    We have identified the H α absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H α and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. H α shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H α has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  15. H α AS A LUMINOSITY CLASS DIAGNOSTIC FOR K- AND M-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Jeff [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Levesque, Emily M., E-mail: emsque@uw.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2016-04-20

    We have identified the H α absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H α and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. H α shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H α has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  16. A Search for Low-Luminosity BL Lacertae Objects

    Science.gov (United States)

    Rector, Travis A.; Stocke, John T.; Perlman, Eric S.

    1999-05-01

    Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or value for the X-ray-selected EMSS BL Lac sample. Thus, these observations do not explain fully the discrepancy between the X-ray- and radio-selected BL Lac samples.

  17. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard J. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell T. [National Optical Astronomy Observatory, Tucson, AZ 85726 (United States); Moustakas, John [Center for Astrophysics and Space Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2012-03-20

    We present the galaxy optical luminosity function for the redshift range 0.05 < z < 0.75 from the AGN and Galaxy Evolution Survey, a spectroscopic survey of 7.6 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z){sup (0.54{+-}0.64)} for red galaxies and (1 + z){sup (1.64{+-}0.39)} for blue galaxies.

  18. Spectral-luminosity evolution of active galactic nuclei (AGN)

    Science.gov (United States)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  19. The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2016-11-01

    Full Text Available The determination of the luminosity function (LF in Gamma ray bursts (GRBs depends on the adopted cosmology, each one characterized by its corresponding luminosity distance. Here, we analyze three cosmologies: the standard cosmology, the plasma cosmology and the pseudo-Euclidean universe. The LF of the GRBs is firstly modeled by the lognormal distribution and the four broken power law and, secondly, by a truncated lognormal distribution. The truncated lognormal distribution fits acceptably the range in luminosity of GRBs as a function of the redshift.

  20. The white dwarf luminosity function - A possible probe of the galactic halo

    Science.gov (United States)

    Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.

    1990-01-01

    The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.

  1. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, José F.; Manjarrez, Guillermo [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Palau, Aina [Instituto de Radioastronomía y Astrofísica, UNAM, P.O. Box 3-72, 58090, Morelia, Michoacán, México (Mexico); Uscanga, Lucero [Departamento de Astronomía, Universidad de Guanajuato, A.P. 144, 36000 Guanajuato, Gto., México (Mexico); Barrado, David, E-mail: jfg@iaa.es [Centro de Astrobiología, INTA-CSIC, PO BOX 28692, ESAC Campus, E-208691 Villanueva de la Cañada, Madrid (Spain)

    2017-05-01

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L {sub ⊙}. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L {sub bol} ≳ 1 L {sub ⊙}. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L {sub bol} ≃ 3.6–5.3 L {sub ⊙}) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L {sub bol} ≤ 1 L {sub ⊙} or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.

  2. NGC 5548 in a Low-Luminosity State

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Denney, Kelly D.; Cackett, Edward M.

    2007-01-01

    between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population...

  3. Abort Gap Cleaning tests performed on 13 October 2011 during luminosity operation

    CERN Document Server

    Boccardi, A; Jeff, A; Roncarolo, F; Höfle, W; Valuch, D; Kain, V; Goddard, B; Meddahi, M; Uythoven, J; Gianfelice-Wendt, E

    2012-01-01

    Following the abort gap cleaning tests performed on 7 October 2011 [1] additional tests were carried out on 13 October 2011 to further investigate the effects of the cleaning on the luminosity production. The abort gap cleaning parameters (strength and duration of the beam excitation kick) were varied and the cleaning effectiveness measured together with the change in luminosity. The outcome is summarised in this note.

  4. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  5. The Discovery of Low-Luminosity BL Lacs

    Science.gov (United States)

    Rector, Travis A.; Stocke, John T.

    1995-12-01

    Many of the properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis whereby BL Lacs are ``highly beamed'' FR-I radio galaxies (i.e. our line of sight to these objects is nearly along the jet axis). Further, radio-selected BL Lacs (RBLs) are believed to be seen nearly ``on-axis'' (the line-of-sight angle theta ~ 8deg ) while X-ray selected BL Lacs (XBLs) are seen at larger angles (theta ~ 30deg ; the X-ray emitting jet is believed to be less collimated). However, a major problem with this model was that a transition population between beamed BL Lacs and unbeamed FR-Is had not been detected. Low-luminosity BL Lacs may be such a transition population, and were predicted to exist by Browne and Marcha (1993). We present ROSAT HRI images, VLA radio maps and optical spectra which confirm the existence of low-luminosity BL Lacs, objects which were previously mis-identified in the EMSS catalog as clusters of galaxies. Thus our results strengthen the relativistic beaming hypothesis.

  6. Luminosity measurement in H1; Mesure de la luminosite pour l'experience H1

    Energy Technology Data Exchange (ETDEWEB)

    Frisson, T

    2006-10-15

    At HERA, luminosity is determined on-line and bunch by bunch by measuring the Bremsstrahlung spectrum from e-p collisions. The Hl collaboration has built a completely new luminosity system in order to sustain the harsh running conditions after the fourfold luminosity increase. Namely, the higher synchrotron radiation doses and the increased event pile-up have governed the design of the two major components, a radiation resistant quartz-fibre electro-magnetic calorimeter, and a fast read-out electronic with on-line energy histogram loading at a rate of 500 kHz. The group was in charge of the electronic and the on-line data analysis of the new luminosity system. In this thesis, I present analysis tools and methods to improve the precision of the luminosity measurement. The energy scale and acceptance calculation methods set out in this thesis permit these values to be determined every four minutes, to an accuracy of 0.5 parts per thousand for the energy scale and 2 parts per thousand for the acceptance. From these results, the degree of accuracy obtained on the luminosity measurement is between 6.5 and 9.5 parts per thousand. These results are currently undergoing validation, with the aim of becoming the standard H1 method. I also studied quasi-elastic Compton events to cross-check the luminosity measurement using the 2003- 2004 and 2005 data. Indeed, this process has a well calculable cross section and a clear experimental signature. The leptonic final state consists of a coplanar e-gamma system, both observable in the central H1 detector. (author)

  7. Impact of detector solenoid on the Compact Linear Collider luminosity performance

    CERN Document Server

    Inntjore Levinsen, Y.; Tomás, Rogelio; Schulte, Daniel

    2014-05-27

    In order to obtain the necessary luminosity with a reasonable amount of beam power, the Compact Linear Collider (CLIC) design includes an unprecedented collision beam size of {\\sigma} = 1 nm vertically and {\\sigma} = 45 nm horizontally. Given the small and very flat beams, the luminosity can be significantly degraded from the impact of the experimental solenoid field in combination with a large crossing angle. Main effects include y-x'-coupling and increase of vertical dispersion. Additionally, Incoherent Synchrotron Radiation (ISR) from the orbit deflection created by the solenoid field, increases the beam emittance. A detailed study of the impact from a realistic solenoid field and the associated correction techniques for the CLIC Final Focus is presented. In particular, the impact of techniques to compensate the beam optics distortions due to the detector solenoid main field and its overlap with the final focus magnets are shown. The unrecoverable luminosity loss due to ISR has been evaluated, and found to...

  8. Stellar bars and the spatial distribution of infrared luminosity

    International Nuclear Information System (INIS)

    Devereux, N.

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology

  9. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    Science.gov (United States)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  10. SLC-2000: A luminosity upgrade for the SLC

    International Nuclear Information System (INIS)

    Breidenbach, M.; Decker, F.-J.; Helm, R.; Napoly, O.; Phinney, N.; Raimondi, P.; Raubenheimer, T.O.; Siemann, R.; Zimmermann, F.; Hertzbach, S.

    1996-01-01

    We discuss a possible upgrade to the Stanford Linear Collider (SLC), whose objective is to increase the SLC luminosity by at least a factor 7, to an average Z production rate of more than 35,000 per week. The centerpiece of the upgrade is the installation of a new superconducting final doublet with a field gradient of 240 T/m, which will be placed at a distance of only 70 cm from the interaction point. In addition, several bending magnets in each final focus will be lengthened and two octupole correctors are added. A complementary upgrade of damping rings and bunch compressors will allow optimum use of the modified final focus and can deliver, or exceed, the targeted luminosity. The proposed upgrade will place the SLC physics program in a very competitive position, and will also enable it to pursue its pioneering role as the first and only linear collider. (author)

  11. Collective Professional Development for the Integration of ICT in Higher Education

    DEFF Research Database (Denmark)

    Castro Guzman, Willy

    In this thesis, I explore, analyse and reflect on the individual practice of adoption and the collective practice of integration of technology in teaching and learning in a Higher Education Institution. The study addresses the connections between ICT adoption in Education, the barriers of ICT...... integration, and the teacher professional development as means to promote adoption. With the recognition of the potential of ICT in education, the study reflects the appropriateness of the dominant traditional approach to the first and second-order barriers to technology and attempts to overcome...

  12. 16 CFR 312.8 - Confidentiality, security, and integrity of personal information collected from children.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Confidentiality, security, and integrity of... COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.8 Confidentiality, security, and integrity of personal information collected from children. The operator must...

  13. Physics as a function of energy and luminosity

    International Nuclear Information System (INIS)

    Ellis, J.

    1984-01-01

    In this paper, a new physics in the range of mass up to TeV region is discussed. Most of the discussion concern hadron-hadron (hh) colliders, and also electron-positron colliders are discussed. The cross-sections for new particle production in hh colliders have the general Drell-Yan form, in which the differential luminosity for the collision of partons is included. The formulas with the parton distribution scaled up from present energy using the Altarelli-Parisi equations may be approximately correct within a factor of 2 for the production of particles. Some typical parton-parton luminosity functions for proton-proton and proton-antiproton collisions are presented. From the consideration of luminosity, it can be said that the pp colliders are to be preferred. The case studies of some of the possible new physics discussed by Zakharov, mainly on Higgs bosons and supersymmetric particles, but also a few remarks about technicolor are presented. It seems possible to detect technicolor at a large hh collider. The physics reaches of different possible hh colliders are summarized in tables. In the tables, the observable production of Higgses up to 1 TeV in mass, the observable masses for gluinos (squarks) and the technicolor observability are shown. The cleanliness of electron-positron colliders compared to hadron-hadron colliders is pled, a guess is given as to the appropriate conversion factors between the energy in the electron-positron and hh collisions, the complementarity of electron-positron and hh colliders is urged, and it is argued that a rational mix of world accelerators would include both. (Kato, T.)

  14. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2006-01-01

    We have obtained high resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGN) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure th...

  15. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation

    Science.gov (United States)

    Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.

    2018-04-01

    Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  16. Elastic cross-section and luminosity measurement in Atlas at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Efthymiopoulos, I. [Conseil Europeen pour la recherche nucleaire, AB Dept., Geneve (Switzerland)

    2005-07-01

    Recently the Atlas experiment was complemented with a set of ultra-small-angle detectors located in 'Roman Pot' inserts at 240 m on either side of the interaction point, aiming at the absolute determination of the LHC luminosity by measuring the elastic scattering rate at the Coulomb Nuclear Interference region. Details of the proposed measurement the detector construction and the expected performance as well as the challenges involved are discussed here. Our aim is to determine the luminosity within a 2% error and give a competitive measurement on other parameters like the {rho}-parameter, the total cross-section and the nuclear slope.

  17. Measurements of a high-luminosity flame structure by a shuttered PIV system

    International Nuclear Information System (INIS)

    Li, Yueh-Heng; Wu, Chih-Yung; Chen, Bi-Chian; Chao, Yei-Chin

    2008-01-01

    It is difficult to measure the velocity distribution inside a high-luminosity flame by using the particle image velocimetry (PIV) system with a double-shutter mode CCD camera. The second raw image of the PIV image pair is usually contaminated by flame emission. The main cause of the problem is an excess exposure time which lets the flame emission overlap the particle image in the second frame. If the flame-contamination problem is not significant, for example in faint flames, digital image processing can improve the image to an acceptable level. Nevertheless, when the PIV technique is applied to high-luminosity flames, the second raw particle image would be contaminated by flame emission. In this paper, incorporating a mechanical shutter in the PIV system with a double-shutter CCD camera is proposed to improve PIV measurements in high-luminosity flames. Measurements in faint, high-luminosity as well as very bright flames were tested. The results show that the present setup can accurately resolve the flow velocity field inside the flame cone, through the flame and in the post flame zone for all the flame conditions analyzed. The velocity distributions and streamline patterns measured by the present equipment are reasonable and meaningful

  18. A NEW LUMINOSITY RELATION FOR GAMMA-RAY BURSTS AND ITS IMPLICATION

    International Nuclear Information System (INIS)

    Qi Shi; Lu Tan

    2010-01-01

    Gamma-ray bursts (GRBs) are the most luminous astrophysical events observed so far. They are conventionally classified into long and short ones depending on their time duration, T 90 . Because of the advantage that their high redshifts offer, many efforts have been made to apply GRBs to cosmology. The key to this is to find correlations between some measurable properties of GRBs and the energy or the luminosity of GRBs. These correlations are usually referred to as luminosity relations and are helpful in understanding the GRBs themselves. In this paper, we explored such correlations in the X-ray emission of GRBs. The X-ray emission of GRBs observed by Swift has the exponential functional form in the prompt phase and relaxes to a power-law decay at time T p . We have assumed a linear relation between log L X,p (with L X,p being the X-ray luminosity at T p ) and log [T p /(1 + z)], but there is some evidence for curvature in the data and the true relationship between L X,p and T p /(1 + z) may be a broken power law. The limited GRB sample used in our analysis is still not sufficient for us to conclude whether the break is real or just an illusion caused by outliers. We considered both cases in our analysis and discussed the implications of the luminosity relation, especially on the time duration of GRBs and their classification.

  19. Gaia’s Cepheids and RR Lyrae stars and luminosity calibrations based on Tycho-Gaia Astrometric Solution

    Directory of Open Access Journals (Sweden)

    Clementini Gisella

    2017-01-01

    Full Text Available Gaia Data Release 1 contains parallaxes for more than 700 Galactic Cepheids and RR Lyrae stars, computed as part of the Tycho-Gaia Astrometric Solution (TGAS. We have used TGAS parallaxes, along with literature (V, I, J, Ks, W1 photometry and spectroscopy, to calibrate the zero point of the period-luminosity and period-Wesenheit relations of classical and type II Cepheids, and the near-infrared period-luminosity, period-luminosity-metallicity and optical luminosity-metallicity relations of RR Lyrae stars. In this contribution we briefly summarise results obtained by fitting these basic relations adopting different techniques that operate either in parallax or distance (absolute magnitude space.

  20. On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters

    Science.gov (United States)

    Bailyn, Charles D.; Pinsonneault, Marc H.

    1995-01-01

    We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.

  1. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution HST images of all 35 AGNs with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measureme...

  2. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  3. Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function

    Science.gov (United States)

    Wood, M. A.

    1992-01-01

    The white dwarf disk luminosity function is explored using observational results of Liebert et al. (1988, 1989) as a template for comparison, and the cooling curves of Wood (1990, 1991) as the input basis functions for the integration. The star formation rate over the history of the Galaxy is found to be constant to within an order of magnitude, and the disk age lies in the range 6-13.5 Gyr, where roughly 40 percent of the uncertainty is due to the observational uncertainties. Using the best current estimates as inputs to the integration, the disk ages range from 7.5 to 11 Gyr, i.e., they are substantially younger than most estimates for the halo globular clusters but in reasonable agreement with those for the disk globular clusters and open clusters. The ages of these differing populations, taken together, are consistent with the pressure-supported collapse models of early spiral Galactic evolution.

  4. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    Science.gov (United States)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  5. LHC Report: spring cleaning over, bunches of luminosity

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Scrubbing was completed on Wednesday 13 April. The run had seen over 1000 bunches per beam successfully circulating at 450 GeV. Measurements showed that electron cloud activity in the cold regions had been suppressed. A decrease of vacuum activity in the warm regions demonstrated that the cleaning had also achieved the required results there. As discussed in the last Bulletin, the scrubbing was performed with high intensity bunches with 50 nanosecond spacing. Given the potential luminosity performance with this spacing (more bunches, higher bunch intensity from the injectors) and in the light of the results of the scrubbing run, the decision was taken to continue the 2011 physics run with this bunch spacing.   A few issues with 50 nanosecond spacing had to be resolved when standard operations for luminosity production resumed. Once things had been tidied up, stable beams were provided for the experiments, firstly with 228 bunches per beam and then with 336 bunches per beam. The 336 bunch fill that w...

  6. Luminosity Measurement at ATLAS with a Scintillating Fiber Tracker

    CERN Document Server

    Ask, S

    2007-01-01

    We are reporting about a scintillating fiber tracking detector which is proposed for a precise determination of the absolute luminosity of the CERN LHC at interaction point 1 where the ATLAS experiment is located. The detector needs to track protons elastically scattered under micro-radian angles in direct vicinity to the LHC beam. It is based on square shaped scintillating plastic fibers read out by multi-anode photomultiplier tubes and is housed in Roman Pots. We describe the design and construction of prototype detectors and the results of two beam test experiments carried out at DESY and at CERN. The excellent detector performance established in these tests validates the detector design and supports the feasibility of the proposed challenging method of luminosity measurement. All results from the CERN beam test should be considered as preliminary.

  7. Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

    Science.gov (United States)

    Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.

    2018-05-01

    We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.

  8. Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess

    Energy Technology Data Exchange (ETDEWEB)

    Ploeg, Harrison; Gordon, Chris [Department of Physics and Astronomy, Rutherford Building, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Crocker, Roland [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek (Australia); Macias, Oscar, E-mail: harrison.ploeg@pg.canterbury.ac.nz, E-mail: chris.gordon@canterbury.ac.nz, E-mail: Roland.Crocker@anu.edu.au, E-mail: oscar.macias@vt.edu [Center for Neutrino Physics, Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States)

    2017-08-01

    Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used a Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.

  9. From Van der Meer scans to precision cross section determination: the CMS luminosity and W/Z cross section measurements at √s=8 TeV

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In this seminar the measurement performed by the CMS experiment of total and fiducial inclusive W and Z boson production cross sections at sqrt(s)=8 TeV will be presented; electron and muon final states are considered from a data set recorded in dedicated conditions and corresponding to an integrated luminosity of 18.2 pb-1. Details abou...

  10. Statistics of the Hubble diagram. I. Determination of q2 and luminosity evolution with application to quasars

    International Nuclear Information System (INIS)

    Turner, E.L.

    1979-01-01

    A rank statistic version of the magnitude-redshift q 0 test is developed. It may be applied to the Hubble diagram of objects with an arbitrary and unknown luminosity function; in particular, the objects need not be ''standard candles.'' Only the single restriction that the objects' luminosity function does not vary in functional form is placed on the sources' intrinsic properties. Density and/or luminosity evolution are taken into account. Corrections for sample selection biases are incorporated into the analysis. Tests for the presence of luminosity evolution are given. Methods for determining either q 0 or the luminosity evolution when the other is a priori known are described.Application of these techniques to a sample of 119 3CR and 4C quasars leads to the following results: The radio Hubble diagram is consistent with all values of q 0 , suggesting that the quasar radio luminosity function is a featureless power law. The optical Hubble diagram indicates one of these possibilities: (1) the value of q 0 is in the range 2--32, probably near 5; (2) the value of q 0 is more reasonable and there is strong optical luminosity evolution [e.g., if q/sub o/ approx. = 0.05, then the characteristic optical luminosity scales like approx. (1 + Z)/sup 7/3/]; or (3) the data are a low-probability (< or =0.05) statistical fluctuation. The second interpretation is probably the most sensible one.Generalizations of the rank statistic magnitude-redshift test are suggested for application to a variety of extragalactic and stellar problems. Specific examples of applications to unorthodox cosmologies are given. Even for the unfavorable (very broad luminosity function) case of the optical quasar data, the rank statistic analysis is sensitive to relative variations in the distance-modulus-redshift relation as small as approx.0.4 mag for 1/2 < or = Z < or = 2

  11. THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. III. DISTANCES AND LUMINOSITIES

    International Nuclear Information System (INIS)

    Pandian, J. D.; Menten, K. M.; Goldsmith, P. F.

    2009-01-01

    We derive kinematic distances to the 86 6.7 GHz methanol masers discovered in the Arecibo Methanol Maser Galactic Plane Survey. The systemic velocities of the sources were derived from 13 CO (J = 2-1), CS (J = 5-4), and NH 3 observations made with the ARO Submillimeter Telescope, the APEX telescope, and the Effelsberg 100 m telescope, respectively. Kinematic distance ambiguities were resolved using H I self-absorption with H I data from the VLA Galactic Plane Survey. We observe roughly three times as many sources at the far distance compared to the near distance. The vertical distribution of the sources has a scale height of ∼ 30 pc, and is much lower than that of the Galactic thin disk. We use the distances derived in this work to determine the luminosity function of 6.7 GHz maser emission. The luminosity function has a peak at approximately 10 -6 L sun . Assuming that this luminosity function applies, the methanol maser population in the Large Magellanic Cloud and M33 is at least 4 and 14 times smaller, respectively, than in our Galaxy.

  12. ATLAS Higgs and Supersymmetry Physics Prospects at the High-Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00225111; The ATLAS collaboration

    2018-01-01

    The Higgs physics prospects at the high-luminosity LHC are presented, assuming an energy of sqrt(s) = 14 TeV and a data sample of 3000-4000 fb-1. In particular, the ultimate precision attainable on the couplings measurements of the 125 GeV Higgs boson with SM fermions and bosons is discussed, as well as perspectives on the search for the Standard Model di-Higgs production, which could lead to the measurement of the Higgs boson self-coupling. Scenarios of SUSY sparticle production, among others, have been used as benchmark to drive the design of the component upgrades, and to evaluate the sensitivity of the upgraded accelerator and detector. This talk will also overview the expected sensitivity that the ATLAS experiment will have to SUSY sparticle production with 3000 fb-1 pf proton-proton collisions collected at a centre of mass energy of 14 TeV.

  13. Luminosity monitor topics for RHIC spin and AA, and pA interactions

    International Nuclear Information System (INIS)

    Underwood, D.

    1998-01-01

    This is a note to define topics to be studied in more depth for the Luminosity monitoring for Spin Asymmetries. My numerical examples here are to stimulate discussion and should be taken with a grain of salt. The RHIC Spin experiments will require a very high degree of coordination between the experiments and the accelerator. For example see AGS/RHIC/SN 035. In this note we list some of the issues to be considered in monitoring the relative luminosity between various beam-beam spin combinations and beam-gas combinations. We give simplified numerical examples of the problems encountered in doing the luminosity monitoring to the 10 -4 level. It is hoped that this will provide a framework for serious study of these problems with simulations and other means. Many of the issues may also be relevant to pA and AA running where there may be sizable beam-gas backgrounds

  14. Multi-Bunch Simulations of the ILC for Luminosity Performance Studies

    CERN Document Server

    White, Glen; Walker, Nicholas J

    2005-01-01

    To study the luminosity performance of the International Linear Collider (ILC) with different design parameters, a simulation was constructed that tracks a multi-bunch representation of the beam from the Damping Ring extraction through to the Interaction Point. The simulation code PLACET is used to simulate the LINAC, MatMerlin is used to track through the Beam Delivery System and GUINEA-PIG for the beam-beam interaction. Included in the simulation are ground motion and wakefield effects, intra-train fast feedback and luminosity-based feedback systems. To efficiently study multiple parameters/multiple seeds, the simulation is deployed on the Queen Mary High-Throughput computing cluster at Queen Mary, University of London, where 100 simultaneous simulation seeds can be run.

  15. Luminosity determination in $\\sqrt{s}$ = 7 TeV proton collisions using the LHCf Front Counter at LHC

    CERN Document Server

    Taki, K; Bonechi, L; Bongi, M; Castellini, G; D'Alessandro, R; Fukatsu, K; Haguenauer, M; Itow, Y; Kasahara, K; Mase, T; Kawade, K; Ricciarini, S; Macina, D; Masuda, K; Menjo, H; Mitsuka, G; Muraki, Y; Noda, K; Papini, P; Perrot, A L; Sako, T; Shimizu, Y; Suzuki, K; Suzuki, T; Tamura, T; Torii, S; Tricomi, A; Turner, W C

    2012-01-01

    In the Large Hadron Collider forward (LHCf) experiment, the luminosity is determined with the counting rates of detectors called Front Counter. During the LHCf physics operation at √s = 7 TeV in 2010, two series of calibration run in the conversion factors from the counting rate to the luminosity were carried out on 26th of April and 9th of May. Using the luminosities determined in the April and May scans with 5 % and 4 % accuracy, the conversion factors were determined with 5.0 % accuracy, providing the luminosity determination at the LHCf experiment with this accuracy.

  16. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    International Nuclear Information System (INIS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude

  17. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    Science.gov (United States)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  18. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Wirström, Eva S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  19. The Glare Effect Test and the Impact of Age on Luminosity Thresholds

    Directory of Open Access Journals (Sweden)

    Alessio Facchin

    2017-06-01

    Full Text Available The glare effect (GE is an illusion in which a white region appears self-luminous when surrounded by linearly decreasing luminance ramps. It has been shown that the magnitude of the luminosity effect can be modulated by manipulating the luminance range of the gradients. In the present study we tested the thresholds for the GE on two groups of adults: young (20–30 years old and elderly (60–75 years old. Purpose of our perspective study was to test the possibility of transforming the GE into a test that could easily measure thresholds for luminosity and discomfort glare. The Glare Effect Test (GET consisted in 101 printed cards that differed from each other for the range of luminance ramps. Participants were assessed with GET and a battery of visual tests: visual acuity, contrast sensitivity, illusion of length perception, and Ishihara test. Specifically in the GET, participants were required to classify cards on the basis of two reference cards (solid black-no gradient; full range black to white gradient. PSEs of the GE show no correlation with the other visual tests, revealing a divergent validity. A significant difference between young and elderly was found: contrary to our original expectations, luminosity thresholds of GE for elderly were higher than those for young, suggesting a non-direct relationship between luminosity perception and discomfort glare.

  20. Improvement in luminosity, background and chamber protection with beam scrapers in the ISR

    CERN Document Server

    Bryant, P; Johnsen, Kjell; Laeger, H; Montague, Brian William St. Leger; Neet, D; Schneider, F W; Turner, S

    1973-01-01

    The Intersecting Storage Rings (ISR) are equipped with beam scrapers used for various purposes such as improving luminosity, reducing background, beam diagnostics and for protection of machine components. A description is given of the different types of scrapers and of the results in the various applications obtained during the last year. In particular, the substantial improvements in luminosity and background by scraping are described. (3 refs).

  1. Theoretical stellar luminosity functions and globular cluster ages and compositions

    International Nuclear Information System (INIS)

    Ratcliff, S.J.

    1985-01-01

    The ages and chemical compositions of the stars in globular clusters are of great interest, particularly because age estimates from the well-known exercise of fitting observed color-magnitude diagrams to theoretical predictions tend to yield ages in excess of the Hubble time (an estimate to the age of the Universe) in standard cosmological models, for currently proposed high values of Hubble's constant (VandenBerg 1983). Relatively little use has been made of stellar luminosity functions of the globular clusters, for which reliable observations are now becoming available, to constrain the ages or compositions. The comparison of observed luminosity functions to theoretical ones allows one to take advantage of information not usually used, and has the advantage of being relatively insensitive to our lack of knowledge of the detailed structure of stellar envelopes and atmospheres. A computer program was developed to apply standard stellar evolutionary theory, using the most recently available input physics (opacities, nuclear reaction rates), to the calculation of the evolution of low-mass Population II stars. An algorithm for computing luminosity functions from the evolutionary tracks was applied to sets of tracks covering a broad range of chemical compositions and ages, such as may be expected for globular clusters

  2. Flare colours and luminosities

    International Nuclear Information System (INIS)

    Cristaldi, S.; Rodono, M.

    1975-01-01

    Flare colours determined from simultaneous UBV observations made at Catania Observatory and from sequential UBV observations made at McDonald Observatory are presented. They fit fairly well with the theoretical colours computed according to the Gurzadian's (1970) non-thermal model. Only part of the observed flare colours are consistent with the solar type models by Gershberg (1967) and Kunkel (1970). From a B-band patrol of UV Cet-type stars carried out from 1967 to 1972, some quantitative estimates of flare frequencies and luminosities and their average contributions to the stellar radiation are given. The corresponding parameters for the Sun, which were estimated from 'white light' flare activity, are also given for comparison. The Sun and V 1216 Sgr can be regarded as low-activity flare stars of the type found by Kunkel (1973). (Auth.)

  3. The luminosity function for different morphological types in the CfA Redshift Survey

    Science.gov (United States)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  4. Different Luminosity Correlation of GRBs ZB Zhang1,2,∗, HC Liu1,2

    Indian Academy of Sciences (India)

    Abstract. We report our recent understanding about a tight correlation between relative spectral lag and luminosity (or redshift) for γ-ray bursts. The latest investigations indicate that the empirical correlations got from. BATSE bursts also exist for Swift/BAT ones. The special luminosity- lag correlation is much similar to that of ...

  5. Comparison of star formation rates from Hα and infrared luminosity as seen by Herschel

    NARCIS (Netherlands)

    Domínguez Sánchez, H.; Mignoli, M.; Pozzi, F.; Calura, F.; Cimatti, A.; Gruppioni, C.; Cepa, J.; Sánchez Portal, M.; Zamorani, G.; Berta, S.; Elbaz, D.; Le Floc'h, E.; Granato, G. L.; Lutz, D.; Maiolino, R.; Matteucci, F.; Nair, P.; Nordon, R.; Pozzetti, L.; Silva, L.; Silverman, J.; Wuyts, S.; Carollo, C. M.; Contini, T.; Kneib, J. -P; Le Fèvre, O.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J. -F; Le Brun, V.; Maier, C.; Magnelli, B.; Pelló, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Riguccini, L.; Tanaka, M.; Tasca, L. A. M.; Tresse, L.; Vergani, D.; Zucca, E.

    2012-01-01

    We empirically MD test the relation between the SFR(LIR) derived from the infrared luminosity, LIR, and the SFR(Ha) derived from the Ha emission line luminosity using simple conversion relations. We use a sample of 474 galaxies at z = 0.060.46 with both Ha detection [from 20k redshift Cosmological

  6. Proceeding Paper for HSTD11 Conference about Luminosity Measurement by Pixel-Cluster-Counting

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2018-01-01

    The Insertable B-Layer (IBL) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D pixel modules at two extremities. We use the longitudinal cluster size distributions in 3D modules of the IBL to determine the number of pixel clusters produced by primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting (PCC) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider (LHC) and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  7. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Jeong; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400 Austin, TX 78712-1205 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Pontoppidan, Klaus M., E-mail: hyojeong@astro.as.utexas.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  8. Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies

    Science.gov (United States)

    Collison, Alan J.; Watson, William D.

    1995-01-01

    In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.

  9. Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution

    Science.gov (United States)

    Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2017-12-01

    Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.

  10. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  11. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  12. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2-3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS

    International Nuclear Information System (INIS)

    Reddy, Naveen A.; Steidel, Charles C.

    2009-01-01

    We use the deep ground-based optical photometry of the Lyman Break Galaxy (LBG) Survey to derive robust measurements of the faint-end slope (α) of the UV luminosity function (LF) at redshifts 1.9 ≤ z ≤ 3.4. Our sample includes >2000 spectroscopic redshifts and ∼31000 LBGs in 31 spatially independent fields over a total area of 3261 arcmin 2 . These data allow us to select galaxies to 0.07L* and 0.10L* at z ∼ 2 and z ∼ 3, respectively. A maximum-likelihood analysis indicates steep values of α(z = 2) = -1.73 ± 0.07 and α(z = 3) = -1.73 ± 0.13. This result is robust to luminosity-dependent systematics in the Lyα equivalent width and reddening distributions, and is similar to the steep values advocated at z ∼> 4, and implies that ∼93% of the unobscured UV luminosity density at z ∼ 2-3 arises from sub-L* galaxies. With a realistic luminosity-dependent reddening distribution, faint to moderately luminous galaxies account for ∼>70% and ∼>25% of the bolometric luminosity density and present-day stellar mass density, respectively, when integrated over 1.9 ≤ z 2 contrasts with the shallower slope inferred locally, suggesting that the evolution in the faint-end slope may be dictated simply by the availability of low-mass halos capable of supporting star formation at z ∼< 2.

  13. Luminosity determination in pp collisions at √(s) = 8 TeV using the ATLAS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Universite Mohamed Premier et LPTPM, Faculte des Sciences, Oujda (Morocco); Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others

    2016-12-15

    The luminosity determination for the ATLAS detector at the LHC during pp collisions at √(s) = 8 TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of δL/L = ± 1.9% is obtained for the 22.7 fb{sup -1} of pp collision data delivered to ATLAS at √(s) = 8 TeV in 2012. (orig.)

  14. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y. [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Watson, L. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Avenue de l' Observatoire, F-75014, Paris (France); Dietrich, M. [Department of Physics and Astronomy, Ohio University, Athens, OH 45601 (United States); Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria BV V9E 2E7 (Canada)

    2013-08-20

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.

  15. The European Large Area ISO Survey - IV. The preliminary 90-mu m luminosity function

    DEFF Research Database (Denmark)

    Serjeant, S.; Efstathiou, A.; Oliver, S.

    2001-01-01

    We present the luminosity function of 90-mum-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z = 0.3. Their luminosities are in the range 10(9)

  16. Development of Silicon Detectors for the High Luminosity LHC

    International Nuclear Information System (INIS)

    Eichhorn, Thomas Valentin

    2015-07-01

    The Large Hadron Collider (LHC) at CERN will be upgraded to a High Luminosity LHC in the year 2022, increasing the instantaneous luminosity by a factor of five. This will have major impacts on the experiments at the LHC, such as the Compact Muon Solenoid (CMS) experiment, and especially for their inner silicon tracking systems. Among other things, the silicon sensors used therein will be exposed to unprecedented levels of radiation damage, necessitating a replacement of the entire tracking detector. In order to maintain the excellent current performance, a new tracking detector has to be equipped with sensors of increased radiation hardness and higher granularity. The CMS experiment is undertaking an extensive R and D campaign in the search for the future silicon sensor technology baseline to be used in this upgrade. This thesis presents two methods suitable for use in this search: finite element TCAD simulations and test beam measurements. The simulations are focussed on the interstrip capacitance between sensor strips and are compared to measurements before and after the inclusion of radiation damage effects. A geometrical representation of the strip sensors used in the campaign has been found, establishing the predictive power of simulations. The test beam measurements make use of the high-precision pixel telescopes available at the DESY-II test beam facility. The performance of these telescopes has been assessed and their achievable pointing resolution has been found to be below 2 μm. Thin, epitaxial silicon is a candidate material for usage in radiation hard sensors for the future CMS tracking detector. Sample strip sensors of this material have been irradiated to fluences of up to 1.3 x 10 16 n eq /cm 2 with 800 MeV or 23 GeV protons. Test beam measurements with 5 GeV electrons have been performed to investigate the radiation hardness of epitaxial sensors using the pixel beam telescopes. The epitaxial device under test (DUT) has been integrated into the

  17. Conceptual design of a high luminosity 510 MeV collider

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cornacchia, M.

    1991-01-01

    The authors discuss the magnetic lattice design of a high luminosity 510 MeV electron-positron collider, based on high field superconduction bending dipoles. The design criteria are flexibility in the choice of the tune and beta functions at the interaction point, horizontal emittance larger than 1 mm mrad to produce a luminosity larger than 10 32 cm -2 s -1 , large synchrotron radiation damping rate, and large momentum compaction. The RF system parameter are chosen to provide a short bunch length also when the beam energy spread is determined by the microwave instability. A satisfactory ring dynamic aperature, and a simultaneous small value of the horizontal and vertical beta function at the interaction point, the authors expect will be achieved by using Cornacchia-Halbach modified sextupoles

  18. ATLAS Fast Tracker Status and Tracking at High luminosity LHC

    CERN Document Server

    Ilic, Nikolina; The ATLAS collaboration

    2018-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. This talk describes the electronics system used for the FTK’s massive parallelization. The installation, commissioning and running of the system is happening in 2016, and is detailed in this talk. Tracking at High luminosity LHC is also presented.

  19. Physics of a high-luminosity Tau-Charm Factory

    International Nuclear Information System (INIS)

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity (∼10 33 cm -2 s -1 ) e + e - collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in τ and charm physics are emphasized

  20. ATLAS Physics Prospects at the High-Luminosity LHC

    CERN Document Server

    Bindi, Marcello; The ATLAS collaboration

    2017-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  1. Radio variability survey of very low luminosity protostars

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  2. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detector based on CMOS pixel techology. Such detectors provide charge collection, analog and digital amplification in the same silicon bulk. The radiation hardness is obtained with multiple nested wells that have embedded the CMOS electronics with sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC. A number of alternative solutions have been explored and characterised, and are presented in this document.

  3. Measurement of time-integrated $D^0\\to hh$ asymmetries at LHCb

    CERN Document Server

    Marino, Pietro

    2016-01-01

    LHCb collected the world’s largest sample of charm decays during LHC Run I, corresponding to an integrated luminosity of 3fb$^{−1}$. This has permitted many precision measurements of charm mixing and CP violation parameters. One of the most precise and important observables is the so-called $\\Delta A_{CP}$ parameter, corresponding to the difference between the time-integrated CP asymmetry in singly Cabibbo-suppressed $D^{0} \\rightarrow K^{+}K^{-}$ and $D^{0} \\rightarrow \\pi^{+}\\pi{-}$ decay modes. The flavour of the $D^{0}$ meson is inferred from the charge of the pion in $D^{∗+} \\rightarrow D^{0}\\pi^{+}$ and $D^{∗−} \\rightarrow \\overline{D}^{0}\\pi^{-}$ decays. $\\Delta A_{CP} \\equiv A_{raw}(K^{+}K^{−})−A_{raw}(\\pi^{+}\\pi{−})$ is measured to be $\\Delta A_{CP}=(−0.10±0.08±0.03)$%, where the first uncertainty is statistical and the second systematic. The measurement is consistent with the no- CP -violation hypothesis and represents the most precise measurement of time-integrated CP asymmetry ...

  4. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    International Nuclear Information System (INIS)

    Sargsyan, Lusine A.; Weedman, Daniel W.

    2009-01-01

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 μm polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z ν (7.7 μm)] - 42.57 ± 0.2, for SFR in M sun yr -1 and νL ν (7.7 μm) the luminosity at the peak of the 7.7 μm PAH feature in erg s -1 , is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 ± 0.05)log [νL ν (7.7 μm)] - 21.5 ± 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between νL ν (7.7 μm) and L ir , this becomes log [SFR(PAH)/SFR(UV)]= (0.53 ± 0.05)log L ir - 4.11 ± 0.18, for L ir in L sun . Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of ∼10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z ∼ 2.5. Application of this factor explains why the most luminous starbursts discovered by Spitzer at z ∼ 2.5 are optically faint; with this amount of extinction, the optical magnitude of a starburst

  5. Temperatures and luminosities of white dwarfs in dwarf novae

    International Nuclear Information System (INIS)

    Smak, J.

    1984-01-01

    Far ultraviolet radiation observed in dwarf novae at minimum can only be attributed to their white dwarfs. In three systems white dwarfs are detected directly through their eclipses. These data are used to determine the effective temperatures and luminosities of white dwarfs. The resulting temperatures range from about logT e = 4.1 to about 4.9, with typical values of about 4.5. The luminosities range from about logL 1 = 31.0 to about 33.5 and show correlation with the average accretion rates. Radiation from white dwarfs is likely to be the source of excitation of the emission lines from disks. It is also argued that the heating by the white dwarf can significantly modify the structure of the innermost parts of the disk and, particularly, inhibit the incidence of thermal instability in that region. 26 refs., 2 figs., 1 tab. (author)

  6. Absolute luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam-Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used *van der Meer scan* method (VDM). The technique has been used in 10 LHC fills during 2012 including and also provided a first luminosity measurement for proton-lead collisions. This talk presents the principles of the gas injection and the improvements reached with the increased pressure. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch. Those uncertainties are becoming the dominating factor because the uncertainty on the total beam current have been reduced.

  7. Integrated performance of the LHC at 25 ns without and with Linac4

    International Nuclear Information System (INIS)

    Wenninger, J

    2014-01-01

    The performance of the LHC above 6.5 TeV will depend on many factors. The available beams and their brightness defines together with achievable beta* the potential peak luminosity. For some cases the peak luminosity and the associated event pile-up may degrade the quality of the data recorded by the experiments. Such cases will require luminosity leveling for which a number of options are available. The peak performance may also be limited by cooling capacities and other equipment related issues, including machine protection as well as UFOs. The 25 ns beams require in addition substantial periods of scrubbing. The performance of the LHC in terms of integrated luminosity will be evaluated for various scenarios involving 25 ns beams, taking into account potential limitations from the various sources

  8. Integrated performance of the LHC at 25 ns without and with Linac4

    CERN Document Server

    Wenninger, J

    2014-01-01

    The performance of the LHC above 6.5 TeV will depend on many factors. The available beams and their brightness defines together with achievable beta* the potential peak luminosity. For some cases the peak luminosity and the associated event pile-up may degrade the quality of the data recorded by the experiments. Such cases will require luminosity leveling for which a number of options are available. The peak performance may also be limited by cooling capacities and other equipment related issues, including machine protection as well as UFOs. The 25 ns beams require in addition substantial periods of scrubbing. The performance of the LHC in terms of integrated luminosity will be evaluated for various scenarios involving 25 ns beams, taking into account potential limitations from the various sources.

  9. Pulse simulations and heat flow measurements for the ATLAS Forward Calorimeter under high-luminosity conditions

    CERN Document Server

    AUTHOR|(SzGeCERN)758133; Zuber, Kai

    The high luminosity phase of the Large Hadron Collider at CERN is an important step for further and more detailed studies of the Standard Model of particle physics as well as searches for new physics. The necessary upgrade of the ATLAS detector is a challenging task as the increased luminosity entails many problems for the different detector parts. The liquid-argon Forward Calorimeter suffers signal-degradation effects and a high voltage drop of the supply potential under high-luminosity conditions. It is possible that the argon starts to boil due to the large energy depositions. The effect of the high-luminosity environment on the liquid-argon Forward Calorimeter has been simulated in order to investigate the level of signal degradation. The results show a curvature of the triangular pulse shape that appears prolonged when increasing the energy deposit. This effect is caused by the drop in the electric potential that produces a decrease in the electric field across the liquid-argon gap in the Forward Calorim...

  10. Photometric studies of globular clusters in the Andromeda Nebula. Luminosity function for old globular clusters

    International Nuclear Information System (INIS)

    Sharov, A.S.; Lyutyj, V.M.

    1989-01-01

    The luminosity function for old globular clusters in M 31 is presented. The objects were selected according to their structural and photometric properties. At the usually accepted normal (Gaussian) distribution, the luminosity function is characterized by the following parameters: the mean magnitude, corrected for the extinction inside M 31, V-bar 0 =16 m ,38±0 m .08, and the absolute magnitude M-bar v =-8 m .29 assuming )m-M) v =23 m .67, standard deviation σ M v =1 m .16±0 m .08 and total object number N=300±17. Old globular clusters in M 31 are in the average about one magnitude more luminous then those in our Galaxy (M v ≅ -7 m .3). Intrinsic luminosity dispersions of globular clusters are nearly the same in both galaxies. Available data on globular clusters in the Local Group galaxies against the universality of globular luminosity function with identical parameters M v and σ M v

  11. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  12. Fast measurement of luminosity at LEP by detecting the single bremsstrahlung photons

    International Nuclear Information System (INIS)

    Bini, C.; De Zorzi, G.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1991-01-01

    Luminosity and beam angular divergence have been measured at LEP with a fast monitor based on the single bremsstrahlung process e + e - → e + e - γ. The photons emitted at the interaction point 1 are detected by an electromagnetic calorimeter: both the photon energy and the impact point are measured. The beam angular divergence and the luminosity are determined in few minutes with a statistical error of 1%. With the present experimental layout the systematic error is of few percent; it would be reduced by performing the measurement on an experimental interaction point. (orig.)

  13. Distribution Of Maximal Luminosity Of Galaxies In The Sloan Digital Sky Survey

    CERN Document Server

    Regós, E; Rácz, Z; Taghizadeh, M; Ozogany, K

    2010-01-01

    Extreme value statistics (EVS) is applied to the pixelized distribution of galaxy luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR6 Main Galaxy Sample (MGS), divided into red and blue subsamples, as well as the Luminous Red Galaxy Sample (LRGS). A non-parametric comparison of the EVS of the luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for independent variables distributed by the Press-Schechter law) indicates a good agreement provided uncertainties arising both from the finite size of the samples and from the sample size distribution are accounted for.

  14. Electron-cloud effects in high-luminosity colliders

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.

    1998-01-01

    Electron-cloud instabilities are expected to be important in most high-luminosity double-ring colliders. In this report, the author describes a few parameter regimes and some critical parameter dependences of this type of instability, and illustrate these with simulation results for the PEP-II and KEK B factories, the LHC, the VLHC, and DAPHNE. In addition, the author studies the possibility and the potential impact of an electron cloud in the interaction region.

  15. Searching for integrable systems

    International Nuclear Information System (INIS)

    Cary, J.R.

    1984-01-01

    Lack of integrability leads to undesirable consequences in a number of physical systems. The lack of integrability of the magnetic field leads to enhanced particle transport in stellarators and tokamaks with tearing-mode turbulence. Limitations of the luminosity of colliding beams may be due to the onset of stochasticity. Enhanced radial transport in mirror machines caused by the lack of integrability and/or the presence of resonances may be a significant problem in future devices. To improve such systems one needs a systematic method for finding integrable systems. Of course, it is easy to find integrable systems if no restrictions are imposed; textbooks are full of such examples. The problem is to find integrable systems given a set of constraints. An example of this type of problem is that of finding integrable vacuum magnetic fields with rotational transform. The solution to this problem is relevant to the magnetic-confinement program

  16. The low-luminosity end of the radius-luminosity relationship for active galactic nuclei

    DEFF Research Database (Denmark)

    Bentz, M.C.; Denney, K.D.; Vestergaard, Marianne

    2013-01-01

    fit to the relationship using a Bayesian analysis finds a slope of , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy...... with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new...... results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts....

  17. Experimental Study of Natural Gas Temperature Effects on the Flame Luminosity and No Emission

    Directory of Open Access Journals (Sweden)

    S. M. Javadi

    2012-06-01

    Full Text Available The flame radiation enhancement in gas-fired furnaces significantly improves the thermal efficiency without significantly affecting the NOx emissions. In this paper, the effects of inlet natural gas preheating on the flame luminosity, overall boiler efficiency, and NO emission in a 120 kW boiler have been investigated experimentally. Flame radiation is measured by use of laboratory pyranometer with photovoltaic sensor. A Testo350XL gas analyzer is also used for measuring the temperature and combustion species. The fuel is preheated from the room temperature to 350°C. The experimental measurements show that the preheating of natural gas up to about 240°C has no considerable effect on the flame luminosity. The results show that increasing the inlet gas temperature from 240°C, abruptly increases the flame luminosity. This luminosity increase enhances the boiler efficiency and also causes significant reduction in flame temperature and NO emission. The results show that increasing the inlet gas temperature from 240°C to 300°C increases the flame luminous radiation by 60% and boiler efficiency by 20%; while the maximum flame temperature and the boiler NO emission show a 10% and 8% decrease respectively.

  18. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    Energy Technology Data Exchange (ETDEWEB)

    Wylezalek, Dominika; Vernet, Joël; De Breuck, Carlos [European Southern Observatory, Karl-Schwarzschildstr.2, D-85748 Garching bei München (Germany); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Galametz, Audrey [INAF-Osservatorio di Roma, Via Frascati 33, I-00040, Monteporzio (Italy); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Jarvis, Matt [Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Hatch, Nina [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Seymour, Nick [CASS, P.O. Box 76, Epping, NSW, 1710 (Australia); Stanford, Spencer A. [Physics Department, University of California, Davis, CA 95616 (United States)

    2014-05-01

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z{sub f} ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

  19. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    International Nuclear Information System (INIS)

    Wylezalek, Dominika; Vernet, Joël; De Breuck, Carlos; Stern, Daniel; Brodwin, Mark; Galametz, Audrey; Gonzalez, Anthony H.; Jarvis, Matt; Hatch, Nina; Seymour, Nick; Stanford, Spencer A.

    2014-01-01

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z f ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

  20. A Size-Luminosity Relationship for Protoplanetary Disks in Lupus

    Science.gov (United States)

    Terrell, Marie; Andrews, Sean

    2018-01-01

    The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.

  1. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  2. Comparison of ionospheric conductances and auroral luminosities observed simultaneously with the Chatanika radar and the DE 1 auroral imagers

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.; Craven, J.D.; Frank, L.A.; Miller, K.

    1989-01-01

    Auroral luminosities at vacuum ultraviolet (VUV) wavelengths are combined with simultaneous and coincident ionospheric electron density measurements made by the Chatanika radar to relate ionospheric conductances to optical emissions. The auroral luminosities are obtained along the magnetic meridian through Chatanika with the auroral imaging photometers on the Dynamics Explorer 1 (DE 1) satellite as the radar scans in the magnetic meridian to measure electron density and conductivity as a function of altitude and latitude. The observations are used to determine an empirical relationship between the luminosities measured at VUV wavelengths and the Hall and Pedersen conductances. Of particular interest is the response of the photometer when using the VUV filter designated 123W. This filter admits the 130.4- and 135.6-nm emissions of atomic oxygen and the Lyman-Birge-Hopfield (LBH) bands of N 2 . Model calculations of the LBH and O I (135.6 nm) contributions to the total measured luminosity indicate that the relation between 123W luminosity and Pedersen conductance is less sensitive to the average energy of the precipitating electrons than the corresponding relation between the Hall conductance and 123W luminosity. This is because both the luminosity and Pedersen conductance decrease with increasing electron energy. The luminosity decreases with increasing energy because the emissions are more strongly absorbed by O 2 above the region of production. The Pedersen conductance decreases with increasing energy because the Pedersen mobility maximizes at an altitude of about 140 km. In contrast, the Hall conductance increases with increasing electron energy, so that the relation between Hall conductance and luminosity depends on the hardness of the precipitation

  3. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218105; The ATLAS collaboration

    2016-01-01

    The High-Luminosity Large Hadron Collider will provide an unprecedented opportunity to study the properties of the Higgs boson and eventually probe for new physics beyond the Standard Model. The large anticipated data sample will allow for more precise investigations of topics already studied with earlier data samples, as well as for studies of processes that are accessible only with the much larger statistics. Rates and signal strengths will be measured for a variety of Higgs-boson production and decay modes, allowing extraction of the Higgs boson couplings. Particular final states will allow differential cross-sections to be measured for all production modes, and for studies of the Higgs width and CP properties, as well as the tensor structure of its coupling to bosons. An important part of the High-Luminosity LHC experimental program will be investigations of the Higgs self-coupling, which is accessible via studies of di-Higgs production. In this note the projections of the ATLAS physics reach in the Higgs...

  4. A New Determination of the Luminosity Function of the Galactic Halo.

    Science.gov (United States)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  5. Integrated colors in the solar neighborhood

    International Nuclear Information System (INIS)

    Malagnini, M.L.

    1979-01-01

    The bivariate spectral type-luminosity class distribution combined with the z-distribution and broad-band photometric data have been used in order to derive integrated colors in Johnson's UBVRIJKL system for the solar neighborhood. The frequency distribution of white dwarfs is also taken into account for the U-B,B-V colors. (Auth.)

  6. Towards a new LHC Interaction Region design for a luminosity upgrade

    CERN Document Server

    Strait, J; Limon, P; Mokhov, N V; Sen, T; Zlobin, A V; Brüning, Oliver Sim; Ostojic, R; Rossi, L; Ruggiero, F; Taylor, T; ten Kate, H; Devred, A; Gupta, R; Harrison, M; Peggs, S; Pilat, F; Caspi, S; Gourlay, S; Sabbi, G

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-beta insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in beta* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions.

  7. Towards a new LHC interaction region design for a luminosity upgrade

    International Nuclear Information System (INIS)

    James Strait et al.

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-β insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in β* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions

  8. Fast and precise luminosity measurement at the international linear

    Indian Academy of Sciences (India)

    The detectors of the ILC will feature a calorimeter system in the very forward region. The system comprises mainly two electromagnetic calorimeters: LumiCal, which is dedicated to the measurement of the absolute luminosity with highest precision and BeamCal, which uses the energy deposition from beamstrahlung pairs ...

  9. Protogalaxy interactions in newly formed clusters: Galaxy luminosities, colors, and intergalactic gas

    International Nuclear Information System (INIS)

    Silk, J.

    1978-01-01

    The role of protogalaxy interactions in galactic evolution is studied during the formation of galaxy clusters. In the early stages of the collapse, coalescent encounters of protogalaxies lead to the development of a galactic luminosity function. Once galaxies acquire appreciable random motions, mutual collisions between galaxies in rich clusters will trigger the collapse of interstellar clouds to form stars. This provides both a source for enriched intracluster gas and an interpretation of the correlation between luminosity and color for cluster elliptical galaxies. Other observational consequences that are considered include optical, X-ray, and diffuse nonthermal radio emission from newly formed clusters of galaxies

  10. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    Science.gov (United States)

    Rimoldi, M.

    2017-12-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detectors based on CMOS technology. Such detectors can provide charge collection, analog amplification and digital processing in the same silicon wafer. The radiation hardness is improved thanks to multiple nested wells which give the embedded CMOS electronics sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC . A number of alternative solutions have been explored and characterised. In this document, test results of the sensors fabricated in different CMOS processes are reported.

  11. Thermodynamics and luminosities of rainbow black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  12. Luminosity Determination in $pp$ Collisions at $\\sqrt{s}$ = 7 TeV using the ATLAS Detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Ackers, Mario; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahmed, Hossain; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Jose; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arms, Kregg; Armstrong, Stephen Randolph; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Guimaraes da Costa, J.Barreiro; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Belhorma, Bouchra; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bischof, Reinhard; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Boaretto, Christian; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Bock, Rudolf; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; B{oser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Booth, Richard; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Braccini, Saverio; Bracinik, Juraj; Braem, Andre; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Caprio, Mario; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Montoya, German D.Carrillo; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Cerna, Cedric; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervetto, Mario; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Clark, Allan G.; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Correard, Sebastien; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; La Cruz-Burelo, Eduard De; de la Taille, Christophe; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedes, George; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Dennis, Chris; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diaz Gomez, Manuel Maria; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferguson, Douglas; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Ferro, Fabrizio; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fohlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gildemeister, Otto; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gollub, Nils Peter; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Gonella, Laura; Gong, Chenwei; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Gorski, Boguslaw Tomasz; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanere, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hartel, Roland; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jrgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harper, Robert; Harrington, Robert; Harris, Orin; Harrison, Karl; Hart, John; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Hendriks, Patrick John; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Hens, Tobias; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hindson, Daniel; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Hollins, Ivan; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homer, Jim; Homma, Yasuhiro; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Mark; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joo, Kwang; Joram, Christian; Jorge, Pedro; Jorgensen, Sigrid; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Konig, Stefan; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Serguei; Kotov, Vladislav; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Krobath, Gernot; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambacher, Marion; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Celine; Lechowski, Matthieu; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lehto, Mark; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepidis, Johannes; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Lim, Heuijin; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lynn, James; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maasen, Michael; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandi{c, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Mangin-Brinet, Mariane; Manjavidze, Ioseb; Mann, Alexander; Mann, Anthony; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mas, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGarvie, Scott; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McMahon, Tania; McMahon, Tom; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Merkl, Doris; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Migliaccio, Agostino; Mijovi{c, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Miscetti, Stefano; Misiejuk, Andrzej; Mitra, Ankush; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moye, Tamsin; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nasteva, Irina; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Nauyock, Farah; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neukermans, Lionel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nicholson, Caitriana; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norniella Francisco, Olga; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Odino, Gian Andrea; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver, Concepcion; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ottewell, Brian; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Oye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Palmer, Matt; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadopoulou, Theodora; Paramonov, Alexander; Park, Su-Jung; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peeters, Simon Jan Marie; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petereit, Emil; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottlander, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Ruhr, Frederik; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schweiger, Dietmar; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sj{olin, J{orgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Stefanidis, Efstathios; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockmanns, Tobias; Stockton, Mark; Stodulski, Marek; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Gary; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Ventura, Silvia; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vertogardov, Leonid; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sebastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Joshua C.; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Stephanie; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zdrazil, Marian; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovi{c, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of mu, the average number of inelastic interactions per bunch crossing. Residual time- and mu-dependence between the methods is less than 2% for 0luminosity calibrations, performed using beam separation scans, have a common systematic uncertainty of +/-11, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most +/-2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detect...

  13. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    International Nuclear Information System (INIS)

    Weng Shanshan; Zhang Shuangnan

    2011-01-01

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity (∼0.1 L Edd ), compared with BH LMXBs at much lower luminosity (∼0.03 L Edd ), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  14. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    International Nuclear Information System (INIS)

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-01-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  15. Fast and precise luminosity measurement at the international linear ...

    Indian Academy of Sciences (India)

    6. — journal of. December 2007 physics pp. 1151–1157. Fast and precise luminosity measurement ... The fast investigation of the collision quality for intrabunch feedback and the ... consisting of the sensor, the absorber and an interconnection structure. 2. ... outer radius of BeamCal is increased to keep the angular overlap.

  16. THE RELATION OF OPTICAL/ULTRAVIOLET AND X-RAY EMISSION IN LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Xu Yadi

    2011-01-01

    We study the relation of optical/UV and X-ray emission in the low luminosity active galactic nuclei (LLAGNs), using a sample of 49 sources including 28 local Seyfert galaxies and 21 low-ionization nuclear emission-line regions with optical/UV spectral luminosity at wavelength λ = 2500 A, 23.0 ≤ log L ν(2500A) (erg s -1 Hz -1 ) ≤ 27.7, and X-ray spectral luminosity at 2 keV, 20.5 ≤ log L ν(2keV) ≤ 25.3. Strong correlations are found between the X-ray luminosity and the optical/UV-to-X-ray index, α ox , with the optical/UV luminosity, with slopes very similar to the findings for the luminous AGNs in previous works. The correlation between α ox and L ν(2keV) is very weak, as is that found for the luminous AGNs in the majority of previous similar works. We also study the relation between α ox and the Eddington ratio L bol /L Edd for our sample and find a significant anti-correlation for the sources with L bol /L Edd ∼ -3 , which is opposite to the correlation between the two variables for the luminous AGNs. Using the advection-dominated accretion flow (ADAF) model, we roughly reproduce this anti-correlationship for the two variables for the LLAGNs. This result strongly supports the ADAF as a candidate for the accretion mode in LLAGNs.

  17. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-04-10

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.

  18. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    International Nuclear Information System (INIS)

    Krolewski, Alex G.; Eisenstein, Daniel J.

    2015-01-01

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h −1 Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity

  19. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  20. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  1. Principles and strategies for monitoring data collection integrity in a multi-site randomized clinical trial of a behavioral intervention.

    Science.gov (United States)

    Phillips-Salimi, Celeste R; Donovan Stickler, Molly A; Stegenga, Kristin; Lee, Melissa; Haase, Joan E

    2011-08-01

    Although treatment fidelity strategies for enhancing the integrity of behavioral interventions have been well described, little has been written about monitoring data collection integrity. This article describes the principles and strategies developed to monitor data collection integrity of the "Stories and Music for Adolescent/Young Adult Resilience During Transplant" study (R01NR008583, U10CA098543, and U10CA095861)-a multi-site Children's Oncology Group randomized clinical trial of a music therapy intervention for adolescents and young adults undergoing stem cell transplant. The principles and strategies outlined in this article provide one model for development and evaluation of a data collection integrity monitoring plan for behavioral interventions that may be adapted by investigators and may be useful to funding agencies and grant application reviewers in evaluating proposals. Copyright © 2011 Wiley Periodicals, Inc.

  2. The Evolution of the Type Ia Supernova Luminosity Function

    NARCIS (Netherlands)

    Shen, K.J.; Toonen, S.; Graur, O.

    2017-01-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia

  3. The ATLAS Fast Tracker and Tracking at the High-Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236423; The ATLAS collaboration

    2016-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. These procedings describe the electronics system used for the FTK’s massive parallelization. An overview of the installation, commissioning and running of the system is given. The ATLAS upgrades planned to enable tracking at the High Luminosity LHC are also discussed.

  4. Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators

    Directory of Open Access Journals (Sweden)

    Alessandro Variola

    2011-03-01

    Full Text Available The luminosity of Compton x-ray and γ sources depends on the average current in electron bunches, the energy of the laser pulses, and the geometry of the particle bunch to laser pulse collisions. To obtain high power photon pulses, these can be stacked in a passive optical resonator (Fabry-Perot cavity especially when a high average flux is required. But, in this case, owing to the presence of the optical cavity mirrors, the electron bunches have to collide at an angle with the laser pulses with a consequent luminosity decrease. In this article a crab-crossing scheme is proposed for Compton sources, based on a laser amplified in a Fabry-Perot resonator, to eliminate the luminosity losses given by the crossing angle, taking into account that in laser-electron collisions only the electron bunches can be tilted at the collision point. We report the analytical study on the crab-crossing scheme for Compton gamma sources. The analytical expression for the total yield of photons generated in Compton sources with the crab-crossing scheme of collision is derived. The optimal collision angle of the bunch was found to be equal to half of the collision angle. At this crabbing angle, the maximal yield of scattered off laser photons is attained thanks to the maximization, in the collision process, of the time spent by the laser pulse in the electron bunch. Estimations for some Compton source projects are presented. Furthermore, some schemes of the optical cavities configuration are analyzed and the luminosity calculated. As illustrated, the four-mirror two- or three-dimensional scheme is the most appropriate for Compton sources.

  5. The physics program of a high-luminosity asymmetric B Factory at SLAC

    International Nuclear Information System (INIS)

    1989-10-01

    A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is explained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these consistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies of other aspects of the physics of b quarks, as well as high-precision measurements in τ and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 x 10 33 cm -2 sec -1 , the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample

  6. Toward an integrative social identity model of collective action : A quantitative research synthesis of three socio-psychological perspectives

    NARCIS (Netherlands)

    Van Zomeren, M.; Postmes, T.; Spears, R.

    An integrative social identity model of collective action (SIMCA) is developed that incorporates 3 socio-psychological perspectives on collective action. Three meta-analyses synthesized a total of 182 effects of perceived injustice, efficacy, and identity on collective action (corresponding to these

  7. Toward an integrative Social Identity model of Collective Action: A quantitative research synthesis of three socio-psychological perspectives.

    NARCIS (Netherlands)

    van Zomeren, M.; Postmes, T.; Spears, R.

    2008-01-01

    An integrative social identity model of collective action (SIMCA) is developed that incorporates 3 socio-psychological perspectives on collective action. Three meta-analyses synthesized a total of 182 effects of perceived injustice, efficacy, and identity on collective action (corresponding to these

  8. Study of TileCal scintillator irradiation using the minimum bias integrators

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387867; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the LHC. It provides precise energy measurements of hadrons, jets, taus and missing transverse energy. The monitoring and calibration of the calorimeter response at each stage of the signal development is done by a movable $^{137}$Cs radioactive source, a laser calibration system and a charge injection system. Moreover, during LHC data taking, an integrator-based readout provides the signals coming from inelastic proton-proton collisions at predominantly low momentum transfer (minimum bias events) and allows monitoring of the instantaneous ATLAS luminosity as well as the response of calorimeter cells. The integrator currents have been used to detect and quantify the effect of TileCal scintillator irradiation using the data taken in 2012 and 2015 that correspond to about 22 fb$^{−1}$ and 4 fb$^{−1}$ of integrated luminosity, respectively. Finally, the response variation for an irradiated cell has been studied comb...

  9. IMPACT OF H{sub 2}-BASED STAR FORMATION MODEL ON THE z {>=} 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jaacks, Jason; Thompson, Robert [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4002 (United States); Nagamine, Kentaro, E-mail: jaacksj@physics.unlv.edu [Visiting Scientist. Kavli Institute for the Physics and Mathematics for the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan. (Japan)

    2013-04-01

    We present the results of a numerical study examining the effect of an H{sub 2}-based star formation (SF) model on the rest-frame UV luminosity function and star formation rate function (SFRF) of z {>=} 6 galaxies, and the implications for reionization. Using cosmological hydrodynamical simulations outfitted with an H{sub 2}-SF model, we find good agreement with our previous results (non-H{sub 2} SF model) and observations at M{sub uv} {<=} -18. However, at M{sub uv} > -18, we find that the LF deviates from both our previous work and current observational extrapolations, producing significantly fewer low-luminosity galaxies and exhibiting additional turnover at the faint end. We constrain the redshift evolution of this turnover point using a modified Schechter function that includes additional terms to quantify the turnover magnitude (M{sub uv}{sup t}) and subsequent slope ({beta}). We find that M{sub uv}{sup t} evolves from M{sub uv}{sup t}=-17.33 (at z = 8) to -15.38 (z = 6), while {beta} becomes shallower by {Delta}{beta} = 0.22 during the same epoch. This occurs in an M{sub uv} range that will be observable by James Webb Space Telescope. By integrating the SFRF, we determine that even though the H{sub 2}-SF model significantly reduces the number density of low-luminosity galaxies at M{sub uv} > -18, it does not suppress the total SFR density enough to affect the capability of SF to maintain reionization.

  10. The HELLAS2XMM survey. IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    Science.gov (United States)

    Fiore, F.; Brusa, M.; Cocchia, F.; Baldi, A.; Carangelo, N.; Ciliegi, P.; Comastri, A.; La Franca, F.; Maiolino, R.; Matt, G.; Molendi, S.; Mignoli, M.; Perola, G. C.; Severgnini, P.; Vignali, C.

    2003-10-01

    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8*E-15-4*E-13 erg cm-2 s-1 and the total area surveyed is 0.9 square degrees. One of the most interesting results (which is found also in deeper sourveys) is that about 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have Rprotect la25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/Oprotect ga10 (to be compared with 9 sources known from the deeper, pencil-beam surveys). Eight of them are narrow line QSO (seemingly the extension to very high luminosity of the type 2 Seyfert galaxies), four are broad line QSO. The results from our survey are also used to make reliable predictions about the luminosity of the sources not yet spectroscopically identified, both in our sample and in deeper Chandra and XMM-Newton samples. We then use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, Chandra Deep Field North 1Msec, Chandra SSA13 and XMM-Newton Lockman Hole flux limited samples), 221 with measured redshifts, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (log L2-10 keV=43-44 erg s-1) increase in number at a much slower rate than the very high luminosity sources (log L2-10 keV >44.5 erg s-1), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with log L2-10 keV 44

  11. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  12. The luminosity function and formation rate history of GRBs

    International Nuclear Information System (INIS)

    Firmani, C.; Avila-Reese, V.; Ghisellini, G.; Tutukov, A.V.

    2005-01-01

    The isotropic luminosity function (LF) and formation rate history (FRH) of long GRBs is by the first time constrained by using jointly both the observed GRB peak-flux and redshift distributions. Our results support an evolving LF and a FRH that keeps increasing after z = 2. We discuss some interesting implications related to these results

  13. Study of the mass-luminosity in binary stars

    International Nuclear Information System (INIS)

    Gimenez, A.; Zamorano, J.

    1986-01-01

    The results of a study of the mass-luminosity relation for main-sequence stars are presented as obtained from the latest data provided by the analysis of eclipsing and visual binary systems. The derived numerical values are discussed in light of their practical use and possible parametrizations indicated by internal structure homologous models. Finally, the astrophysical significance of our results is evaluated and they are compared to available theoretical models. (author)

  14. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; Buscher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; Mattig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Schafer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nuclear Research (CERN) in Switzerland. It is designed to observe phenomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4 10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5 micro seconds. It is primarily composed of the Calori...

  15. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; B\\"{u}scher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; M\\"{a}ttig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Sch\\"{a}fer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nu- clear Research (CERN) in Switzerland. It is designed to observe phe- nomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4×10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the AT- LAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5μs. It is primarily composed of the Calorimete...

  16. Detector development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  17. A luminosity monitor for LHC [notes of a thesis

    CERN Document Server

    Perrot, Anne Laure

    2000-01-01

    LHC luminosity will reach 10/sup 34/ cm/sup -2/ s/sup -1/ but special runs at 10/sup 28/ cm/sup -2/ s/sup -1/ are foreseen. Thus a luminosity monitor must have a dynamic range of six orders of magnitude. A good tolerance to radiation is also required. A detector using both ionisation and secondary emission techniques has been studied in this context. Its design is based on monitors used previously at the CERN PS and SPS. Special attention was devoted to minimise leakage currents. Linearity in both Secondary Emission Counter (SEC) and Ionisation Chamber (IC) modes has been tested from ~10/sup 4/ incident particles to ~10/sup 8/ incident particles. SEC is linear above ~5.10/sup 6/ incident particles while IC is linear over the full studied range. However, because of the radiation environment at LHC, the SEC mode is much preferred at high intensity. A solution actually foreseen is to switch from IC to SEC mode when the intensity is around 5.10/sup 6/ incident particles per second corresponding to an LHC luminosi...

  18. Physics prospects at the high luminosity LHC with ATLAS

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration

    2016-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  19. Improved luminosity determination in pp collisions at $\\sqrt{s}$ = 7 TeV using the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Göpfert, Thomas; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Köpke, Lutz; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Möser, Nicolas; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Timo; Muenstermann, Daniel; Müller, Thomas; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-08-14

    The luminosity calibration for the ATLAS detector at the LHC during pp collisions at $\\sqrt{s}$ = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at $\\sqrt{s}$ = 7 TeV. A luminosity uncertainty of $\\delta L/L = \\pm$ 3.5% is obtained for the 47 pb-1 of data delivered to ATLAS in 2010, and an uncertainty of $\\delta L/L = \\pm$ 1.8% is obtained for the 5.5 fb-1 delivered in 2011.

  20. The evolution of temperature and bolometric luminosity in Type II supernovae

    Science.gov (United States)

    Faran, T.; Nakar, E.; Poznanski, D.

    2018-01-01

    In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

  1. The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    Science.gov (United States)

    Xia, F.; Fu, Y. N.

    2010-01-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  2. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars

    Science.gov (United States)

    Xia, Fang; Fu, Yan-Ning

    2010-07-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  3. COLLECTIVE PROFESSIONAL DEVELOPMENT FOR THE INTEGRATION OF ICT IN HIGHER EDUCATION

    DEFF Research Database (Denmark)

    Castro Guzman, Willy

    integration, and the teacher professional development as means to promote adoption. With the recognition of the potential of ICT in education, the study reflects the appropriateness of the dominant traditional approach to the first and second-order barriers to technology and attempts to overcome......In this thesis, I explore, analyse and reflect on the individual practice of adoption and the collective practice of integration of technology in teaching and learning in a Higher Education Institution. The study addresses the connections between ICT adoption in Education, the barriers of ICT...... the tradition of Cultural-Historical Activity Theory and brings significant changes in comparison with more traditional approaches in professional development to ICT adoption. The results of the intervention supports the idea of the need for changes in professional development to develop the professors’ agency...

  4. Hints on the Broad Line Region Structure of Quasars at High and Low Luminosities

    Directory of Open Access Journals (Sweden)

    Marziani Paola

    2011-09-01

    Full Text Available Quasars show a considerable spectroscopic diversity. However, the variety of quasar spectra at low redshifts is non-random: a principal component analysis applied to large samples customarily identifies two main eigenvectors. In this contribution we show that the range of quasar optical spectral properties observed at low-z and associated with the first eigenvector is preserved up to z ≈ 2 in a sample of high luminosity quasars. We also describe two major luminosity effects.

  5. Initial test results of an ionization chamber shower detector for a LHC luminosity monitor

    International Nuclear Information System (INIS)

    Datte, P.; Beche, J.-F.; Haguenauer, M.; Manfredi, P.F.; Manghisoni, M.; Millaud, J.; Placidi, M.; Ratti, L.; Riot, V.; Schmickler, H.; Speziali, V.; Turner, W.

    2002-01-01

    A novel, segmented, multi-gap, pressurized gas ionization chamber is being developed for optimization of the luminosity of the LHC. The ionization chambers are to be installed in the front quadrupole and zero degree neutral particle absorbers in the high luminosity IRs and sample the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. In this paper we report the initial results of our second test of this instrumentation in an SPS external proton beam. Single 300 GeV protons are used to simulate the hadronic/electromagnetic shower produced by the forward collision products from the interaction regions of the LHC. The capability of instrumentations to measure the luminosity of individual bunches in a 40 MHz bunch train is demonstrated

  6. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $Nb_3Sn$ Quadrupole for the High-Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Stoynev, S.; et al.

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.

  7. Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations

    Science.gov (United States)

    Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.

    2017-12-01

    The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.

  8. Machine constraints for experiments in an intermediate luminosity interaction region

    International Nuclear Information System (INIS)

    Groom, D.

    1989-05-01

    We summarize existing information about the luminosity as a function of clear space between the interaction point and the front of the final-focus triplet, and about the minimum beam pipe dimensions (stay-clear dimensions) in the region. 7 refs., 4 figs., 1 tab

  9. Spectral Properties, Generation Order Parameters, and Luminosities for Spin-powered X-Ray Pulsars

    Science.gov (United States)

    Wang, Wei; Zhao, Yongheng

    2004-02-01

    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters arising from the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method stemming from the concept of GOPs to estimate the nonthermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar cap accelerator model, which is consistent with most observed X-ray pulsar data. The ratio between the X-ray luminosity estimated by our method and the pulsar's spin-down power is consistent with the LX~10-3Lsd feature.

  10. GRB 120422A: a Low-Luminosity Gamma-Ray Burst Driven by a Central Engine

    Science.gov (United States)

    Zhang, Bin-Bin; Fan, Yi-Zhong; Shen, Rong-Feng; Xu, Dong; Zhang, Fu-Wen; Wei, Da-Ming; Burrows, David N.; Zhang, Bing; Gehrels, Neil

    2012-01-01

    GRB 120422A is a low-luminosity gamma-ray burst (GRB) associated with a bright supernova, which distinguishesitself by its relatively short T(sub 90) (approximately 5 s) and an energetic and steep-decaying X-ray tail. We analyze the Swift BurstAlert Telescope and X-ray Telescope data and discuss the physical implications. We show that the steep declineearly in the X-ray light curve can be interpreted as the curvature tail of a late emission episode around 58-86 s,with a curved instantaneous spectrum at the end of the emission episode. Together with the main activity in thefirst 20 s and the weak emission from 40 s to 60 s, the prompt emission is variable, which points to a centralengine origin in contrast to a shock-breakout origin, which is used to interpret some other nearby low-luminosity supernova GRBs. Both the curvature effect model and interpreting the early shallow decay as the coasting externalforward shock emission in a wind medium provide a constraint on the bulk Lorentz factor to be around several.Comparing the properties ofGRB 120422A and other supernova GRBs,we find that themain criterion to distinguish engine-driven GRBs from shock-breakout GRBs is the time-averaged -ray luminosity. Engine-driven GRBs likelyhave a luminosity above approximately 10(sup 48) erg s(sup -1).

  11. New Technique for Luminosity Measurement Using 3D Pixel Modules in the ATLAS IBL Detector

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2017-01-01

    The Insertable b-Layer ( IBL ) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D modules at two extremities. We use the cluster length distributions in 3D sensor modules of the IBL to determine the number of primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting ( PCC ) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  12. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  13. The second-order luminosity-redshift relation in a generic inhomogeneous cosmology

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Marozzi, Giovanni; Veneziano, Gabriele; Nugier, Fabien

    2012-01-01

    After recalling a general non-perturbative expression for the luminosity-redshift relation holding in a recently proposed 'geodesic light-cone' gauge, we show how it can be transformed to phenomenologically more convenient gauges in which cosmological perturbation theory is better understood. We present, in particular, the complete result on the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic perturbed cosmology, assuming that appreciable vector and tensor perturbations are only generated at second order. This relation provides a basic ingredient for the computation of the effects of stochastic inhomogeneities on precision dark-energy cosmology whose results we have anticipated in a recent letter. More generally, it can be used in connection with any physical information carried by light-like signals traveling along our past light-cone

  14. Integrated Data Collection Analysis (IDCA) Program — Ammonium Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Phillips, Jason J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms, Redstone Arsenal, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-05-17

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of ammonium nitrate (AN). AN was tested, in most cases, as both received from manufacturer and dried/sieved. The participants found the AN to be: 1) insensitive in Type 12A impact testing (although with a wide range of values), 2) completely insensitive in BAM friction testing, 3) less sensitive than the RDX standard in ABL friction testing, 4) less sensitive than RDX in ABL ESD testing, and 5) less sensitive than RDX and PETN in DSC thermal analyses.

  15. Development of a novel diamond based detector for machine induced background and luminosity measurements

    International Nuclear Information System (INIS)

    Hempel, Maria

    2017-07-01

    of the sensors comprises a two pad instead of one pad metallization. 24 instead of the previous 8 single crystal diamond sensors were foreseen for the new BCM1F to enhance the robustness and redundancy. To instrument BCM1F, 59 sensors were electrically characterized by measuring the leakage current, signal stability and charge collection efficiency. Quality criteria were defined to select sensors for the final installation. An overview of these measurements including a summary of the results is given in this thesis. In addition, an upgraded amplifier was developed within the collaboration in 130 nm CMOS technology. It has a peaking time of 7 ns instead of the 22 ns of the one previously installed. A BCM1F prototype comprising a two pad sensor and the upgraded amplifier was tested at the DESY-II accelerator in a 5 GeV electron beam. Results of these test-beam measurements are presented in this thesis as well as simulations to interpret the measurements. The installation of the upgraded BCM1F was completed in 2014. In 2015 BCM1F was commissioned and started to measure luminosity and machine induced background. At the end, the thesis will describe both types of measurements with the focus on machine induced background demonstrating the functionality of BCM1F.

  16. Development of a novel diamond based detector for machine induced background and luminosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2017-07-15

    of the sensors comprises a two pad instead of one pad metallization. 24 instead of the previous 8 single crystal diamond sensors were foreseen for the new BCM1F to enhance the robustness and redundancy. To instrument BCM1F, 59 sensors were electrically characterized by measuring the leakage current, signal stability and charge collection efficiency. Quality criteria were defined to select sensors for the final installation. An overview of these measurements including a summary of the results is given in this thesis. In addition, an upgraded amplifier was developed within the collaboration in 130 nm CMOS technology. It has a peaking time of 7 ns instead of the 22 ns of the one previously installed. A BCM1F prototype comprising a two pad sensor and the upgraded amplifier was tested at the DESY-II accelerator in a 5 GeV electron beam. Results of these test-beam measurements are presented in this thesis as well as simulations to interpret the measurements. The installation of the upgraded BCM1F was completed in 2014. In 2015 BCM1F was commissioned and started to measure luminosity and machine induced background. At the end, the thesis will describe both types of measurements with the focus on machine induced background demonstrating the functionality of BCM1F.

  17. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    Science.gov (United States)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  18. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439268; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 1034 cm−2s−1, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and expected ...

  19. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00421104; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 \\times 10^{34} cm^{-2}s^{-1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture an...

  20. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    George, Simon; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 10^{34} cm^{−2}s^{−1}, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and ...

  1. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    Balunas, William Keaton; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 × 10^{34}$ cm$^{−2}$s$^{−1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architectur...

  2. Web-Ice: Integrated Data Collection and Analysis for Macromolecular Crystallography

    International Nuclear Information System (INIS)

    Gonzalez, Ana; Gonzalez, Ana; Moorhead, Penjit; McPhillips, Scott E.; Song, Jinhu; Sharp, Ken; Taylor, John R.; Adams, Paul D.; Sauter, Nicholas K.; Soltis, S. Michael

    2007-01-01

    New software tools are introduced to facilitate diffraction experiments involving large numbers of crystals. While existing programs have long provided a framework for lattice indexing, Bragg spot integration, and symmetry determination, these initial data processing steps often require significant manual effort. This limits the timely availability of data analysis needed for high-throughput procedures, including the selection of the best crystals from a large sample pool, and the calculation of optimal data collection parameters to assure complete spot coverage with minimal radiation damage. To make these protocols more efficient, we developed a network of software applications and application servers, collectively known as Web-Ice. When the package is installed at a crystallography beamline, a programming interface allows the beamline control software (e.g., Blu-Ice/DCSS) to trigger data analysis automatically. Results are organized based on a list of samples that the user provides, and are examined within a Web page, accessible both locally at the beamline or remotely. Optional programming interfaces permit the user to control data acquisition through the Web browser. The system as a whole is implemented to support multiple users and multiple processors, and can be expanded to provide additional scientific functionality. Web-Ice has a distributed architecture consisting of several stand-alone software components working together via a well defined interface. Other synchrotrons or institutions may integrate selected components or the whole of Web-Ice with their own data acquisition software. Updated information about current developments may be obtained at http://smb.slac.stanford.edu/research/developments/webice

  3. Derivation of the stellar luminosity function in the direction of the south galactic pole by a statistical method

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, S L

    1981-12-01

    A method is developed to calculate absolute magnitude probability distributions for stars from a proper motion survey. This method uses ellipsoidal velocity distributions to predict tangential velocity distributions. The tangential velocity distributions are transformed into absolute magnitude distributions. The absolute magnitude distributions for the stars in a proper motion survey may be summed to produce a luminosity function. This method was applied to stars in the region of the south galactic pole and the resulting luminosity function is statistically identical to Luyten's 1968 luminosity function.

  4. The fraction of AGNs in major merger galaxies and its luminosity dependence

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  5. Galaxies at z ~ 6: The UV Luminosity Function and Luminosity Density from 506 HUDF, HUDF Parallel ACS Field, and GOODS i-Dropouts

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Franx, M.

    2006-12-01

    We have detected 506 i-dropouts (z~6 galaxies) in deep, wide-area HST ACS fields: HUDF, enhanced GOODS, and HUDF parallel ACS fields (HUDF-Ps). The contamination levels are ~92% are at z~6). With these samples, we present the most comprehensive, quantitative analyses of z~6 galaxies yet and provide optimal measures of the UV luminosity function (LF) and luminosity density at z~6, and their evolution to z~3. We redetermine the size and color evolution from z~6 to z~3. Field-to-field variations (cosmic variance), completeness, flux, and contamination corrections are modeled systematically and quantitatively. After corrections, we derive a rest-frame continuum UV (~1350 Å) LF at z~6 that extends to M1350,AB~-17.5 (0.04L*z=3). There is strong evidence for evolution of the LF between z~6 and z~3, most likely through a brightening (0.6+/-0.2 mag) of M* (at 99.7% confidence), although the degree depends on the faint-end slope. As expected from hierarchical models, the most luminous galaxies are deficient at z~6. Density evolution (φ*) is ruled out at >99.99% confidence. Despite large changes in the LF, the luminosity density at z~6 is similar to (0.82+/-0.21 times) that at z~3. Changes in the mean UV color of galaxies from z~6 to z~3 suggest an evolution in dust content, indicating that the true evolution is substantially larger: at z~6 the star formation rate density is just ~30% of the z~3 value. Our UV LF is consistent with z~6 galaxies providing the necessary UV flux to reionize the universe. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9803. Observations have been carried out using the Very Large Telescope at the European Southern Observatory (ESO) Paranal Observatory, under program ID LP168.A-0485.

  6. Integration of the CMS Phase 1 Pixel Detector

    CERN Document Server

    Kornmayer, Andreas

    2018-01-01

    During the extended year-end technical stop 2016/17 the CMS Pixel Detector has been replaced. The new Phase 1 Pixel Detector is designed for a luminosity that could exceed $\\text{L} = 2x10^{34} cm^{−2}s^{−1}$. With one additional layer in the barrel and the forward region of the new detector, combined with the higher hit rates as the LHC luminosity increases, these conditions called for an upgrade of the data acquisition system, which was realised based on the $\\mu$TCA standard. This contribution focuses on the experiences with integration of the new detector readout and control system and reports on the operational performance of the CMS Pixel detector.

  7. Triggered lightning return stroke luminosity to 1 km in two optical bands

    Science.gov (United States)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Wilkes, R.; Kotovsky, D. A.; Hare, B.

    2017-12-01

    Measured luminosity waveforms are presented and analyzed as a function of time and channel height using two types of avalanche photodiodes (APDs) for 19 triggered-lightning return strokes during summer 2016. APD type I had an optical bandwidth from 200 nm to 1,000 nm, with peak response at 600 nm (green light), and APD type II had an optical bandwidth from 400 nm to 1,000 nm with a peak response at 800 nm (red light). Ten channel heights ranging from 0 to 1 km (in 100 m increments) were observed by both types of APDs, 20 total, and measured the luminosity in vertical channel slices of approximately 3 m. For APD type I, the return stroke luminosity waveforms generally decay faster following its singular initial peak (IP) than the waveforms recorded by APD type II. APD type II waveforms often exhibit a second maxima (SM) following the IP. Although the wave shapes recorded by each APD type diverge after the IP, the risetime of the initial luminosity wave front preceding the IP for both types of APDs agrees well. The divergence in the luminosity wave shapes following the IP indicates that APD type II is capable of recording spectral lines that are excited or enhanced after the IP more effectively than APD type I. In addition, the SM/IP ratio increases as a function of channel height, indicating that the spectral range better captured by APD type II is more predominant at the top of the channel than at the bottom. Finally, because APD type II responds better to longer wavelengths than APD type I, and because the SM occurs a few microseconds after the IP (at the channel-bottom), we conjecture that the SM following the IP is a consequence of spectral lines excited during the cooling of the channel, following the initial high-temperature/pressure stage. Our data suggests that the initial optical radiation during the return stroke is dominated by ionized atomic species (e.g. four NII lines between 450 and 600 nm, better captured by APD type I) radiated at higher

  8. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  9. Towards a Level-1 tracking trigger for the ATLAS experiment at the High Luminosity LHC

    CERN Document Server

    Martin, T A D; The ATLAS collaboration

    2014-01-01

    At the high luminosity HL-LHC, upwards of 160 individual proton-proton interactions (pileup) are expected per bunch-crossing at luminosities of around $5\\times10^{34}$ cm$^{-2}$s$^{-1}$. A proposal by the ATLAS collaboration to split the ATLAS first level trigger in to two stages is briefly detailed. The use of fast track finding in the new first level trigger is explored as a method to provide the discrimination required to reduce the event rate to acceptable levels for the read out system while maintaining high efficiency on the selection of the decay products of electroweak bosons at HL-LHC luminosities. It is shown that available bandwidth in the proposed new strip tracker is sufficiency for a region of interest based track trigger given certain optimisations, further methods for improving upon the proposal are discussed.

  10. A magnetically driven origin for the low luminosity GRB 170817A associated with GW170817

    Science.gov (United States)

    Tong, Hao; Yu, Cong; Huang, Lei

    2018-06-01

    The gamma-ray burst GR170817A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out. However, the luminosity and energetics of GRB 170817A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.

  11. THE EVOLUTION OF THE FAR-UV LUMINOSITY FUNCTION AND STAR FORMATION RATE DENSITY OF THE CHANDRA DEEP FIELD SOUTH FROM z = 0.2 TO 1.2 WITH SWIFT/UVOT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Gronwall, Caryl; Wolf, Christopher; Siegel, Michael H.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Hoversten, Erik A. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Avenue, Chapel Hill, NC 27599 (United States); Page, Mathew, E-mail: lmz5057@psu.edu [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2015-08-01

    We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600–4000 Å) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500 Å) luminosity function (LF) in four redshift bins between z = 0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional V{sub max} method with bootstrap errors, and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ∼2 mag from z ∼ 1 to z ∼ 0.3, implying that star formation activity was substantially higher at z ∼ 1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities (SFRDs) from z = 0.2 to 1.2. We find evolution consistent with an increase proportional to (1 + z){sup 1.9} out to z ∼ 1. Our luminosity densities and star formation rates are consistent with those found in the literature but are, on average, a factor of ∼2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies’ ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the SFRDs by ∼1 dex across all four redshift bins.

  12. Z-boson-exchange contributions to the luminosity measurements at LEP and c.m.s.-energy-dependent theoretical errors

    International Nuclear Information System (INIS)

    Beenakker, W.; Martinez, M.; Pietrzyk, B.

    1995-02-01

    The precision of the calculation of Z-boson-exchange contributions to the luminosity measurements at LEP is studied for both the first and second generation of LEP luminosity detectors. It is shown that the theoretical errors associated with these contributions are sufficiently small so that the high-precision measurements at LEP, based on the second generation of luminosity detectors, are not limited. The same is true for the c.m.s.-energy-dependent theoretical errors of the Z line-shape formulae. (author) 19 refs.; 3 figs.; 7 tabs

  13. LHC abort gap cleaning studies during luminosity operation

    CERN Document Server

    Bartmann, W; Bracco, C; Bravin, E; Goddard, B; Höfle, W; Jacquet, D; Jeff, A; Kain, V; Meddahi, M; Roncarolo, F; Uythoven, J; Valuch, D; Gianfelice-Wendt, E

    2012-01-01

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  14. A PHYSICAL MODEL FOR THE 0 {approx}< z {approx}< 8 REDSHIFT EVOLUTION OF THE GALAXY ULTRAVIOLET LUMINOSITY AND STELLAR MASS FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tacchella, Sandro; Carollo, C. Marcella [Department of Physics, Institute for Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland); Trenti, Michele, E-mail: tasandro@phys.ethz.ch [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2013-05-10

    We present a model to understand the redshift evolution of the UV luminosity and stellar mass functions of Lyman break galaxies. Our approach is based on the assumption that the luminosity and stellar mass of a galaxy is related to its dark-matter (DM) halo assembly and gas infall rate. Specifically, galaxies experience a burst of star formation at the halo assembly time, followed by a constant star formation rate, representing a secular star formation activity sustained by steady gas accretion. Star formation from steady gas accretion is the dominant contribution to the galaxy UV luminosity at all redshifts. The model is calibrated by constructing a galaxy luminosity versus halo mass relation at z = 4 via abundance matching. After this luminosity calibration, the model naturally fits the z = 4 stellar mass function, and correctly predicts the evolution of both luminosity and stellar mass functions from z = 0 to z = 8. While the details of star formation efficiency and feedback are hidden within our calibrated luminosity versus halo mass relation, our study highlights that the primary driver of galaxy evolution across cosmic time is the buildup of DM halos, without the need to invoke a redshift-dependent efficiency in converting gas into stars.

  15. The properties of X-ray-selected active galactic nuclei. I - Luminosity function, cosmological evolution, and contribution to the diffuse X-ray background

    International Nuclear Information System (INIS)

    Maccacaro, T.; Della ceca, R.; Gioia, I.M.; Morris, S.L.; Stocke, J.T.

    1991-01-01

    X-ray luminosity functions (XLFs) and their implications for cosmological evolution are determined for 420 X-ray-selected active galactic nuclei (AGN). The local XLFs flatten considerably when L(x) is less than or equal to 5 x 10 to the 42nd ergs/s, and higher-luminosity XLF are demonstrated to fit a power-law approximation. Cosmological evolution in terms of two pure-luminosity evolutionary models is directly supported by model-independent AGN XLF, showing weak evolution when z is less than 0.4 and more pronounced evolution at higher z. The parameter C is determined for the two models, and the values support the 'slower' evolution of these AGN relative to QSOs selected optically. The deevolved XLF best-fit slope is found to be 3.05 for high luminosities and 1.35 for low luminosities, with no evidence of slope changes for other luminosities. 38 refs

  16. EVN observations of low-luminosity flat-spectrum active galactic nuclei

    NARCIS (Netherlands)

    Caccianiga, A; Marcha, MJM; Thean, A; Dennett-Thorpe, J

    2001-01-01

    We present and discuss the results of very-long baseline interferometry (VLBI, EVN) observations of three low-luminosity (P-5GHz <10(25) W Hz(-1)) broad emission line active galactic nuclei (AGNs) carefully selected from a sample of flat-spectrum radio sources (CLASS). Based on the total and the

  17. Conceptual study of the cryostats for the cold powering system for the triplets of the High Luminosity LHC

    Science.gov (United States)

    Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.

  18. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    Science.gov (United States)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-05-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  19. THE BLACK HOLE MASS-GALAXY LUMINOSITY RELATIONSHIP FOR SLOAN DIGITAL SKY SURVEY QUASARS

    International Nuclear Information System (INIS)

    Salviander, S.; Shields, G. A.; Bonning, E. W.

    2015-01-01

    We investigate the relationship between the mass of the central supermassive black hole, M BH , and the host galaxy luminosity, L gal , in a sample of quasars from the Sloan Digital Sky Survey Data Release 7. We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H+K features in the composite spectra. We evaluate the evolution in the M BH -L gal relationship by examining the redshift dependence of Δ log M BH , the offset in M BH from the local M BH -L gal relationship. There is little systematic trend in Δ log M BH out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, σ * , we find agreement of our derived host luminosities with the locally observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for σ * in statistical studies

  20. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.