WorldWideScience

Sample records for integrated lightweight flexible

  1. High-flexibility, noncollapsing lightweight hose

    Science.gov (United States)

    Williams, D.A.

    1993-04-20

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  2. Integrated engineering increases flexibility

    International Nuclear Information System (INIS)

    Smith, Ray

    1991-01-01

    Integrated Engineering (IE) can be used to describe the best use of increasingly rare good engineering talent in an increasingly competive world. A number of organisations are now moving towards IE without any general agreement on a precise definition. The engineering division of British Nuclear Fuels (BNFL) is one such organisation. This feature covers the reasoning behind the decision, and our experience to date. BNFL engineering division is responsible primarily for the provision of major facilities on BNFL operational sites. This provision includes feasibility, front end and detailed design, procurement, installation and commissioning. Task force working has been used for some of the large projects. But the future workload is expected to comprise many more smaller projects. At the same time, equipment is becoming more complex and the need for mutual understanding and appreciation between disciplines is increasing. To meet this increasing need for flexibility, BNFL has decided to move to the matrix structure of project management and functional departments described in the article. (Author)

  3. Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    Science.gov (United States)

    Sauti, Godfrey (Inventor); Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Wilkinson, Stephen P. (Inventor); Meador, Mary Ann B. (Inventor); Guo, Haiquan N. (Inventor)

    2015-01-01

    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

  4. Saint: a lightweight integration environment for model annotation.

    Science.gov (United States)

    Lister, Allyson L; Pocock, Matthew; Taschuk, Morgan; Wipat, Anil

    2009-11-15

    Saint is a web application which provides a lightweight annotation integration environment for quantitative biological models. The system enables modellers to rapidly mark up models with biological information derived from a range of data sources. Saint is freely available for use on the web at http://www.cisban.ac.uk/saint. The web application is implemented in Google Web Toolkit and Tomcat, with all major browsers supported. The Java source code is freely available for download at http://saint-annotate.sourceforge.net. The Saint web server requires an installation of libSBML and has been tested on Linux (32-bit Ubuntu 8.10 and 9.04).

  5. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  6. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  7. Linked Metadata - lightweight semantics for data integration (Invited)

    Science.gov (United States)

    Hendler, J. A.

    2013-12-01

    fly integration may prefer to do more traditional data queries and then convert and link the 'views' returned at retrieval time, providing another means of using the linked data infrastructure without having to convert whole datasets to triples to provide linking. Web companies have been taking advantage of 'lightweight' semantic metadata for search quality and optimization (cf. schema.org), linking networks within and without web sites (cf. Facebook's Open Graph Protocol), and in doing various kinds of advertisement and user modeling across datasets. Scientific metadata, on the other hand, has traditionally been geared at being largescale and highly descriptive, and scientific ontologies have been aimed at high expressivity, essentially providing complex reasoning services rather than the less expressive vocabularies needed for data discovery and simple mappings that can allow humans (or more complex systems) when full scale integration is needed. Although this work is just the beginning for providing integration, as the community creates more and more datasets, discovery of these data resources on the Web becomes a crucial starting place. Simple descriptors, that can be combined with textual fields and/or common community vocabularies, can be a great starting place on bringing scientific data into the Web of Data that is growing in other communities. References: [1] Pouchard, Line C., et al. "A Linked Science investigation: enhancing climate change data discovery with semantic technologies." Earth science informatics 6.3 (2013): 175-185.

  8. Flexible, lightweight and paper-like supercapacitors assembled from nitrogen-doped multi-dimensional carbon materials

    DEFF Research Database (Denmark)

    Cao, Xianyi; Duus, Jens Øllgaard; Chi, Qijin

    2017-01-01

    hydrophilicity. In this work, a facile approach is developed to prepare nitrogen-doped carbon based flexible and free-standing paper electrodes {N3CPs) built from three types of representative carbon materials in different dimensions {OD: carbon black nanoparticles (CBNPs); 10: carbon nanotubes {CNTs); 20: GRSs......Flexible supercapacitors have shown great potential to fulfill the increasing demand on wearable, miniature, lightweight, thin and highly efficient power supply systems for advanced portable electronics. Owing to its superior supercapacitive performances as well as high chemical stability...... and excellent mechanical flexibility, graphene {GR} based flexible supercapacitors have received much research attention in recent years. However, GR-based supercapacitors often suffer from GR restacking leading to capacitance attenuation. Therefore, some macromolecules, polymers and zero...

  9. On Integrity of Flexible Displays

    Science.gov (United States)

    Bouten, Piet C. P.

    Nowadays two display types are dominant in the display market: the bulky cathode ray tube (CRT) and liquid crystal displays (LCD). Both types use glass as substrate material. The LCD display is the dominant player for mobile applications, in for instance mobile phones and portable computers. In the development of displays and their applications a clear interest exists to replace the rigid rectangular display cells by free-shaped, curved or even roll-up cells. These types of applications require flexible displays.

  10. Integrated flexible capacity and inventory management under flexible capacity uncertainty

    OpenAIRE

    Paç, Mehmet Fazıl

    2006-01-01

    Cataloged from PDF version of article. In a manufacturing environment with volatile demand, inventory management can be coupled with dynamic capacity adjustments for handling the fluctuations more effectively. In this study we consider the integrated management of inventory and flexible capacity management under seasonal stochastic demand and uncertain labor supply. The capacity planning problem is investigated from the workforce planning perspective. We consider a manufactu...

  11. Integrated Power, Avionics, and Software (IPAS) Flexible Systems Integration

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Power, Avionics, and Software (IPAS) facility is a flexible, multi-mission hardware and software design environment. This project will develop a...

  12. Integrated Design Optimization of a 5-DOF Assistive Light-weight Anthropomorphic Arm

    DEFF Research Database (Denmark)

    Zhou, Lelai; Bai, Shaoping; Hansen, Michael Rygaard

    2011-01-01

    An integrated dimensional and drive train optimization method was developed for light-weight robotic arm design. The method deals with the determination of optimal link lengths and the optimal selection of motors and gearboxes from commercially available components. Constraints are formulated...... on the basis of kinematic performance and dynamic requirements, whereas the main objective is to minimize the weight. The design of a human-like arm, which is 10 kg in weight with a load capacity of 5 kg, is described....

  13. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  14. F2AC: A Lightweight, Fine-Grained, and Flexible Access Control Scheme for File Storage in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Wei Ren

    2016-01-01

    Full Text Available Current file storage service models for cloud servers assume that users either belong to single layer with different privileges or cannot authorize privileges iteratively. Thus, the access control is not fine-grained and flexible. Besides, most access control methods at cloud servers mainly rely on computationally intensive cryptographic algorithms and, especially, may not be able to support highly dynamic ad hoc groups with addition and removal of group members. In this paper, we propose a scheme called F2AC, which is a lightweight, fine-grained, and flexible access control scheme for file storage in mobile cloud computing. F2AC can not only achieve iterative authorization, authentication with tailored policies, and access control for dynamically changing accessing groups, but also provide access privilege transition and revocation. A new access control model called directed tree with linked leaf model is proposed for further implementations in data structures and algorithms. The extensive analysis is given for justifying the soundness and completeness of F2AC.

  15. A novel imaging technique for measuring kinematics of light-weight flexible structures

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA and Department of Aerospace Engineering, Military Technical College, Cairo 11241 (Egypt); Eliethy, Ahmed S. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Canfield, Robert A. [Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Hajj, Muhammad R. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-07-15

    A new imaging algorithm is proposed to capture the kinematics of flexible, thin, light structures including frequencies and motion amplitudes for real time analysis. The studied case is a thin flexible beam that is preset at different angles of attack in a wind tunnel. As the angle of attack is increased beyond a critical value, the beam was observed to undergo a static deflection that is ensued by limit cycle oscillations. Imaging analysis of the beam vibrations shows that the motion consists of a superposition of the bending and torsion modes. The proposed algorithm was able to capture the oscillation amplitudes as well as the frequencies of both bending and torsion modes. The analysis results are validated through comparison with measurements from a piezoelectric sensor that is attached to the beam at its root.

  16. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  17. Flexible integration of path-planning capabilities

    Science.gov (United States)

    Stobie, Iain C.; Tambe, Milind; Rosenbloom, Paul S.

    1993-05-01

    Robots pursuing complex goals must plan paths according to several criteria of quality, including shortness, safety, speed and planning time. Many sources and kinds of knowledge, such as maps, procedures and perception, may be available or required. Both the quality criteria and sources of knowledge may vary widely over time, and in general they will interact. One approach to address this problem is to express all criteria and goals numerically in a single weighted graph, and then to search this graph to determine a path. Since this is problematic with symbolic or uncertain data and interacting criteria, we propose that what is needed instead is an integration of many kinds of planning capabilities. We describe a hybrid approach to integration, based on experiments with building simulated mobile robots using Soar, an integrated problem-solving and learning system. For flexibility, we have implemented a combination of internal planning, reactive capabilities and specialized tools. We illustrate how these components can complement each other's limitations and produce plans which integrate geometric and task knowledge.

  18. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    Science.gov (United States)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  19. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Directory of Open Access Journals (Sweden)

    Stefan Stein

    Full Text Available The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]. Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6] due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et

  20. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.

    Science.gov (United States)

    Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu

    2017-12-06

    Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

  1. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Science.gov (United States)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  2. Integrated engineering increases flexibility. [At BNFL

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ray [British Nuclear Fuels plc, London (UK)

    1991-05-01

    Integrated Engineering (IE) can be used to describe the best use of increasingly rare good engineering talent in an increasingly competive world. A number of organisations are now moving towards IE without any general agreement on a precise definition. The engineering division of British Nuclear Fuels (BNFL) is one such organisation. This feature covers the reasoning behind the decision, and our experience to date. BNFL engineering division is responsible primarily for the provision of major facilities on BNFL operational sites. This provision includes feasibility, front end and detailed design, procurement, installation and commissioning. Task force working has been used for some of the large projects. But the future workload is expected to comprise many more smaller projects. At the same time, equipment is becoming more complex and the need for mutual understanding and appreciation between disciplines is increasing. To meet this increasing need for flexibility, BNFL has decided to move to the matrix structure of project management and functional departments described in the article. (Author).

  3. Supply chain integration, risk management and manufacturing flexibility

    DEFF Research Database (Denmark)

    Chaudhuri, Atanu; Boer, Harry; Taran, Yariv

    2018-01-01

    , respectively, and manufacturing flexibility. Design/methodology/approach – Using hierarchical regression, data are analyzed from a sample of 343 manufacturing plants in Asia collected in 2013-2014 as part of the International Manufacturing Strategy Survey (IMSS VI). Findings – Internal integration and supply......Purpose – The purpose of this paper is to investigate the impact of internal integration, external integration and supply chain risk management on manufacturing flexibility, and the moderating effect of supply chain risk management on the relationships between internal and external integration...... chain risk management have a direct effect on manufacturing flexibility. Supply chain risk management moderates the relationship between external integration and flexibility. Research limitations/implications – Further research is needed to generalize beyond the flexibility performance of discrete...

  4. Quality and workflow integration in flexible manufacturing

    NARCIS (Netherlands)

    ten Dam, Dennis

    2012-01-01

    In recognising the relevance of production networks and flexible manufacturing, CNC Worknet aims to be a company that approaches the new era of flexible manufacturing by developing a novel business model that combines the technologies of e-Business with production networks. This business model is

  5. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.

    Science.gov (United States)

    Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A

    2008-07-24

    The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of

  6. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  7. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  8. Flexible reserve markets for wind integration

    Science.gov (United States)

    Fernandez, Alisha R.

    reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive

  9. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    Science.gov (United States)

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  10. Interactive Garments: Flexible Technologies for Textile Integration

    OpenAIRE

    Anupam Bhatia

    2016-01-01

    Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic propertie...

  11. Flexible riser integrity management: areas of concern and applications

    Energy Technology Data Exchange (ETDEWEB)

    Podskarbi, Mateusz [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Flexible risers are key enables for both deep water and shallow water offshore production developments. Number of flexible risers installed worldwide is into several thousands with two main concentration areas - offshore Brazil and North Sea. Flexible risers are subject to significant loads including environmental impacts, vessel motions, internal temperature and pressure as well as substantial installation loads. Excessive loads of one type or a combination of various types of loads can cause damage to the flexible that can lead to a catastrophic failure. Industry observed number of failures increasing in recent years. Operators and manufacturing companies are taking various steps to address this issue. One of possible approaches is to use monitoring instrumentation to measure riser response and integrity in real time. This paper reviews various types of flexible riser damage mechanisms caused by impact damage, corrosion, excessive pressure, armor wire rupture, compromising flexible riser minimum bend radius, excessive fatigue loading, etc. Failure mechanisms are reviewed with particular focus on the consequences that it causes in terms of risk to the infrastructure and detectable changes. Further part of the paper is focused on monitoring techniques employed and available to detect particular types of failure mechanisms. Systematic review of the monitoring techniques is provided with specific attention given to ability of these techniques to provide early warnings of riser failure. Evaluation of monitoring techniques versus modes of operation and failure mechanism is key to selecting appropriate system that ensures effectiveness of the integrity management program. (author)

  12. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    Science.gov (United States)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and

  13. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  14. ZeroSDN: A Message Bus for Flexible and Light-weight Network Control Distribution in SDN

    OpenAIRE

    Dürr, Frank; Kohler, Thomas; Grunert, Jonas; Kutzleb, Andre

    2016-01-01

    Recent years have seen an evolution of SDN control plane architectures, starting from simple monolithic controllers, over modular monolithic controllers, to distributed controllers. We observe, however, that today's distributed controllers still exhibit inflexibility with respect to the distribution of control logic. Therefore, we propose a novel architecture of a distributed SDN controller in this paper, providing maximum flexibility with respect to distribution. Our architecture splits cont...

  15. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  16. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    Science.gov (United States)

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  17. Flexible and integrated supercapacitor with tunable energy storage.

    Science.gov (United States)

    Shao, Changxiang; Xu, Tong; Gao, Jian; Liang, Yuan; Zhao, Yang; Qu, Liangti

    2017-08-31

    A flexible integrated supercapacitor based on three dimensional reduced graphene oxide/graphene oxide/reduced graphene oxide (RGO-GO-RGO) foam has been fabricated via a laser direct writing strategy. The supercapacitor with outstanding mechanical properties shows a high capacitance performance which can be easily regulated by controlling the compressive state of the electrodes. This work provides a new platform for potential applications in the next-generation intelligent power supply of electronics.

  18. European market integration for gas? Volume flexibility and political risk

    International Nuclear Information System (INIS)

    Asche, Frank; Tveteras, Ragnar; Osmundsen, Petter

    2002-01-01

    Long-term take-or-pay contracts regulating gas exports to the Continent are described and analyzed. We thereafter examine whether the German gas market is integrated. Time series of Norwegian, Dutch and Russian gas export prices to Germany in 1990-1998 are examined. Cointegration tests show that that the different border prices for gas to Germany move proportionally over time, indicating an integrated gas market. We find differences in mean prices, with Russian gas being sold at prices systematically lower than Dutch and Norwegian gas. Among the explanatory factors for price discrepancies are differences in volume flexibility (swing) and perceived political risk

  19. Flexible circuits with integrated switches for robotic shape sensing

    Science.gov (United States)

    Harnett, C. K.

    2016-05-01

    Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.

  20. Developing a flexible and verifiable integrated dose assessment capability

    International Nuclear Information System (INIS)

    Parzyck, D.C.; Rhea, T.A.; Copenhaver, E.D.; Bogard, J.S.

    1987-01-01

    A flexible yet verifiable system of computing and recording personnel doses is needed. Recent directions in statutes establish the trend of combining internal and external doses. We are developing a Health Physics Information Management System (HPIMS) that will centralize dosimetry calculations and data storage; integrate health physics records with other health-related disciplines, such as industrial hygiene, medicine, and safety; provide a more auditable system with published algorithms and clearly defined flowcharts of system operation; readily facilitate future changes dictated by new regulations, new dosimetric models, and new systems of units; and address ad-hoc inquiries regarding worker/workplace interactions, including potential synergisms with non-radiation exposures. The system is modular and provides a high degree of isolation from low-level detail, allowing flexibility for changes without adversely affecting other parts of the system. 10 refs., 3 figs

  1. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  2. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  3. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-04-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new required features to the portable devices industry. For example, wireless sensor networks are in urgent need of self-sustainable, easy-to-deploy, mobile platforms, wirelessly interconnected and accessible through a cloud computing system. The objective of my doctoral work is to develop integration strategies to effectively fabricate mechanically flexible, energy-independent systems, which could empower sensor networks for a great variety of new exciting applications. The first module, flexible electronics, can be achieved through several techniques and materials. Our main focus is to bring mechanical flexibility to the state-of-the-art high performing silicon-based electronics, with billions of ultra-low power, nano-sized transistors. Therefore, we have developed a low-cost batch fabrication process to transform standard, rigid, mono-crystalline silicon (100) wafer with devices, into a thin (5-20 m), mechanically flexible, optically semi-transparent silicon fabric. Recycling of the remaining wafer is possible, enabling generation of multiple fabrics to ensure lowcost and optimal utilization of the whole substrate. We have shown mono, amorphous and poly-crystalline silicon and silicon dioxide fabrics, featuring industry’s most advanced high-/metal-gate based capacitors and transistors. The second module consists on the development of efficient energy scavenging systems. First, we have identified an innovative and relatively young technology, which can address at the same time two of the main concerns of human kind: water and energy. Microbial fuel cells (MFC) are capable of producing energy out the metabolism of bacteria while treating wastewater. We have developed two micro-liter MFC designs, one with carbon

  4. Flexible integration of free-standing nanowires into silicon photonics.

    Science.gov (United States)

    Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin

    2017-06-14

    Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.

  5. Flexible and Lightweight Access Control for Online Healthcare Social Networks in the Context of the Internet of Things

    Directory of Open Access Journals (Sweden)

    Zhen Qin

    2017-01-01

    Full Text Available Online healthcare social networks (OHSNs play an essential role in sharing information among medical experts and patients who are equipped with similar experiences. To access other patients’ data or experts’ diagnosis anywhere and anytime, it is necessary to integrate the OHSN into the Internet as part of the Internet of Things (IoT. Therefore, it is crucial to design an efficient and versatile access control scheme that can grant and revoke a user to access the OHSN. In this paper, we propose novel attribute-based encryption (ABE features with user revocation and verifiable decryption outsourcing to control the access privilege of the users. The security of the proposed ABE scheme is given in the well-studied random oracle model. With the proposed ABE scheme, the malicious users can be excluded from the system and the user can offload most of the overhead in the decryption to an untrusted cloud server in a verifiable manner. An access control scheme for the OHSN has been given in the context of the IoT based on the proposed ABE scheme. The simulation demonstrates that our access control mechanism is practical.

  6. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  7. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    Science.gov (United States)

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  8. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    Science.gov (United States)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  9. On the integrity of flexible pipes for subsea applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcos C. de; Brack, Marcelo; Lontra Filho, Lauro L.; Jorge, Nilo de M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Most of PETROBRAS offshore oil and gas production is conveyed through Flexible Pipes (FPs) used for gathering, exporting and importing functions. PETROBRAS is the greatest user of FPs worldwide and, due to the complexity of the FP, a composite structure having many steel and polymeric layers and end fittings, it implies a huge number of possible failure mechanisms, much more than those expected for steel pipes. The use of FP demands a special approach over all life cycle phases, from the basic engineering up to the operation/reuse/decommission, by evaluating the application feasibility together with potential failures. This paper accounts some of PETROBRAS experience on FPs, mainly a current approach on their integrity and planned measures in order to assure production and prevent accidents, based on the most relevant failure mechanisms. The preventive actions includes review on failures and their causes and, consequently, improvement on specifications, FP design verification, prototype qualification, inspection and monitoring of integrity key parameters during installation and operation, as well as, maintenance. A FPs Company Integrity Directives and Database will allow a continuous improvement of field systems reliability through to a periodic assessment of performances and feedback to activities for the whole FP life cycle. (author)

  10. Integrated and flexible multichannel interface for electrotactile stimulation

    Science.gov (United States)

    Štrbac, Matija; Belić, Minja; Isaković, Milica; Kojić, Vladimir; Bijelić, Goran; Popović, Igor; Radotić, Milutin; Došen, Strahinja; Marković, Marko; Farina, Dario; Keller, Thierry

    2016-08-01

    Objective. The aim of the present work was to develop and test a flexible electrotactile stimulation system to provide real-time feedback to the prosthesis user. The system requirements were to accommodate the capabilities of advanced multi-DOF myoelectric hand prostheses and transmit the feedback variables (proprioception and force) using intuitive coding, with high resolution and after minimal training. Approach. We developed a fully-programmable and integrated electrotactile interface supporting time and space distributed stimulation over custom designed flexible array electrodes. The system implements low-level access to individual stimulation channels as well as a set of high-level mapping functions translating the state of a multi-DoF prosthesis (aperture, grasping force, wrist rotation) into a set of predefined dynamic stimulation profiles. The system was evaluated using discrimination tests employing spatial and frequency coding (10 able-bodied subjects) and dynamic patterns (10 able-bodied and 6 amputee subjects). The outcome measure was the success rate (SR) in discrimination. Main results. The more practical electrode with the common anode configuration performed similarly to the more usual concentric arrangement. The subjects could discriminate six spatial and four frequency levels with SR >90% after a few minutes of training, whereas the performance significantly deteriorated for more levels. The dynamic patterns were intuitive for the subjects, although amputees showed lower SR than able-bodied individuals (86% ± 10% versus 99% ± 3%). Significance. The tests demonstrated that the system was easy to setup and apply. The design and resolution of the multipad electrode was evaluated. Importantly, the novel dynamic patterns, which were successfully tested, can be superimposed to transmit multiple feedback variables intuitively and simultaneously. This is especially relevant for closing the loop in modern multifunction prostheses. Therefore, the proposed

  11. Mechanical Integrity of Flexible In-Zn-Sn-O Film for Flexible Transparent Electrode

    Science.gov (United States)

    Kim, Young Sung; Oh, Se-In; Choa, Sung-Hoon

    2013-05-01

    The mechanical integrity of transparent In-Zn-Sn-O (IZTO) films is investigated using outer/inner bending, stretching, and twisting tests. Amorphous IZTO films are grown using a pulsed DC magnetron sputtering system with an IZTO target on a polyimide substrate at room temperature. Changes in the optical and electrical properties of IZTO films depend on the oxygen partial pressure applied during the film deposition process. In the case of 3% oxygen partial pressure, the IZTO films exhibit s resistivity of 8.3×10-4 Ω cm and an optical transmittance of 86%. The outer bending test shows that the critical bending radius decreases from 10 to 7.5 mm when the oxygen partial pressure is increased from 1 to 3%. The inner bending test reveals that the critical bending radius of all IZTO films is 3.5 mm regardless of oxygen partial pressure. The IZTO films also show excellent mechanical reliability in the bending fatigue tests of more than 10,000 cycles. In the uniaxial stretching tests, the electrical resistance of the IZTO film does not change until a strain of 2.4% is reached. The twisting tests demonstrate that the electrical resistance of IZTO films remains unchanged up to 25°. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison with already reported crystallized indium tin oxide (ITO) films.

  12. Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol.

    Science.gov (United States)

    He, Debiao; Kumar, Neeraj; Chilamkurti, Naveen; Lee, Jong-Hyouk

    2014-10-01

    The radio frequency identification (RFID) technology has been widely adopted and being deployed as a dominant identification technology in a health care domain such as medical information authentication, patient tracking, blood transfusion medicine, etc. With more and more stringent security and privacy requirements to RFID based authentication schemes, elliptic curve cryptography (ECC) based RFID authentication schemes have been proposed to meet the requirements. However, many recently published ECC based RFID authentication schemes have serious security weaknesses. In this paper, we propose a new ECC based RFID authentication integrated with an ID verifier transfer protocol that overcomes the weaknesses of the existing schemes. A comprehensive security analysis has been conducted to show strong security properties that are provided from the proposed authentication scheme. Moreover, the performance of the proposed authentication scheme is analyzed in terms of computational cost, communicational cost, and storage requirement.

  13. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  14. A flexible framework for sparse simultaneous component based data integration

    Directory of Open Access Journals (Sweden)

    Van Deun Katrijn

    2011-11-01

    Full Text Available Abstract 1 Background High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins have to be taken into account. 2 Results We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. 3 Conclusion Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such

  15. A flexible framework for sparse simultaneous component based data integration.

    Science.gov (United States)

    Van Deun, Katrijn; Wilderjans, Tom F; van den Berg, Robert A; Antoniadis, Anestis; Van Mechelen, Iven

    2011-11-15

    High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins) have to be taken into account. We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such, structures can be found that are exclusively tied to one data platform

  16. Very Thin Flexible Coupled Inductors for PV Module Integrated GaN Converter

    DEFF Research Database (Denmark)

    Acanski, Milos; Ouyang, Ziwei; Popovic-Gerber, Jelena

    2012-01-01

    converter integrated directly into a low cost flexible PV module. Additional problems arise in this case, specifically in magnetics design, due to the requirements for very low profile flexible construction and limited thermal headroom. Overcoming these limitations presents a challenge, but can lead...... to a cost effective, reliable solution for PV systems with improved integration level and power density....

  17. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-01-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new

  18. Advancing System Flexibility for High Penetration Renewable Integration

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  19. Assessing the economic feasibility of flexible integrated gasification Co-generation facilities

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This paper evaluated the economic effects of introducing flexibility to state-of-the-art integrated gasification co-generation (IGCG) facilities equipped with CO2 capture. In a previous paper the technical and energetic performances of these flexible IG-CG facilities were evaluated. This paper

  20. Highly Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly-integrated, reconfigurable radar antenna arrays fabricated on flexible substrates offer high functionality in a portable package that can be rolled up and...

  1. Advancing System Flexibility for High Penetration Renewable Integration (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This is a Chinese translation of NREL/TP-6A20-64864. This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  2. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers

    International Nuclear Information System (INIS)

    Lau, Gih-Keong; Lim, Hoong-Ta; Teo, Jing-Ying; Chin, Yao-Wei

    2014-01-01

    Dielectric elastomer actuators (DEAs) are attractive for use in bio-inspired flapping-wing robots because they have high work density (specific energy) and can produce a large actuation strain. Although the active membrane of a dielectric elastomer is lightweight, the support structure that pre-tensions the elastomeric membrane is massive and it lowers the overall work density. If the DEA is to be used successfully to drive flapping-wing robots, its support structure must be as lightweight as possible. In this work, we designed, analysed, and developed a lightweight shell using a cross-ply laminate of carbon fibre reinforced polymer (CFRP) to pre-strain a rolled DEA. The CFRP shell was shown to weigh 24.3% of the total mass for the whole DEA assembly, while providing up to 35.0% axial pre-strain to a rolled DEA (BJB-5005 silicone rubber). This DEA assembly using the CFRP shell achieved 30.9% of the theoretical work density for a BJB-TC5005 membrane at 33.5 MV m −1 . In comparison, spring rolls with a massive spring core were reported with overall work density merely 10–20% of the maximum value. Furthermore, this CFRP shell can amplify an axial DEA stroke into a larger transverse shell deformation. With these deformation characteristics, this CFRP shell and a rolled DEA were successfully integrated with an insect-inspired thoracic mechanism and they were shown to be feasible to drive it for a flapping wing. (paper)

  3. IM (Integrity Management) software must show flexibility to local codes

    Energy Technology Data Exchange (ETDEWEB)

    Brors, Markus [ROSEN Technology and Research Center GmbH (Germany); Diggory, Ian [Macaw Engineering Ltd., Northumberland (United Kingdom)

    2009-07-01

    There are many internationally recognized codes and standards, such as API 1160 and ASME B31.8S, which help pipeline operators to manage and maintain the integrity of their pipeline networks. However, operators in many countries still use local codes that often reflect the history of pipeline developments in their region and are based on direct experience and research on their pipelines. As pipeline companies come under increasing regulatory and financial pressures to maintain the integrity of their networks, it is important that operators using regional codes are able to benchmark their integrity management schemes against these international standards. Any comprehensive Pipeline Integrity Management System (PIMS) software package should therefore not only incorporate industry standards for pipeline integrity assessment but also be capable of implementing regional codes for comparison purposes. This paper describes the challenges and benefits of incorporating one such set of regional pipeline standards into ROSEN Asset Integrity Management Software (ROAIMS). (author)

  4. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  5. DEVELOPING FLEXIBLE APPLICATIONS WITH XML AND DATABASE INTEGRATION

    Directory of Open Access Journals (Sweden)

    Hale AS

    2004-04-01

    Full Text Available In recent years the most popular subject in Information System area is Enterprise Application Integration (EAI. It can be defined as a process of forming a standart connection between different systems of an organization?s information system environment. The incorporating, gaining and marriage of corporations are the major reasons of popularity in Enterprise Application Integration. The main purpose is to solve the application integrating problems while similar systems in such corporations continue working together for a more time. With the help of XML technology, it is possible to find solutions to the problems of application integration either within the corporation or between the corporations.

  6. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  7. Towards a flexible service integration through separation of business rules

    NARCIS (Netherlands)

    Asuncion, C.H.; Iacob, Maria Eugenia; van Sinderen, Marten J.

    2010-01-01

    Driven by dynamic market demands, enterprises are continuously exploring collaborations with others to add value to their services and seize new market opportunities. Achieving enterprise collaboration is facilitated by Enterprise Application Integration and Business-to-Business approaches that

  8. In-situ fabrication of flexible vertically integrated electronic circuits by inkjet printing

    International Nuclear Information System (INIS)

    Wang Zhuo; Wu Wenwen; Yang Qunbao; Li Yongxiang; Noh, Chang-Ho

    2009-01-01

    In this paper, a facile approach for fabricating flexible vertically integrated electronic circuits is demonstrated. A desktop inkjet printer was modified and employed to print silver precursor on a polymer-coated buffer substrates. In-situ reaction was taken place and a conducting line was formed without need of a high temperature treatment. Through this process, several layers of metal integrated circuits were deposited sequentially with polymer buffer layers sandwiched between each layer. Hence, vertically integrated electronic components of diodes, solar cells, flexible flat panel displays, and electrochromic devices can be built with this simple and low-cost technique.

  9. Control of a flexible bracing manipulator: Integration of current research work to realize the bracing manipulator

    Science.gov (United States)

    Kwon, Dong-Soo

    1991-01-01

    All research results about flexible manipulator control were integrated to show a control scenario of a bracing manipulator. First, dynamic analysis of a flexible manipulator was done for modeling. Second, from the dynamic model, the inverse dynamic equation was derived, and the time domain inverse dynamic method was proposed for the calculation of the feedforward torque and the desired flexible coordinate trajectories. Third, a tracking controller was designed by combining the inverse dynamic feedforward control with the joint feedback control. The control scheme was applied to the tip position control of a single link flexible manipulator for zero and non-zero initial condition cases. Finally, the contact control scheme was added to the position tracking control. A control scenario of a bracing manipulator is provided and evaluated through simulation and experiment on a single link flexible manipulator.

  10. Flexible Smart Display with Integrated Graphics Rasterizor using ...

    African Journals Online (AJOL)

    SG-TFTs and other similar technologies can potentially enable fabricating electronics directly on arbitrary substrates. This would further enable integration of embedded intelligence in devices that would enhance the current functionalists of displays. This paper is an effort in this direction as it undertakes a study to design a ...

  11. Child Psychotherapy, Child Analysis, and Medication: A Flexible, Integrative Approach.

    Science.gov (United States)

    Whitman, Laura

    2015-01-01

    For children with moderate to severe emotional or behavioral problems, the current approach in child psychiatry is to make an assessment for the use of both psychotherapy and medication. This paper describes integration of antidepressants and stimulants with psychoanalytically oriented techniques.

  12. Flexible Web services integration: a novel personalised social approach

    Science.gov (United States)

    Metrouh, Abdelmalek; Mokhati, Farid

    2018-05-01

    Dynamic composition or integration remains one of the key objectives of Web services technology. This paper aims to propose an innovative approach of dynamic Web services composition based on functional and non-functional attributes and individual preferences. In this approach, social networks of Web services are used to maintain interactions between Web services in order to select and compose Web services that are more tightly related to user's preferences. We use the concept of Web services community in a social network of Web services to reduce considerably their search space. These communities are created by the direct involvement of Web services providers.

  13. A flexible, computer-integrated robotic transfer system

    International Nuclear Information System (INIS)

    Lewis, W.I. III; Taylor, R.M.

    1987-01-01

    This paper reviews a robotic system used to transport materials across a radiation control zone and into a row of shielded cells. The robot used is a five-axis GCA 600 industrial robot mounted on a 50-ft ESAB welding track. Custom software incorporates the track as the sixth axis of motion. An IBM-PC integrates robot control, force sensing, and the operator interface. Multiple end-effectors and a quick exchange mechanism are used to handle a variety of materials and tasks. Automatic error detection and recovery is a key aspect of this system

  14. A stochastic framework for the grid integration of wind power using flexible load approach

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Shafie-khah, M.; Catalão, J.P.S.

    2014-01-01

    Highlights: • This paper focuses on the potential of Demand Response Programs (DRPs) to contribute to flexibility. • A stochastic network constrained unit commitment associated with DR is presented. • DR participation levels and electricity tariffs are evaluated on providing a flexible load profile. • Novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs. • DR types and customer participation levels are the main factors to modify the system load profile. - Abstract: Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration

  15. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  16. Technology for 3D System Integration for Flexible Wireless Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Kuo

    2018-05-01

    Full Text Available This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to form a flexible wireless biomedical microsystem. The system can be implanted on or inside the human body. A 50-μm gold foil deposited through laser micromachining by using a picosecond laser was used as an inductor to yield a higher quality factor than that yielded by thickness-increasing methods such as the fold-and-bond method or thick-metal electroplating method at the operation frequency of 1 MHz. For system integration, parylene was used as a flexible substrate, and the contact pads and connections between the coil and chip were generated using gold deposition. The advantage of the proposed process can integrate the chip and coil vertically to generate a single biocompatible system in order to reduce required area. The proposed system entails the use of 3D integrated circuit packaging concepts to integrate the chip and coil. The results validated the feasibility of this technology.

  17. INTEGRACION DE UNA CELULA FLEXIBLE DE MECANIZADO, DE TIPO DOCENTE INTEGRATION OF A EDUCATIONAL FLEXIBLE MANUFACTURING CELL

    Directory of Open Access Journals (Sweden)

    Abraham Farias F

    2007-04-01

    Full Text Available Este trabajo trata sobre la integración de una célula flexible de mecanizado de tipo docente, compuesta por una fresadora didáctica CNC, marca Denford, un brazo robótico articulado de seis ejes, modelo Scorbot -ER Vplus  y un riel deslizante; todos pertenecientes al Laboratorio de Manufactura Integrada por Computador, de la Escuela de Ingeniería Mecánica de la Universidad de Talca. Las tareas que realiza esta célula flexible son controladas por un PC director  a través de un  programa, utilizando el software y el propio control del robot y su objetivo es realizar el ciclo de carga y descarga de un  trozo de material de 65×65×40 mm. (madera y su posterior mecanización. El problema de comunicación entre los equipos involucrados y la fresadora CNC fue resuelto en cuanto su diseño "stand alone" no contemplaba la integración con otros equipos. Por otro lado, se agregaron algunos sistemas electroneumáticos para que la operación fuera automática, como los de sujeción de piezas y la apertura y cierre de puertas. Con esta célula flexible de mecanizado de tipo docente, la facultad de Ingeniería cuenta con una plataforma básica, a la que se puede adicionar otras funciones, como por ejemplo, dotarla de un sistema automático de alimentación de piezas, de un sistema de visión digital para dar más autonomía al robot, incorporar un torno CNC y  generar un programa para administrar las órdenes de trabajo.This paper describes the integration of an educational flexible manufacturing cell, consisting of a Denford CNC mill with six axes, and a Scorbot - ER Vplus robotic arm that slides along a rail. This equipment is located at the Computer Integrated Manufacture Laboratory, at the School of Mechanical Engineering at Universidad de Talca. The flexible cell is controlled by software in a PC that interacts with the software in the robotic arm. The specific tasks described in this paper are loading and unloading a wooden piece (640×65

  18. Integral finite element analysis of turntable bearing with flexible rings

    Science.gov (United States)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  19. Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending

    Science.gov (United States)

    Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue

    2017-10-01

    The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.

  20. Coordination and Control of Flexible Building Loads for Renewable Integration; Demonstrations using VOLTTRON

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivation and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate

  1. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    Science.gov (United States)

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  2. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez

    2016-01-01

    This paper presents the system integration and hierarchical control implementation in an inverter-based microgrid research laboratory (MGRL) in Aalborg University, Denmark. MGRL aims to provide a flexible experimental platform for comprehensive studies of microgrids. The structure of the laborato...

  3. Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This article investigates technical possibilities and performances of flexible integrated gasification polygeneration (IG-PG) facilities equipped with CO2 capture for the near future. These facilities can produce electricity during peak hours, while switching to the production of chemicals during

  4. Towards an integration of process planning and production planning and control for flexible manufacturing systems

    NARCIS (Netherlands)

    Gaalman, GJC; Slomp, J; Suresh, NC

    This introduction article attempts to present some major issues relating to the integration of process planning and production planning and control (PPC) for flexible manufacturing systems (FMSs). It shows that the performance of an FMS can be significantly improved and FMS capabilities more

  5. A flexible climate model for use in integrated assessments

    Science.gov (United States)

    Sokolov, A. P.; Stone, P. H.

    Because of significant uncertainty in the behavior of the climate system, evaluations of the possible impact of an increase in greenhouse gas concentrations in the atmosphere require a large number of long-term climate simulations. Studies of this kind are impossible to carry out with coupled atmosphere ocean general circulation models (AOGCMs) because of their tremendous computer resource requirements. Here we describe a two dimensional (zonally averaged) atmospheric model coupled with a diffusive ocean model developed for use in the integrated framework of the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change. The 2-D model has been developed from the Goddard Institute for Space Studies (GISS) GCM and includes parametrizations of all the main physical processes. This allows it to reproduce many of the nonlinear interactions occurring in simulations with GCMs. Comparisons of the results of present-day climate simulations with observations show that the model reasonably reproduces the main features of the zonally averaged atmospheric structure and circulation. The model's sensitivity can be varied by changing the magnitude of an inserted additional cloud feedback. Equilibrium responses of different versions of the 2-D model to an instantaneous doubling of atmospheric CO2 are compared with results of similar simulations with different AGCMs. It is shown that the additional cloud feedback does not lead to any physically inconsistent results. On the contrary, changes in climate variables such as precipitation and evaporation, and their dependencies on surface warming produced by different versions of the MIT 2-D model are similar to those shown by GCMs. By choosing appropriate values of the deep ocean diffusion coefficients, the transient behavior of different AOGCMs can be matched in simulations with the 2-D model, with a unique choice of diffusion coefficients allowing one to match the performance of a given AOGCM

  6. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  7. Power System Integration of Flexible Demand in the Low Voltage Network

    DEFF Research Database (Denmark)

    Thavlov, Anders

    , it is natural to consider electricity consumption from households as an integrated part of a potential flexible demand side in the future power system. However, as an individual unit a single household is not able to generate a large impact in the power system. Therefore, a mechanism is needed which can...... is even greater as almost 50% of the electricity consumption in households is utilised for space heating and cooling and for heating of domestic hot water. Consequently, there exists a significant potential in the integration of power consumption for heating purposes in households for demand response...... of electricity on the Nordic energy exchange, Nord Pool, or alternatively the flexibility can be sold as an ancillary service to the transmission system operator. In this way, the electricity consumption in households are indirectly integrated into the power market, through the virtual power plant...

  8. Hydropower flexibility and transmission expansion to support integration of offshore wind

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Farahmand, Hossein; Jaehnert, S.

    2016-01-01

    is one of the fast responding sources of electricity, thus power systems with considerable amounts of flexible hydro power can potentially offer easier integration of offshore wind power. The interaction between offshore wind and hydro power can be benefic, especially when looking at how the flexibility......In 2013, offshore wind grew over 50%. This increase, concentrated in a relatively small geographical area, can lead to an increased variability of the power produced by offshore wind. The variability is one of the key issues, along transmission, in integrating offshore wind power. Hydro power...... of hydro generation can match the variability of offshore wind, allowing for larger shares of variable generation to be integrated in the power systems without decreasing its stability. The analysis includes two interrelated models, a market model and a flow-based model. The results show that hydropower...

  9. The importance of flexible power plant operation for Jiangsu's wind integration

    DEFF Research Database (Denmark)

    Hong, Lixuan; Lund, Henrik; Möller, Bernd

    2012-01-01

    This paper presents the influence of different regulation strategies on wind energy integration into the existing energy system of Jiangsu. The ability of wind integration is defined in terms of the ability to avoid excess electricity production, to conserve primary energy consumption and to redu...... regulations of Jiangsu’s energy system are compared and analyzed in the range of a wind input from 0% to 42% of the total electricity demand. It is concluded that operating power plants in a flexible way facilitates the promotion of more intermittent wind integration....

  10. Large-area compatible fabrication and encapsulation of inkjet-printed humidity sensors on flexible foils with integrated thermal compensation

    International Nuclear Information System (INIS)

    Molina-Lopez, F; Quintero, A Vásquez; Mattana, G; Briand, D; De Rooij, N F

    2013-01-01

    This work presents the simultaneous fabrication of ambient relative humidity (RH) and temperature sensors arrays, inkjet-printed on flexible substrates and subsequently encapsulated at foil level. These sensors are based on planar interdigitated capacitors with an inkjet-printed sensing layer and meander-shaped resistors. Their combination allows the compensation of the RH signals variations at different temperatures. The whole fabrication of the system is carried out at foil level and involves the utilization of additive methods such as inkjet-printing and electrodeposition. Electrodeposition of the printed lines resulted in an improvement of the thermoresistors. The sensors have been characterized and their performances analyzed. The encapsulation layer does not modify the performances of the sensors in terms of sensitivity or response time. This work demonstrates the potential of inkjet-printing in the large-area fabrication of light-weight and cost-efficient gas sensors on flexible substrates. (paper)

  11. Lightweight MIPv6 with IPSec Support

    Directory of Open Access Journals (Sweden)

    Antonio J. Jara

    2014-01-01

    Full Text Available Mobility management is a desired feature for the emerging Internet of Things (IoT. Mobility aware solutions increase the connectivity and enhance adaptability to changes of the location and infrastructure. IoT is enabling a new generation of dynamic ecosystems in environments such as smart cities and hospitals. Dynamic ecosystems require ubiquitous access to Internet, seamless handover, flexible roaming policies, and an interoperable mobility protocol with existing Internet infrastructure. These features are challenges for IoT devices, which are usually constrained devices with low memory, processing, communication and energy capabilities. This work presents an analysis of the requirements and desirable features for the mobility support in the IoT, and proposes an efficient solution for constrained environments based on Mobile IPv6 and IPSec. Compatibility with IPv6-existing protocols has been considered a major requirement in order to offer scalable and inter-domain solutions that were not limited to specific application domains in order to enable a new generation of application and services over Internet-enabled dynamic ecosystems, and security support based on IPSec has been also considered, since dynamic ecosystems present several challenges in terms of security and privacy. This work has, on the one hand, analysed suitability of Mobile IPv6 and IPSec for constrained devices, and on the other hand, analysed, designed, developed and evaluated a lightweight version of Mobile IPv6 and IPSec. The proposed solution of lightweight Mobile IPv6 with IPSec is aware of the requirements of the IoT and presents the best solution for dynamic ecosystems in terms of efficiency and security adapted to IoT-devices capabilities. This presents concerns in terms of higher overhead and memory requirements. But, it is proofed and concluded that even when higher memory is required and major overhead is presented, the integration of Mobile IPv6 and IPSec for

  12. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    Science.gov (United States)

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)

    Science.gov (United States)

    Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob

    2016-09-01

    Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.

  14. Lightweight Space Tug body structure

    International Nuclear Information System (INIS)

    Lager, J.R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, light-weight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle

  15. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  16. Light-weight plastination.

    Science.gov (United States)

    Steinke, Hanno; Rabi, Suganthy; Saito, Toshiyuki; Sawutti, Alimjan; Miyaki, Takayoshi; Itoh, Masahiro; Spanel-Borowski, Katharina

    2008-11-20

    Plastination is an excellent technique which helps to keep the anatomical specimens in a dry, odourless state. Since the invention of plastination technique by von Hagens, research has been done to improve the quality of plastinated specimens. In this paper, we have described a method of producing light-weight plastinated specimens using xylene along with silicone and in the final step, substitute xylene with air. The finished plastinated specimens were light-weight, dry, odourless and robust. This method requires less use of resin thus making the plastination technique more cost-effective. The light-weight specimens are easy to carry and can easily be used for teaching.

  17. Continuous compliance compensation of position-dependent flexible structures

    NARCIS (Netherlands)

    Kontaras, Nikolaos; Heertjes, Marcel; Zwart, Heiko J.

    2016-01-01

    The implementation of lightweight high-performance motion systems in lithography and other applications imposes lower requirements on actuators, amplifiers, and cooling. However, the decreased stiffness of lightweight designs increases the effect of structural flexibilities especially when the point

  18. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Golshan, M.E.H.; Shafie-khah, M.

    2016-01-01

    Highlights: • Interactive incorporation of plug-in electric vehicle parking lots is investigated. • Flexible energy and reserve services are provided by electric vehicle parking lots. • Uncertain characterization of electric vehicle owners’ behavior is taken into account. • Coordinated operation of parking lots can facilitate wind power integration. - Abstract: The increasing share of uncertain wind generation has changed traditional operation scheduling of power systems. The challenges of this additional variability raise the need for an operational flexibility in providing both energy and reserve. One key solution is an effective incorporation of plug-in electric vehicles (PEVs) into the power system operation process. To this end, this paper proposes a two-stage stochastic programming market-clearing model considering the network constraints to achieve the optimal scheduling of conventional units as well as PEV parking lots (PLs) in providing both energy and reserve services. Different from existing works, the paper pays more attention to the uncertain characterization of PLs takes into account the arrival/departure time of PEVs to/from the PL, the initial state of charge (SOC) of PEVs, and their battery capacity through a set of scenarios in addition to wind generation scenarios. The results reveal that although the cost saving as a consequence of incorporating PL to the grid is below 1% of total system cost, however, flexible interactions of PL in the energy and reserve markets can promote the integration of wind power more than 13.5%.

  19. Development of a modular integrated control architecture for flexible manipulators. Final report

    International Nuclear Information System (INIS)

    Burks, B.L.; Battiston, G.

    1994-01-01

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford

  20. Increased demand-side flexibility: market effects and impacts on variable renewable energy integration

    Directory of Open Access Journals (Sweden)

    Åsa Grytli Tveten

    2016-12-01

    Full Text Available This paper investigates the effect of increased demand-side flexibility (DSF on integration and market value of variable renewable energy sources (VRE. Using assumed potentials, system-optimal within-day shifts in demand are investigated for the Northern European power markets in 2030, applying a comprehensive partial equilibrium model with high temporal and spatial resolution. Increased DSF is found to cause only a minor (less than 3% reduction in consumers’ cost of electricity. VRE revenues are found to increase (up to 5% and 2% for wind and solar power, respectively, and total VRE curtailment decreases by up to 7.2 TWh. Increased DSF causes only limited reductions in GHG emissions. The emission reduction is, however, sensitive to underlying assumptions. We conclude that increased DSF is a promising measure for improving VRE integration. However, low consumers’ savings imply that policies stimulating DFS will be needed to fully use the potential benefits of DSF for VRE integration

  1. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  2. Lightweight SIP/SDP compression scheme (LSSCS)

    Science.gov (United States)

    Wu, Jian J.; Demetrescu, Cristian

    2001-10-01

    In UMTS new IP based services with tight delay constraints will be deployed over the W-CDMA air interface such as IP multimedia and interactive services. To integrate the wireline and wireless IP services, 3GPP standard forum adopted the Session Initiation Protocol (SIP) as the call control protocol for the UMTS Release 5, which will implement next generation, all IP networks for real-time QoS services. In the current form the SIP protocol is not suitable for wireless transmission due to its large message size which will need either a big radio pipe for transmission or it will take far much longer to transmit than the current GSM Call Control (CC) message sequence. In this paper we present a novel compression algorithm called Lightweight SIP/SDP Compression Scheme (LSSCS), which acts at the SIP application layer and therefore removes the information redundancy before it is sent to the network and transport layer. A binary octet-aligned header is added to the compressed SIP/SDP message before sending it to the network layer. The receiver uses this binary header as well as the pre-cached information to regenerate the original SIP/SDP message. The key features of the LSSCS compression scheme are presented in this paper along with implementation examples. It is shown that this compression algorithm makes SIP transmission efficient over the radio interface without losing the SIP generality and flexibility.

  3. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  4. Market integration of flexible demand and DG-RES supply. A new approach for demand response

    International Nuclear Information System (INIS)

    Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K.

    2007-06-01

    In this paper we discuss the shortcomings of traditional Demand Response programs in an environment in which a large amount of distributed generation is available. An innovative approach is given in which true Customer Site Integration is obtained in the spirit of the liberalized electricity market, by making use of the load flexibility of underlying processes of production and consumption devices. The approach is based on distributed control mechanisms and incorporates new market models for distribution and aggregation costs, load losses, and network constraints

  5. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  6. Total luminous flux measurement for flexible surface sources with an integrating sphere photometer

    International Nuclear Information System (INIS)

    Yu, Hsueh-Ling; Liu, Wen-Chun

    2014-01-01

    Applying an integrating sphere photometer for total luminous flux measurement is a widely used method. However, the measurement accuracy depends on the spatial uniformity of the integrating sphere, especially when the test sample has a different light distribution from that of the standard source. Therefore, spatial correction is needed to eliminate the effect caused by non-uniformity. To reduce the inconvenience of spatial correction but retain the measurement accuracy, a new type of working standard is designed for flexible and curved surface sources. Applying this new type standard source, the measurement deviation due to different orientations is reduced by an order of magnitude compared with using a naked incandescent lamp as the standard source. (paper)

  7. A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem

    DEFF Research Database (Denmark)

    Rahmati, Seyed Habib A.; Ahmadi, Abbas; Govindan, Kannan

    2018-01-01

    the level of the system optimization. By means of this equipment, managers can benefit from a condition-based maintenance (CBM) for monitoring and managing their system. The chief aim of the paper is to develop a stochastic maintenance problem based on CBM activities engaged with a complex applied......Integrated consideration of production planning and maintenance processes is a real world assumption. Specifically, by improving the monitoring equipment such as various sensors or product-embedded information devices in recent years, joint assessment of these processes is inevitable for enhancing...... production problem called flexible job shop scheduling problem (FJSP). This integrated problem considers two maintenance scenarios in terms of corrective maintenance (CM) and preventive maintenance (PM). The activation of scenario is done by monitoring the degradation condition of the system and comparing...

  8. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  9. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  10. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.

    Science.gov (United States)

    Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard

    2010-02-21

    Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.

  11. Lightweight Provenance Service for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Dong; Chen, Yong; Carns, Philip; Jenkins, John; Ross, Robert

    2017-09-09

    Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. The need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.

  12. Southern Regional Center for Lightweight Innovative Design

    Energy Technology Data Exchange (ETDEWEB)

    Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Wang, Paul [Mississippi State Univ., Mississippi State, MS (United States)

    2011-12-27

    The three major objectives of this Phase III project are: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios.

  13. A Markovian state-space framework for integrating flexibility into space system design decisions

    Science.gov (United States)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of

  14. The Design of a Lightweight RFID Middleware

    Directory of Open Access Journals (Sweden)

    Fengqun Lin

    2009-10-01

    Full Text Available Radio Frequency Identification (RFID middleware is often regarded as the central nervous system of RFID systems. In this paper, a lightweight RFID middleware is designed and implemented without the need of an Application Level Events (ALE structure, and its implementation process is described using a typical commerical enterprise. A short review of the current RFID middleware research and development is also included. The characteristics of RFID middleware are presented with a two-centric framework. The senarios of RFID data integration based on the simplified structure are provided to illuminats the design and implementation of the lightweight middleware structure and its development process. The lightweight middleware is easy to maintain and extend because of the simplified and streamlined structure and the short development cycle.

  15. Lightweight Cryptography for Passive RFID Tags

    DEFF Research Database (Denmark)

    David, Mathieu

    2012-01-01

    were mostly unsatisfactory. As a conclusion, a new branch of cryptography, commonly called Lightweight Cryptography, emerged to address the issues of these tiny ubiquitous devices. This Thesis presents a comprehensive engineering to lightweight cryptography, proposes a classification and explores its...... various ramifications by giving key examples in each of them. We select two of these branches, ultralightweight cryptography and symmetric-key cryptography, and propose a cryptographic primitive in each of them. In the case of symmetric-key cryptography, we propose a stream cipher that has a footprint...... of an integrator for a particular application. Finally, we conclude that the research for finding robust cryptographic primitive in the branch of lightweight cryptography still has some nice days ahead, and that providing a secure cryptosystem for printed electronics RFID tags remains an open research topic....

  16. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

    2011-11-01

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  17. Flexible cement improves wellbore integrity for steam assisted gravity drainage SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    DeBruijn, G.; Whitton, S.; Redekopp, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Schlumberger Canada Ltd., Calgary, AB (Canada); Siso, C. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Reinheimer, D. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2008-10-15

    Cement sheath integrity is an important factor in ensuring the zonal isolation of wells. Significant stresses are placed on the cement sheaths of wells during steam assisted gravity drainage (SAGD) processes, as the expanded forces from the heating of the well are transferred to the cement sheath, which places a tensile load on the cement at the sheath's outer edge. In this study, a computerized simulation was conducted to examine stresses in a novel flexible cement sheath system during an SAGD heat-up cycle. Wellbore temperature was increased from 10 degrees C to 250 degrees C over a period of 720 minutes. Pressure was increased from 0 MPa to 5 MPa. The finite element model was used to predict microannulus, cement failure in compression, and cement failure in tension. A sensitivity analysis was used to estimate the effect of different parameters as well as to estimate the value of the Young's modulus of the shale. Results of the study showed that temperature and pressure dynamics have a significant impact on stresses in the cement sheath. An extended heat-up period resulted in reduced stresses to the sheath. Lower operating pressures also reduced stresses. It was concluded that pressure and temperature increases should be extended over a long a period as possible in order to reduce stresses. Results suggested that a flexible cement system with a low Young's modulus is suitable for SAGD wells. 8 refs., 2 tabs., 6 figs.

  18. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  19. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  20. The Effect of Various Parameters of Solution Methodology on a Flexible Integrated Supply Chain Model

    Directory of Open Access Journals (Sweden)

    Elham Behmanesh

    2018-01-01

    Full Text Available A successful supply chain must be able to operate at the lowest cost while providing the best customer service as well as environmental protection. As industrial players are under pressure but mostly unprepared to take back products after their usage, logistics network design becomes an even more important issue. To allow for a maximum of flexibility and efficiency, we consider an integrated design of the forward/reverse logistics network using full delivery graph. We apply a Memetic Algorithm with a novel population generation to find a near optimal solution for large size problems. The effect of different parameters on the behavior of the proposed Metaheuristic Algorithm is investigated. Using the experimental work to find the best parameters for this problem is the outlook of these researches.

  1. Integrated pressure and temperature sensor with high immunity against external disturbance for flexible endoscope operation

    Science.gov (United States)

    Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni

    2017-04-01

    In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.

  2. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    International Nuclear Information System (INIS)

    Fulcrand, R; Jugieu, D; Escriba, C; Bancaud, A; Bourrier, D; Boukabache, A; Gué, A M

    2009-01-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules

  3. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    Science.gov (United States)

    Fulcrand, R.; Jugieu, D.; Escriba, C.; Bancaud, A.; Bourrier, D.; Boukabache, A.; Gué, A. M.

    2009-10-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules.

  4. Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks.

    Science.gov (United States)

    Haibe-Kains, Benjamin; Olsen, Catharina; Djebbari, Amira; Bontempi, Gianluca; Correll, Mick; Bouton, Christopher; Quackenbush, John

    2012-01-01

    Genomics provided us with an unprecedented quantity of data on the genes that are activated or repressed in a wide range of phenotypes. We have increasingly come to recognize that defining the networks and pathways underlying these phenotypes requires both the integration of multiple data types and the development of advanced computational methods to infer relationships between the genes and to estimate the predictive power of the networks through which they interact. To address these issues we have developed Predictive Networks (PN), a flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these 'known' interactions together with gene expression data to infer robust gene networks. The PN web application is accessible from http://predictivenetworks.org. The PN code base is freely available at https://sourceforge.net/projects/predictivenets/.

  5. RFID security a lightweight paradigm

    CERN Document Server

    Khattab, Ahmed; Amini, Esmaeil; Bayoumi, Magdy

    2017-01-01

    This book provides a comprehensive treatment of security in the widely adopted, Radio Frequency Identification (RFID) technology. The authors present the fundamental principles of RFID cryptography in a manner accessible to a broad range of readers, enabling them to improve their RFID security design. This book also offers the reader a range of interesting topics portraying the current state-of-the-art in RFID technology and how it can be integrated with today’s Internet of Things (IoT) vision. The authors describe a first-of-its-kind, lightweight symmetric authenticated encryption cipher called Redundant Bit Security (RBS), which enables significant, multi-faceted performance improvements compared to existing cryptosystems. This book is a must-read for anyone aiming to overcome the constraints of practical implementation in RFID security technologies.

  6. Exploring the integration of the human as a flexibility factor in CPS enabled manufacturing environments: Methodology and results

    OpenAIRE

    Fantini, P.; Tavola, G.; Taisch, M.; Barbosa, José; Leitão, Paulo; Liu, Y.; Sayed, M.S.; Lohse, N.

    2016-01-01

    Cyber Physical Systems (CPS) are expected to shape the evolution of production towards the fourth industrial revolution named Industry 4.0. The increasing integration of manufacturing processes and the strengthening of the autonomous capabilities of manufacturing systems make investigating the role of humans a primary research objective in view of emerging social and demographic megatrends. Understanding how the employees can be better integrated to enable increased flexibility in manufacturi...

  7. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  8. Carbody structural lightweighting based on implicit parameterized model

    Science.gov (United States)

    Chen, Xin; Ma, Fangwu; Wang, Dengfeng; Xie, Chen

    2014-05-01

    Most of recent research on carbody lightweighting has focused on substitute material and new processing technologies rather than structures. However, new materials and processing techniques inevitably lead to higher costs. Also, material substitution and processing lightweighting have to be realized through body structural profiles and locations. In the huge conventional workload of lightweight optimization, model modifications involve heavy manual work, and it always leads to a large number of iteration calculations. As a new technique in carbody lightweighting, the implicit parameterization is used to optimize the carbody structure to improve the materials utilization rate in this paper. The implicit parameterized structural modeling enables the use of automatic modification and rapid multidisciplinary design optimization (MDO) in carbody structure, which is impossible in the traditional structure finite element method (FEM) without parameterization. The structural SFE parameterized model is built in accordance with the car structural FE model in concept development stage, and it is validated by some structural performance data. The validated SFE structural parameterized model can be used to generate rapidly and automatically FE model and evaluate different design variables group in the integrated MDO loop. The lightweighting result of body-in-white (BIW) after the optimization rounds reveals that the implicit parameterized model makes automatic MDO feasible and can significantly improve the computational efficiency of carbody structural lightweighting. This paper proposes the integrated method of implicit parameterized model and MDO, which has the obvious practical advantage and industrial significance in the carbody structural lightweighting design.

  9. Argobots: A Lightweight Low-Level Threading and Tasking Framework

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan; Bordage, Cyril; Bosilca, George; Brooks, Alex; Carns, Philip; Castello, Adrian; Genet, Damien; Herault, Thomas; Iwasaki, Shintaro; Jindal, Prateek; Kale, Laxmikant V.; Krishnamoorthy, Sriram; Lifflander, Jonathan; Lu, Huiwei; Meneses, Esteban; Snir, Marc; Sun, Yanhua; Taura, Kenjiro; Beckman, Pete

    2018-03-01

    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, either are too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a rich set of controls to allow specialization by end users or high-level programming models. We describe the design, implementation, and performance characterization of Argobots and present integrations with three high-level models: OpenMP, MPI, and colocated I/O services. Evaluations show that (1) Argobots, while providing richer capabilities, is competitive with existing simpler generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency-hiding capabilities; and (4) I/O services with Argobots reduce interference with colocated applications while achieving performance competitive with that of a Pthreads approach.

  10. Argobots: A Lightweight Low-Level Threading and Tasking Framework

    International Nuclear Information System (INIS)

    Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan; Bordage, Cyril; Bosilca, George

    2017-01-01

    In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, are either too specific to applications or architectures or are not as powerful or flexible. In this article, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a rich set of controls to allow specialization by the user or high-level programming model. Here, we describe the design, implementation, and optimization of Argobots and present integrations with three example high-level models: OpenMP, MPI, and co-located I/O service. Evaluations show that (1) Argobots outperforms existing generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency hiding capabilities; and (4) I/O service with Argobots reduces interference with co-located applications, achieving performance competitive with that of the Pthreads version.

  11. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    Energy Technology Data Exchange (ETDEWEB)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M., E-mail: MuhammadMustafa.Hussain@kaust.edu.sa [Integrated Nanotechnology Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Aljedaani, Abdulrahman B. [High-Speed Fluids Imaging Laboratory, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  12. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    International Nuclear Information System (INIS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M.; Aljedaani, Abdulrahman B.

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties

  13. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Aljedaani, Abdulrahman B.; Hussain, Muhammad Mustafa

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  14. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  15. A comparison between integral equation theory and molecular dynamics simulations of dense, flexible polymer liquids

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.; Grest, G.S.; Kremer, K.; Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801; Institut fur Festkorperforschung der Kernforschungsanlage Julich, D-5170 Julich, Federal Republic of Germany)

    1989-01-01

    Recently we (J.G.C. and K.S.S.) formulated a tractable ''reference interaction site model'' (RISM) integral equation theory of flexible polymer liquids. The purpose of this paper is to compare the results of the theory with recent molecular dynamics simulations (G.S.G. and K.K.) on dense chain liquids of degree of polymerization N=50 and 200. Specific comparisons were made between theory and simulation for the intramolecular structure factor ω(k) and the intermolecular radial distribution function g(r) in the liquid. In particular it was possible to independently test the assumptions inherent in the RISM theory and the additional ideality approximation that was made in the initial application of the theory. This comparison was accomplished by calculating the intermolecular g(r) using the simulated intramolecular structure factor, as well as, ω(k) derived from a freely jointed chain model.The RISM theory results, using the simulated ω(k), were found to be in excellent agreement, over all length scales, with the g(r) from molecular dynamics simulations. The theoretical predictions using the ''ideal'' intramolecular structure factor tended to underestimate g(r) near contact, indicating local intramolecular expansion of the chains. This local expansion can be incorporated into the theory self consistently by including the effects of the ''medium induced'' potential on the intramolecular structure

  16. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Suk Won Jung

    2016-12-01

    Full Text Available This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1 mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  17. Contact lens assisted imaging with integrated flexible handheld probe for glaucoma diagnosis

    Science.gov (United States)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Angle closure glaucoma accounts for majority of the bilateral blindness in Asian countries such as Singapore, China, and India. Abnormalities in the optic nerve and aqueous outflow system are the most indicative clinical hallmarks for glaucoma of this clinical subtype. Traditional photographic imaging techniques to assess the drainage angle are contact based, and may expose patients to risk of corneal abrasion and infections. In addition, these procedures require the use of viscous ophthalmic gels as coupling medium to overcome the phenomenon of total internal reflection at the tear-air interface. In this paper, we propose an integrated flexible handheld probe consisting of a micro color CCD video camera and white light LEDs. The handheld probe is able to capture images of the fundus and opposite iridocorneal angle when placed at the central cornea or limbus respectively. Here, we propose the use of hydrogel contact lens as an index matching medium and better protective barrier, as an alternative to conventional ophthalmic gels. The proposed imaging system and methodology has been successfully tested on porcine eye samples, ex vivo. With its high repeatability, reproducibility, and a good safety profile, it is believed that the proposed imaging system and methodology will complement existing imaging modalities in the diagnosis and management of glaucoma.

  18. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers

    International Nuclear Information System (INIS)

    Liu, Q; Wu, K-T; Kobayashi, M; Jen, C-K; Mrad, N

    2008-01-01

    Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol–gel spray technique for aircraft environments and for temperatures ranging from −80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented

  19. Lightweight enterprise architectures

    CERN Document Server

    Theuerkorn, Fenix

    2004-01-01

    STATE OF ARCHITECTUREArchitectural ChaosRelation of Technology and Architecture The Many Faces of Architecture The Scope of Enterprise Architecture The Need for Enterprise ArchitectureThe History of Architecture The Current Environment Standardization Barriers The Need for Lightweight Architecture in the EnterpriseThe Cost of TechnologyThe Benefits of Enterprise Architecture The Domains of Architecture The Gap between Business and ITWhere Does LEA Fit? LEA's FrameworkFrameworks, Methodologies, and Approaches The Framework of LEATypes of Methodologies Types of ApproachesActual System Environmen

  20. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  1. Development of flexible process-centric web applications: An integrated model driven approach

    NARCIS (Netherlands)

    Bernardi, M.L.; Cimitile, M.; Di Lucca, G.A.; Maggi, F.M.

    2012-01-01

    In recent years, Model Driven Engineering (MDE) approaches have been proposed and used to develop and evolve WAs. However, the definition of appropriate MDE approaches for the development of flexible process-centric WAs is still limited. In particular, (flexible) workflow models have never been

  2. Thin Film Photovoltaic Cells on Flexible Substrates Integrated with Energy Storage

    Science.gov (United States)

    2011-11-30

    on a variety of flexible substrates. One of the more promising substrates is a 75 micron thick flexible glass manufactured by Corning . Corning has...gel sulfurization methods[14], sol-gel spin-coated deposition[15] and spray pyrolysis [ 16,17][16-18]. In addition, there is synthesis based on

  3. Integration of car-body flexibility into train-track coupling system dynamics analysis

    Science.gov (United States)

    Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong

    2018-04-01

    The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.

  4. Effects of Thermal Resistance on One-Dimensional Thermal Analysis of the Epidermal Flexible Electronic Devices Integrated with Human Skin

    Science.gov (United States)

    Li, He; Cui, Yun

    2017-12-01

    Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.

  5. Flexible and Stretchable Microneedle Patches with Integrated Rigid Stainless Steel Microneedles for Transdermal Biointerfacing.

    Science.gov (United States)

    Rajabi, Mina; Roxhed, Niclas; Shafagh, Reza Zandi; Haraldson, Tommy; Fischer, Andreas Christin; Wijngaart, Wouter van der; Stemme, Göran; Niklaus, Frank

    2016-01-01

    This paper demonstrates flexible and stretchable microneedle patches that combine soft and flexible base substrates with hard and sharp stainless steel microneedles. An elastomeric polymer base enables conformal contact between the microneedle patch and the complex topography and texture of the underlying skin, while robust and sharp stainless steel microneedles reliably pierce the outer layers of the skin. The flexible microneedle patches have been realized by magnetically assembling short stainless steel microneedles into a flexible polymer supporting base. In our experimental investigation, the microneedle patches were applied to human skin and an excellent adaptation of the patch to the wrinkles and deformations of the skin was verified, while at the same time the microneedles reliably penetrate the surface of the skin. The unobtrusive flexible and stretchable microneedle patches have great potential for transdermal biointerfacing in a variety of emerging applications such as transdermal drug delivery, bioelectric treatments and wearable bio-electronics for health and fitness monitoring.

  6. Lightweight superconducting alternators

    International Nuclear Information System (INIS)

    Keim, T.A.

    1988-01-01

    One of the most efficient and most lightweight means of converting high-temperature heat energy to electricity is a turboalternator set. Turboalternators are potentially important components of burst-mode power systems, either chemical or nuclear powered. Also, they are probable key components in future electric propulsion systems. Existing examples of multimegawatt turbomachines have been optimized for a variety of aerospace uses, ranging from aircraft propulsion to rocket engine fuel pump drives. There is no corresponding history of multimegawatt alternators built to aerospace standards of mass, performance, and reliability. This paper discusses one of the few such development efforts presently in progress, and gives an indication of possible future potential. In large power ratings, superconducting generators offer substantial power density, specific weight, and efficiency advantages over competing technologies. A program at GE has led to the construction of a lightweight high-voltage 20-MW generator with a superconducting field winding. The first part of this paper describes the design of the generator. The second projects the capabilities of the generator to other ratings

  7. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film.

    Science.gov (United States)

    Gao, Pingqi; Zhang, Qing

    2014-02-14

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  8. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film

    International Nuclear Information System (INIS)

    Gao, Pingqi; Zhang, Qing

    2014-01-01

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm 2  V −1  s −1 , a subthreshold slope as low as 150 mV  dec −1 , operating gate voltages less than 2 V, on/off ratios larger than 10 4 and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc. (paper)

  9. A Flexible and Integrated System for the Remote Acquisition of Neuropsychological Data in Stroke Research.

    Science.gov (United States)

    Durisko, Corrine; McCue, Michael; Doyle, Patrick J; Dickey, Michael Walsh; Fiez, Julie A

    2016-12-01

    Neuropsychological testing is a central aspect of stroke research because it provides critical information about the cognitive-behavioral status of stroke survivors, as well as the diagnosis and treatment of stroke-related disorders. Standard neuropsychological methods rely upon face-to-face interactions between a patient and researcher, which creates geographic and logistical barriers that impede research progress and treatment advances. To overcome these barriers, we created a flexible and integrated system for the remote acquisition of neuropsychological data (RAND). The system we developed has a secure architecture that permits collaborative videoconferencing. The system supports shared audiovisual feeds that can provide continuous virtual interaction between a participant and researcher throughout a testing session. Shared presentation and computing controls can be used to deliver auditory and visual test items adapted from standard face-to-face materials or execute computer-based assessments. Spoken and manual responses can be acquired, and the components of the session can be recorded for offline data analysis. To evaluate its feasibility, our RAND system was used to administer a speech-language test battery to 16 stroke survivors with a variety of communication, sensory, and motor impairments. The sessions were initiated virtually without prior face-to-face instruction in the RAND technology or test battery. Neuropsychological data were successfully acquired from all participants, including those with limited technology experience, and those with a communication, sensory, or motor impairment. Furthermore, participants indicated a high level of satisfaction with the RAND system and the remote assessment that it permits. The results indicate the feasibility of using the RAND system for virtual home-based neuropsychological assessment without prior face-to-face contact between a participant and researcher. Because our RAND system architecture uses off

  10. Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2008-01-01

    In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions, here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. Sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked

  11. Development of a Measuring System Based on LabVIEW for Angular Stiffness of Integrative Flexible Joint

    International Nuclear Information System (INIS)

    Liu, C J; Wan, D A

    2006-01-01

    In order to meet the need of development of integrative flexible joint, this paper presents a higher precision measuring system for angular stiffness test of integrative flexible joint. The main parts of the system include PC, precision motorized goniometric stage, precision motorized rotary stage and high accuracy torque sensor. The measuring and control program is developed on the platform of LabVIEW. The measuring system developed has angular resolution at 0.00032 deg. (about 1'') theoretically in determining the angular displacement of the joint round its equatorial axis and torque accuracy at 0.005 mN · m. The developed program, which presents a friendly GUI, can implement the data acquisition and processing, measuring procedure automatically. In comparison with other measuring devices with similar purposes, the measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability

  12. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  13. A lightweight universe?

    Science.gov (United States)

    Bahcall, Neta A.; Fan, Xiaohui

    1998-01-01

    How much matter is there in the universe? Does the universe have the critical density needed to stop its expansion, or is the universe underweight and destined to expand forever? We show that several independent measures, especially those utilizing the largest bound systems known—clusters of galaxies—all indicate that the mass-density of the universe is insufficient to halt the expansion. A promising new method, the evolution of the number density of clusters with time, provides the most powerful indication so far that the universe has a subcritical density. We show that different techniques reveal a consistent picture of a lightweight universe with only ∼20–30% of the critical density. Thus, the universe may expand forever. PMID:9600898

  14. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  15. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration

    Science.gov (United States)

    Scalia, Alberto; Bella, Federico; Lamberti, Andrea; Bianco, Stefano; Gerbaldi, Claudio; Tresso, Elena; Pirri, Candido Fabrizio

    2017-08-01

    The recent need to benefit from electricity in every moment of daily life, particularly when the access to the electric grid is limited, is forcing the scientific and industrial community to an intensive effort towards the production of integrated energy harvesting and storage devices able to drive low power electronics. In this framework, flexibility represents a mandatory requirement to cover non-planar or bendable surfaces, more and more common in nowadays-electronic devices. To this purpose, here we present an innovative device consisting of a TiO2 nanotube-based dye sensitized solar cell and a graphene-based electrical double layer capacitor integrated in a flexible architecture. Both the units are obtained by easily scalable fabrication processes exploiting photopolymer membranes as electrolytes and metal grids as current collectors. The performance of the two units and of the integrated system are thoroughly investigated by electrochemical measurements also under different irradiation conditions. To the best of our knowledge, this work shows the highest energy conversion and storage efficiency (1.02%) ever attained under 1 Sun irradiation condition for a flexible dye-sensitized-based non-wired photocapacitor. Noteworthy, this value dramatically increases while lowering the illumination condition to 0.3 Sun, achieving a remarkable value of 1.46%, thus showing optimal performances in real operation conditions.

  16. Enhancing Wind Power Integration through Optimal Use of Flexibility in Multi-Carrier Energy Systems from the Danish Perspective

    DEFF Research Database (Denmark)

    Zong, Yi; Awadelrahman, M. A. Ahmed; Wang, Jiawei

    2017-01-01

    Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish experience and challenges of wind power integration and the development of district...... heating systems are summarized in this paper. How to optimally use the cross-sectoral flexibility by intelligent control (model predictive control-based) of the key coupling components in an integrated heat and power system including electrical heat pumps in the demand side, and thermal storage...

  17. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics

    International Nuclear Information System (INIS)

    Koo, Ja Hoon; Seo, Jungmok; Lee, Taeyoon

    2012-01-01

    Recent efforts in the semiconductor industry have focused on the realization of electronics with unusual form factors and functions which are not achievable using the current planar Si-based technology. Deposition of high-quality films or nanomaterials on low-temperature elastomeric substrates has been a technical challenge for flexible electronics. However, together with the development of new synthesis routes that enable the formation of robust thin films and nanomaterials on compliant substrates, including the dry transfer printing technique and fabrication of uniform nanogaps/nanowrinkles using the unique stretchable characteristics of elastomeric substrates, flexible electronics has emerged as a promising technology that can enrich our lives in a variety of ways. As examples, potential applications include skin-like smart prostheses, paper-like displays, disposable electronic noses, and hemispherically-shaped electronic eye cameras. Here, we review recent results demonstrating ingenious new functionalities using nanomaterials on flexible substrates, focusing on fabrication techniques, materials, operation mechanisms, and signal outputs.

  18. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja Hoon; Seo, Jungmok; Lee, Taeyoon, E-mail: taeyoon.lee@yonsei.ac.kr

    2012-12-01

    Recent efforts in the semiconductor industry have focused on the realization of electronics with unusual form factors and functions which are not achievable using the current planar Si-based technology. Deposition of high-quality films or nanomaterials on low-temperature elastomeric substrates has been a technical challenge for flexible electronics. However, together with the development of new synthesis routes that enable the formation of robust thin films and nanomaterials on compliant substrates, including the dry transfer printing technique and fabrication of uniform nanogaps/nanowrinkles using the unique stretchable characteristics of elastomeric substrates, flexible electronics has emerged as a promising technology that can enrich our lives in a variety of ways. As examples, potential applications include skin-like smart prostheses, paper-like displays, disposable electronic noses, and hemispherically-shaped electronic eye cameras. Here, we review recent results demonstrating ingenious new functionalities using nanomaterials on flexible substrates, focusing on fabrication techniques, materials, operation mechanisms, and signal outputs.

  19. Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance.

    Science.gov (United States)

    Wang, Kai; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Meng, Qinghai; Ma, Yanwei; Wei, Zhixiang

    2015-12-02

    A high-strength poly(vinyl alcohol) chemical hydrogel (PCH) film is prepared by coupling covalent crosslinking with a film-casting process. Conducting polyaniline (PANI) is then embedded in the PCH film by in situ growth to form a composite film with a PANI-hydrogel-PANI configuration, which leads to a new conceptual flexible supercapacitor with all-in-one configuration that exhibits superior electrochemical performance and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  1. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  2. Southern Regional Center for Lightweight Innovative Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Paul T. [Mississippi State Univ., Mississippi State, MS (United States)

    2012-12-01

    The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantify microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.

  3. EVOLUTION OF LIGHTWEIGHT WOOD COMPOSITES

    Directory of Open Access Journals (Sweden)

    Marius C. BARBU

    2016-01-01

    Full Text Available Lightweight boards and beams in the wood-based construction and furniture industry are not a new topic. The density reduction of panels using sandwich structure with light cores was confirmed by users like doors or mobile homes more than three decades ago. Today many ways to attain a lighter wooden structure are on offer, partially in industrial application. The first one is the use of light-weight wood species like balsa, lime, pine from southern hemisphere plantations etc. limited by the availability, strength properties, gluability and so on. A second one is the sandwich structure made from hard faces like thick veneer, thin plywood, particleboard or high density thin fiberboard and cores made from honeycomb paper, very light wood species or foams like the polystyrene one. A third way to produce a light structure is to reduce the core drastically, using predesigned skeletons with special shapes and connections to the faces. The engines for these developments are on the one hand the fast growing market of knockdown furniture and on the other hand the increasing costs for energy and raw materials. Additional factors that make weight saving a primary economical objective for most producers are transportation costs, easier handling and higher acceptance among the end users. Moreover, customers demand more for ergonomical solutions regarding packaging. Many patents were generated by researchers and developers for new one-stage production processes for sandwich panels with wood- and impregnated paper-based facings made from veneers, particles or fibres and a core consisting of expandable foams, particles or embedded hard skeletons. These ideas or prototypes could be integrated in existing continuous pressing lines for wood based panels keeping some of the advantages of the continuous production technique in matters of efficiency. Some of the challenges of the light weight wooden structure are the connection in half or final parts, resistance to

  4. Lightweight Robotic Excavation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robust, lightweight, power-efficient excavation robots are mission enablers for lunar outposts and surface systems. Lunar excavators of this type cost-effectively...

  5. The transport sectors potential contribution to the flexibility in the power sector required by large-scale wind power integration

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Lund, H.; Mathiesen, B.V.

    2007-01-01

    -scale integration of renewable energy in the power system – in specific wind power. In the plan, 20 % of the road transport is based on electricity and 20 % on bio- fuels. This, together with other initiatives allows for up to 55-60 % wind power penetration in the power system. A fleet of 0.5 mio electrical...... vehicles in Denmark in 2030 connected to the grid 50 % of the time represents an aggregated flexible power capacity of 1- 1.5 GW and an energy capacity of 10-150 GWh.......In 2006, the Danish Society of Engineers developed a visionary plan for the Danish energy system in 2030. The paper presents and qualifies selected part of the analyses, illustrating the transport sectors potential to contribute to the flexibility in the power sector, necessary for large...

  6. Piezoelectric Lead Zirconium Titanate Composite Touch Sensors for Integration with Flexible OLED Technology

    NARCIS (Netherlands)

    Deutz, D.B.; Tempelman, E.; Zwaag, S. van der; Groen, W.A.

    2015-01-01

    To enable the design of more intuitive product user interfaces, the prospects of matching piezoelectric touch sensors with flexible organic light emitting diode (OLED) technology are investigated. Low stiffness piezoelectric composite sensors, combining piezoelectric Pb(Zr,Ti)O3 powder with a

  7. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks.

    Science.gov (United States)

    Wan, Haixiao; Shen, Jianxiang; Gao, Naishen; Liu, Jun; Gao, Yangyang; Zhang, Liqun

    2018-03-28

    Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

  8. Integral Manifold in System Design with Application to Flexible Link Robot Control

    Science.gov (United States)

    1988-06-01

    environment. I am very grateful to my advisor . Professor Kokotovic. whose insight and guidance in my research work led me to the beginning of my...MANIFOLD IN SVSTEM DESIGN WITH RPLICATION TT 2Z2 FLEXIBLE LINK ROBO (U) ILLINOIS UNIV AT URBANA DECISION AND CONTROL LAB H C TSENG JUN 98

  9. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility.

    Science.gov (United States)

    Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C; Burgess, Shawn M; Sampath, Karuna

    2016-04-07

    DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. Copyright © 2016 Vrljicak et al.

  10. Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2018-05-01

    Full Text Available This work explores the practical functionality of ultra-high frequency (UHF) radio frequency identification (RFID) tags screen printed onto various low-cost, flexible substrates. The need for integrated and automated low-cost point...

  11. Integral Design methodology for Industrial Collaboration Design of Sustainable Industrial Flexible Demountable buildings

    NARCIS (Netherlands)

    Zeiler, W.; Quanjel, E.M.C.J.; Bauer, M.; Lima, C.

    2007-01-01

    Starting in 1998 from developing and designing their own office Kropman, a major Dutch Building Services contractor, developed a new methodology for structuring and documenting integral design processes. Integral design is meant to integrate the different disciplines involved in the building design

  12. Lightweight, Durable Army Antennas Using Carbon Nanotube Technology

    Science.gov (United States)

    2013-01-01

    may be adjusted by collecting the sheet on a revolving substrate conveyor belt (e.g., Teflon belt ), as shown in figure 15 (12). SEM images of the... designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use...CNT) materials to produce lightweight, flexible, and durable alternatives to existing and future Army antenna designs is explored through fabrication

  13. Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors

    Science.gov (United States)

    Kang, Dae Y.; Kim, Yun-Soung; Ornelas, Gladys; Sinha, Mridu; Naidu, Keerthiga; Coleman, Todd P.

    2015-01-01

    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach. PMID:26389915

  14. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    International Nuclear Information System (INIS)

    Ghoneim, M. T.; Hussain, M. M.

    2015-01-01

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures

  15. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    Science.gov (United States)

    Ghoneim, M. T.; Hussain, M. M.

    2015-08-01

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.

  16. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    Energy Technology Data Exchange (ETDEWEB)

    Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa [Integrated Nanotechnology Lab, Electrical Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2015-08-03

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.

  17. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-08-05

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.

  18. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  19. Flexible, pre-insulated pipelines for heat and water supply. Systems with integrated quality and service; Flexible, vorgedaemmte Rohrsysteme fuer die Versorgungstechnik. Gesamtsysteme mit Qualitaet und Service

    Energy Technology Data Exchange (ETDEWEB)

    Hetzel, Michaela [Uponor Central Europe, Hassfurt (Germany). Unternehmenskommunikation

    2010-10-15

    Flexible pipes are suited for heat distribution, cooling water and freshwater transport. Uponor uses a modified, cross-linked polythene for insulation. The material is flexible, ageing-resistant, and will reduce the heat loss. Pipes are supplied to the construction site within two days, cut to measure and with all required parts. (orig.)

  20. Compliant lightweight non-invasive standalone “Marine Skin” tagging system

    KAUST Repository

    Nassar, Joanna M.

    2018-04-16

    Current marine research primarily depends on weighty and invasive sensory equipment and telemetric network to understand the marine environment, including the diverse fauna it contains, as a function of animal behavior and size, as well as equipment longevity. To match animal morphology and activity within the surrounding marine environment, here we show a physically flexible and stretchable skin-like and waterproof autonomous multifunctional system, integrating Bluetooth, memory chip, and high performance physical sensors. The sensory tag is mounted on a swimming crab (Portunus pelagicus) and is capable of continuous logging of depth, temperature, and salinity within the harsh ocean environment. The fully packaged, ultra-lightweight (<2.4 g in water), and compliant “Marine Skin” system does not have any wired connection enabling safe and weightless cutting-edge approach to monitor and assess marine life and the ecosystem’s health to support conservation and management of marine ecosystems.

  1. InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data.

    Science.gov (United States)

    Smith, Richard N; Aleksic, Jelena; Butano, Daniela; Carr, Adrian; Contrino, Sergio; Hu, Fengyuan; Lyne, Mike; Lyne, Rachel; Kalderimis, Alex; Rutherford, Kim; Stepan, Radek; Sullivan, Julie; Wakeling, Matthew; Watkins, Xavier; Micklem, Gos

    2012-12-01

    InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of 'widgets' performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages. Freely available from http://www.intermine.org under the LGPL license. g.micklem@gen.cam.ac.uk Supplementary data are available at Bioinformatics online.

  2. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  3. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  4. Work station learning activities: a flexible and scalable instrument for integrating across basic subjects in biomedical education.

    Science.gov (United States)

    González-Soltero, Rocío; Learte, Ana Isabel R; Sánchez, Ana Mª; Gal, Beatriz

    2017-11-29

    Establishing innovative teaching programs in biomedical education involves dealing with several national and supra-national (i.e. European) regulations as well as with new pedagogical and demographic demands. We aimed to develop and validate a suitable instrument to integrate activities across preclinical years in all Health Science Degrees while meeting requirements of national quality agencies. The new approach was conceived at two different levels: first, we identified potentially integrative units from different fields according to national learning goals established for each preclinical year (national quality agency regulations). Secondly, we implemented a new instrument that combines active methodologies in Work Station Learning Activities (WSLA), using clinical scenarios as a guiding common thread to instruct students from an integrated perspective. We evaluated students' perception through a Likert-type survey of a total of 118 students enrolled in the first year of the Bachelor's Degree in Medicine. Our model of integrated activities through WSLA is feasible, scalable and manageable with large groups of students and a minimum number of instructors, two major limitations in many medical schools. Students' perception of WSLA was positive in overall terms. Seventy nine percent of participants stated that WSLA sessions were more useful than non-integrated activities. Eighty three percent confirmed that the WSLA methodology was effective at integrating concepts covered by different subjects. The WSLA approach is a flexible and scalable instrument for moving towards integrated curricula, and it can be successfully adapted to teach basic subjects in preclinical years of Health Science degrees. WSLA can be applied to large groups of students in a variety of contexts or environments using clinical cases as connecting threads.

  5. Design and development an insect-inspired humanoid gripper that is structurally sound, yet very flexible

    International Nuclear Information System (INIS)

    Hajjaj, S; Pun, N

    2013-01-01

    One of the biggest challenges in mechanical robotics design is the balance between structural integrity and flexibility. An industrial robotic gripper could be technically advanced, however it contains only 1 Degree of Freedom (DOF). If one is to add more DOFs the design would become complex. On the other hand, the human wrist and fingers contain 23 DOFs, and is very lightweight and highly flexible. Robotics are becoming more and more part of our social life, they are more and more being incorporated in social, medical, and personal application. Therefore, for such robots to be effective, they need to mimic human performance, both in performance as well as in mechanical design. In this work, a Humanoid Gripper is designed and built to mimic a simplified version of a human wrist and fingers. This is attempted by mimicking insect and human designs of grippes. The main challenge was to insure that the gripper is structurally sound, but at the same time flexible and lightweight. A combination of light weight material and a unique design of finger actuators were applied. The gripper is controlled by a PARALLAX servo controller 28823 (PSCI), which mounted on the assembly itself. At the end, a 6 DOF humanoid gripper made of lightweight material, similar in size to the human arm, and is able to carry a weight of 1 Kg has been designed and built.

  6. Design and development an insect-inspired humanoid gripper that is structurally sound, yet very flexible

    Science.gov (United States)

    Hajjaj, S.; Pun, N.

    2013-06-01

    One of the biggest challenges in mechanical robotics design is the balance between structural integrity and flexibility. An industrial robotic gripper could be technically advanced, however it contains only 1 Degree of Freedom (DOF). If one is to add more DOFs the design would become complex. On the other hand, the human wrist and fingers contain 23 DOFs, and is very lightweight and highly flexible. Robotics are becoming more and more part of our social life, they are more and more being incorporated in social, medical, and personal application. Therefore, for such robots to be effective, they need to mimic human performance, both in performance as well as in mechanical design. In this work, a Humanoid Gripper is designed and built to mimic a simplified version of a human wrist and fingers. This is attempted by mimicking insect and human designs of grippes. The main challenge was to insure that the gripper is structurally sound, but at the same time flexible and lightweight. A combination of light weight material and a unique design of finger actuators were applied. The gripper is controlled by a PARALLAX servo controller 28823 (PSCI), which mounted on the assembly itself. At the end, a 6 DOF humanoid gripper made of lightweight material, similar in size to the human arm, and is able to carry a weight of 1 Kg has been designed and built.

  7. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  8. Towards Cost-Effective Crystalline Silicon Based Flexible Solar Cells: Integration Strategy by Rational Design of Materials, Process, and Devices

    KAUST Repository

    Bahabry, Rabab R.

    2017-11-30

    The solar cells market has an annual growth of more than 30 percent over the past 15 years. At the same time, the cost of the solar modules diminished to meet both of the rapid global demand and the technological improvements. In particular for the crystalline silicon solar cells, the workhorse of this technology. The objective of this doctoral thesis is enhancing the efficiency of c-Si solar cells while exploring the cost reduction via innovative techniques. Contact metallization and ultra-flexible wafer based c-Si solar cells are the main areas under investigation. First, Silicon-based solar cells typically utilize screen printed Silver (Ag) metal contacts which affect the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used for the front contact grid lines. In this work, investigation of the microstructure and the electrical characteristics of nickel monosilicide (NiSi) ohmic contacts on the rear side of c-Si solar cells has been carried out. Significant enhancement in the fill factor leading to increasing the total power conversion efficiency is observed. Second, advanced classes of modern application require a new generation of versatile solar cells showcasing extreme mechanical resilience. However, silicon is a brittle material with a fracture strains <1%. Highly flexible Si-based solar cells are available in the form thin films which seem to be disadvantageous over thick Si solar cells due to the reduction of the optical absorption with less active Si material. Here, a complementary metal oxide semiconductor (CMOS) technology based integration strategy is designed where corrugation architecture to enable an ultra-flexible solar cell module from bulk mono-crystalline silicon solar wafer with 17% efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness and achieves flexibility via interdigitated back contacts. These cells

  9. Production of lightweight Geopolymer concrete using artificial local lightweight aggregate

    Directory of Open Access Journals (Sweden)

    Abbas Waleed

    2018-01-01

    Full Text Available Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K, respectively.

  10. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    Science.gov (United States)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2018-02-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  11. Spongent: A lightweight hash function

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Knežević, Miroslav; Leander, Gregor

    2011-01-01

    This paper proposes spongent - a family of lightweight hash functions with hash sizes of 88 (for preimage resistance only), 128, 160, 224, and 256 bits based on a sponge construction instantiated with a present-type permutation, following the hermetic sponge strategy. Its smallest implementations...

  12. FY2016 Lightweight Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  13. Integrating Flexible Sensor and Virtual Self-Organizing DC Grid Model With Cloud Computing for Blood Leakage Detection During Hemodialysis.

    Science.gov (United States)

    Huang, Ping-Tzan; Jong, Tai-Lang; Li, Chien-Ming; Chen, Wei-Ling; Lin, Chia-Hung

    2017-08-01

    Blood leakage and blood loss are serious complications during hemodialysis. From the hemodialysis survey reports, these life-threatening events occur to attract nephrology nurses and patients themselves. When the venous needle and blood line are disconnected, it takes only a few minutes for an adult patient to lose over 40% of his / her blood, which is a sufficient amount of blood loss to cause the patient to die. Therefore, we propose integrating a flexible sensor and self-organizing algorithm to design a cloud computing-based warning device for blood leakage detection. The flexible sensor is fabricated via a screen-printing technique using metallic materials on a soft substrate in an array configuration. The self-organizing algorithm constructs a virtual direct current grid-based alarm unit in an embedded system. This warning device is employed to identify blood leakage levels via a wireless network and cloud computing. It has been validated experimentally, and the experimental results suggest specifications for its commercial designs. The proposed model can also be implemented in an embedded system.

  14. Development of lightweight THUNDER with fiber composite layers

    Science.gov (United States)

    Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.

    2000-06-01

    This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.

  15. The Plant-Window system: A flexible, expandable computing environment for the integration of power plant activities

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1994-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed on Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  16. Flexible Graphene-Based Energy Storage Devices for Space Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a graphene-based battery/ultra-capacitor prototype that is flexible, thin, lightweight, durable, low cost, and safe and...

  17. How to deal with negative power price spikes?-Flexible voluntary curtailment agreements for large-scale integration of wind

    International Nuclear Information System (INIS)

    Brandstaett, Christine; Brunekreeft, Gert; Jahnke, Katy

    2011-01-01

    For the large-scale integration of electricity from renewable energy sources (RES-E), the German system seems to reach its limits. In 2009, the electricity wholesale market experienced serious negative prices at times of high wind and low demand. The feed-in system in Germany consists of a fixed feed-in price, a take-off obligation and a RES priority rule, and in practice only very restrictive use of RES-E curtailment. Exactly the latter is the problem. We argue that the overall performance of the system would improve seriously by lifting the restrictions on the use of voluntary curtailment agreements, while retaining the priority rule as such. Since generators of RES-E can only improve under this system reform, investment conditions improve, leading to higher installed RES-E capacity. This in turn implies that reduced wind output due to curtailment can actually be offset by higher wind output in all periods in which there is no problem. - Highlights: → We examine the large-scale integration of electricity from renewable sources (RES-E) into the German energy market. → Seriously negative prices at the wholesale market suggest that market design could be improved. → We argue that allowing flexible use of voluntary curtailment agreements (VCA), while keeping the priority feed-in rule, would increase the total system's efficiency. → Improved investment conditions due to flexible use of VCAs leading to higher installed RES-E capacity could offset the reduced wind output and would not impede climate policy goals.

  18. A flexible, extendable, modular and computationally efficient approach to scattering-integral-based seismic full waveform inversion

    Science.gov (United States)

    Schumacher, F.; Friederich, W.; Lamara, S.

    2016-02-01

    We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be

  19. A Lightweight Protocol for Secure Video Streaming.

    Science.gov (United States)

    Venčkauskas, Algimantas; Morkevicius, Nerijus; Bagdonas, Kazimieras; Damaševičius, Robertas; Maskeliūnas, Rytis

    2018-05-14

    The Internet of Things (IoT) introduces many new challenges which cannot be solved using traditional cloud and host computing models. A new architecture known as fog computing is emerging to address these technological and security gaps. Traditional security paradigms focused on providing perimeter-based protections and client/server point to point protocols (e.g., Transport Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog computing end devices, where energy and computational resources are limited. In this paper, we present a lightweight secure streaming protocol for the fog computing "Fog Node-End Device" layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations, and is able to provide data source authentication, data integrity, and confidentiality. The protocol is based on simple and energy efficient cryptographic methods, such as Hash Message Authentication Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets to embed authentication data into streaming data. Data redundancy could be added to improve reliability in lossy networks. The experimental results summarized in this paper confirm that the proposed method efficiently uses energy and computational resources and at the same time provides security properties on par with the Datagram TLS (DTLS) standard.

  20. A Distributed Model Predictive Control approach for the integration of flexible loads, storage and renewables

    DEFF Research Database (Denmark)

    Ferrarini, Luca; Mantovani, Giancarlo; Costanzo, Giuseppe Tommaso

    2014-01-01

    This paper presents an innovative solution based on distributed model predictive controllers to integrate the control and management of energy consumption, energy storage, PV and wind generation at customer side. The overall goal is to enable an advanced prosumer to autoproduce part of the energy...... he needs with renewable sources and, at the same time, to optimally exploit the thermal and electrical storages, to trade off its comfort requirements with different pricing schemes (including real-time pricing), and apply optimal control techniques rather than sub-optimal heuristics....

  1. Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs.

    Science.gov (United States)

    Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won

    2018-06-14

    We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.

  2. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  3. Openlink : a flexible integration system for environmental risk analysis and management

    International Nuclear Information System (INIS)

    LePoire, D. J.; Arnish, J.; Gnanapraasam, E.; Klett, T.; Johnson, R.; Chen, S. Y.; Biwer, B. M.; Yu, C.

    2002-01-01

    Most existing computer codes for modeling environmental pathways were developed to satisfy a specific objective (e.g., perform analyses to demonstrate regulatory compliance). Over time, the codes have been written in various computer languages and software environments that are often not compatible with each other. In recent years, largely driven by advances in industrial software, a new concept for software development based on modularization has emerged. This approach entails the development of common modules or components that can be shared by and used in different applications that have certain common needs. Although modularization promises advantages over the traditional approach, a number of issues must be fully addressed and resolved before the approach can be accepted as a new paradigm for environmental modeling. This paper discusses these issues, provides demonstrations of open integration techniques, and provides recommendations and a course of action for future development

  4. Flexible transfer of aligned carbon nanotube films for integration at lower temperature

    International Nuclear Information System (INIS)

    Chai Yang; Gong Jingfeng; Zhang Kai; Chan, Philip C H; Yuen, Matthew M F

    2007-01-01

    The high growth temperature of carbon nanotubes (CNTs) hinders their direct assembly on temperature-sensitive substrates. We present a method to transfer an aligned CNT film at room temperature to overcome this problem. Using a 'liftoff' technique with hydrofluoric acid solution, we separate the aligned CNT film from the silicon substrate. The lifted-off CNT film is suspended in water, remaining intact and aligned due to the crowding effect. We then transfer the suspended film to various substrates that are sensitive to high temperature. To illustrate the quality of the transferred CNT film, we demonstrate that the thermal interface resistance of the transferred CNT film is comparable with that of as-grown CNT film. This transfer process can be extended to many microelectronics applications, such as field emission devices, integrated circuit interconnects and sensors, requiring processing temperatures not compatible with CNT growth

  5. Lightweight design: mass in transit

    OpenAIRE

    MALBURET, François; KRYSINSKI, Tomasz; NAUZIN, Jean-Paul

    2012-01-01

    This paper is part of an effort to reduce a vehicle’s CO2 emissions through lightweight design. The originality of the approach consists in harnessing the optimal vehicle architecture with regard to CO2 emissions. Reducing a vehicle’s weight provides an opportunity to reassess performance features like shock, noise, vibrations and road holding, thereby generating additional savings through a virtuous cycle of weight reduction. The paper sheds light on some methodological aspects used by PSA P...

  6. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  7. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  8. Transparent Flexible Electronics By Directed Integration of Inorganic Micro and Nanomaterials

    Science.gov (United States)

    Cole, Jesse J.

    This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials. Our approaches involved local adjustment of electrostatics at the surfaces to control material flux. Templating of surface electrostatics was implemented differently for three broad concepts resulting in control over nanomaterial synthesis, deposition, and printing. These three general concepts are: (A) Tailored ZnO nanowire synthesis and integration out of the liquid phase; (B) Arc discharge synthesis and continuous nanocluster deposition from the gas phase; (C) Contact electrification and xerographic printing of nanoparticles from the gas phase. Concept (A): We report a method to fabricate and transfer crystalline ZnO with control over location, orientation, size, and shape. The process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium-doped GaN substrates to define narrow nucleation regions and attachment points with 100 nanometer scale dimensions. Lateral epitaxial overgrowth follows nucleation to produce single crystalline ZnO which were fabricated into LEDs and photovoltaic cells. Concept (B): We report a gas phase nanoparticle deposition system which shares characteristics with liquid phase electrodeposition. Clusters of charged nanoparticles selectively deposit onto electrically grounded surfaces. Similar to electroplating, the continued deposition of Au nanoparticles onto underlying resistive traces increased overall line conductivity. Alternatively, semiconducting ZnO and Ge nanomaterial sequentially deposited between interdigitated electrodes and served as addressable sensor active areas. Concept (C): We report patterned transfer of charge between conformal material interfaces through a concept referred to as nanocontact electrification. Nanocontacts of different size and shape are formed between surface functionalized polydimethylsiloxane (PDMS) stamps and other dielectric materials (PMMA, SiO 2). Forced

  9. Nipype: A flexible, lightweight and extensible neuroimaging data processing framework

    Directory of Open Access Journals (Sweden)

    Krzysztof eGorgolewski

    2011-08-01

    Full Text Available Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM are used to process and analyze large and often diverse (highly multi-dimensional data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient and optimal use of neuroimaging analysis approaches: 1 No uniform access to neuroimaging analysis software and usage information; 2 No framework for comparative algorithm development and dissemination; 3 Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; 4 Neuroimaging software packages do not address computational efficiency; and 5 Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype, an open-source, community-developed, software package and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is BSD licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.

  10. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  11. All-solid state, flexible, high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4 nanosheets.

    Science.gov (United States)

    Moosavifard, Seyyed Ebrahim; Shamsi, Javad; Altafi, Mohammad Kazem; Moosavifard, Zeinab Sadat

    2016-11-18

    3D LSG/CoNi 2 S 4 //LSG interdigitated microelectrodes have been firstly developed by a facile, scalable and low cost process for all-solid-state, flexible integrated asymmetric micro-supercapacitors. These devices can achieve energy densities of up to 49 W h l -1 which is comparable to those of lead acid batteries.

  12. A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible silicon for IoT applications

    KAUST Repository

    Nassar, Joanna M.

    2017-02-07

    We report CMOS technology enabled fabrication and system level integration of flexible bulk silicon (100) based multi-sensors platform which can simultaneously sense pressure, temperature, strain and humidity under various physical deformations. We also show an advanced wearable version for body vital monitoring which can enable advanced healthcare for IoT applications.

  13. A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible silicon for IoT applications

    KAUST Repository

    Nassar, Joanna M.; Sevilla, Galo T.; Velling, Seneca J.; Cordero, Marlon D.; Hussain, Muhammad Mustafa

    2017-01-01

    We report CMOS technology enabled fabrication and system level integration of flexible bulk silicon (100) based multi-sensors platform which can simultaneously sense pressure, temperature, strain and humidity under various physical deformations. We also show an advanced wearable version for body vital monitoring which can enable advanced healthcare for IoT applications.

  14. Integrating the flexibility of the average Serbian consumer as a virtual storage option into the planning of energy systems

    Directory of Open Access Journals (Sweden)

    Batas-Bjelić Ilija R.

    2014-01-01

    Full Text Available With the integration of more variable renewable energy, the need for storage is growing. Rather than utility scale storage, smart grid technology (not restricted, but mainly involving bidirectional communication between the supply and demand side and dynamic pricing enables flexible consumption to be a virtual storage alternative for moderation of the production of variable renewable energy sources on the micro grid level. A study, motivated with energy loss allocation, electric demand and the legal framework that is characteristic for the average Serbian household, was performed using the HOMER software tool. The decision to shift or build deferrable load rather than sell on site generated energy from variable renewable energy sources to the grid was based on the consumer's net present cost minimization. Based on decreasing the grid sales hours of the micro grid system to the transmission grid from 3,498 to 2,009, it was shown that the demand response could be included in long-term planning of the virtual storage option. Demand responsive actions that could be interpreted as storage investment costs were quantified to 1€2 per year in this article. [Projekat Ministarstva nauke Republike Srbije, br. 42009: Smart grid

  15. Lightweight Solar Power for Small Satellites

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  16. Lightweight Bathrooms with Increased Durability

    DEFF Research Database (Denmark)

    Morelli, Martin; Brandt, Erik

    2017-01-01

    vulnerable and less robust than the old type of heavy wet rooms made from concrete and masonry. For example damage due to ingress of water and moisture in a lightweight construction is normally associated with very expensive repair work. However, they might perform fully satisfactorily on condition...... wet room floor made with 2 watertight layers separated by an inorganic layer e.g. fibre reinforced concrete. Both layers are drained to the floor gully in order to reduce the risk of damage from leaks in the watertight layer; i.e. if one layer fails, the layer beneath will be able to provide...

  17. Lightweight solar array blanket tooling, laser welding and cover process technology

    Science.gov (United States)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  18. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber.

    Science.gov (United States)

    Ren, Jing; Bai, Wenyu; Guan, Guozhen; Zhang, Ye; Peng, Huisheng

    2013-11-06

    A flexible and weaveable electric double-layer capacitor wire is developed by twisting two aligned carbon nanotube/ordered mesoporous carbon composite fibers with remarkable mechanical and electronic properties as electrodes. This capacitor wire exhibits high specific capacitance and long life stability. Compared with the conventional planar structure, the capacitor wire is also lightweight and can be integrated into various textile structures that are particularly promising for portable and wearable electronic devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Método integral configurable y flexible de ensayo de materiales consumibles de soldadura por arco eléctrico. // Integral, flexible and shaped method for electric arc welding consumable materials test.

    Directory of Open Access Journals (Sweden)

    A. García Rodríguez

    2005-05-01

    Full Text Available La presente publicación propone un método integral configurable y flexible para facilitar el ensayo de materialesconsumibles de soldadura por arco eléctrico en las condiciones tecnológicas para las que han sido diseñados estosmateriales, en relación a la calidad de la unión soldada. Se puede llegar a conclusiones definitivas sobre la calidad de lasoldadura usando un determinado material consumible mediante: la relación operacional de técnicas de inteligencia naturaly/o artificial, el uso de sistemas expertos, el trabajo con bases de datos, la simulación y la realización práctica del procesomientras se registran ciertos parámetros del arco eléctrico, digitalmente procesados estadísticamente y relacionados a losresultados de la caracterización de la unión soldada. El método permite registrar adecuadamente la información referente acada aspecto del proceso exigida en los procesos de certificación de la calidad de los consumibles, así como en lainvestigación dirigida a optimizar la composición química y las propiedades físicas de un material, para obtener calidadesóptimas en un determinado proceso; además es posible obtener las bases de datos de parámetros del arco eléctrico útilespara investigar, desarrollar y valorar métodos y algoritmos para el monitoreo en tiempo real de la calidad de la soldaduradurante un determinado proceso tecnológico de soldadura con arco eléctrico.Palabras Clave: Ensayo, materiales, soldadura, arco eléctrico, estabilidad, calidad, simulación, optimización,unión soldada.___________________________________________________________________________Abstract.This paper presenst an integral, flexible and shaped method that make easy the electric arc welding consumable materials test at thedesigned technological conditions, related to the quality of the welding joint. It is possible to arrive to definitive conclusions about thewelding quality using a fixed material through: operational

  20. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  1. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Kim, Jung Won; Choi, Bong Gill

    2015-01-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  2. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  3. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  4. Thin, Flexible Secondary Li-Ion Paper Batteries

    KAUST Repository

    Hu, Liangbing

    2010-10-26

    There is a strong interest in thin, flexible energy storage devices to meet modern society needs for applications such as interactive packaging, radio frequency sensing, and consumer products. In this article, we report a new structure of thin, flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and Li-ion battery materials are integrated onto a single sheet of paper through a lamination process. The paper functions as both a mechanical substrate and separator membrane with lower impedance than commercial separators. The CNT film functions as a current collector for both the anode and the cathode with a low sheet resistance (∼5 Ohm/sq), lightweight (∼0.2 mg/cm2), and excellent flexibility. After packaging, the rechargeable Li-ion paper battery, despite being thin (∼300 μm), exhibits robust mechanical flexibility (capable of bending down to <6 mm) and a high energy density (108 mWh/g). © 2010 American Chemical Society.

  5. Dyadic Affective Flexibility and Emotional Inertia in Relation to Youth Psychopathology: An Integrated Model at Two Timescales.

    Science.gov (United States)

    Mancini, Kathryn J; Luebbe, Aaron M

    2016-06-01

    The current review examines characteristics of temporal affective functioning at both the individual and dyadic level. Specifically, the review examines the following three research questions: (1) How are dyadic affective flexibility and emotional inertia operationalized, and are they related to youth psychopathology? (2) How are dyadic affective flexibility and emotional inertia related, and does this relation occur at micro- and meso-timescales? and (3) How do these constructs combine to predict clinical outcomes? Using the Flex3 model of socioemotional flexibility as a frame, the current study proposes that dyadic affective flexibility and emotional inertia are bidirectionally related at micro- and meso-timescales, which yields psychopathological symptoms for youth. Specific future directions for examining individual, dyadic, and cultural characteristics that may influence relations between these constructs and psychopathology are also discussed.

  6. Algorithms for Lightweight Key Exchange.

    Science.gov (United States)

    Alvarez, Rafael; Caballero-Gil, Cándido; Santonja, Juan; Zamora, Antonio

    2017-06-27

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks.

  7. Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode

    International Nuclear Information System (INIS)

    Kang, Chiwon; Cha, Eunho; Baskaran, Rangasamy; Choi, Wonbong

    2016-01-01

    Flexible lithium-ion batteries (LIBs) have received considerable attention as energy sources for wearable electronics. In recent years, much effort has been devoted to study light-weight, robust, and flexible electrodes. However, high areal and volumetric capacities need to be achieved for practical power and energy densities. In this paper, we report the use of three-dimensional (3D) free-standing carbon nanotubes (CNTs) as a current collector-free anode to demonstrate flexible LIBs with enhanced areal and volumetric capacities. High density CNTs grown on copper (Cu) mesh are transferred to a flexible graphene/polyethylene terephthalate  film and integrated into a flexible LIB. A fully flexible LIB cell integrated with the 3D CNT anode delivers a high areal capacity of 0.25 mAh cm"−"2 at 0.1C and shows fairly consistent open circuit voltage under bending. These findings may provide significant advances in the application of flexible LIB based electronic devices. (paper)

  8. Integrating Multi-Domain Distributed Energy Systems with Electric Vehicle PQ Flexibility: Optimal Design and Operation Scheduling for Sustainable Low-Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Morvaj, Boran; Knezovic, Katarina; Evins, Ralph

    2016-01-01

    on the grid operation, in addition to coordinated charging, is analysed. Results showed that when the system can be optimally designed, emissions decrease by 64% and additionally 32% with proactive EV integration, whereas EV reactive power control enables integration of larger EV amounts and provides...... in the stable operation. The model was applied to a real low-voltage Danish distribution grid where measurement data is available on hourly basis in order to determine EV flexibility impacts on carbon emissions, as well as the benefits of optimal DES design. The influence of EV reactive power control...

  9. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-01-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent

  10. Testnodes: a Lightweight node-testing infrastructure

    International Nuclear Information System (INIS)

    Fay, R; Bland, J

    2014-01-01

    A key aspect of ensuring optimum cluster reliability and productivity lies in keeping worker nodes in a healthy state. Testnodes is a lightweight node testing solution developed at Liverpool. While Nagios has been used locally for general monitoring of hosts and services, Testnodes is optimised to answer one question: is there any reason this node should not be accepting jobs? This tight focus enables Testnodes to inspect nodes frequently with minimal impact and provide a comprehensive and easily extended check with each inspection. On the server side, Testnodes, implemented in python, interoperates with the Torque batch server to control the nodes production status. Testnodes remotely and in parallel executes client-side test scripts and processes the return codes and output, adjusting the node's online/offline status accordingly to preserve the integrity of the overall batch system. Testnodes reports via log, email and Nagios, allowing a quick overview of node status to be reviewed and specific node issues to be identified and resolved quickly. This presentation will cover testnodes design and implementation, together with the results of its use in production at Liverpool, and future development plans.

  11. Flexible Bronchoscopy.

    Science.gov (United States)

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. High Efficency Lightweight Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — XC Associates proposes to build on prior work to develop and characterize a very high efficiency, lightweight radiator constructed from high thermal conductivity...

  13. Volume changes in unrestrained structural lightweight concrete.

    Science.gov (United States)

    1964-08-01

    In this study a comparator-type measuring system was developed to accurately determine volume change characteristics of one structural lightweight concrete. The specific properties studied were the coefficient of linear thermal expansion and unrestra...

  14. 3D-printed lightweight drones

    DEFF Research Database (Denmark)

    Geiger, Raphael

    2018-01-01

    New Materials within additive manufacturing offer new potentials for drone production - especially in lightweight design. Flying drones benefit significantly from this developments. In regards to quality assurance the technical challenge is to offer a complete quality control within production. T...

  15. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  16. Titanium Nanocomposite: Lightweight Multifunction Structural Material

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to research and develop lightweight metal matrix nanocomposites (MMnC) using a Titanium (Ti) metal matrix. Ti MMnC will crosscut the advancement of both...

  17. Cryptanalysis of Some Lightweight Symmetric Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed

    In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...

  18. Flexible Graphene-based Energy Storage Devices for Space Application Project

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  19. Single-layer Ultralight, Flexible, Shielding Tension Shell System for Extreme Heat and Radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a flexible thermal protection system (FTPS) with a Boron Nitride Nanotube (BNNT)-based single-layer, lightweight,...

  20. Towards Cost-Effective Crystalline Silicon Based Flexible Solar Cells: Integration Strategy by Rational Design of Materials, Process, and Devices

    KAUST Repository

    Bahabry, Rabab R.

    2017-01-01

    . However, silicon is a brittle material with a fracture strains <1%. Highly flexible Si-based solar cells are available in the form thin films which seem to be disadvantageous over thick Si solar cells due to the reduction of the optical absorption

  1. An integrated approach to inventory and flexible capacity management subject to fixed costs and non-stationary stochastic demand

    NARCIS (Netherlands)

    Tan, T.; Alp, O.

    2009-01-01

    In a manufacturing system with flexible capacity, inventory management can be coupled with capacity management in order to handle fluctuations in demand more effectively. Typical examples include the effective use of temporary workforce and overtime production. In this paper, we discuss an

  2. An infrastructure with a unified control plane to integrate IP into optical metro networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor

    2012-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.

  3. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  4. Hierarchical resilience with lightweight threads

    International Nuclear Information System (INIS)

    Wheeler, Kyle Bruce

    2011-01-01

    This paper proposes methodology for providing robustness and resilience for a highly threaded distributed- and shared-memory environment based on well-defined inputs and outputs to lightweight tasks. These inputs and outputs form a failure 'barrier', allowing tasks to be restarted or duplicated as necessary. These barriers must be expanded based on task behavior, such as communication between tasks, but do not prohibit any given behavior. One of the trends in high-performance computing codes seems to be a trend toward self-contained functions that mimic functional programming. Software designers are trending toward a model of software design where their core functions are specified in side-effect free or low-side-effect ways, wherein the inputs and outputs of the functions are well-defined. This provides the ability to copy the inputs to wherever they need to be - whether that's the other side of the PCI bus or the other side of the network - do work on that input using local memory, and then copy the outputs back (as needed). This design pattern is popular among new distributed threading environment designs. Such designs include the Barcelona STARS system, distributed OpenMP systems, the Habanero-C and Habanero-Java systems from Vivek Sarkar at Rice University, the HPX/ParalleX model from LSU, as well as our own Scalable Parallel Runtime effort (SPR) and the Trilinos stateless kernels. This design pattern is also shared by CUDA and several OpenMP extensions for GPU-type accelerators (e.g. the PGI OpenMP extensions).

  5. Highly flexible and all-solid-state paperlike polymer supercapacitors.

    Science.gov (United States)

    Meng, Chuizhou; Liu, Changhong; Chen, Luzhuo; Hu, Chunhua; Fan, Shoushan

    2010-10-13

    In recent years, much effort have been dedicated to achieve thin, lightweight and even flexible energy-storage devices for wearable electronics. Here we demonstrate a novel kind of ultrathin all-solid-state supercapacitor configuration with an extremely simple process using two slightly separated polyaniline-based electrodes well solidified in the H(2)SO(4)-polyvinyl alcohol gel electrolyte. The thickness of the entire device is much comparable to that of a piece of commercial standard A4 print paper. Under its highly flexible (twisting) state, the integrate device shows a high specific capacitance of 350 F/g for the electrode materials, well cycle stability after 1000 cycles and a leakage current of as small as 17.2 μA. Furthermore, due to its polymer-based component structure, it has a specific capacitance of as high as 31.4 F/g for the entire device, which is more than 6 times that of current high-level commercial supercapacitor products. These highly flexible and all-solid-state paperlike polymer supercapacitors may bring new design opportunities of device configuration for energy-storage devices in the future wearable electronic area.

  6. Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process

    International Nuclear Information System (INIS)

    Qadir, Abdul; Sharma, Manish; Parvareh, Forough; Khalilpour, Rajab; Abbas, Ali

    2015-01-01

    Highlights: • Flexible operation of power and PCC plant may significantly increase operational revenue. • Higher optimal carbon capture rates observed with solar thermal energy input. • Solar thermal repowering of the power plant provides highest net revenue. • Constant optimal capture rate observed for one of the flexible operation cases. • Up to 42% higher revenue generation observed between two cases with solar input. - Abstract: This paper examines flexible operation of solvent-based post-combustion carbon capture (PCC) for the reduction of power plant carbon emissions while minimizing revenue loss due to the reduced power plant electricity output. The study is conducted using a model superstructure enveloping three plants; a power plant, a PCC plant and a solar thermal field where the power plant and PCC plant are operated flexibly under the influence of hourly electricity market and weather conditions. Reduced (surrogate) models for the reboiler duty and auxiliary power requirement for the carbon capture plant are generated and applied to simulate and compare four cases, (A) power plant with PCC, (B) power plant with solar assisted PCC, (C) power plant with PCC and solar repowering – variable net electricity output and (D) power plant with PCC and solar repowering – fixed net electricity output. Such analyses are conducted under dynamic conditions including power plant part-load operation while varying the capture rate to optimize the revenue of the power plant. Each case was simulated with a lower carbon price of $25/tonne-CO 2 and a higher price of $50/tonne-CO 2 . The comparison of cases B–D found that optimal revenue generation for case C can be up to 42% higher than that of solar-assisted PCC (case B). Case C is found to be the most profitable with the lowest carbon emissions intensity and is found to exhibit a constant capture rate for both carbon prices. The optimal revenue for case D is slightly lower than case C for the lower carbon

  7. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    Science.gov (United States)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  8. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  9. On flexibility

    OpenAIRE

    Weiss, Christoph R.; Briglauer, Wolfgang

    2000-01-01

    By building on theoretical work by Mills and Schumann (1985) and Ungern-Sternberg (1990) this paper provides evidence on the determinants of two dimensions of flexibility, the flexibility in adjusting aggregate output over time (tactical flexibility) as well as the ability to switch quickly between products (operational flexibility). Econometric analysis of a sample of 40.000 farms in Upper-Austria for the period 1980 to 1990 suggests that larger full-time farms operated by younger, better ed...

  10. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa

    2017-03-17

    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V−1 s−1 and 0.013 cm2 V−1 s−1, respectively, current on/off ratio in the range 102–104, and maximum operating voltages between −3.5 and −10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  11. Geopolymerization of lightweight aggregate waste

    Directory of Open Access Journals (Sweden)

    Labrincha, J. A.

    2008-09-01

    Full Text Available Geopolymerization is a viable way to process and re-use alumino-silicate industrial waste while producing highstrength, high chemical inertia materials that can effectively immobilize other industrial by-products, and even hazardous waste. In this study industrial waste from different stages of the manufacture of lightweight expanded clay aggregate was characterized for its possible transformation, via alkali activation, to geopolymers. The ultimate aim was to assess the possibility of using such geopolymers to develop thermal and acoustic insulation panels. The containment of hazardous materials is another important application for these new materials. Geopolymers were prepared for this study with different particles size distributions and activator concentrations. Their mechanical properties, composition and microstructure were characterized and a material with promising insulating properties was produced. A preliminary analysis was conducted of the salt formation observed in these geopolymers, the chief drawback to their use.La geopolimerización es una manera viable para procesar y agregar valor a los residuos industriales de alumino-silicato dando lugar a materiales con elevadas resistencias mecánmicas, alta inercia química y que permiten encapsular otros residuos, incluso peligrosos. Los residuos industriales que proceden de diversos tipos de arcillas para la fabricación de áridos ligeros se han caracterizado para la producción de geopolímeros mediante el proceso de ataque alcalino. Su incorporación en una matriz geopolimérica permite la posibilidad de desarrollo de paneles de aislamiento (térmico y acústico. Además, la inmovilización de materiales peligrosos es un logro adicional importante. Los geopolímeros se han producido con fórmulas diferentes y se han caracterizado sus propiedades mecánicas, composición y microestructura, para dar lugar a una composición interesante con propiedades aislantes. Se ha llevado a cabo

  12. The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics

    International Nuclear Information System (INIS)

    Leyendecker, Sigrid; Betsch, Peter; Steinmann, Paul

    2008-01-01

    In the present work, the unified framework for the computational treatment of rigid bodies and nonlinear beams developed by Betsch and Steinmann (Multibody Syst. Dyn. 8, 367-391, 2002) is extended to the realm of nonlinear shells. In particular, a specific constrained formulation of shells is proposed which leads to the semi-discrete equations of motion characterized by a set of differential-algebraic equations (DAEs). The DAEs provide a uniform description for rigid bodies, semi-discrete beams and shells and, consequently, flexible multibody systems. The constraints may be divided into two classes: (i) internal constraints which are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints related to the presence of joints in a multibody framework. The present approach thus circumvents the use of rotational variables throughout the whole time discretization, facilitating the design of energy-momentum methods for flexible multibody dynamics. After the discretization has been completed a size-reduction of the discrete system is performed by eliminating the constraint forces. Numerical examples dealing with a spatial slider-crank mechanism and with intersecting shells illustrate the performance of the proposed method

  13. Infinte Periodic Structure of Lightweight Elements

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2013-01-01

    Lightweight wooden structures have become more popular as a sustainable, environmental- friendly and cost-effective alternative to concrete, steel and masonry buildings. However, there are certain drawbacks regarding noise and vibration due to the smaller weight and stiffness of wooden buildings....... Furthermore, lightweight building elements are typically periodic structures that behave as filters for sound propagation within certain frequency ranges (stop bands), thus only allowing transmission within the pass bands. Hence, traditional methods based on statistical energy analysis cannot be used...... for proper dynamic assessment of lightweight buildings. Instead, this paper discusses and compares the use of finite element analysis and a wave approach based on Floquet theory. The present analysis has focus on the effect of periodicity on vibration transmission within semi-infinite beam structures. Two...

  14. LIGHT-WEIGHT LOAD-BEARING STRUCTURE

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure (1) with optimized compression zone (2), where along one or more compression zones (2) in the structure (1) to be cast a core (3) of strong concrete is provided, which core (3) is surrounded by concrete of less strength (4) compared...... to the core (3) of strong concrete. The invention also relates to a method of casting of light-weight load-bearing structures (1) with optimized compression zone (2) where one or more channels, grooves, ducts, pipes and/or hoses (5) formed in the load-bearing structure (1) serves as moulds for moulding one...... or more cores (3) of strong concrete in the light-weight load-bearing structure (1)....

  15. Sensor Technologies on Flexible Substrates

    Science.gov (United States)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  16. A lightweight approach for designing enterprise architectures using BPMN : an application in hospitals

    NARCIS (Netherlands)

    Barros, O.; Seguel Pérez, R.E.; Quezada, A.; Dijkman, R.; Hofstetter, J.; Koehler, J.

    2011-01-01

    An Enterprise Architecture (EA) comprises different models at different levels of abstraction. Since existing EA design approaches, e.g. MDA, use UML for modeling, the design of the architecture becomes complex and time consuming. In this paper, we present an integrated and lightweight design

  17. Fundação de assistência integral à saúde/Hospital Sofia Feldman: uma experiência de administração flexível? Fundación de asistencia integral a la salud/hospital Sofia Feldman: una experiencia de administración flexible? Foundation of integral health care: an experience of flexible administration?

    Directory of Open Access Journals (Sweden)

    Marília Alves

    1999-10-01

    Full Text Available O presente trabalho teve como objetivo traçar um paralelo entre a experiência administrativa do Hospital Sofia Feldman e a teoria de gerência flexível proposta por MOTTA (1991 e MÉDICI & SILVA (1993. Descreve, também, elementos inovadores de integração da instituição com a comunidade: mãe substituta, ombudsman e trabalho voluntário sistematizado da Associação Comunitária dos Amigos e Usuários do Hospital Sofia Feldman. A coleta de dados foi feita através de roteiro de entrevista semi-estruturada, aplicado a funcionários de diferentes setores, procurando conhecer a percepção dos mesmos sobre o modelo gerencial adotado. Os depoimentos apontaram características de administração flexível no hospital, porém, permeada de traços da gerência clássica.El presente trabajo tuvo como objetivo trazar un paralelo entre la experiencia administrativa del Hospital Sofia Feldman y la teoria de gerencia flexible propuesta por MOTTA (1991 y MEDICI& SILVA (1993. Describe, también, elementos innovadores de integraçión de la instituición com la comunidad: madre sustituta, ombdsman y trabajo voluntario sistematizado de la Associación Comunitaria de los Amigos y Usuarios del Hospital Sofia Feldman. La recolección de los dados fue realizada a través de una guía de entrevista semi-estructurada aplicada al modelo gerencial adoptado. Las informaciones coletadas puntualizan características de administración flexible en el hospital, pero, intercalada de trazos de gerencia clásica.The purpose of the present study was to verify the correspondence between the administrative experience of the Hospital "Sofia Feldman" and the theory on flexible management proposed by MOTTA (1991 and MÉDICI & SILVA (1993. It also described innovation elements for institutional integration with the community, such as the substitute mother, ombudsman and systematic voluntary work, done by Community Association of Friends and Users of Sofia Feldman Hospital

  18. A MAC Mode for Lightweight Block Ciphers

    DEFF Research Database (Denmark)

    Luykx, Atul; Preneel, Bart; Tischhauser, Elmar Wolfgang

    2016-01-01

    Lightweight cryptography strives to protect communication in constrained environments without sacrificing security. However, security often conflicts with efficiency, shown by the fact that many new lightweight block cipher designs have block sizes as low as 64 or 32 bits. Such low block sizes lead...... no effect on the security bound, allowing an order of magnitude more data to be processed per key. Furthermore, LightMAC is incredibly simple, has almost no overhead over the block cipher, and is parallelizable. As a result, LightMAC not only offers compact authentication for resource-constrained platforms...

  19. Cases of Lightweight Structures for Polar Areas

    DEFF Research Database (Denmark)

    Pedreros, Jessica Fernandoy; Christ, Julian; Shepherd, Paul

    2017-01-01

    The paper focuses on what the authors call ‘Polar Lightweight Structures’. The first part presents a collection of lightweight structures (LWS) designed and built for Antarctic conditions, with the aim of demonstrating the diversity of approaches attempted by designers. The second part of the paper...... presents two studies where different computational methods were applied for the design of generic LWS based on the local conditions of two particular Polar locations; namely, the Arctic region and Glacier Union in the Antarctic plateau. Both studies were conducted independently with the aim...

  20. Environmental assessment of lightweight electric vehicles

    CERN Document Server

    Egede, Patricia

    2017-01-01

    This monograph adresses the challenge of the environmental assessment of leightweight electric vehicles. It poses the question whether the use of lightweight materials in electric vehicles can reduce the vehicles’ environmental impact and compares the environmental performance of a lightweight electric vehicle (LEV) to other types of vehicles. The topical approach focuses on methods from life cycle assessment (LCA), and the book concludes with a comprehensive concept on the environmental assessment of LEVs. The target audience primarily comprises LCA practitioners from research institutes and industry, but it may also be beneficial for graduate students specializing in the field of environmental assessment.

  1. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  2. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  3. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  4. Pavement evaluation using a portable lightweight deflectometer.

    Science.gov (United States)

    2012-12-01

    The use of Zorn ZFG-3000 portable Lightweight Deflectometer (LWD) in the in-situ : assessment of pavement quality was investigated in this research. A lower load and a : shorter load pulse duration are used in a LWD as compared to a Falling Weight : ...

  5. Compact, Lightweight Servo-Controllable Brakes

    Science.gov (United States)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  6. FY 2012 Lightweight Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  7. FY2015 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-30

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles. This report describes the progress made on the research and development projects funded by the Lightweight Materials area.

  8. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  9. FODA/IBEA-TDMA - A flexible fade countermeasure system for integrated services in user-oriented networks

    Science.gov (United States)

    Celandroni, N.; Ferro, E.; James, N.; Potorti, F.

    1992-12-01

    A flexible, processor based, TDMA station has been implemented. This station and its associated variable data rate modem enables users to implement very complex frame structures under software control. Burst rates of 512 kb/s-8x192 Mb/s and different coding rates are possible allowing the transmitted bit energy from each station in the network to be adapted to prevailing conditions. The proposed application of the station is the transmission of mixed stream and packet traffic, in a LANs interconnection via satellite environment, using a modification of the FODA technique. The association of the up-link power control feature with the bit and coding rate variation gives the system an interesting ability to cope with fade conditions. The link outage probability is investigated for the Olympus transponder in Ka band. The ability of the system, together with the good performance of Olympus, shows that the Ka band is usable for the above mentioned types of networks without prohibitive fade degradation, at least for limited coverages.

  10. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  11. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors.

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-23

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  12. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  13. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  14. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  15. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hannibal, Ted [Idaho National Lab. (INL), Idaho Falls, ID (United States); Raghunathan, Anand [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ivanic, Ziga [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  16. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  17. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    International Nuclear Information System (INIS)

    None

    1998-01-01

    The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and

  18. Lecture Recording: Structural and Symbolic Information vs. Flexibility of Presentation

    Science.gov (United States)

    Stolzenberg, Daniel; Pforte, Stefan

    2007-01-01

    Rapid eLearning is an ongoing trend which enables flexible and cost-effective creation of learning materials. Especially, lecture recording has turned out to be a lightweight method particularly suited for existing lectures and blended learning strategies. In order to not only sequentially play back but offer full fledged navigation, search and…

  19. Coating Thin Mirror Segments for Lightweight X-ray Optics

    Science.gov (United States)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  20. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  1. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

    DEFF Research Database (Denmark)

    Gan, Chun; Wu, Jianhua; Hu, Yihua

    2017-01-01

    This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit......, the battery can be charged by the external AC source or generator when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating power flow from the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm...

  2. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  3. Development of a fuel flexible, air-regulated, modular, and electrically integrated SOFC-system (FlameSOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Voss, S.; Trimis, D. [TU Bergakademie Freiberg (Germany). Inst. of Thermal Engineering; Valldorf, J. [VDI/VDE Innovation + Technik GmbH (Germany)

    2010-07-01

    The present paper summarizes experimental results from the operation of the SOFC based micro-CHP unit developed within the framework of the project FlameSOFC. The project is co-financed by the European Commission as an Integrated Project within the 6{sup th} framework program. The objective is the development of an innovative SOFC-based micro-CHP system capable of operating with different gaseous and liquid fuels and fulfilling the technological and market requirements at a European level. The partners involved in the FlameSOFC project bring together a sufficient number of important European actors on the scientific, research and industry level including SMEs and industrial partners from the heating sector. The presented work concerns the operation of the 2{sup nd} phase prototype FlameSOFC system, with a 1 kW{sub el.} SOFC stack and natural gas as feedstock. (orig.)

  4. Flexible Graphene Transistor Architecture for Optical Sensor Technology

    Science.gov (United States)

    Ordonez, Richard Christopher

    The unique electrical and optoelectronic properties of graphene allow tunable conductivity and broadband electromagnetic absorption that spans the ultraviolet and infrared regimes. However, in the current state-of-art graphene sensor architectures, junction resistance and doping concentration are predominant factors that affect signal strength and sensitivity. Unfortunately, graphene produces high contact resistances with standard electrode materials ( few kilo-ohms), therefore, signal is weak and large carrier concentrations are required to probe sensitivity. Moreover, the atomic thickness of graphene enables the potential for flexible electronics, but there has not been a successful graphene sensor architecture that demonstrates stable operation on flexible substrates and with minimal fabrication cost. In this study, the author explores a novel 3-terminal transistor architecture that integrates twodimensional graphene, liquid metal, and electrolytic gate dielectrics (LM-GFETs: Liquid Metal and Graphene Field-Effect Transistors ). The goal is to deliver a sensitive, flexible, and lightweight transistor architecture that will improve sensor technology and maneuverability. The reported high thermal conductivity of graphene provides potential for room-temperature thermal management without the need of thermal-electric and gas cooling systems that are standard in sensor platforms. Liquid metals provide a unique opportunity for conformal electrodes that maximize surface area contact, therefore, enable flexibility, lower contact resistance, and reduce damage to the graphene materials involved. Lastly, electrolytic gate dielectrics provide conformability and high capacitances needed for high on/off rations and electrostatic gating. Results demonstrated that with minimal fabrication steps the proposed flexible graphene transistor architecture demonstrated ambipolar current-voltage transfer characteristics that are comparable to the current state-of-the-art. An additional

  5. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  6. An overview of carbon materials for flexible electrochemical capacitors.

    Science.gov (United States)

    He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing

    2013-10-07

    Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.

  7. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    Science.gov (United States)

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  8. An Integrated Career Coaching and Time-Banking System Promoting Flexibility, Wellness, and Success: A Pilot Program at Stanford University School of Medicine.

    Science.gov (United States)

    Fassiotto, Magali; Simard, Caroline; Sandborg, Christy; Valantine, Hannah; Raymond, Jennifer

    2018-06-01

    Faculty in academic medicine experience multiple demands on their time at work and home, which can become a source of stress and dissatisfaction, compromising success. A taskforce convened to diagnose the state of work-life flexibility at Stanford University School of Medicine uncovered two major sources of conflict: work-life conflict, caused by juggling demands of career and home; and work-work conflict, caused by competing priorities of the research, teaching, and clinical missions combined with service and administrative tasks. Using human-centered design research principles, the 2013-2014 Academic Biomedical Career Customization (ABCC) pilot program incorporated two elements to mitigate work-life and work-work conflict: integrated career-life planning, coaching to create a customized plan to meet both career and life goals; and a time-banking system, recognizing behaviors that promote team success with benefits that mitigate work-life and work-work conflicts. A matched-sample pre-post evaluation survey found the two-part program increased perceptions of a culture of flexibility (P = .020), wellness (P = .013), understanding of professional development opportunities (P = .036), and institutional satisfaction (P = .020) among participants. In addition, analysis of research productivity indicated that over the two-year program, ABCC participants received 1.3 more awards, on average, compared with a matched set of nonparticipants, a funding difference of approximately $1.1 million per person. These results suggest it is possible to mitigate the effects of extreme time pressure on academic medicine faculty, even within existing institutional structures.

  9. Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage.

    Science.gov (United States)

    Liu, Tingting; Zhao, Jianwen; Xu, Weiwei; Dou, Junyan; Zhao, Xinluo; Deng, Wei; Wei, Changting; Xu, Wenya; Guo, Wenrui; Su, Wenming; Jie, Jiansheng; Cui, Zheng

    2018-01-03

    Fabrication and application of hybrid functional circuits have become a hot research topic in the field of printed electronics. In this study, a novel flexible diode-transistor logic (DTL) driving circuit is proposed, which was fabricated based on a light emitting diode (LED) integrated with printed high-performance single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs). The LED, which is made of AlGaInP on GaAs, is commercial off-the-shelf, which could generate free electrical charges upon white light illumination. Printed top-gate TFTs were made on a PET substrate by inkjet printing high purity semiconducting SWCNTs (sc-SWCNTs) ink as the semiconductor channel materials, together with printed silver ink as the top-gate electrode and printed poly(pyromellitic dianhydride-co-4,4'-oxydianiline) (PMDA/ODA) as gate dielectric layer. The LED, which is connected to the gate electrode of the TFT, generated electrical charge when illuminated, resulting in biased gate voltage to control the TFT from "ON" status to "OFF" status. The TFTs with a PMDA/ODA gate dielectric exhibited low operating voltages of ±1 V, a small subthreshold swing of 62-105 mV dec -1 and ON/OFF ratio of 10 6 , which enabled DTL driving circuits to have high ON currents, high dark-to-bright current ratios (up to 10 5 ) and good stability under repeated white light illumination. As an application, the flexible DTL driving circuit was connected to external quantum dot LEDs (QLEDs), demonstrating its ability to drive and to control the QLED.

  10. Shock Response of Lightweight Adobe Masonry

    Science.gov (United States)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  11. Development of lightweight radiators for lunar based power systems

    International Nuclear Information System (INIS)

    Juhasz, A.J.; Bloomfield, H.S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology

  12. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  13. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    Science.gov (United States)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit

  14. Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe2O3 with a high performance as a supercapacitor.

    Science.gov (United States)

    Nan, Honghong; Yu, Liutao; Ma, Wenqin; Geng, Baoyou; Zhang, Xiaojun

    2015-05-28

    Flexible supercapacitors have recently attracted increasing attention as they show unique promising advantages, such as flexibility and shape diversity, and they are light-weight and so on. Herein, we designed a series of 3D porous spinous iron oxide materials synthesized on a thin iron plate through a facile method under mild conditions. The unique nanostructural features endow them with excellent electrochemical performance. The electrochemical properties of the integrated electrodes as active electrode materials for supercapacitors have been investigated using different electrochemical techniques including cyclic voltammetry, and galvanostatic charge-discharge in Na2SO4 and LiPF6/EC : DEC electrolyte solutions. These integrated electrodes showed high specific capacitance (as high as 524.6 F g(-1) at the current density of 1 A g(-1)) in 1.0 M Na2SO4 (see Table S1). Moreover, the integrated electrodes also show high power densities and high energy densities in a LiPF6/EC : DEC electrolyte solution; for example, the energy densities were 319.3, 252.5, 152.1, 74.13 and 38.6 W h kg(-1) at different power densities of 8.81, 21.59, 56.65, 92.09 and 152.64 kW kg(-1), respectively. Additionally, the flexible superior electrode exhibited excellent stability with capacitance retention of 92.9% after 5000 cycles. Therefore, such flexible integrated devices might be used in smart and portable electronics.

  15. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    Science.gov (United States)

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  16. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  17. Experimental study on microstructure characters of foamed lightweight soil

    Science.gov (United States)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  18. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  19. Cognitive structure, flexibility, and plasticity in human multitasking-An integrative review of dual-task and task-switching research.

    Science.gov (United States)

    Koch, Iring; Poljac, Edita; Müller, Hermann; Kiesel, Andrea

    2018-06-01

    Numerous studies showed decreased performance in situations that require multiple tasks or actions relative to appropriate control conditions. Because humans often engage in such multitasking activities, it is important to understand how multitasking affects performance. In the present article, we argue that research on dual-task interference and sequential task switching has proceeded largely separately using different experimental paradigms and methodology. In our article we aim at organizing this complex set of research in terms of three complementary research perspectives on human multitasking. One perspective refers to structural accounts in terms of cognitive bottlenecks (i.e., critical processing stages). A second perspective refers to cognitive flexibility in terms of the underlying cognitive control processes. A third perspective emphasizes cognitive plasticity in terms of the influence of practice on human multitasking abilities. With our review article we aimed at highlighting the value of an integrative position that goes beyond isolated consideration of a single theoretical research perspective and that broadens the focus from single experimental paradigms (dual task and task switching) to favor instead a view that emphasizes the fundamental similarity of the underlying cognitive mechanisms across multitasking paradigms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Mechanical, Thermal and Functional Properties of Green Lightweight Foamcrete

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available In recent times, the construction industry has revealed noteworthy attention in the use of lightweight foamcrete as a building material due to its many favourable characteristics such as lighter weight, easy to fabricate, durable and cost effective. Foamcrete is a material consisting of Portland cement paste or cement filler matrix (mortar with a homogeneous pore structure created by introducing air in the form of small bubbles. With a proper control in dosage of foam and methods of production, a wide range of densities (400 – 1600 kg/m 3 of foamcrete can be produced thus providing flexibility for application such as structural elements, partition, insulating materials and filling grades. Foamcrete has so far been applied primarily as a filler material in civil engineering works. However, its good thermal and acoustic performance indicates its strong potential as a material in building construction. The focus of this paper is to classify literature on foamcrete in terms of its mechanical, thermal and functional properties.

  1. Lightweight and Energy Efficient Heat Pump, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Spacecraft from the JPL will require increasingly sophisticated thermal control technology. A need exists for efficient, lightweight Vapor Compression Cycle...

  2. Workplace flexibility.

    Science.gov (United States)

    Scordato, C; Harris, J

    1990-01-01

    Whether your organization is in a growth pattern or downsizing, you are probably facing change. To gain some insight into your options, here is an in-depth look at the problems and benefits of some flexible work arrangements from a just published study by Catalyst.

  3. Flexibility conflict?

    NARCIS (Netherlands)

    Delsen, L.W.M.; Bauer, F.; Groß, H.; Sieglen, G.

    2002-01-01

    The chapter deals with the presupposed conflict of interests between employers and employees resulting from a decoupling of operating hours and working times. It starts from the notion that both long operating hours and flexibility are relative concepts. As there is some discretion, the ultimate

  4. Elastic Composite, Reinforced Lightweight Concrete as a Type of Resilient Composite Systems

    OpenAIRE

    Esmaeili, Kamyar

    2015-01-01

    . A kind of "Elastic Composite, Reinforced Lightweight Concrete (ECRLC)" with the mentioned specifics is a type of "Resilient Composite Systems (RCS)" in which, contrary to the basic geometrical assumption of flexure theory in Solid Mechanics, "the strain changes in the beam height during bending" is typically "Non-linear". . Through employing this integrated structure, with significant high strain capability and modulus of resilience in bending, we could constructively achieve high bearing c...

  5. Research on Lightweight Information Security System of the Internet of Things

    OpenAIRE

    Ying Li; Li Ping Du; JianWei Guo; Xin Zhao

    2013-01-01

    In order to improve the security of information transmitted in the internet of things, this study designs an information security system architecture of internet of things based on a lightweight cryptography. In this security system, an authentication protocol, encryption/decryption protocol and signature verification protocol are proposed and implemented. All these security protocol are used to verify the legality of access device and to protect the confidentiality and integrity of transform...

  6. Type Classes for Lightweight Substructural Types

    Directory of Open Access Journals (Sweden)

    Edward Gan

    2015-02-01

    Full Text Available Linear and substructural types are powerful tools, but adding them to standard functional programming languages often means introducing extra annotations and typing machinery. We propose a lightweight substructural type system design that recasts the structural rules of weakening and contraction as type classes; we demonstrate this design in a prototype language, Clamp. Clamp supports polymorphic substructural types as well as an expressive system of mutable references. At the same time, it adds little additional overhead to a standard Damas-Hindley-Milner type system enriched with type classes. We have established type safety for the core model and implemented a type checker with type inference in Haskell.

  7. Modal analysis for floors in lightweight buildings

    DEFF Research Database (Denmark)

    Sjökvist, Lars-Göran; Brunskog, Jonas

    2007-01-01

    of acoustical prediction methods for those houses. The calculation standard EN 12354 is under evaluation since it cannot include most of the wooden houses that are built. It is important during such a work to have a great understanding of the acoustical behaviour for the wooden houses. The floors in lightweight...... constructions usually consist of plates that are stiffened by beams and by the dividing walls. In this study the wave equation for a plate is expanded by Fourier series and an analytical solution in terms of the eigenmodes of the entire system is presented. The studied system consists of one lightweigt floor...

  8. Lightweight ozonizer for field and airborne use

    Science.gov (United States)

    Stone, E. J.; Caldwell, J. R.; de Waal, C.; Horvath, J. J.; Pearson, R., Jr.; Stedman, D. H.

    1982-12-01

    An efficient, lightweight apparatus for the production of ozone in flowing oxygen or air has been constructed and tested. The exciter is an automotive electronic ignition running from a 28-V dc power source. The discharge tube consists of coaxial conductive-coated flint glass tubing fitting into Teflon end pieces. A single such unit will produce 4% ozone in oxygen flowing at 0.2 l/min, or a maximum of 0.020 l of ozone per minute in a total flow of 1.0 l/min.

  9. Longbow: A Lightweight Remote Job Submission Tool

    Directory of Open Access Journals (Sweden)

    James Gebbie-Rayet

    2016-01-01

    Full Text Available We present Longbow, a lightweight console-based remote job submission tool and library. Longbow allows the user to quickly and simply run jobs on high performance computing facilities without leaving their familiar desktop environment. Not only does Longbow greatly simplify the management of compute- intensive jobs for experienced researchers, it also lowers the technical barriers surrounding high perfor-mance computation for the next generation of scientists and engineers. Longbow has already been used to remotely submit jobs in a number of projects and has the potential to redefine the manner in which high performance computers are used.

  10. A Light-Weight Instrumentation System Design

    International Nuclear Information System (INIS)

    Kidner, Ronald

    1999-01-01

    To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here

  11. Crushing and Fracture of Lightweight Structures

    DEFF Research Database (Denmark)

    Urban, Jesper

    2003-01-01

    and Latham (1968). Good agreement between the analytical models and the experiments is found. The crushing behaviour of two high speed ferries has been analysed with the numerical and analytical methods and the results are compared with the existing regulations for high speed craft (HSC). Several failure......The overall objective of the present study has been to develop rational analytical and numerical calculation models to quantify the consequences of collision accidents. The work has primarily been focused on high speed craft (HSC) built in lightweight materials such as aluminium and sandwich...

  12. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  13. Buildings'energy flexibility : a bottom-up, multi agent, user-based approach to system integration of energy infrastructures to support the smart grid

    NARCIS (Netherlands)

    Zeiler, Wim; Labeodan, Timilehin; Aduda, Kennedy; Boxem, Gert; Sayigh, Ali

    2016-01-01

    Using the flexibility within energy generation, distribution infrastructure, renewable energy sources, and the built environment is the ultimate sustainable strategy within the built environment. However, at the moment this flexibility on the building level has yet to be defined. The new IEA Annex

  14. A comparison of performance of lightweight mirrors

    Science.gov (United States)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  15. Advanced lightweight optics development for space applications

    International Nuclear Information System (INIS)

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  16. Flexible licensing

    Directory of Open Access Journals (Sweden)

    Martyn Jansen

    2012-07-01

    Full Text Available The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they are required. This article describes the process of developing a flexible approach to licensing and proposes a new model licence for online library resources which has the adaptability needed in this new global educational landscape. These ideas have been presented and discussed at various workshops across Eduserv's and JISC Collections' higher education and publisher communities, and further consultation is ongoing.

  17. A Compact Kapton-based Inkjet Printed Multiband Antenna for Flexible Wireless Devices

    KAUST Repository

    Ahmed, Sana

    2015-04-20

    A low cost inkjet printed multiband antenna envisioned for integration into flexible and conformal mobile devices is presented. The antenna structure contains a novel triangular iterative design with coplanar waveguide (CPW) feed, printed on a Kapton polyimide-based flexible substrate with dimensions of 70 x 70 x 0.11 mm3. The antenna covers four wide frequency bands with measured impedance bandwidths of 54.4%, 14%, 23.5% and 17.2%, centered at 1.2, 2.0, 2.6 and 3.4 GHz, respectively, thus, enabling it to cover GSM 900, GPS, UMTS, WLAN, ISM, Bluetooth, LTE 2300/ 2500 and WiMAX standards. The antenna has omnidirectional radiation pattern with a maximum gain of 2.1 dBi. To characterize the flexibility of the antenna, the fabricated prototype is tested in convex and concave bent configurations for radii of 78mm and 59mm. The overall performance remains unaffected, except a minor shift of 20 MHz and 60 MHz in S11, for concave bending at both radii. The compact, lightweight and conformal design as well as multiband performance in bent configurations, proves the suitability of the antenna for future electronic devices.

  18. A flexible Li-ion battery with design towards electrodes electrical insulation

    Science.gov (United States)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  19. Design and manufacture of a lightweight piezo-composite curved actuator

    Science.gov (United States)

    Yoon, K. Joon; Shin, Seokjun; Park, Hoon C.; Goo, Nam Seo

    2002-02-01

    In this paper we are concerned with the design, manufacture and performance test of a lightweight piezo-composite curved actuator (called LIPCA) using a top carbon fiber composite layer with near-zero coefficient of thermal expansion (CTE), a middle PZT ceramic wafer, and a bottom glass/epoxy layer with a high CTE. The main point of the design for LIPCA is to replace the heavy metal layers of THUNDERTM by lightweight fiber reinforced plastic layers without losing the capabilities for generating high force and large displacement. It is possible to save up to about 40% of the weight if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use an epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a carbon prepreg were simply stacked and cured at an elevated temperature (177 °C) after following an autoclave bagging process. We found that the manufactured composite laminate device had a sufficient curvature after being detached from a flat mould. An analysis method using the classical lamination theory is presented to predict the curvature of LIPCA after curing at an elevated temperature. The predicted curvatures are in quite good agreement with the experimental values. In order to investigate the merits of LIPCA, performance tests of both LIPCA and THUNDERTM have been conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERTM.

  20. Testosterone and BMD in elite male lightweight rowers

    DEFF Research Database (Denmark)

    Vinther, A; Kanstrup, I-L; Christiansen, E

    2008-01-01

    The purpose of the present study was to investigate if a relationship between BMD and testosterone levels could be identified in elite male lightweight rowers. Thirteen male lightweight national team rowers had their BMD measured in a DEXA scanner. Plasma concentrations of total testosterone (TT)...

  1. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  2. Uncertainty and Variation of Vibration in Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens

    2012-01-01

    Multi-family dwellings and offices build from lightweight materials are becoming a cost efficient and environmentally friendly alternative to traditional heavy structures.......Multi-family dwellings and offices build from lightweight materials are becoming a cost efficient and environmentally friendly alternative to traditional heavy structures....

  3. Olive pomace based lightweight concrete, an experimental approach and contribution

    Directory of Open Access Journals (Sweden)

    Lynda Amel Chaabane

    2018-01-01

    Full Text Available Due to conventional aggregates resources depletion, material recycling has become an economic and ecologic alternative. In this paper, locally available natural residues such as olive pomace were investigated, when partially incorporated in the concrete formulation, since the mechanical characteristics of lightweight aggregate concrete strongly depend on its properties and proportions. Lightweight aggregates are more deformable than the cement matrix because of their high porosity, and their influence on the concrete strength remains complex. The purpose of this paper is to investigate the aggregates properties on lightweight concrete mechanical behaviour through an experimental approach. In addition, the different substitution sequences and the W/C ratio on lightweight concrete behaviour were evaluated, in order to determine the W/C ratio influence on the improvement of the lightweight concrete mechanical properties while knowing that the mixing water quantity gives the cement paste manoeuvrability and mechanical strength effects. The last part of this paper, therefore, was to provide statistical survey for estimating strength and weight reduction through the different natural aggregate substitutions to improve the lightweight concrete properties. The results achieved in a significant olive-pomace lower adhesion with the matrix after the cement setting, making the lightweight concrete mechanical strength weak. However, this work can open several perspectives: Results modeling and correlation with an experimental approach, the evolution and determination of lightweight concrete characteristics when exposed to high temperatures and thermohydric properties.

  4. FY2014 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.

  5. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  6. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  7. Experimental research on reinforced lightweight plugging composites.

    Directory of Open Access Journals (Sweden)

    BEKBAEV Arstan Abaevich

    2017-08-01

    Full Text Available Practical aspects of the well construction show that the use of conventional cementing materials do not always provide the necessary level of quality of well casing when the requirements to resources conservation are enhanced. This is true for such complex geological conditions as the alternation of beds with different formation pressures, low fracturing pressure gradients, drilling with ERD tc. The main problems in well casing under these conditions are the losses of cement slurries, low cement top, low-quality formation isolation, and as the result of this – the emergence of cross-flows. The high quality of well casing will be provided only by means of safe contact between cement stone and limiting surfaces (casing and rock, therefore to use expansion materials for cementing is a well-recognized method. Thus, it is obvious that their application does not give positive results for intervals with a thick filter cake or intervals with cavities, i.e. where space for expansion is greater than the magnitude of the expansion. At the same time it is very challenging to create high-quality cement in formations with abnormally low formation pressure or low fracture gradient. The solution of this problem is the use of lightweight cements, which scarcely expand while hardening. This is due to the fact that lightweight cement slurries are generally obtained by increasing the content of grouting fluid in the solution, resulting in increase of the distance between the crystal hydrates – hardening products, that leads to decrease of crystallization pressure of expansion agents on the space frame of the cement stone]. Moreover, such works as secondary reservoir developing (perforation, well completion and fracturing operations create high dynamic load on the cement stone, which leads to its destruction. The stone can be completely destroyed, that often causes premature flooding of wells and incurring additional costs. In this regard, it is necessary to

  8. Exploring the design of a lightweight, sustainable and comfortable aircraft seat.

    Science.gov (United States)

    Kokorikou, A; Vink, P; de Pauw, I C; Braca, A

    2016-07-19

    Making a lightweight seat that is also comfortable can be contradictory because usually comfort improvement means adding a feature (e.g. headrest, adjustable lumbar support, movable armrests, integrated massage systems, etc.), which makes seats heavier. This paper explores the design of an economy class aircraft seat that aims to be lightweight, comfortable and sustainable. Theory about comfort in seats, ergonomics, lightweight design, Biomimicry and Cradle to cradle was studied and resulted in a list of requirements that the new seat should satisfy. The design process resulted in a new seat that is 36% lighter than the reference seat, which showed that a significant weight reduction can be achieved. This was completed by re-designing the backrest and seat pan and integrating their functions into a reduced number of parts. Apart from the weight reduction that helps in reducing the airplane's environmental impact, the seat also satisfies most of the other sustainability requirements such as the use of recyclable materials, design for disassembly, easy to repair. A user test compared the new seat with a premium economy class aircraft seat and the level of comfort was similar. Strong points of the new design were identified such as the lumbar support and the cushioning material, as well as shortcomings on which the seat needs to be improved, like the seat pan length and the first impression. Long term comfort tests are still needed as the seat is meant for long-haul flights.

  9. Comprehensive Evaluation of Car-Body Light-Weighting Scheme Based on LCC Theory

    Directory of Open Access Journals (Sweden)

    Han Qing-lan

    2016-01-01

    Full Text Available In this paper, a comprehensive evaluation model of light-weighting scheme is established, which is based on three dimensions, including the life cycle costs of the resource consumed by the designed objects (LCC, willingness to pay for the environmental effect of resource consumption (WTP and performance (P. Firstly, cost of each stage is determined. Then, based on the resource classification, which is based on cost elements, determine the material list needed, and apply WTP weight coefficient to monetize life cycle environmental impact and obtain the life cycle comprehensive cost of designed scheme (TCC. In the next step Performance (P index is calculated to measure the value of the life cycle costs by applying AHP and SAW method, integrated (TCC and (P to achieve comprehensive evaluation of light-weighting scheme. Finally, the effectiveness of the evaluation model is verified by the example of car engine hood.

  10. Flexible Consumption

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Pallesen, Trine

    This report presents the first findings from our qualitative study of consumer behaviour vis-à-vis flexible consumption. The main of objective of this report is to present our first round of data from Bornholm, and to assist the design of products/services designed in WP6. In the report, we adopt...... the perspective of the consumer: what does living in a demand response setup look like to participants – and what kinds of behaviour and interest motivate – and emerge from – their participation in EcoGrid 2.0....

  11. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...

  12. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    Science.gov (United States)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  13. A lightweight communication library for distributed computing

    International Nuclear Information System (INIS)

    Groen, Derek; Rieder, Steven; Zwart, Simon Portegies; Grosso, Paola; Laat, Cees de

    2010-01-01

    We present MPWide, a platform-independent communication library for performing message passing between computers. Our library allows coupling of several local message passing interface (MPI) applications through a long-distance network and is specifically optimized for such communications. The implementation is deliberately kept lightweight and platform independent, and the library can be installed and used without administrative privileges. The only requirements are a C++ compiler and at least one open port to a wide-area network on each site. In this paper we present the library, describe the user interface, present performance tests and apply MPWide in a large-scale cosmological N-body simulation on a network of two computers, one in Amsterdam and the other in Tokyo.

  14. Lightweight, durable lead-acid batteries

    Science.gov (United States)

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  15. Lightweight Active Object Retrieval with Weak Classifiers.

    Science.gov (United States)

    Czúni, László; Rashad, Metwally

    2018-03-07

    In the last few years, there has been a steadily growing interest in autonomous vehicles and robotic systems. While many of these agents are expected to have limited resources, these systems should be able to dynamically interact with other objects in their environment. We present an approach where lightweight sensory and processing techniques, requiring very limited memory and processing power, can be successfully applied to the task of object retrieval using sensors of different modalities. We use the Hough framework to fuse optical and orientation information of the different views of the objects. In the presented spatio-temporal perception technique, we apply active vision, where, based on the analysis of initial measurements, the direction of the next view is determined to increase the hit-rate of retrieval. The performance of the proposed methods is shown on three datasets loaded with heavy noise.

  16. Lightweight Active Object Retrieval with Weak Classifiers

    Directory of Open Access Journals (Sweden)

    László Czúni

    2018-03-01

    Full Text Available In the last few years, there has been a steadily growing interest in autonomous vehicles and robotic systems. While many of these agents are expected to have limited resources, these systems should be able to dynamically interact with other objects in their environment. We present an approach where lightweight sensory and processing techniques, requiring very limited memory and processing power, can be successfully applied to the task of object retrieval using sensors of different modalities. We use the Hough framework to fuse optical and orientation information of the different views of the objects. In the presented spatio-temporal perception technique, we apply active vision, where, based on the analysis of initial measurements, the direction of the next view is determined to increase the hit-rate of retrieval. The performance of the proposed methods is shown on three datasets loaded with heavy noise.

  17. Protect sensitive data with lightweight memory encryption

    Science.gov (United States)

    Zhou, Hongwei; Yuan, Jinhui; Xiao, Rui; Zhang, Kai; Sun, Jingyao

    2018-04-01

    Since current commercial processor is not able to deal with the data in the cipher text, the sensitive data have to be exposed in the memory. It leaves a window for the adversary. To protect the sensitive data, a direct idea is to encrypt the data when the processor does not access them. On the observation, we have developed a lightweight memory encryption, called LeMe, to protect the sensitive data in the application. LeMe marks the sensitive data in the memory with the page table entry, and encrypts the data in their free time. LeMe is built on the Linux with a 3.17.6 kernel, and provides four user interfaces as dynamic link library. Our evaluations show LeMe is effective to protect the sensitive data and incurs an acceptable performance overhead.

  18. Flexible nanovectors

    International Nuclear Information System (INIS)

    Pugno, Nicola M

    2008-01-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  19. Flexible nanovectors

    Science.gov (United States)

    Pugno, Nicola M.

    2008-11-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  20. Lightweight males of Podisus nigrispinus (Heteroptera: Pentatomidae neglect lightweight females due low reproductive fitness

    Directory of Open Access Journals (Sweden)

    A. I. A. Pereira

    Full Text Available Abstract Sexual choice by male stink bugs is important because females that experience food shortages lay fewer eggs with lower viability compared with well-fed females. In this study, we investigated whether Podisus nigrispinus (Dallas (Heteroptera: Pentatomidae males fed with a low-quality diet during its nymphal stage show selectivity for sexual partners resulting in high-quality progeny. Lightweight males and females were obtained from nymphs fed weekly with Tenebrio molitor L. (Coleoptera: Tenebrionidae pupae. By contrast, heavyweight males and females were fed three times a week and received an extra nutritional source: cotton leaves, Gossypium hirsutum L. (Malvaceae. Lightweight males preferred to mate with heavy females (77.78 ± 14.69%, whereas heavyweight males did not discriminated between light or heavyweight females. Females mated with lightweight males showed similar levels of reproduction to those mated with heavyweight males. The results provide an indication of the importance of male and female body weight for sexual selection in Asopinae stink bugs.

  1. Integration of iRevive with the Lightweight Trauma Module

    Data.gov (United States)

    National Aeronautics and Space Administration — Key to this system is the collection and presentation of data. This has required: 1) rewriting the iRevive GUI and database codebase using current technology; 2)...

  2. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.

    Science.gov (United States)

    Kim, Suk Lae; Choi, Kyungwho; Tazebay, Abdullah; Yu, Choongho

    2014-03-25

    Thermoelectric energy conversion is very effective in capturing low-grade waste heat to supply electricity particularly to small devices such as sensors, wireless communication units, and wearable electronics. Conventional thermoelectric materials, however, are often inadequately brittle, expensive, toxic, and heavy. We developed both p- and n-type fabric-like flexible lightweight materials by functionalizing the large surfaces and junctions in carbon nanotube (CNT) mats. The poor thermopower and only p-type characteristics of typical CNTs have been converted into both p- and n-type with high thermopower. The changes in the electronic band diagrams of the CNTs were experimentally investigated, elucidating the carrier type and relatively large thermopower values. With our optimized device design to maximally utilize temperature gradients, an electrochromic glucose sensor was successfully operated without batteries or external power supplies, demonstrating self-powering capability. While our fundamental study provides a method of tailoring electronic transport properties, our device-level integration shows the feasibility of harvesting electrical energy by attaching the device to even curved surfaces like human bodies.

  3. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [IBIS Associates, Inc., Waltham, MA (United States); Hannibal, Ted [IBIS Associates, Inc., Waltham, MA (United States); Raghunathan, Anand [Energetics Inc., Columbia, MD (United States); Ivanic, Ziga [Energetics Inc., Columbia, MD (United States); Clark, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.

  4. Security Isolation Strategy Mechanism for Lightweight Virtualization Environment

    Directory of Open Access Journals (Sweden)

    Liu Qian

    2017-01-01

    Full Text Available For cloud service providers, lightweight virtualization is a more economical way of virtualization. While the user is worried about the safety of applications and data of the container, due to the container sharing the underlying interface and the kernel, therefore the security and trusted degree of lightweight virtualization container isolation mechanism is critical for the promotion of lightweight virtualization service. Because the user cannot directly participate in the process of the construction and management of container isolation mechanism, it is difficult for them to establish confidence in the security and trusted degree of container isolation mechanism. Based on the research and analysis of system credible and virtualization isolation mechanism, this paper puts forward a set of lightweight virtualization security isolation strategy mechanism, divides lightweight virtualization container storage address space into several parts, puts forward the definition of lightweight virtualization security isolation, gives the formal description and proof of container security isolation strategy, and combines with related technology to verify the feasibility of lightweight virtualization security isolation strategy mechanism. The mechanism has important guiding significance for cloud services providers to deploy container security isolation.

  5. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    International Nuclear Information System (INIS)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Clark, Michael

    2016-01-01

    The U.S. Department of Energy's Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research's/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.'s decades of experience in automotive lightweighting and materials substitution analyses.

  6. A Structured Light Scanner for Hyper Flexible Industrial Automation

    DEFF Research Database (Denmark)

    Hansen, Kent; Pedersen, Jeppe; Sølund, Thomas

    2014-01-01

    A current trend in industrial automation implies a need for doing automatic scene understanding, from optical 3D sensors, which in turn imposes a need for a lightweight and reliable 3D optical sensor to be mounted on a collaborative robot e.g., Universal Robot UR5 or Kuka LWR. Here, we empirically...... contribute to the robustness of the system. Hereby, we demonstrate that structured light scanning is a technology well suited for hyper flexible industrial automation, by proposing an appropriate system....

  7. Flexible electronics enters the e-reader market

    Science.gov (United States)

    Banks, Michael

    2010-02-01

    A company that was spun off from the physics department at the University of Cambridge in the UK 10 years ago released its first product last month. Plastic Logic, founded by Henning Sirringhaus and Richard Friend, launched an electronic reader that can display books, magazines and newspapers on a flexible, lightweight plastic display. The reader commercializes pioneering work first started over 20 years ago at the lab by the two physicists, who are based in the department's optoelectronics group.

  8. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  9. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Ilhwan Kim

    2018-04-01

    Full Text Available Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP by electrospinning for a gel polymer electrolyte (GPE for use in flexible Li-ion batteries (LIBs. As a solvent, we use N-methyl-2-pyrrolidone (NMP, which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED, demonstrating a fully flexible unit of LIB and OLED.

  10. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates

    OpenAIRE

    Wan, Chang Jin; Wang, Wei; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-01-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great interest for flexible neuromorphic cognitive systems.

  11. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite

    Directory of Open Access Journals (Sweden)

    Claude Dufour

    2007-04-01

    Full Text Available The aim of this work is to develop a smart flexible sensor adapted to textile structures, able to measure their strain deformations. The sensors are “smart” because of their capacity to adapt to the specific mechanical properties of textile structures that are lightweight, highly flexible, stretchable, elastic, etc. Because of these properties, textile structures are continuously in movement and easily deformed, even under very low stresses. It is therefore important that the integration of a sensor does not modify their general behavior. The material used for the sensor is based on a thermoplastic elastomer (Evoprene/carbon black nanoparticle composite, and presents general mechanical properties strongly compatible with the textile substrate. Two preparation techniques are investigated: the conventional melt-mixing process, and the solvent process which is found to be more adapted for this particular application. The preparation procedure is fully described, namely the optimization of the process in terms of filler concentration in which the percolation theory aspects have to be considered. The sensor is then integrated on a thin, lightweight Nylon fabric, and the electromechanical characterization is performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. A normalized relative resistance is defined in order to characterize the electrical response of the sensor. Finally, the influence of environmental factors, such as temperature and atmospheric humidity, on the sensor performance is investigated. The results show that the sensor’s electrical resistance is particularly affected by humidity. This behavior is discussed in terms of the sensitivity of the carbon black filler particles to the presence of water.

  12. Flexible graphene bio-nanosensor for lactate.

    Science.gov (United States)

    Labroo, Pratima; Cui, Yue

    2013-03-15

    The development of a flexible nanosensor for detecting lactate could expand opportunities for using graphene, both in fundamental studies for a variety of device platforms and in practical applications. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with ultrasensitive sensing capabilities. Lactic acid is important for clinical analysis, sports medicine, and the food industry. Recently, wearable and flexible bioelectronics on plastics have attracted great interest for healthcare, sports and defense applications due to their advantages of being light-weight, bendable, or stretchable. Here, we demonstrate for the first time the development of a flexible graphene-based bio-nanosensor to detect lactate. Our results show that flexible lactate biosensors can be fabricated on a variety of plastic substrates. The sensor can detect lactate sensitively from 0.08 μM to 20 μM with a fast steady-state measuring time of 2s. The sensor can also detect lactate under different mechanical bending conditions, the sensor response decreased as the bending angle and number of bending repetitions increased. We anticipate that these results could open exciting opportunities for fundamental studies of flexible graphene bioelectronics by using other bioreceptors, as well as a variety of wearable, implantable, real-time, or on-site applications in fields ranging from clinical analysis to defense. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. ARC Cache: A solution for lightweight Grid sites in ATLAS

    CERN Document Server

    Garonne, Vincent; The ATLAS collaboration

    2016-01-01

    Many Grid sites have the need to reduce operational manpower, and running a storage element consumes a large amount of effort. In addition, setting up a new Grid site including a storage element involves a steep learning curve and large investment of time. For these reasons so-called storage-less sites are becoming more popular as a way to provide Grid computing resources with less operational overhead. ARC CE is a widely-used and mature Grid middleware which was designed from the start to be used on sites with no persistent storage element. Instead, it maintains a local self-managing cache of data which retains popular data for future jobs. As the cache is simply an area on a local posix shared filesystem with no external-facing service, it requires no extra maintenance. The cache can be scaled up as required by increasing the size of the filesystem or adding new filesystems. This paper describes how ARC CE and its cache are an ideal solution for lightweight Grid sites in the ATLAS experiment, and the integr...

  14. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  15. Lightweight landscape enhancing design through minimal mass structures

    CERN Document Server

    Spinelli, Luigi; Monticelli, Carol; Pedrali, Paolo

    2016-01-01

    This book explains how lightweight materials and structures can be deployed in buildings to meet high environmental and aesthetic standards and emphasizes how the concept of lightness in building technology and design dovetails with the desire to enhance landscape. The first part of the book, on lightweight construction, aims to foster the use of membranes within the specific climatic context and in particular considers how lightweight materials and innovative technologies can enrich the quality of temporary spaces. The second part focuses exclusively on landscape, presenting novel approaches in the search for visual lightness and the quest to improve urban spaces. Particular attention is paid to the Italian experience, where the traditional appreciation of brick and stone has limited the scope for use of lightweight structures and membrane materials, often relegating them to a secondary or inappropriate role. The reader will come to appreciate how this attitude demeans a very advanced productive sector and n...

  16. Lightweight cordierite–mullite refractories with low coefficients of ...

    Indian Academy of Sciences (India)

    of thermal conductivity and high mechanical properties ... compositions and microstructures of lightweight refractories were measured by X-ray .... of matrices were determined by calibration with EDAX ZAF .... Guzman I Ya 2003 Glass Ceram.

  17. Ultra-Lightweight Large Aperture Support Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  18. Ontology learning from interpretations in lightweight description logics

    CSIR Research Space (South Africa)

    Klarman, S

    2015-08-01

    Full Text Available International Conference on Inductive Logic programming (ILP), Kyoto, Japan, 20-22 August 2015 Ontology Learning from Interpretations in Lightweight Description Logics Szymon Klarman1 and Katarina Britz2 1 Department of Computer Science, Brunel...

  19. A Stepped Frequency CW SAR for Lightweight UAV Operation

    National Research Council Canada - National Science Library

    Morrison, Keith

    2005-01-01

    A stepped-frequency continuous wave (SF-CW) synthetic aperture radar (SAR), with frequency-agile waveforms and real-time intelligent signal processing algorithms, is proposed for operation from a lightweight UAV platform...

  20. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    Science.gov (United States)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  1. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  2. Annotating Evidence Based Clinical Guidelines : A Lightweight Ontology

    NARCIS (Netherlands)

    Hoekstra, R.; de Waard, A.; Vdovjak, R.; Paschke, A.; Burger, A.; Romano, P.; Marshall, M.S.; Splendiani, A.

    2012-01-01

    This paper describes a lightweight ontology for representing annotations of declarative evidence based clinical guidelines. We present the motivation and requirements for this representation, based on an analysis of several guidelines. The ontology provides the means to connect clinical questions

  3. Lightweight geopolymer composites as structural elements with improved insulation capacity

    Directory of Open Access Journals (Sweden)

    Kakali Glikeria

    2018-01-01

    Full Text Available This study concerns the development of lightweight fly ash based geopolymers which can be applied as alternatives to the traditional lightweight concrete. Different kinds of expanded polystyrene were used as lightweight agents. The results showed that lightweight geopolymers were successfully prepared, exhibiting compressive strength and density in the range 7.70 – 29.57 MPa and 0.97 – 1.57 g/cm3, respectively. The product containing 3% w/w of commercial expanded polystyrene possesses low thermal conductivity (0.16 W/mK combined with sufficient mechanical strengths (11 MPa, excellent stability and fire resistance while its water absorption is comparable to that of conventional construction materials (cement mortars, concrete.

  4. Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge

    Science.gov (United States)

    Peng, Ching-Fang; Chen, How-Ji

    2018-02-01

    This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.

  5. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Mü nzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Trö ster, Gerhard; Anthopoulos, Thomas D.

    2017-01-01

    , depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors

  6. The use of spent glauconite in lightweight aggregate production

    OpenAIRE

    Franus, Wojciech; Franus, Małgorzata; Latosińska, Jolanta; Wójcik, Rafał

    2011-01-01

    The presented work has shown an application of spent glauconite bed after purification of wastewater for production of lightweight expanded clay aggregates. Sewage, from which it was removed Zn ions, came from technological line (zincworks) of Communication Equipment Factory „PZL” Świdnik. Spent glauconite bed was used as an additive in lightweight aggregate production which was obtained using plastic method by sintering, at temperature 1140 ºC and 1200 ºC, of spent glauconite amouts 10, 15, ...

  7. Acoustic Modeling of Lightweight Structures: A Literature Review

    Science.gov (United States)

    Yang, Shasha; Shen, Cheng

    2017-10-01

    This paper gives an overview of acoustic modeling for three kinds of typical lightweight structures including double-leaf plate system, stiffened single (or double) plate and porous material. Classical models are citied to provide frame work of theoretical modeling for acoustic property of lightweight structures; important research advances derived by our research group and other authors are introduced to describe the current state of art for acoustic research. Finally, remaining problems and future research directions are concluded and prospected briefly

  8. Light-weight radioisotope heater impact tests

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238 PuO 2 -fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238 PuO 2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s

  9. Lightweight autonomous chemical identification system (LACIS)

    Science.gov (United States)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  10. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  11. Warm Hydroforming of Lightweight Metal Sheets

    International Nuclear Information System (INIS)

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; Garcia, C.

    2007-01-01

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25 deg. C - 250 deg. C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress

  12. Abstracting audit data for lightweight intrusion detection

    KAUST Repository

    Wang, Wei

    2010-01-01

    High speed of processing massive audit data is crucial for an anomaly Intrusion Detection System (IDS) to achieve real-time performance during the detection. Abstracting audit data is a potential solution to improve the efficiency of data processing. In this work, we propose two strategies of data abstraction in order to build a lightweight detection model. The first strategy is exemplar extraction and the second is attribute abstraction. Two clustering algorithms, Affinity Propagation (AP) as well as traditional k-means, are employed to extract the exemplars, and Principal Component Analysis (PCA) is employed to abstract important attributes (a.k.a. features) from the audit data. Real HTTP traffic data collected in our institute as well as KDD 1999 data are used to validate the two strategies of data abstraction. The extensive test results show that the process of exemplar extraction significantly improves the detection efficiency and has a better detection performance than PCA in data abstraction. © 2010 Springer-Verlag.

  13. Experimental Study on Fatigue Performance of Foamed Lightweight Soil

    Science.gov (United States)

    Qiu, Youqiang; Yang, Ping; Li, Yongliang; Zhang, Liujun

    2017-12-01

    In order to study fatigue performance of foamed lightweight soil and forecast its fatigue life in the supporting project, on the base of preliminary tests, beam fatigue tests on foamed lightweight soil is conducted by using UTM-100 test system. Based on Weibull distribution and lognormal distribution, using the mathematical statistics method, fatigue equations of foamed lightweight soil are obtained. At the same time, according to the traffic load on real road surface of the supporting project, fatigue life of formed lightweight soil is analyzed and compared with the cumulative equivalent axle loads during the design period of the pavement. The results show that even the fatigue life of foamed lightweight soil has discrete property, the linear relationship between logarithmic fatigue life and stress ratio still performs well. Especially, the fatigue life of Weibull distribution is more close to that derived from the lognormal distribution, in the instance of 50% guarantee ratio. In addition, the results demonstrated that foamed lightweight soil as subgrade filler has good anti-fatigue performance, which can be further adopted by other projects in the similar research domain.

  14. Active gust load alleviation system for flexible aircraft: Mixed feedforward/feedback approach

    DEFF Research Database (Denmark)

    Alam, Mushfiqul; Hromcik, Martin; Hanis, Tomas

    2015-01-01

    Lightweight flexible blended-wing-body (BWB) aircraft concept seems as a highly promising configuration for future high capacity airliners which suffers from reduced stiffness for disturbance loads such as gusts. A robust feedforward gust load alleviation system (GLAS) was developed to alleviate ...

  15. A flexible GPS tracking system for studying bird behaviour at multiple scales

    NARCIS (Netherlands)

    Bouten, W.; Baaij, E.W.; Shamoun-Baranes, J.; Camphuysen, K.C.J.

    2013-01-01

    Tracking devices and bio-loggers provide crucial information on the ecology and behaviour of birds in their natural environment. An optimal tracking system should be lightweight, measure three-dimensional locations, enable flexible measurement schemes, transmit data remotely and measure

  16. A Lightweight RFID Grouping-Proof Protocol Based on Parallel Mode and DHCP Mechanism

    Directory of Open Access Journals (Sweden)

    Zhicai Shi

    2017-07-01

    Full Text Available A Radio Frequency Identification (RFID grouping-proof protocol is to generate an evidence of the simultaneous existence of a group of tags and it has been applied to many different fields. For current grouping-proof protocols, there still exist some flaws such as low grouping-proof efficiency, being vulnerable to trace attack and information leakage. To improve the secure performance and efficiency, we propose a lightweight RFID grouping-proof protocol based on parallel mode and DHCP (Dynamic Host Configuration Protocol mechanism. Our protocol involves multiple readers and multiple tag groups. During the grouping-proof period, one reader and one tag group are chosen by the verifier by means of DHCP mechanism. When only a part of the tags of the chosen group exist, the protocol can also give the evidence of their co-existence. Our protocol utilizes parallel communication mode between reader and tags so as to ensure its grouping-proof efficiency. It only uses Hash function to complete the mutual authentication among verifier, readers and tags. It can preserve the privacy of the RFID system and resist the attacks such as eavesdropping, replay, trace and impersonation. Therefore the protocol is secure, flexible and efficient. It only uses some lightweight operations such as Hash function and a pseudorandom number generator. Therefore it is very suitable to some low-cost RFID systems.

  17. An Overview of the Development of Flexible Sensors.

    Science.gov (United States)

    Han, Su-Ting; Peng, Haiyan; Sun, Qijun; Venkatesh, Shishir; Chung, Kam-Sing; Lau, Siu Chuen; Zhou, Ye; Roy, V A L

    2017-09-01

    Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Recent advances in flexible low power cholesteric LCDs

    Science.gov (United States)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  19. Large area flexible lighting foils using distributed bare LED dies on polyester substrates

    NARCIS (Netherlands)

    Ende, D.A. van den; Kusters, R.H.L.; Cauwe, M.; Waal, A. van der; Brand, J. van den

    2013-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and for backlights for flexible displays. Such a large area lighting device can be made by integrating a matrix of closely spaced LEDs on a flexible foil substrate. Preferably, these LEDs are integrated

  20. Enabling Technologies for Fabrication of Large Area Flexible Antennas, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible, foldable, and/or inflatable antenna systems open up a wealth of opportunities. Integrating antenna elements and related electronics onto flexible...

  1. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe

    2015-09-01

    Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on

  2. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  3. CRUX: A compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation.

    Science.gov (United States)

    Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Trombadore, James M; Teodorescu, Mircea; Agogino, Adrian; Kurniawan, Sri

    2017-07-01

    Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.

  4. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Science.gov (United States)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  5. Flexible spintronic devices on Kapton

    DEFF Research Database (Denmark)

    Bedoya-Pinto, Amilcar; Donolato, Marco; Gobbi, Marco

    2014-01-01

    Magnetic tunnel junctions and nano-sized domain-wall conduits have been fabricated on the flexible substrate Kapton. Despite the delicate nature of tunneling barriers and zig-zag shaped nanowires, the devices show an outstanding integrity and robustness upon mechanical bending. High values of ben...

  6. Development of Modular Outdoor Furniture Product Using Lightweight Concrete for Public Parks in Surabaya

    Science.gov (United States)

    Mulyono, Grace; Thamrin, Diana; Antoni

    2017-09-01

    The development of public parks into green city facilities in Surabaya has triggered the need of outdoor furniture designs that can resist the tropical wet and dry weather conditions while also having a certain mobility to support flexible park arrangement. However, present furniture designs made of concrete material are generally heavy and immovable. Flexible designs are needed for various activities that can take place at the same time such as sitting and playing, and to support changes in arrangement to keep the green open spaces attractive from time to time. This research develops the idea of a modular outdoor furniture design using cellular lightweight concrete (CLC) as the main material as a result from observing its resistance towards weather change and its relative light weight. It starts with analysis of problems, formulation of design concept, creation of design alternatives, selection of design, calculation of mouldings, adaptation of design to the mouldings and production of a scaled mock-up using CLC. Findings of this research reveal that the modular design along with the CLC material used not only support the flexibility of change in function and arrangement but also make these furniture resistant to the hot and humid weather of Surabaya.

  7. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  8. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  9. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  10. Flexible, Lightweight Quantum Dot Solar Cells Using Plasmonic-Enhanced Light Absorption

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar cells, or photovoltaic cells, are critical to NASA operations due to the abundance and availability of solar power. Current photovoltaic technology is based on...

  11. Light-Weight, Flexible, High Efficiency Vacuum Photo-Thermo-Voltaic Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional solar cells are limited in efficiency, require heavy weight for high power applications, and tend to degrade rapidly in the harsh radiation environment...

  12. Lightweight Flexible Thermal Energy Management Panels for CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to significant gaps in advanced thermal control systems onboard CubeSats and SmallSats, and building off of the successful development of space-based...

  13. Production of lightweight refractory material by hydrothermal process

    International Nuclear Information System (INIS)

    Sulejmani, Ramiz B.

    2002-01-01

    Many different processes of production of lightweight refractories are well known over the World. Traditional production of lightweight refractories is by addition of combustibles or by a special frothing process. This work is concerned with hydrothermal of lightweight refractories from rice husk ash. The rice husk ash, used in present investigations were from Kocani region, R. Macedonia. The chemical analysis of the rice husk ash shows that it contains 91,8 - 93,7% SiO 2 and some alkaline and alkaline earth oxides. Microscopic and X - ray diffraction examinations of the rice husk ash have shown that it is composed of cristobalite, tridimite and amorphous silica. The composition of the mixture for lightweight refractory brick production is 93,4% rice husk ash and 6,6% Ca(OH) 2 . The mixtures were well mixed, moistened and pressed at 5 - 10 MPa. The hydrothermal reactions between calcium hydroxide and rice husk ash over the temperature range 80 - 160 o C were investigated. The period of autoclave treatment was from 2 to 72 h. After the hydrothermal treatment of the samples, the mineralogical composition, bulk density, density, cold crushing strength, porosity, refractoriness and thermal expansion were examined. Analysing the properties of the obtained samples it can be concluded that from rice husk ash and calcium hydroxide under hydrothermal condition it is possible to obtain lightweight acid refractory material with high quality.(Author)

  14. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  15. Thin Flexible IMM Solar Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Inverted Metamorphic (IMM) solar cells have achieved high efficiency at very low mass, but integration of the thin crystalline photovoltaic device into a flexible...

  16. Durability of Geopolymer Lightweight Concrete Infilled LECA in Seawater Exposure

    Science.gov (United States)

    Razak, R. A.; Abdullah, M. M. A. B.; Yahya, Z.; Hamid, M. S. A.

    2017-11-01

    This paper describes a development of lightweight concrete using lightweight expanded clay aggregate (LECA) in fly ash (FA) based geopolymer immersed in seawater. The objective of this research is to compare the performance of geopolymer concrete (GPC) with ordinary Portland cement (OPC) concrete infilled lightweight expanded clay aggregate (LECA) in seawater exposure. Geopolymer concrete is produced by using alkaline activator to activate the raw material, FA. The highest compressive strength of this study is 42.0 MPa at 28 days and 49.8 MPa at 60 days. The density for this concrete is in the range of 1580 kg/m3 to 1660 kg/m3. The result for water absorption is in the range of 6.82% to 14.72%. However, the test results of weight loss is in the range between 0.30% to 0.43%.

  17. Evolution of low-profile and lightweight electrical connectors for soldier-worn applications

    Science.gov (United States)

    Gans, Eric; Lee, Kang; Jannson, Tomasz; Walter, Kevin

    2011-06-01

    In addition to military radios, modern warfighters carry cell phones, GPS devices, computers, and night-vision aids, all of which require electrical cables and connectors for data and power transmission. Currently each electrical device operates via independent cables using conventional cable and connector technology. Conventional cables are stiff and difficult to integrate into a soldier-worn garment. Conventional connectors are tall and heavy, as they were designed to ensure secure connections to bulkhead-type panels, and being tall, represent significant snag-hazards in soldier-worn applications. Physical Optics Corporation has designed a new, lightweight and low-profile electrical connector that is more suitable for body-worn applications and operates much like a standard garment snap. When these connectors are mated, the combined height is <0.3 in. - a significant reduction from the 2.5 in. average height of conventional connectors. Electrical connections can be made with one hand (gloved or bare) and blindly (without looking). Furthermore, POC's connectors are integrated into systems that distribute data or power from a central location on the soldier's vest, reducing the length and weight of the cables necessary to interconnect various mission-critical electronic systems. The result is a lightweight power/data distribution system offering significant advantages over conventional electrical connectors in soldier-worn applications.

  18. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lanlan [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Hongzhong, E-mail: hzliu@mail.xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Jiang, Weitao, E-mail: wtjiang@mail.xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, Wei [Key Laboratory of Mechanics on Western Disasters and Environment, Lanzhou University, Lanzhou 730000 (China); Chen, Bangdao [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Li, Xin [Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Yucheng [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); An, Ningli [Department of Packaging Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2014-12-15

    Graphical abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA), in which the dimension of each micro-ring is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness is successfully fabricated, as shown in the SEM image of figure (a). Due to the MRA with ultrahigh aspect ratio of dielectric-metal sidewall, the FUN-membrane can be transferred to either rigid or flexible substrate to be used as the cathode for lightweight display panel, as shown in the schematic of figure (b). - Highlights: • Exploring a new fabrication method for the freestanding ultrathin nano-membrane (FUN-membrane). • FUN-membrane is composed of micro-ring array with ultrahigh aspect ratio of the insulator-metal sidewall. • The sharp metal edge of each micro-ring is preferred to be served as the micro-emitter. - Abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 10{sup 4} and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due

  19. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    International Nuclear Information System (INIS)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-01-01

    Graphical abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA), in which the dimension of each micro-ring is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness is successfully fabricated, as shown in the SEM image of figure (a). Due to the MRA with ultrahigh aspect ratio of dielectric-metal sidewall, the FUN-membrane can be transferred to either rigid or flexible substrate to be used as the cathode for lightweight display panel, as shown in the schematic of figure (b). - Highlights: • Exploring a new fabrication method for the freestanding ultrathin nano-membrane (FUN-membrane). • FUN-membrane is composed of micro-ring array with ultrahigh aspect ratio of the insulator-metal sidewall. • The sharp metal edge of each micro-ring is preferred to be served as the micro-emitter. - Abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 10 4 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the

  20. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  1. Light-weight Mutual Authentication with Non-repudiation

    Directory of Open Access Journals (Sweden)

    V. Clupek

    2018-04-01

    Full Text Available In this paper, we focused on a problem of authentication on low-cost devices. We have proposed a new light-weight protocol for mutual authentication of communication entities with non-repudiation of realized events. The protocol is simple and suitable for implementation on low-cost devices. Non-repudiation of realized events is achieved by involving a Trusted Third Party (TTP to the communication. The proposed protocol uses only an appropriate lightweight hash function and pre-shared secret data. Security of the proposed protocol was verified by the BAN (Burrows-Abadi-Needham logic.

  2. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  3. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  4. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    Science.gov (United States)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-12-01

    A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 104 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the rational design and material versatility, the FUN-membrane thus could be transferred to either rigid or flexible substrate, even curved surface, such as the skin of bio-robot's arm or leg. Additionally, the FUN-membrane composed of MRA with extremely high aspect ratio of insulator-metal sidewall, also provides potential applications in optical devices, lightweight and flexible display devices, and electronic eye imagers.

  5. Flexible Language Interoperability

    DEFF Research Database (Denmark)

    Ekman, Torbjörn; Mechlenborg, Peter; Schultz, Ulrik Pagh

    2007-01-01

    Virtual machines raise the abstraction level of the execution environment at the cost of restricting the set of supported languages. Moreover, the ability of a language implementation to integrate with other languages hosted on the same virtual machine typically constrains the features...... of the language. In this paper, we present a highly flexible yet efficient approach to hosting multiple programming languages on an object-oriented virtual machine. Our approach is based on extending the interface of each class with language-specific wrapper methods, offering each language a tailored view...... of a given class. This approach can be deployed both on a statically typed virtual machine, such as the JVM, and on a dynamic virtual machine, such as a Smalltalk virtual machine. We have implemented our approach to language interoperability on top of a prototype virtual machine for embedded systems based...

  6. Strength properties of cement slurries with lightweights applied in oil and gas wells

    International Nuclear Information System (INIS)

    Bubnov, A S; Drilling Mud and Cement Slurry (Russian Federation))" data-affiliation=" (Head of Laboratory Drilling Mud and Cement Slurry (Russian Federation))" >Boyko, I A; Drilling Mud and Cement Slurry (Russian Federation))" data-affiliation=" (PhD, Engineer, Laboratory Drilling Mud and Cement Slurry (Russian Federation))" >Khorev, V S

    2015-01-01

    The article is focused on the cement stone strength properties resulted from lightweight cement slurries that meet GOST-1581-96 (state Standards) requirements. Exfoliated vermiculite, hollow aluminosilicate microspheres (HAMs), diatomite and perlite were used as lightweighting additives

  7. Large-area smart glass and integrated photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [Star Science, 8730 Water Road, Cotati, CA 94931-4252 (United States)

    2003-04-01

    Several companies throughout the world are developing dynamic glazing and large-area flat panel displays. University and National Laboratory groups are researching new materials and processes to improve these products. The concept of a switchable glazing for building and vehicle application is very attractive. Conventional glazing only offers fixed transmittance and control of energy passing through it. Given the wide range of illumination conditions and glare, a dynamic glazing with adjustable transmittance offers the best solution. Photovoltaics can be integrated as power sources for smart windows. In this way a switchable window could be a completely stand alone smart system. A new range of large-area flat panel display including light-weight and flexible displays are being developed. These displays can be used for banner advertising, dynamic pricing in stores, electronic paper, and electronic books, to name only a few applications. This study covers selected switching technologies including electrochromism, suspended particles, and encapsulated liquid crystals.

  8. Passivation coating for flexible substrate mirrors

    Science.gov (United States)

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  9. Carbon coated textiles for flexible energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Kristy [Drexel Univ., Philadelphia, PA (United States). Fashion, Product, Design and Merchandising Dept., A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Perez, Carlos R. [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; McDonough, John K. [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Presser, Volker [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Heon, Min [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering; Dion, Genevieve [Drexel Univ., Philadelphia, PA (United States). Fashion, Product, Design and Merchandising Dept.; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). A. J. Drexel Nanotechnology Inst. and Dept. of Materials Science and Engineering

    2011-10-20

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25 A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².

  10. Experimental study on the effect of volcanic residue on the performance of recycled lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Li-guang; Li, Ji-heng; Liu, Qing-shun

    2017-08-01

    Recycled lightweight aggregate concrete prepared with waste brick recycled light aggregate has high water absorption, large apparent density and poor frost resistance. The technical measures of regen-erating lightweight aggregate concrete with modified waste bricks from volcanic slag are put forward. The effects of volcanic slag on the properties of waste lightweight aggregate concrete were studied. The experi-mental results show that volcanic slag can significantly reduce the apparent density of recycled lightweight aggregate concrete and improve its frost resistance.

  11. Flexible and stretchable electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  12. Role of LNG in an optimized hybrid energy network : part I. Increased operational flexibility for the future energy system by integration of decentralized LNG regasification with a CHP

    NARCIS (Netherlands)

    Montoya Cardona, Juliana; de Rooij, Marietta; Dam, Jacques

    2017-01-01

    The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased

  13. A lightweight portable, walk-in trap for catching vultures

    African Journals Online (AJOL)

    Two holes are drilled through the tubing and the piece of wood is attached to the tubing using 8.7 cm screws (Figure. 3). The location of the latch on the ... lightweight, walk-in trap, with door (shaded area) open, small black square shows location of gate latch. Figure 3. Close-up of gate latch. (photograph: David R. Barber).

  14. Design of Light-Weight High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Rui Feng

    2016-09-01

    Full Text Available High-entropy alloys (HEAs are a new class of solid-solution alloys that have attracted worldwide attention for their outstanding properties. Owing to the demand from transportation and defense industries, light-weight HEAs have also garnered widespread interest from scientists for use as potential structural materials. Great efforts have been made to study the phase-formation rules of HEAs to accelerate and refine the discovery process. In this paper, many proposed solid-solution phase-formation rules are assessed, based on a series of known and newly-designed light-weight HEAs. The results indicate that these empirical rules work for most compositions but also fail for several alloys. Light-weight HEAs often involve the additions of Al and/or Ti in great amounts, resulting in large negative enthalpies for forming solid-solution phases and/or intermetallic compounds. Accordingly, these empirical rules need to be modified with the new experimental data. In contrast, CALPHAD (acronym of the calculation of phase diagrams method is demonstrated to be an effective approach to predict the phase formation in HEAs as a function of composition and temperature. Future perspectives on the design of light-weight HEAs are discussed in light of CALPHAD modeling and physical metallurgy principles.

  15. LETOS -- A Lightweight Execution Tool for Operational Semantics

    NARCIS (Netherlands)

    Hartel, Pieter H.

    A lightweight tool is proposed to aid in the development of operational semantics. To use LETOS an operational semantics must be expressed in its meta-language, which itself is a superset of Miranda. The LETOS compiler is smaller than comparable tools, yet LETOS is powerful enough to support

  16. Lightweight aluminum shock absorbers; Leichtbau-Stossdaempfer aus Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Kusche, R. [Serienentwicklung, ThyssenKrupp Bilstein GmbH, Ennepetal (Germany)

    2004-12-01

    One way in which the automotive industry is striving to reduce costs and environmental impact is by continuously lowering the fuel consumption of vehicles. To achieve this objective, lightweight materials are increasingly being used in automotive design. Increasing demands are also being made on shock absorber suppliers to reduce weight. (orig.)

  17. Developments in Emission Measurements Using Lightweight Sensors and Samplers.

    Science.gov (United States)

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned...

  18. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  19. Reuse of thermosetting plastic waste for lightweight concrete.

    Science.gov (United States)

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  20. data sets Simulations in articulating light-weight PRS

    NARCIS (Netherlands)

    Van den Berg, Bert

    2008-01-01

    The data sets are output of 3 different steps in the development a simulations of a PRS as described in chapter 3.3: Simulations in articulating light-weight PRS A case for Pedagogy-oriented and Rating-based Hybrid Recommendation Strategies Rob Nadolski, Bert van den Berg, Adriana Berlanga, Hans

  1. Influence of site curing on bond properties of reinforced lightweight ...

    African Journals Online (AJOL)

    ... the requirements for structural lightweight concrete. The developed compressive strength and pull-out strength under both site curing conditions were relatively lower than full water curing condition but still were higher than minimum requirement as per standard. Journal of Civil Engineering Research and Practice Vol.

  2. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    Science.gov (United States)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  3. Robustness of Modal Parameter Estimation Methods Applied to Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    On-going research is concerned with the losses that occur at junctions in lightweight building structures. Recently the authors have investigated the underlying uncertainties related to both measurement, material and craftsmanship of timber junctions by means of repeated modal testing on a number...

  4. Accuracy of Dynamic and Acoustic Analysis of Lightweight Panel Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Dickow, Kristoffer Ahrens; Andersen, Lars Vabbersgaard

    2012-01-01

    in such buildings is important. In the lowfrequency range, prediction of sound and vibration in building structures may be achieved by finite-element analysis (FEA). The aim of this paper is to compare the two commercial codes ABAQUS and ANSYS for FEA of an acoustic-structural coupling in a timber lightweight panel...

  5. Study of the strength characteristics of protein-based lightweight ...

    African Journals Online (AJOL)

    Compressive strength test was carried out on the protein-based lightweight foamed concrete produced with cement partially replaced by rice husk ash to ascertain its strength characteristics. Standard concrete cubes of 150 x 150 x 150 mm were produced using ordinary Portland cement (OPC), fine aggregate, aqueous ...

  6. APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography

    DEFF Research Database (Denmark)

    Andreeva, Elena; Bilgin, Begül; Bogdanov, Andrey

    2015-01-01

    The domain of lightweight cryptography focuses on cryptographic algorithms for extremely constrained devices. It is very costly to avoid nonce reuse in such environments, because this requires either a hardware source of randomness, or non-volatile memory to store a counter. At the same time, a lot...

  7. Metal-bending brake facilitates lightweight, close-tolerance fabrication

    Science.gov (United States)

    Ercoline, A. L.; Wilton, K. B.

    1964-01-01

    A lightweight, metal bending brake ensures very accurate bends. Features of the brake that adapt it for making complex reverse bends to close tolerances are a pronounced relief or cutaway of the underside of the bodyplate combined with modification in the leaf design and its suspension.

  8. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  9. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  10. FY2013 Lightweight Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    As part of the U.S. Department of Energy’s (DOE’s) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  11. Closing the innovation cycle in lightweighting compressor pistons technolog

    NARCIS (Netherlands)

    Wentzel, C.; Eijk, A.; Groenewegen, G.; Bergsma, O.

    2016-01-01

    What started out as an exercise in exploring the weight reduction potential of those allegedly “heavy recip crossheads”, turned out to be a fast leap towards implementation of a new hybrid material concept for very lightweight pistons. This was enabled by a next phase in the EFRC R&D group research

  12. Closing the innovation cycle in lightweighting compressor pistons technology

    NARCIS (Netherlands)

    Wentzel, C.M.; Eijk, A.; Groenewegen, G.; Bergsma, O.K.

    2016-01-01

    What started out as an exercise in exploring the weight reduction potential of those allegedly “heavy recip crossheads”, turned out to be a fast leap towards implementation of a new hybrid material concept for very lightweight pistons. This was enabled by a next phase in the EFRC R&D group

  13. FY2010 Annual Progress Report for Lightweighting Materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-01-15

    The Lightweight Materials activity (LM) within the Vehicle Technologies Program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  14. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  15. HOKES/POKES : Light-weight resource sharing

    NARCIS (Netherlands)

    Bos, Herbert; Samwel, Bart

    2003-01-01

    In this paper, we explain mechanisms for providing embedded network processors and other low-level programming environments with light-weight support for safe resource sharing. The solution consists of a host part, known as HOKES, and a network processor part, known as POKES. As common operating

  16. Vibrations in a Multi-Storey Lightweight Building Structure

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning

    2013-01-01

    This paper provides a quantification of the changes in vibration level that can be expected in a lightweight multi-storey wooden building due to reduced connection stiffness or added nonstructural mass. Firstly, the impact of changes in the floor-to-wall connections is examined. Secondly, a study...

  17. Development of lightweight mortars targeted on the high strength, low density and low permeability

    NARCIS (Netherlands)

    Spiesz, P.R.; Yu, Q.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    This article presents a mix design methodology for the development of cement-based lightweight mortars. Expanded-glass lightweight aggregates were used in this study as the lightweight material. The mix design was developed applying the packing theory using the modified Andreasen and Andersen model

  18. Lightweight panel study 2012: Perceptions and usage by North American wood products manufacturers

    Science.gov (United States)

    Urs Buehlmann; Matt Bumgardner; Karl D. Forth

    2012-01-01

    Lightweight panels (panels made of two thin panels on the outside and a lightweight material in the core) can offer enhanced performance, reduced material use, and new design opportunities over traditional types of panels. Opportunities exist for the adoption of lightweight panels by the secondary wood industry in North America, as 62 percent of respondents to a recent...

  19. Integration of Sensor and Actuator Networks and the SCADA System to Promote the Migration of the Legacy Flexible Manufacturing System towards the Industry 4.0 Concept

    Directory of Open Access Journals (Sweden)

    Antonio José Calderón Godoy

    2018-05-01

    Full Text Available Networks of sensors and actuators in automated manufacturing processes are implemented using industrial fieldbuses, where automation units and supervisory systems are also connected to exchange operational information. In the context of the incoming fourth industrial revolution, called Industry 4.0, the management of legacy facilities is a paramount issue to deal with. This paper presents a solution to enhance the connectivity of a legacy Flexible Manufacturing System, which constitutes the first step in the adoption of the Industry 4.0 concept. Such a system includes the fieldbus PROcess FIeld BUS (PROFIBUS around which sensors, actuators, and controllers are interconnected. In order to establish effective communication between the sensors and actuators network and a supervisory system, a hardware and software approach including Ethernet connectivity is implemented. This work is envisioned to contribute to the migration of legacy systems towards the challenging Industry 4.0 framework. The experimental results prove the proper operation of the FMS and the feasibility of the proposal.

  20. Elaboration of fabrication technology of ITO/CdS/CdTe solar cells on flexible polymer substrates

    International Nuclear Information System (INIS)

    Potlog, T.; Spalatu, N.; Capros, N.

    2007-01-01

    The development of high efficiency, stable, lightweight and flexible solar cell is important for terrestrial and space applications. We have developed a novel process to make solar cells on flexible polymer sheets. A thin layer of CdTe compound semiconductor is used for the absorption of solar light and generation of electrical current. In this work the solar electricity conversion efficiency of 4,66% is the highest efficiency reported for a solar cell grown on a polymer sheet. (authors)

  1. Flexible ship loading problem with transfer vehicle assignment and scheduling

    DEFF Research Database (Denmark)

    Iris, Çağatay; Christensen, Jonas; Pacino, Dario

    2018-01-01

    This paper presents the flexible containership loading problem for seaport container terminals. The integrated management of loading operations, planning of the transport vehicles to use and their scheduling is what we define as the Flexible Ship Loading Problem (FSLP). The flexibility comes from...

  2. An ultra-lightweight design for imperceptible plastic electronics.

    Science.gov (United States)

    Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao

    2013-07-25

    Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and

  3. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  4. Limited access: gender, occupational composition, and flexible work scheduling.

    Science.gov (United States)

    Glauber, Rebecca

    2011-01-01

    The current study draws on national data to explore differences in access to flexible work scheduling by the gender composition of women's and men's occupations. Results show that those who work in integrated occupations are more likely to have access to flexible scheduling. Women and men do not take jobs with lower pay in return for greater access to flexibility. Instead, jobs with higher pay offer greater flexibility. Integrated occupations tend to offer the greatest access to flexible scheduling because of their structural locations. Part-time work is negatively associated with men's access to flexible scheduling but positively associated with women's access. Women have greater flexibility when they work for large establishments, whereas men have greater flexibility when they work for small establishments.

  5. Flexible Carpooling: Exploratory Study

    OpenAIRE

    Dorinson, Diana; Gay, Deanna; Minett, Paul; Shaheen, Susan

    2009-01-01

    Energy consumption could be reduced if more people shared rides rather than driving alone yet carpooling represents a small proportion of all potential carpoolers. Prior research has found that many who might carpool were concerned about reduced flexibility with carpooling. If flexibility is one of the barriers how could carpooling be organized to be more flexible? In Northern Virginia a flexible system has evolved where there are 3,500 single-use carpools per day. In another example there ...

  6. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    Science.gov (United States)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  7. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  8. Lightweight Data Aggregation Scheme against Internal Attackers in Smart Grid Using Elliptic Curve Cryptography

    Directory of Open Access Journals (Sweden)

    Debiao He

    2017-01-01

    Full Text Available Recent advances of Internet and microelectronics technologies have led to the concept of smart grid which has been a widespread concern for industry, governments, and academia. The openness of communications in the smart grid environment makes the system vulnerable to different types of attacks. The implementation of secure communication and the protection of consumers’ privacy have become challenging issues. The data aggregation scheme is an important technique for preserving consumers’ privacy because it can stop the leakage of a specific consumer’s data. To satisfy the security requirements of practical applications, a lot of data aggregation schemes were presented over the last several years. However, most of them suffer from security weaknesses or have poor performances. To reduce computation cost and achieve better security, we construct a lightweight data aggregation scheme against internal attackers in the smart grid environment using Elliptic Curve Cryptography (ECC. Security analysis of our proposed approach shows that it is provably secure and can provide confidentiality, authentication, and integrity. Performance analysis of the proposed scheme demonstrates that both computation and communication costs of the proposed scheme are much lower than the three previous schemes. As a result of these aforementioned benefits, the proposed lightweight data aggregation scheme is more practical for deployment in the smart grid environment.

  9. Lightweight Combat Vehicle S&T Initiatives

    Science.gov (United States)

    2015-08-01

    Signature management, electromagnetic shielding over potentially non-metallic surfaces • Diagnostics & prognostics for structural health assessment...Misc Project Mg 1 1 1 Al 1 1 1 AHSS 2 4 2 1 1 FRC 3 1 1 AHSS weld wire Hi Speed AL FSW MG FSW MG SP Rivets Breakthru MIFERD AHSS weld wire Al...Chrysler, AET) • Integrated “ rivets ” cast into Mg part and mechanically joined to steel. 5. Laser-Assisted Joining Process of Aluminum and Carbon Fiber

  10. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.

    2016-03-02

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present integration strategy to rationally design materials and processes to report flexible inorganic lithium-ion microbattery with no restrictions on the materials used. The battery shows an enhanced normalized capacity of 147 μAh/cm2 when bent.

  11. A lightweight, flow-based toolkit for parallel and distributed bioinformatics pipelines

    Directory of Open Access Journals (Sweden)

    Cieślik Marcin

    2011-02-01

    Full Text Available Abstract Background Bioinformatic analyses typically proceed as chains of data-processing tasks. A pipeline, or 'workflow', is a well-defined protocol, with a specific structure defined by the topology of data-flow interdependencies, and a particular functionality arising from the data transformations applied at each step. In computer science, the dataflow programming (DFP paradigm defines software systems constructed in this manner, as networks of message-passing components. Thus, bioinformatic workflows can be naturally mapped onto DFP concepts. Results To enable the flexible creation and execution of bioinformatics dataflows, we have written a modular framework for parallel pipelines in Python ('PaPy'. A PaPy workflow is created from re-usable components connected by data-pipes into a directed acyclic graph, which together define nested higher-order map functions. The successive functional transformations of input data are evaluated on flexibly pooled compute resources, either local or remote. Input items are processed in batches of adjustable size, all flowing one to tune the trade-off between parallelism and lazy-evaluation (memory consumption. An add-on module ('NuBio' facilitates the creation of bioinformatics workflows by providing domain specific data-containers (e.g., for biomolecular sequences, alignments, structures and functionality (e.g., to parse/write standard file formats. Conclusions PaPy offers a modular framework for the creation and deployment of parallel and distributed data-processing workflows. Pipelines derive their functionality from user-written, data-coupled components, so PaPy also can be viewed as a lightweight toolkit for extensible, flow-based bioinformatics data-processing. The simplicity and flexibility of distributed PaPy pipelines may help users bridge the gap between traditional desktop/workstation and grid computing. PaPy is freely distributed as open-source Python code at http://muralab.org/PaPy, and

  12. A lightweight messaging-based distributed processing and workflow execution framework for real-time and big data analysis

    Science.gov (United States)

    Laban, Shaban; El-Desouky, Aly

    2014-05-01

    To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear

  13. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  14. Lightweight Steel Solutions for Automotive Industry

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-01-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  15. New flexible origination technology based on electron-beam lithography and its integration into security devices in combination with covert features based on DNA authentication

    Science.gov (United States)

    Drinkwater, John K.; Ryzi, Zbynek; Outwater, Chris S.

    2002-04-01

    Embossed diffractive optically variable devices are becoming increasingly familiar security items on plastic cards, banknotes, security documents and on branded goods and media to protect against counterfeit, protect copyright and to evidence tamper. Equally as this devices become both more widely available there is a pressing requirement for security technology upgrades to keep ahead of technology advances available to potential counterfeiters. This paper describes a new generation electron beam DOVID origination technology particularly suitable for high security applications. Covert marking of security devices is provided using the DNA matrix by creating and verifying unique DNA sequences. This integration of this into practical security features in combination with covert features based on DNA matrix authentication and other more straightforwardly authenticable features to provide multi- technology security solutions will be described.

  16. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    the angular deflection of the tower with respect to the vertical axis in response to variations in wind speed. The controller is shown to guarantee asymptotic tracking of the reference trajectory. The performance of the control system is evaluated through deterministic and stochastic simulations including......This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...... for towers and foundations would greatly reduce the construction cost of the wind turbine, however extra features ought be included in the control system architecture to avoid tower collapse. An adaptive backstepping collective pitch controller is proposed for tower point tracking control, i.e. to modify...

  17. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  18. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  19. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  20. Experimental Validation of a Dynamic Model for Lightweight Robots

    Directory of Open Access Journals (Sweden)

    Alessandro Gasparetto

    2013-03-01

    Full Text Available Nowadays, one of the main topics in robotics research is dynamic performance improvement by means of a lightening of the overall system structure. The effective motion and control of these lightweight robotic systems occurs with the use of suitable motion planning and control process. In order to do so, model-based approaches can be adopted by exploiting accurate dynamic models that take into account the inertial and elastic terms that are usually neglected in a heavy rigid link configuration. In this paper, an effective method for modelling spatial lightweight industrial robots based on an Equivalent Rigid Link System approach is considered from an experimental validation perspective. A dynamic simulator implementing the formulation is used and an experimental test-bench is set-up. Experimental tests are carried out with a benchmark L-shape mechanism.

  1. MODULTEC - Modular technology for lightweight vehicles; MODULTEC - Modultechnologie fuer Leichtmobile

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, M.; Efler, T.; Wegmann, S.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of two research projects (MODULTEC I and II) that were carried out between 1995 and 2002. The project's aims were to develop and assess components for light-weight car bodies, study and test novel reinforced plastic materials and to examine the industrial implementation of light-weight vehicles. The report presents details on prototype vehicles and transport systems, as well as crash tests. The development of compound plastics and appropriate adhesives is discussed as is the co-operation with various industrial partners. Various prototype components are described and other associated topics such as recycling, storage of alternative fuels and pedestrian protection issues are discussed.

  2. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  3. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  4. 3D-printing of lightweight cellular composites.

    Science.gov (United States)

    Compton, Brett G; Lewis, Jennifer A

    2014-09-10

    A new epoxy-based ink is reported, which enables 3D printing of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber reinforcement to create hierarchical structures inspired by balsa wood. Young's modulus values up to 10 times higher than existing commercially available 3D-printed polymers are attainable, while comparable strength values are maintained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lightweight, high-opacity Bible paper by fiber loading

    Science.gov (United States)

    Klaus Doelle; Oliver Heise; John H. Klungness; Said M. AbuBakr

    2000-01-01

    This paper has been prepared in order to discuss Fiber Loading™ for lightweight, high-opacity bible paper. Incorporating fillers within pulp fibers has been subject to research since 1960 (Green et al. 1962, Scallan et al. 1985, Allen et al. 1992). Fiber Loading™ is a method for manufacturing precipitated calcium carbonate (PCC) directly within the pulp processing...

  6. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    Science.gov (United States)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between

  8. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Science.gov (United States)

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  9. PipelineDog: a simple and flexible graphic pipeline construction and maintenance tool.

    Science.gov (United States)

    Zhou, Anbo; Zhang, Yeting; Sun, Yazhou; Xing, Jinchuan

    2018-05-01

    Analysis pipelines are an essential part of bioinformatics research, and ad hoc pipelines are frequently created by researchers for prototyping and proof-of-concept purposes. However, most existing pipeline management system or workflow engines are too complex for rapid prototyping or learning the pipeline concept. A lightweight, user-friendly and flexible solution is thus desirable. In this study, we developed a new pipeline construction and maintenance tool, PipelineDog. This is a web-based integrated development environment with a modern web graphical user interface. It offers cross-platform compatibility, project management capabilities, code formatting and error checking functions and an online repository. It uses an easy-to-read/write script system that encourages code reuse. With the online repository, it also encourages sharing of pipelines, which enhances analysis reproducibility and accountability. For most users, PipelineDog requires no software installation. Overall, this web application provides a way to rapidly create and easily manage pipelines. PipelineDog web app is freely available at http://web.pipeline.dog. The command line version is available at http://www.npmjs.com/package/pipelinedog and online repository at http://repo.pipeline.dog. ysun@kean.edu or xing@biology.rutgers.edu or ysun@diagnoa.com. Supplementary data are available at Bioinformatics online.

  10. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  11. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel

    Science.gov (United States)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  12. Impact of lightweight and conventional jackhammers on the operator.

    Science.gov (United States)

    Campbell-Kyureghyan, Naira; Singh, Gurjeet; Otieno, Wilkistar; Cooper, Karen

    2012-01-01

    Jackhammer manufacturers have recently developed lightweight (45-60 lbs) jackhammers intended to reduce the required lifting and pushing forces during operation. However, the vibration characteristics of the lightweight jackhammers and their effect on muscle activity are currently unknown. The objective of this study was to compare the measured vibration and muscle activity between: (i) conventional (90 lb) and light weight (60 lb) jackhammers, (ii) different pavement type/thickness combinations, and (iii) pneumatic and hydraulic jackhammers. Five jackhammers were tested on 4 and 6 inch thick asphalt and concrete pavements by four experienced operators. Analysis of the results revealed that both weight classes averaged 9.7 m/s(2) at the 20 Hz weighted 1/3 octave band frequency, and the TLV of daily exposure for either weight class of jackhammer was less than 1.5 hours/per day. There was an approximately 33% difference in vibration measured on the hand of the operators due to pavement thickness, 30% due pavement type, and no difference due to power source. Conventional jackhammers overall produced higher muscle activity than lightweight jackhammers. Although selection of the correct jackhammer for the job involves many factors including pavement type and thickness, the results of this research can be used to assist in selecting the appropriate jackhammer.

  13. Broadband low-frequency sound isolation by lightweight adaptive metamaterials

    Science.gov (United States)

    Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming

    2018-03-01

    Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.

  14. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  15. Advantages and challenges of dissimilar materials in automotive lightweight construction

    Science.gov (United States)

    Weberpals, Jan-Philipp; Schmidt, Philipp A.; Böhm, Daniel; Müller, Steffen

    2015-03-01

    The core of future automotive lightweight materials is the joining technology of various material mixes. The type of joining will be essential, particularly in electrified propulsion systems, especially as an improved electrical energy transmission leads to a higher total efficiency of the vehicle. The most evident parts to start the optimization process are the traction battery, the electrical performance modules and the engines. Consequently aluminum plays a very central role for lightweight construction applications. However, the physical-technical requirements of components often require the combination with other materials. Thus the joining of mixed material connections is an essential key technology for many of the current developments, for example in the areas E-Mobility, solar energy and lightweight construction. Due to these advantages mixed material joints are already established in the automotive industry and laser beam remote welding is now a focus technology for mixed material connections. The secret of the laser welding process with mixed materials lies within the different areas of the melting phase diagram depending on the mixing ratio and the cooling down rate. According to that areas with unwanted, prim, intermetallic phases arise in the fusion zone. Therefore, laser welding of mixed material connections can currently only be used with additional filler in the automotive industry.

  16. The utilization of stone ash on cellular lightweight concrete

    Science.gov (United States)

    Karolina, R.; Sianipar, Y. G. C.

    2018-02-01

    Lightweight concrete brick is a brick which made of cement, sand, water, and foam as the basic composition. This brick are divided into 2, based on the foam used such as AAC (Autoclave Aerated Concrete) that use aluminium paste and CLC(Cellular Lightweight Concrete) that use foaming agent from BASF as its foaming material. In this trial, the lightweight brick that are ging to be use are the CLC with foaming agent as its foaming material with the mixture of stone ash that are produced by the Stone Crusher with spesific gravity 2666 kg/m3 as their partly sand substitution . In this research, the stone ash variant that are used are 10%, 15%, and 20% from the amount of sand that planned before. After casting, the result of the 10% will receive a reduction of compressive strength while an increasing in absorption as 25.07% and 39.005% and the 15% variant will recieve a reduction of compressive strength as much as 65.8% and a reduction of absorption as much as 17.441% and the 20% variant will recieve a reduction of compressive strength as much as 67.4% while an increasing of absorption as much as 17.956%.

  17. Lightweight S-Box Architecture for Secure Internet of Things

    Directory of Open Access Journals (Sweden)

    A. Prathiba

    2018-01-01

    Full Text Available Lightweight cryptographic solutions are required to guarantee the security of Internet of Things (IoT pervasiveness. Cryptographic primitives mandate a non-linear operation. The design of a lightweight, secure, non-linear 4 × 4 substitution box (S-box suited to Internet of Things (IoT applications is proposed in this work. The structure of the 4 × 4 S-box is devised in the finite fields GF (24 and GF ((222. The finite field S-box is realized by multiplicative inversion followed by an affine transformation. The multiplicative inverse architecture employs Euclidean algorithm for inversion in the composite field GF ((222. The affine transformation is carried out in the field GF (24. The isomorphic mapping between the fields GF (24 and GF ((222 is based on the primitive element in the higher order field GF (24. The recommended finite field S-box architecture is combinational and enables sub-pipelining. The linear and differential cryptanalysis validates that the proposed S-box is within the maximal security bound. It is observed that there is 86.5% lesser gate count for the realization of sub field operations in the composite field GF ((222 compared to the GF (24 field. In the PRESENT lightweight cipher structure with the basic loop architecture, the proposed S-box demonstrates 5% reduction in the gate equivalent area over the look-up-table-based S-box with TSMC 180 nm technology.

  18. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  19. BVS: A Lightweight Forward and Backward Secure Scheme for PMU Communications in Smart Grid

    Directory of Open Access Journals (Sweden)

    Wei Ren

    2011-01-01

    Full Text Available In smart grid, phaser measurement units (PMUs can upload readings to utility centers via supervisory control and data acquisition (SCADA or energy management system (EMS to enable intelligent controlling and scheduling. It is critical to maintain the secrecy of readings so as to protect customers' privacy, together with integrity and source authentication for the reliability and stability of power scheduling. In particular, appealing security scheme needs to perform well in PMUs that usually have computational resource constraints, thus designed security protocols have to remain lightweight in terms of computation and storage. In this paper, we propose a family of schemes to solve this problem. They are public key based scheme (PKS, password based scheme (PWS and billed value-based scheme (BVS. BVS can achieve forward and backward security and only relies on hash functions. Security analysis justifies that the proposed schemes, especially BVS, can attain the security goals with low computation and storage cost.

  20. Social web applications in the city: a lightweight infrastructure for urban computing

    DEFF Research Database (Denmark)

    Hansen, Frank Allan; Grønbæk, Kaj

    2008-01-01

    In this paper, we describe an infrastructure for browsing and multimedia blogging of Web-based information anchored with physical places in an urban environment. The infrastructure is generic in the sense that it may use any means such as GPS, RFID or 2D-barcodes as ubiquitous links anchors...... to anchor Web-based information, blogs, and services in the physical environment. The infrastructure is inspired from earlier work on open hypermedia, in the sense that the anchoring and blogging functionality can be integrated to augment arbitrary Web sites providing information that is relevant to places...... or objects in the physical world. The blog and anchor functionality is implemented as a set of Web services running on a server external to the content server. Experiences and design issues from three cases are discussed, which use Semacode-based physical anchoring to support lightweight urban Web...

  1. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  2. Office flexible cystoscopy.

    Science.gov (United States)

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  3. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  4. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    Science.gov (United States)

    Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.

    2015-04-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.

  5. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Yugis, A R; Mansa, R F; Sipaut, C S

    2015-01-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology. (paper)

  6. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    Science.gov (United States)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  7. Advances in flexible optrode hardware for use in cybernetic insects

    Science.gov (United States)

    Register, Joseph; Callahan, Dennis M.; Segura, Carlos; LeBlanc, John; Lissandrello, Charles; Kumar, Parshant; Salthouse, Christopher; Wheeler, Jesse

    2017-08-01

    Optogenetic manipulation is widely used to selectively excite and silence neurons in laboratory experiments. Recent efforts to miniaturize the components of optogenetic systems have enabled experiments on freely moving animals, but further miniaturization is required for freely flying insects. In particular, miniaturization of high channel-count optical waveguides are needed for high-resolution interfaces. Thin flexible waveguide arrays are needed to bend light around tight turns to access small anatomical targets. We present the design of lightweight miniaturized optogentic hardware and supporting electronics for the untethered steering of dragonfly flight. The system is designed to enable autonomous flight and includes processing, guidance sensors, solar power, and light stimulators. The system will weigh less than 200mg and be worn by the dragonfly as a backpack. The flexible implant has been designed to provide stimuli around nerves through micron scale apertures of adjacent neural tissue without the use of heavy hardware. We address the challenges of lightweight optogenetics and the development of high contrast polymer waveguides for this purpose.

  8. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  9. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    Science.gov (United States)

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

    Science.gov (United States)

    Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin

    2012-01-24

    A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society

  11. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.

    Science.gov (United States)

    Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei

    2013-11-07

    Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.

  12. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.

    Science.gov (United States)

    Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun

    2013-09-25

    High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-cost high-quality crystalline germanium based flexible devices

    KAUST Repository

    Nassar, Joanna M.

    2014-06-16

    High performance flexible electronics promise innovative future technology for various interactive applications for the pursuit of low-cost, light-weight, and multi-functional devices. Thus, here we show a complementary metal oxide semiconductor (CMOS) compatible fabrication of flexible metal-oxide-semiconductor capacitors (MOSCAPs) with high-κ/metal gate stack, using a physical vapor deposition (PVD) cost-effective technique to obtain a high-quality Ge channel. We report outstanding bending radius ~1.25 mm and semi-transparency of 30%.

  14. Low-cost high-quality crystalline germanium based flexible devices

    KAUST Repository

    Nassar, Joanna M.; Hussain, Aftab M.; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2014-01-01

    High performance flexible electronics promise innovative future technology for various interactive applications for the pursuit of low-cost, light-weight, and multi-functional devices. Thus, here we show a complementary metal oxide semiconductor (CMOS) compatible fabrication of flexible metal-oxide-semiconductor capacitors (MOSCAPs) with high-κ/metal gate stack, using a physical vapor deposition (PVD) cost-effective technique to obtain a high-quality Ge channel. We report outstanding bending radius ~1.25 mm and semi-transparency of 30%.

  15. Building flexible, distributed collaboration tools using type-based publish/subscribe - The Distributed Knight case

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Damm, Christian Heide

    2004-01-01

    Distributed collaboration is becoming increasingly impor tant also in software development. Combined with an in creasing interest in experimental and agile approaches to software development, this poses challenges to tool sup port for software development. Specifically, tool support is needed...... for flexible, distributed collaboration. We intro duce the Distributed Knight tool that provides flexible and lightweight support for distributed collaboration in object oriented modelling. The Distributed Knight implementa tion builds crucially on the type-based publish/subscribe distributed communication...... paradigm, which provides an effective and natural abstraction for developing distributed collaboration tools....

  16. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    OpenAIRE

    Chen Kuo-Wei

    2016-01-01

    This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with ...

  17. Organizational flexibility estimation

    OpenAIRE

    Komarynets, Sofia

    2013-01-01

    By the help of parametric estimation the evaluation scale of organizational flexibility and its parameters was formed. Definite degrees of organizational flexibility and its parameters for the Lviv region enterprises were determined. Grouping of the enterprises under the existing scale was carried out. Special recommendations to correct the enterprises behaviour were given.

  18. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  19. Flexibility within Fidelity

    Science.gov (United States)

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  20. Flexible position probe assembly

    International Nuclear Information System (INIS)

    Schmitz, J.J.

    1977-01-01

    The combination of a plurality of tubular transducer sections and a flexible supporting member extending through the tubular transducer sections forms a flexible elongated probe of a design suitable for monitoring the level of an element, such as a nuclear magnetically permeable control rod or liquid. 3 claims, 23 figures